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Abstract In this paper we establish several results which allow to find fixed points
and zeros of set-valued mappings on Riemannian manifolds. In order to prove
these results we make use of subdifferential calculus. We also give some useful
applications.
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1 Introduction

It is well known that graphical derivatives of set-valued mappings can be very useful
in order to obtain fixed-point and inverse-function-like results. We could cite [1]
for instance, where a calculus of contingent derivatives is introduced and applied
to prove an adaptation of the inverse function theorem due to Ekeland (which we
generalize here to the setting of Riemannian manifolds, see Theorem 10 below).
Along the same line we should cite Mordukovich and Outrata’s paper [10], where
contingent derivatives of the subdifferential of a given function are studied and
applied to the contact problem with non-monotonous friction.

In the present paper we introduce a notion of graphical derivative of set-valued
mappings defined on Riemannian manifolds, and we obtain a very general result
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(see Theorem 5 below) which ensures the existence of solutions to inclusions where
the set-valued mapping, in the case when the manifold has a Lie group structure, is
the sum of a mapping satisfying a Lipschitz condition and another mapping whose
graphical derivative satisfies a certain condition. From this main theorem we deduce
many applications. For instance we give some conditions which guarantee Lipschitz
dependence of such solutions with respect to parameters (see Corollary 8). We also
establish a result which allows us to find fixed points of set-valued mappings under
some assumptions on the graphical derivatives of such mappings (see Theorem 13).

We should also observe that, in the case when the function is single-valued, our
results improve the main theorems of [2].

Let us now explain the notation and some of the tools that we will be using.
Throughout this paper we will assume that M is a complete Riemannian manifold
and that the set-valued mappings F : M ⇒ M are proper and satisfy the following
conditions:

1. d(z, F(x)) is attained for every x, z ∈ M.
2. For every z0 ∈ M, the function ϕ(x) = d(z0, F(x)) is lower semicontinuous.

Condition (1) requires F(x) closed, and it is met if F(x) is compact or finite
dimensional for instance.

We require condition (2) in order to ensure the existence of the subdifferential of
the function ϕ in a dense set of points. This is not a strong restriction; it holds under
very natural assumptions, such as upper semicontinuity of F.

Let us introduce some notation that we will be using throughout this paper. We
will let iM stand for the injectivity radius of M, and ip denote the injectivity radius
of M at p ∈ M. As usual, expx : T Mx → M will denote the exponential mapping at
a point x ∈ M. We refer the reader to [6, 8] for the definitions of injectivity radii,
exponential mapping, parallel transport and other standard terms of differential
geometry. Recall that, for a given curve γ : I → M, numbers t0, t1 ∈ I and a vector
V0 ∈ T Mγ (t0) there exists a unique parallel vector field V(t) along γ such that
V(t0) = V0, and the mapping defined by V0 �→ V(t1) is a linear isometry between
the tangent spaces T Mγ (t0) and T Mγ (t1). In the case when γ is a minimizing geodesic
and x = γ (t0), y = γ (t1) we denote this mapping by Lxy : T Mx → T My, the parallel
transport from T Mx to T My along γ . The parallel transport allows us to measure the
length of the “difference” between vectors (or forms) which are in different tangent
spaces (or in duals of tangent spaces, that is, different fibers of the cotangent bundle),
and to do so in a natural way. Indeed, let γ be a minimizing geodesic connecting
two points x, y ∈ M, and let Lxy the parallel transport along γ . For any two vectors
v ∈ T Mx, w ∈ T My we can define a natural distance between v and w as the number

‖v − Lyx(w)‖x = ‖w − Lxy(v)‖y

(this equality holds because Lxy is a linear isometry between the two tangent spaces,
with inverse Lyx). Since the spaces T∗Mx and T∗My are isometrically identified by
the formula v ≡ 〈v, ·〉, we can obviously use the same method to measure distances
between forms ζ ∈ T∗Mx and η ∈ T∗My lying on different fibers of T∗M.

We will write the subindices for the norm and the scalar product whenever it is
necessary in order to avoid confusion about the tangent space we work on.
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We will also use the definition of the proximal subdifferential ∂P f (x0) of a function
f defined on a Riemannian manifold, which was introduced in [2] and in [3], as well
as the following characterization: ζ ∈ ∂P f (x0) if and only if there exists a positive
number σ and a neighborhood of x0 on which

f (x) � f (x0) + 〈
ζ, exp−1

x0
(x)

〉 − σd(x, x0)
2

holds (this is called the proximal inequality).

Definition 1 Let M be a Riemannian manifold. Consider a set-valued mapping
G : M ⇒ M, and a point x0 ∈ M. The graphical derivative (or contingent derivative)
of G at x0 for y0 ∈ G(x0) is the set-valued mapping DG(x0 | y0) : Tx0 M → Ty0 M
defined by

v ∈DG(x0 | y0)(h) if and only if ∃hn ∈ Tx0 M, ∃vn ∈ Ty0 M, ∃tn ↓ 0 such that

(h, v) = limn(hn, vn) and expy0(tnvn) ∈ G(expx0(tnhn))

In the case when M = H, where H is a Hilbert space, Definition 1 is equivalent
to the definition of the graphical derivative via the tangent cone introduced by J.P.
Aubin in [1]. The graphical derivative of a singled-valued function agrees with its
differential whenever the function is differentiable.

2 Main Results

Lemma 2 Let M be a Riemannian manifold. Let G : M ⇒ M be a set-valued map-
ping, and define ϕ : M → R by ϕ(x) = d(z0, G(x)). Assume that ζ ∈ D−ϕ(x0), with
ϕ(x0) > 0. If y0 ∈ G(x0) satisfies that ϕ(x0) = d(y0, z0), v ∈ DG(x0|y0)(h) and the
function x → d2(x, z0) is C2 at y0, then we have

〈ζ, h〉x0 �
〈−exp−1

y0
(z0)

d(y0, z0)
, v

〉

y0

,

and consequently, for h �= 0, we have

||ζ || �
〈

exp−1
y0

(z0)

d(y0, z0)
,

v

||h||

〉

while
〈−exp−1

y0
(z0)

d(y0, z0)
, v

〉

� 0

when h = 0.

Proof We have that (h, v) = lim(hn, vn) with expy0(tnvn) ∈ G(expx0(tnhn)) for a se-
quence {tn} ↓ 0.
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On the other hand, since ζ ∈ D−ϕ(x0), we have that for any chart f : U ⊂ M → H
and x0 ∈ U (where U is an open set in M),

lim inf
v→0

(ϕ ◦ f −1)( f (x0) + v) − ϕ(x0) − 〈η, v〉
||v|| � 0

where η = ζ ◦ df −1( f (x0)) (see [4]).
Consequently, we obtain

(ϕ ◦ f −1)( f (x0) + v) � ϕ(x0) + 〈η, v〉 + o(||v||)
for ||v|| small enough. Now, if we take f = exp−1

x0
, then we get η = ζ , because η =

ζ ◦ dexpx0(0) = ζ ◦ idTx0 M = ζ . If v = exp−1
x0

(x) then

ϕ(x) � ϕ(x0) + 〈
ζ, exp−1

x0
(x)

〉 + o(d(x, x0))

for x near x0. We deduce

d(expy0(tnvn), z0) � ϕ(expx0(tnhn)) � d(y0, z0) + 〈ζ, tnhn〉 + o(tn||hn||)
hence

〈ζ, hn〉 � d(expy0(tnvn), z0) − d(y0, z0)

tn
+ 1

tn
o(tn||hn||),

which is equivalent to

〈ζ, hn〉 � d2(expy0(tnvn), z0) − d2(y0, z0)

tn(d(expy0(tnvn), z0) + d(y0, z0))
+ 1

tn
o(tn||hn||).

Now we define ψ(x) = d2(x, z0) so

ψ ′(y0) = 2d(y0, z0)D1d(y0, z0)

and we obtain

d2(expy0(tnvn), z0) − d2(y0, z0) = 2tnd(y0, z0)D1d(y0, z0)(vn)

+ ψ ′′(y0)(tnvn) + o(t2
n||vn||2)

Consequently

〈ζ, hn〉 � 2tnd(y0, z0)D1d(y0, z0)(vn) + ‖ψ ′′(y0)‖t2
n‖vn‖2 + o(t2

n‖vn‖2)

tn(d(expy0(tnvn), z0) + d(y0, z0))
+ 1

tn
o(tn‖hn‖).

Now, by letting tn ↓ 0, hn → h and vn → v, we have

〈ζ, h〉 � 2d(y0, z0)D1d(y0, z0)(v)

2d(y0, z0)
.

Simplifying the expression above yields

〈ζ, h〉 � D1d(y0, z0)(v) =
〈−exp−1

y0
(z0)

d(y0, z0)
, v

〉

.
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As for the second part it is enough to observe that when h �= 0,

||ζ ||||h|| � 〈ζ, −h〉 �
〈

expy0(z0)

d(y0, z0)
, v

〉

and when h = 0,

0 �
〈−expy0(z0)

d(y0, z0)
, v

〉
. ��

The differentiability condition on d2(., z0) is satisfied, for example, if iM is infinite,
or more general, if iM is larger than the distance between z0 and G(x0). This Lemma
can be viewed as a sort of Chain Rule. In fact, when g : M → M is single-valued and
differentiable, we have Dϕ(x0)(h) = 〈

∂d(z0,g(x0))

∂x , Dg(x0)(h)
〉
. However, the equality

may fail in general even when we deal with single-valued functions. Indeed, consider
g : R → R such that g(x) = |x| + 1, z0 = 0, (hence ϕ = g), 0 ∈ D−ϕ(0), h = 1 and
v = 1; in this case we have 〈ζ, h〉 = 0 < 1 = 〈1, v〉.

Definition 3 Let M be a Riemannian manifold. We say that a set-valued mapping
H: M⇒ M has the Aubin-property with modulusL provided that for every x1,x2 ∈ M
and every y1 ∈ H(x1), there is a y2 ∈ H(x2) satisfying d(y1, y2) � Ld(x1, x2).

It is easy to see that if H has the Aubin-property with modulus L, then the function
ϕ(x) = d(z0, H(x)) is L-Lipschitz.

Definition 4 Let M be a Riemannian manifold. We say that a set-valued map-
ping G : M ⇒ M satisfies the weak derivative condition, (W DC) for short, for a
positive constant A, if for every x0, z0 ∈ M such that d(G(x0), z0) < iz0 , there are
h ∈ Tx0 M,||h|| = 1, and v ∈ DG(x0|y0)(h) such that 〈exp−1

y0
(z0), v〉 � Ad(z0, y0),

where y0 ∈ G(x0) with d(z0, G(x0)) = d(y0, z0).

In the following theorem we will require our Riemannian manifold M to have an
abelian Lie group structure in order that the distance is translation invariant (see [6]).

Theorem 5 Let M be a complete Riemannian manifold with an abelian Lie group
structure, and a ∈ M. Let G : B(a, R) ⇒ M be a set-valued mapping satisfying (W DC)

for A > 0. Let H: M ⇒ M be a set-valued mapping and have the Aubin-property
with modulus L < A. Assume also that for every x ∈ B(a, R), at least one of the sets
G(x), H(x) is compact, and that d(−H(x), G(x)) < iM. Then the equation 0M ∈ F(x)=
G(x)+H(x) has a solution in B(a, R) provided that F(a)∩B(0, R(A−L)) �=∅.

Proof A solution of the equation is a zero of the function f (x) = d(0, F(x)) =
d(G(x), −H(x)) (where we denote −H(x) := {−x | x ∈ H(x)}). Assume on the con-
trary that there is no solution. For any x0 ∈ B(a, R) and ζ ∈ ∂P f (x0) we have that
f (x0) > 0. Let z0 ∈ −H(x0) and y0 ∈ G(x0) be such that f (x0) = d(z0, y0). The
proximal inequality tells us that there is a positive constant σ , such that for every
x near x0, we have:

d(G(x), −H(x)) = f (x) � d(z0, y0) + 〈
ζ, exp−1

x0
(x)

〉 − σd(x, x0)
2,
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that is

d(G(x), −H(x)) − 〈
ζ, exp−1

x0
(x)

〉 + σd(x, x0)
2 � d(z0, y0) − 〈

ζ, exp−1
x0

(x0)
〉
,

hence

d(z0,−H(x)) + d(z0, G(x)) − 〈
ζ, exp−1

x0
(x)

〉 + σd(x, x0)
2 � d(z0, y0) − 〈

ζ, exp−1
x0

(x0)
〉
.

If we define ψ(x) = d(z0,−H(x)) + d(z0, G(x)) − 〈
ζ, exp−1

x0
(x)

〉 + σd(x, x0)
2, we have

that ψ has a local minimum at x0, hence

0 ∈ ∂Pψ(x0) = −ζ + ∂P(h + ϕ)(x0)

where h(x) = d(z0, −H(x)) and ϕ(x) = d(z0, G(x)) (see [5] for the sum rule, and
keep in mind that the function x �→ 〈−ζ, exp−1

x0
(x)〉 + σd(x, x0)

2 is C2 near x0, with
derivative −ζ , because ∂P

〈
ζ, exp−1

x0
()̇

〉
(x0) = 〈

ζ, dexp−1
x0

(x0)
〉 = 〈ζ, IdT Mx0

〉 = ζ ).
Therefore, for this ζ ∈ ∂P(h + ϕ)(x0), according to the fuzzy sum rule (see [3,

Theorem 3.8]), for every ε > 0, there exist x1, x2 ∈ M, ζ2 ∈ ∂Ph(x2) and ζ1 ∈ ∂Pϕ(x1)

such that

d(xi, x0) < ε, |h(x2) − h(x0)| < ε, |ϕ(x1) − ϕ(x0)| < ε

and

||ζ − (Lx1x0(ζ1) + Lx2x0(ζ2))||x0 < ε,

because h is L-Lipschitz. Hence we have

||ζ || � ||Lx1x0(ζ1) + Lx2x0(ζ2)||x0 − ε � ||Lx1x0(ζ1)||x0 − ||Lx2x0(ζ2)||x0 − ε

with ζ1 ∈ ∂Pϕ(x1) and ||Lx2x0(ζ2)||x0 � L (because ‖ζ2‖x2 � L).
Now, applying the (W DC) condition for G, x1 and z0, there exist h1 ∈ T Mx1 , with

||h1|| = 1, and v1 ∈ DG(x1|y1)(h1) such that 〈exp−1
y1

(z0), v1〉 � Ad(z0, y1). Then we
can apply Lemma 2 (indeed, d(−H(x), G(x)) < iM implies that d2(., z0) is C2 at y0,
hence at y1 as well because this point can be taken as close to y0 as required) to
deduce that

||ζ1|| �
〈

exp−1
y1

(z0)

d(y1, z0)
, v1

〉

� A.

Hence, ||ζ || � ||Lx1x0(ζ1)||x0 − ||Lx2x0(ζ2)||x0 − ε � A − L − ε, and letting ε go to 0,
we get ||ζ || � A − L. Now we can finally apply the Decrease Principle (see [2,
Theorem 16]) to obtain a contradiction: 0 � inf{ f (x) : x ∈ B(a, R)} � f (a) − R(A −
L) < 0 (recall that f (a) = d(0, F(a)) < R(A − L)).

Therefore there necessarily exists x0 ∈ M such that f (x0) = 0, and consequently
0 ∈ F(x0). ��

Remark 6 It is worth noting that in the statement 5 we can take any other point z0

instead of 0M, and the result holds with an analogous proof.

Remark 7 We can use Lemma 2 with the proximal subdifferential because

∂p f (x0) ⊂ D− f (x0).
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In view of the preceding theorem, we can think about a similar problem

0M ∈ F(x) = G(x) + P(y) + H(x),

where P : X → M is a K-Lipschitz function defined on X, a metric space of parame-
ters. In this situation it can be very useful to know something about the continuity
properties of the solution mapping S : X ⇒ M defined as

S(y) := {x : 0M ∈ G(x) + P(y) + H(x)};
in this respect we obtain the following.

Corollary 8 Let M be a complete Riemannian manifold with an abelian Lie group
structure. Let H and G be set-valued mappings which satisfy the hypothesis in
Theorem 5 for R = ∞. We assume that d(−H(x), G(x) + P(y)) � iM for all x ∈ M,
y ∈ X. Then, for any given y ∈ X, the equation 0M ∈ F(x) = G(x) + P(y) + H(x) has
a solution, and the set-valued solution mapping S : X ⇒ M, y → S(y) := {x : 0M ∈
G(x) + P(y) + H(x)} has the Aubin-property with modulus K

A−L .

Proof For a given point y ∈ X, the mapping G(x) + P(y) satisfies the (W DC)-
condition because so does G. From Theorem 5 we know that, given a y1 we have an
x1 ∈ S(y1). Now we take another point y2, and we apply Theorem 5 to the mappings
H(.) and G(.) + P(y2) with R = d(y1,y2)K

A−L so as to find a x2 ∈ S(y2) ∩ B(x1, R). In
order to do so, we need that

G(x1) + H(x1) + P(y2) ∩ B(0M, (A − L)R) �= ∅, (1)

which (taking into account that 0M ∈ G(x1) + H(x1) + P(y1)) is implied by

P(y2) − P(y1) ∈ B(0M, (A − L)R), (2)

which in turn is true because we have taken R = d(y1,y2)K
A−L , so

d(P(y2), P(y1)) � Kd(y2, y1) = (A − L)R.

Therefore

d(x2, x1) � R = K
A − L

d(y1, y2).

We have thus proved that given an x1 ∈ S(y1) we can find an x2 ∈ S(y2) satisfy-
ing the previous inequality, and this means that S has the Aubin-property with
modulus K

A−L . ��

3 Applications

The equations considered in [10, Section 5] are similar to those of Theorem 5. The
problem in [10] is how to find solutions of

0 ∈ f (x, y) + Q(x, y),
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where f: R
n × R

m → R
m is a continuously differentiable function, and Q : R

n ×
R

m → R
m is a set-valued mapping which is defined as follows:

Q(x, y) =
{

∂ϕ(g(x, y)) if g(x, y) ∈ dom ϕ

∅ otherwise

where ϕ : R
m → R is an extended-real-valued proper function, g : R

n × R
m → R

m is
continuously differentiable at the points in question (that is dom(ϕ)), and ∂ϕ(x0) is
the basic subdifferential (with the notation in [10]), and when it coincides with the
Frechet subdifferential the function is called subdifferentially regular (that is the case
of the convex functions, the smooth functions, “max functions”, etc; see [9]) as in
the following example.

Our problem is, on the one hand, less general, because we consider values x and
parameters y as separate values. But, on the other hand, our assumptions in Theorem
5 are less restrictive than those of [10]. For instance, we don’t ask for the existence of
solutions as the Theorem 5.1 of [10]. We don’t need that the function f is C1 smooth,
and neither that the function Q is a subdifferential. Moreover, there are cases where
we can apply either method to get the result. For example, we can apply Corollary
8 to the equation which appears in Section 5 of [10], which corresponds to a contact
problem with nonmonotone friction and can be described as follows:

0 ∈ Ay + p(x) + ∂φ(Dy) (β)

where x ∈ R
n, A is an m × m positively definite “stiffness” matrix, p : R

n → R
m is

a continuously differentiable vector function related to external forces and D is an
m × m nonsingular matrix defined by a quadrature formula. The function φ is of the
form

φ(z) =
m∑

i=1

ϕi(zi) with z ∈ R
m,

and the functions ϕi that are used in [10] are as follows:

ϕi(zi) =

⎧
⎪⎪⎨

⎪⎪⎩

(−k1 + k2z0)zi + k2
2 (z0)

2 if zi < −z0

−k1zi − k2
2 (zi)

2 if zi ∈ [−z0, 0),

k1zi − k2
2 (zi)

2 if zi ∈ [0, z0),

(k1 − k2z0)zi + k2
2 (z0)

2 if zi � z0,

where z0 > 0, k1 > 0, and k2 > 0 are given parameters. It is not difficult to prove
that Ay has the (W DC)-condition for the constant 1

‖A−1‖ , the mapping ∂φ(Dy) has
the Aubin-property for L = √

n‖D‖Max{2k1, k2}. Then, when we have that

√
n‖D‖Max{2k1, k2} <

1

‖A−1‖
and the function p(x) is Lipschitz, we can assure that the equation (β) has solution,
and the solution has the Aubin property for the constant

K
1

‖A−1‖ − √
n‖D‖Max{2k1, k2}

where K is the Lipschitz constant of p(x).
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Remark 9 Let us observe that when H ≡ 0, the assumptions in Theorem 5 are
clearly relaxed. First, we only need that ϕ(x) = d(0M, G(x)) be lower semicon-
tinuous, which is a very weak condition. For example, the single-valued function
g : R → R defined by g(x) = sign(x), shows that continuity can be dispensed with.
Secondly, (W DC) reads as follows: for every x0 ∈ M, there are h ∈ T Mx0 , ||h|| = 1,

and v ∈ DG(x0|y0)(h) such that
〈

exp−1
y0

(0M)

d(0M,y0)
, v

〉
� A, where y0 ∈ G(x0) satisfies that

d(0M, G(x0)) = d(0M, y0).
Moreover, when H ≡ 0, it is not necessary for M to have a Lie group structure,

and we can replace 0M with a given point p0.
This observation allows us to deduce the following result, whose original proof (in

the case when M = X, a Hilbert space) is due to Ekeland (see [1] and [7]).

Theorem 10 Let M be a complete Riemannian manifold and F: M ⇒ M an upper
semicontinuous map with compact values. Let us fix a point z0 and assume that there
is a positive constant C such that for every x ∈ M there are a y ∈ F(x), with d(z0, y) =
d(z0, F(x)), and an h ∈ T Mx, C||h|| � d(z0, y) such that exp−1

y (z0) ∈ DF(x|y)(h).
Assume also that d(z0, F(x)) < iz0 . Then there exists a solution x0 of z0 ∈ F(x).

Proof If h = 0 for some x, we deduce that
〈−exp−1

y (z0)

d(z0,y)
, exp−1

y (z0)
〉
� 0, as a conse-

quence of Lemma 2, hence exp−1
y (z0) = 0 ⇒ y = z0 ∈ F(x). Otherwise (if y �= z0)

we have v = exp−1
y (z0)

||h|| ∈ DF(x|y)
( h

||h||
)

and
〈

exp−1
y (z0)

d(z0, y)
, v

〉

= d(z0, y)2

||h||d(z0, y)
= −d(z0, y)

||h|| � C,

so we may apply Theorem 5 with H = 0. ��

We now introduce a condition which is slightly stronger than (W DC), but much
easier to verify in practice.

Definition 11 We say that a set-valued mapping G : M ⇒ M satisfies the derivative
condition, (DC) for short, for a positive constant A at x0 ∈ M, if d(x0, G(x0)) < ix0

and for every e ∈ T My0 with ||e|| = 1, y0 ∈ G(x0), d(x0, G(x0)) = d(x0, y0), there
exist h ∈ T Mx0 , ||h|| = 1, and v ∈ DG(x0|y0)(h) such that 〈e, v〉 � A.

Observe that (DC) is symmetric in the sense that it is equivalent to the fact that
for every e ∈ T My0 , ||e|| = 1, where y0 ∈ G(x0), such that d(x0, G(x0)) < ix0 , there
are h ∈ T Mx0 , ||h|| = 1, and v ∈ DG(x0|y0)(h) such that 〈e, v〉 � −A. We will denote
this condition by (−DC).

From Theorem 5, we deduce an analogous result with the (DC) (or the (−DC)

condition) instead of the W DC condition.

Corollary 12 Let M be a complete Riemannian manifold with an abelian Lie group
structure, and a ∈ M. Let G : B(a, R) ⊂ M ⇒ M be a set-valued mapping, and A >

0. Assume that G satisfies (DC), or equivalently (−DC), for A at every point
x0 ∈ B(a, R) ⊂ M. Let H: M ⇒ M have the Aubin-property with modulus L < A.
Assume also that at least one of the sets G(x), H(x) is compact and that d(−H(x),
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G(x)) < iM for each x. Then the equation 0M ∈ F(x) = G(x) + H(x) has a solution in
B(a, R) provided that F(a) ∩ B(0, R(A − L)) �= ∅.

Now we introduce a fixed point result, whose prof is similar to that of Theorem 5.

Theorem 13 Let M be a complete Riemannian manifold with an abelian Lie group
structure, and a ∈ M. Let G : B(a, R) ⊂ M ⇒ M be a set-valued mapping, and A > 1.
Assume that G satisfies the (W DC) condition for A. Let H: M ⇒ M be a set-
valued mapping with the Aubin-property with modulus L < A − 1. Assume also
that for each x ∈ B(a, R) at least one of the sets G(x), H(x) is compact, and that
d(x − H(x), G(x)) < iM. Then the mapping F(x) = G(x) + H(x) has a fixed point in
B(a, R) provided that F(a) ∩ B(a, R(A − L − 1)) �= ∅.

Proof A solution of x ∈ F(x) = G(x) + H(x) is a zero of f (x) = d(x, F(x)) =
d(G(x), x − H(x)). Assume on the contrary that there is no solution. For any x0 ∈
B(a, R) and ζ ∈ ∂P f (x0) we have that f (x0) > 0. Let z0 ∈ x0 − H(x0) and y0 ∈ G(x0)

be such that f (x0) = d(G(x0), x0 − H(x0)) = d(y0, z0). The Proximal inequality
gives us

d(G(x), x − H(x)) = f (x) � f (x0) + 〈
ζ, exp−1

x0
(x)

〉 − σ(d(x, x0)
2),

hence

d(G(x), x − H(x)) − 〈
ζ, exp−1

x0
(x)

〉
� d(z0, y0) − 〈

ζ, exp−1
x0

(x0)
〉 − σ(d(x, x0)

2)

If we define ψ(x) = d(z0, x − H(x)) + d(z0, G(x)) − 〈ζ, x〉 + σ(d(x, x0)
2), we con-

clude that ψ has a local minimum at x0, therefore

0 ∈ ∂Pψ(x0) = −ζ + ∂(h + ϕ)(x0)

because h(x) = d(z0, x − H(x)), ϕ(x) = d(z0, G(x)) (see [5] for the sum rule), and
the function x → 〈 − ζ, exp−1

x0
(x)

〉 + σd(x, x0)
2 is C2 with derivative −ζ . Then, using

the Fuzzy Sum Rule (and taking into account that h is (L + 1)-Lipschitz), for every
ε > 0, there are x1, x2 and ζ1 ∈ ∂Pϕ(x1), ζ2 ∈ ∂Ph(x2) such that

(1) d(xi, x0) < ε, d(h(x2), h(x0)) < ε and d(ϕ(x1), ϕ(x0)) < ε

(2) ||ζ − (Lx1x0(ζ1) + Lx2x0(ζ2)||x0 < ε.

Hence

||Lx1x0(ζ1) + Lx2x0(ζ2)||x0 � ε + ||ζ ||x0 .

Given x1 and z0, there are h1 ∈ Tx1 M, ||h1|| = 1 and v1 ∈ DG(x1 | y1)(h1) such that
〈
exp−1

y1
(z0), v1

〉
� Ad(z0, y1)

since G enjoys the (W DC) condition.
On the other hand, we can apply Lemma 2 thanks to the fact that d(x −

H(x), G(x)) < iM, so we can deduce that

||ζ1||x1 �
〈

exp−1
y1

(z0)

d(y1, z0)
,

v1

||h1||

〉

=
〈

exp−1
y1

(z0)

d(y1, z0)
, v1

〉

� A,
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and therefore

||ζ || � ||Lx1x0(ζ1)||x0 − ||Lx2x0(ζ2)||x0 − ε � A − ||Lx2x0(ζ2)|| − ε � A − L − 1 − ε

since ||ζ1||x1 = ||Lx1x0(ζ1)||x0 and ||Lx2x0(ζ2)||x0 = ||ζ2||x2 � L + 1.
Finally, from the Decrease Principle, we obtain the following contradiction

0 � inf { f (x) : x ∈ B(a, R)} � f (a) − R(A − L − 1) < 0,

since f (a) = d(a, F(a)) < R(A − L − 1). ��

This theorem improves the result of [2, Theorem 38], as it holds for set-valued
mappings and the hypotheses are less restrictive. Theorem 38 of [2] guarantees a
solution of

x ∈ G(x) + H(x)

under the following assumptions:

(1) G : M → M is a single-valued smooth function, C-Lipschitz in B(x0, R),
(2) H : M → M is a single-valued L-Lipschitz function,
(3) G(x) + H(x) /∈ sing(x) ∪ sing(G(x)) for every x ∈ B(x0, R),
(4) 〈Lx,H(x)+G(x)h, LG(x),H(x)+G(x)dG(x)(h)〉H(x)+G(x) � K < 1 for all x ∈ B(x0, R)

and h ∈ T Mx with ‖h‖x = 1 and that
(5) L < 1 − K and d(x0, x0 + H(x0)) < R(1 − K − L).

So this theorem demands that both of the functions are Lipschitz, and in Theorem 13
we only need that H have the Aubin-property and we don’t need that G is smooth.
Moreover the condition in hypothesis (4) is stronger than the (W DC)-condition.

Now we will study the special case of single-valued functions g. We assume that
g is continuous. As we noted above, Dg(x0|g(x0))(h), now denoted by Dg(x0)(h), is

the set of limits, lim
exp−1

g(x0)(g(expx0 (tnhn)))

tn
, for sequences hn → h and tn ↓ 0. Let us give a

proof of this fact. Indeed,

v ∈ Dg(x | g(x0))(h) ⇔ ∃hn → h, hn ∈ Tx0 M, ∃vn → v, vn ∈ Tg(x0)M

and ∃tn ↓ 0 such that, lim
n

(hn, vn) = (h, v) and expg(x0)(tnvn) ∈ g(expx0(tnhn)),

hence

expg(x0)(tnvn) ≡ g(expx0(tnhn))

since g(expx0(tnhn)) is single-valued. Therefore

tnvn = exp−1
g(x0)

(g(expx0(tnhn))) ⇔ vn = exp−1
g(x0)

(g(expx0(tnhn)))

tn

and then, for all v ∈ Dg(x0 | g(x0))(h) ≡ Dg(x0)(h) there exist sequences tn, hn such
that

v = lim
n

vn = lim
n

exp−1
g(x0)

(g(expx0(tnhn)))

tn
.
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Consequently the (DC) condition at x0 is equivalent to the following one: for every
e ∈ Tg(x0)M, ||e|| = 1, assuming that d(x0, g(x0)) < ix0 , there exist sequences hn → h
and tn ↓ 0, ||h|| = 1, such that

〈
e, exp−1

g(x0)
(g(expx0(tnhn)))

〉
� tn A (sDC)

Similarly (−DC) at x0 means that for every e ∈ T Mg(x0), ||e|| = 1, assuming that
d(x0, g(x0)) < ix0 , there exist sequences hn → h and tn ↓ 0, ||h|| = 1, such that

〈
e, exp−1

g(x0)
(g(expx0(tnhn)))

〉
� −tn A (−sDC)

Therefore, for single-valued functions g, Theorems 5 and 13 can be rewritten using
the (sDC) or the (−sDC) condition instead of the (W DC) condition. In this case we
do not need to assume that G(x) and H(x) are compact, because we know g(x) that
is a single point. The rest of the conditions are the same.

Remark 14 The graphical derivative of a single-valued function g : M → M, always
contains the one-side directional derivatives

g′(x0, h) = lim
t↓0

exp−1
g(x0)

(g(expx0(th)))

t

provided that they exist. That is the case for Gateaux differentiable functions for
instance.

Therefore we can use the one-side directional derivatives in order to simplify the
conditions of Theorem 5. So instead of the W DC condition, we may require that for
every x0 ∈ B(a, R) either

inf
e∈Tg(x0) M,||e||=1

(

sup
h∈Tx0 M,||h||=1

〈e, g′(x0, h)〉
)

� A

or

sup
e∈Tg(x0) M,||e||=1

(
inf

h∈Tx0 M,||h||=1
〈e, g′(x0, h)〉

)
� −A,

and leave the rest of the statement untouched.

As for fixed point results, and concerning one-side directional derivatives, we have
the following corollary.

Corollary 15 Let M be a complete Riemannian manifold with an abelian Lie group
structure, and a ∈ M. Let g : B(a, R) → M be a continuous function with one-side
directional derivatives at every point. Assume that for a positive constant A > 1, we
have that for every x0 ∈ B(a, R) either

inf
e∈Tg(x0) M,||e||=1

(

sup
h∈Tx0 M,||h||=1

〈e, g′(x0, h)〉
)

� A

or

sup
e∈Tg(x0) M,||e||=1

(
inf

h∈Tx0 M,||h||=1
〈e, g′(x0, h)〉

)
� −A
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Let H: M ⇒ M have the Aubin-property with modulus L < A − 1. We assume
than d(x − H(x), g(x)) < iM.Then F = g + H has a fixed point, provided that F(a) ∩
B(a, R(A − L − 1)) �= ∅.

Proof Taking ε > 0 small enough so that F(a) ∩ B(a, R(A − L − 1 − ε)) �= ∅, we
have that for all e ∈ Tg(x0)M, ||e|| = 1 there exists h ∈ Tx0 M such that 〈e, g′(x0, h)〉 �
A − ε (or 〈e, g′(x0, h)〉 < −A + ε), and we can now apply the Theorem 13 with the
(sDC) or the (−sDC) instead of the (W DC)-condition. ��

The above result yields a differentiable test to ensure that a given function is onto.

Corollary 16 Let M be a complete Riemannian manifold with an abelian Lie group
structure and with an infinite injectivity index iM. Let g : M → M be a continuous
function with one-side directional derivatives at every point. Assume that for a positive
constant A, we have that for every x0 ∈ M either

inf
e∈Tg(x0) M,||e||=1

(

sup
h∈Tx0 M,||h||=1

〈e, g′(x0, h)〉
)

� A,

or

sup
e∈Tg(x0) M,||e||=1

(
inf

h∈Tx0 M,||h||=1
〈e, g′(x0, h)〉

)
� −A.

Let H be a set-valued mapping with the Aubin-property with modulus L, and L < A.
Then g + H, and in particular g too, are onto.

Proof Given a y0 ∈ M, from Theorem 5, with the condition of Remark 14 instead of
the (W DC)-condition, applied to the function g(x) − y0, with R = +∞, we deduce
the existence of a x0 ∈ M such that 0M ∈ g(x0) − y0 + H(x0). ��

For instance, if we consider a polynomial P ∈ P(2 X) (where X is a Hilbert space)
such that P(h) � A for every h ∈ SX , and an L-Lipschitz function f: X → X, with
L < A, then the function G(x) = DP(x) + f (x) is onto.

The case H constant, that is 0-Lipschitz, gives us an interesting result on discrete
dynamical systems.

Corollary 17 Let M be a complete Riemannian manifold with an abelian Lie group
structure and a ∈ M. Let g : B(a, R) ⊂ M → M be a continuous function, A > 0.
Assume that it has one-side directional derivatives at every point, g′(x0, h), and
moreover that for every x0 ∈ B(a, R) either

inf
e∈Tg(x0) M,||e||=1

(

sup
h∈Tx0 M,||h||=1

〈e, g′(x0, h)〉
)

� A,

or

sup
e∈Tg(x0) M,||e||=1

(
inf

h∈Tx0 M,||h||=1
〈e, g′(x0, h)〉

)
� −A.
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Let S be a closed subset, such that d(x, S) is attained for every x ∈ M. We assume that
d(g(x), 0M) < i0 where i0 is the injectivity radius of M at 0M. Then g(B(a, R)) ∩ S �= ∅
provided that d(g(a), S) � RA.

Proof The result follows from Theorem 5, with the condition of Remark 14 instead
of the (W DC)-condition, applied to the mappings −g and H(x) = S constantly. ��

In [11] a Banach Fixed Point Theorem for set valued mappings is proved. With the
tools we have developed we can now easily deduce a similar result for Riemannian
manifolds.

Theorem 18 Let M be a complete Riemannian manifold with an abelian Lie group
structure. Assume that H: M ⇒ M is an L-pseudo-contractive (with the Aubin-
property with modulus L < 1) set valued mapping, and that d(−H(x),−x) < iM.
Then H has a fixed point. Moreover, B(a, R) contains a fixed point provided that
H(a) ∩ B(a, R(1 − L)) �= ∅.

Proof It is enough to apply Theorem 5, with the condition of Remark 14 instead of
the (W DC)-condition, to g(x) = −x, H, and A = 1. Then F(x) = −x + H(x) satisfies
F(a) ∩ B(0M, R(1 − L)) �= ∅ since H(a) ∩ B(a, R(1 − L)) �= ∅, and we can deduce
that there is a x0 ∈ B(a, R) such that 0 ∈ F(x0), or equivalently x0 ∈ H(x0). ��

Another interesting application of Theorem 5 is the existence of solutions for
families of equations. To this end we first need to establish the following viability
Theorem.

Theorem 19 Let M be a complete Riemannian manifold with an abelian Lie group
structure. Let g : B(a, R) ⊂ M → M be a continuous function, A > 0, P a compact
topological space of parameters, h : B(a, R) × P → M. We define f (x, α) = g(x) +
h(x, α). Assume that

(1) d(−h(x, α), g(x)) < iM for all α ∈ P.
(2) g satisfies either the (sDC) or the (−sDC) at every x ∈ B(a, R).
(3) hx: P → M is continuous for every x ∈ B(a, R).
(4) For every x1, x2 ∈ B(a, R) and α1 ∈ P, there is a α2 ∈ P, such that d(h(x1, α1),

h(x2, α2)) � Ld(x1, x2), with L < A.
(5) There is α0 ∈ P such that d(0M, f (a, α0)) � R(A − L).

Then the problem f (x, α) = 0, x ∈ B(a, R), α ∈ P has a solution.

Proof Consider the set valued mapping C: B(a, R) ⊂ M ⇒ M defined by C(x) =
{ f (x, α)}α∈P = g(x) + {h(x, α)}α∈P = g(x) + H(x). The set H(x) is compact by (3), H
is L-Lipschitz by (4), and C(a) ∩ B(0, R(A − L)) �= ∅ by (5). Hence, by Theorem 5
with the (sDC) or the (−sDC) condition instead of the (W DC)-condition, there is a
x0 ∈ B(a, R) such that 0 ∈ C(x0), or equivalently f (x0, α0) = 0 for an α0 ∈ P. ��

Remark 20 Condition (3) is trivially met if we consider a finite parameter set. On the
other hand, condition (4) is weaker than requiring that all the hα are L-Lipschitz. As
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a matter of fact it is not necessary to consider continuous functions, as the following
example shows: P = {1, 2}, E ⊂ R, h1 = χE, h2 = χEc .

A different approach would be to consider small perturbations of functions with
zeros or with fixed points. For the sake of simplicity we will consider only the case
X = R

n.

Theorem 21 Let g : X → X be a continuous function, with continuous one-side
directional derivatives, g′(., h). Let a ∈ X such that g(a) = 0. Assume that either
infe∈SX (suph∈SX

〈e, g′(a, h)〉) > 0 or supe∈SX
(infh∈SX 〈e, g′(a, h)〉) < 0. Let H: X ⇒ X

be a set-valued mapping with the Aubin-property with modulus L < A. Then
F = g + αH has a zero, provided that α is small enough.

Proof Assume that infe∈SX (suph∈SX
〈e, g′(a, h)〉) > 0. For every e ∈ SX , let he ∈ SX

and Ce > 0 be such that 〈e, g′(a, he)〉 = Ce. Let Ue be a neighborhood of e, and
re > 0 such that 〈ẽ, g′(x, he)〉 > Ce

2 whenever ẽ ∈ Ue and x ∈ B(a, re). We may cover
SX with a finite number of these neighborhoods, Ue1 , . . . , Uen , by compactness. If
R = min(re1 , . . . , ren), we have that for every x0 ∈ B(a, R) and every e ∈ SX there is

an h ∈ SX (h = he1 , . . . or hen ) such that 〈e, g′(x0, h)〉 > A for A = min
(

Ce1
2 , . . . ,

Cen
2

)
.

Finally, if α is small enough so that the Lipschitz constant of αH is smaller than A
and α||H(a)|| < R(A − L), we may apply Theorem 5 with the condition of Remark
14 instead of the (W DC)-condition, and conclude that g + αH has a zero in B(a, R).

��

Remark 22 In order to establish the above result for Riemannian manifolds, we
would have to assume both g′(., h) and g′(a, .) continuous, since we would be working
on different tangent spaces depending on the point.

Similarly we have the following.

Theorem 23 Let g : B(a, R) → X be a continuous function, with continuous one-
side directional derivatives, g′(., h). Let a be a fixed point for g. Assume that either
infe∈SX (suph∈SX

〈e, g′(a, h) − h〉) > 0 or supe∈SX
(infh∈SX 〈e, g′(a, h) − h〉) < 0. Let H:

X ⇒ X be a Lipschitz set valued mapping. Then F = G + αH has a fixed point,
provided that α is small enough.
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