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Introduction and definitions

This work is devoted to the approximation of differentiable semialgebraic functions by
Nash functions. This problem is well-known in case that the functions are defined on an
affine Nash manifold M , and here we extend it to functions defined on Nash sets with a
special kind of singularities.

Definition. Let M be an affine Nash manifold of Rn. Let X ⊂ M be a Nash subset
and let x ∈ X . The germXx is a monomial singularity if there is a neighborhood U of
x in M equipped with a Nash diffeomorphism u : U → Rm with u(x) = 0 that maps
X ∩ U onto a union of coordinate linear varieties. That is, there is a (finite) family Λ
of subsets of indices λ = {`1, · · · , `r} of possibly different cardinality r ≤ m such
that

X ∩ U =
⋃

λ∈Λ
{uλ = 0}

where u = (u1, . . . , um) and {uλ = 0} denotes {u`1 = · · · = u`r = 0}. For simplicity
we assume that there are no immersed components, that is, if λ, λ′ ∈ Λ are different
then λ * λ′ and λ′ * λ. This assures that the germs {uλ = 0}x, λ ∈ Λ, are the
irreducible components of the germ Xx. We say that X has a monomial singularity
of type Λ at x. A Nash set X ⊂M has monomial singularities in M if all germs Xx,
x ∈ X , are monomial singularities.

Let us do some remarks concerning the notion of type:
• A different Nash diffeomorphism u′ may provide a different type Λ′ and therefore

a monomial singularity has several types. Thus, two types Λ and Λ′ will be called
equivalent if the union of the coordinate linear varieties given by Λ is Nash diffeo-
morphic to the one given by Λ′ as germs in the origin (and as we see below, it is
possible to show that this equivalence is in fact global via linear isomorphisms).

• For example, if we have a union of hyperplanesX∩U = {u`1 = 0}∪· · ·∪{u`r = 0},
1 ≤ `1, . . . , `r ≤ m, then it is classically called a Nash normal crossings. Clearly
we can assume X ∩U = {u1 = 0}∪ · · · ∪ {ur = 0} after the obvious linear change
of coordinates. That is, in the context of Nash normal crossings, the number of
hyperplanes determines the type up to linear isomorphism. As we will see now, for
monomial singularities the characterization of the type is far more involved.

So how can we determine the equivalence class of a type?
We can do it even arithmetically. Let L = {L1, . . . , Ls} be a family of coordinate
linear varieties of Rm without immersions. For each subset I ⊂ {1, . . . , s} and each
1 ≤ p ≤ s we denote LI =

⋂
j∈I Lj. Next, to each family of different nonempty subsets

I1, . . . , Ir ⊂ {1, . . . , s}, r ≥ 1, we associate the number dim(LI1 + · · · + LIr). The
collection of all the previous dimensions will be called the load of L.

Proposition. Let L = {L1, . . . , Ls} and L′ = {L′1, . . . , L′s} be coordinate linear
varieties of Rm. Then, there is a linear isomorphism f of Rm such that f (Li) = L′i for
all i if and only if the loads of L and L′ coincide.

Properties of Nash sets with monomial singularities

From the definition it is not clear a priori if the set of points of a Nash set where the
germ is a monomial singularity is a semialgebraic set. The answer is positive:

Proposition. Let X ⊂M be a Nash set. Fix a type Λ and put

T (Λ) = {x ∈ X : X has a monomial singularity of type Λ at x}.

Then, the set T (Λ) is semialgebraic.

The proof of the above fact uses in a crucial way Artin’s approximation theorem with
bounds.
Another important fact is that following finiteness property:

Theorem. Let X ⊂ M be a Nash set with monomial singularities. Then X can
be covered with finitely many open sets U of M each one equipped with a Nash
diffeomorphism u : U → Rm that maps X ∩ U onto a union of coordinate linear
varieties.

To prove the above result it is important to study first Nash functions on Nash sets with
monomial singularities. Recall that ifX is a Nash subset of a Nash manifoldM then we
say that a function f : X → R is a Nash function if there exists an open semialgebraic
neighborhood U of X and a Nash extension F : U → R of f . We denote by N(X)
the ring of Nash functions of X . We say that f : X → R is c-Nash if its restriction
to each irreducible component is a Nash function. We denote by cN(X) the ring of
cN functions. Similarly, we define the ring Sν(X) of Cν semialgebraic functions on
X and the ring cSν(X) of cSν semialgebraic functions on X for ν ≥ 1. By means of
analytic coherence of Nash sets with monomial singularities we have the following weak
normality property :

Theorem. If X is a Nash set with monomial singularities then N(X) = cN(X).

Approximation

The ring Sν(M) of Cν semialgebraic functions is equipped with an Sν Whitney topology
via Sν tangent fields. The fact that we have Sν bump functions as well as finite Sν partitions
of unity makes a crucial difference between Sν and Nash functions and the existence
of these glueing functions justify our interest in approximation. In particular, given a
Nash subset X of M we can extend any Sν function on X to M and therefore Sν(X)
carries the quotient topology making the restriction map ρ : Sν(M) → Sν(X) a quotient
map. If Y is another Nash subset of Rb then a map f = (f1, . . . , fb) : X → Y ⊂ Rb

is Sν if each component fi is Sν and Sν(X, Y ) inherits the topology from the product
Sν(X,Rb) = Sν(X)×· · ·×Sν(X). As we already mention ifX and Y are Nash manifolds
then Shiota proved in the 80’s that any map in Sν(X, Y ) can be also approximated by Nash
maps in N(X, Y ). Note that in this case the problem reduces to prove approximation for
Sν(X) because any Nash manifold has a Nash tubular neighborhood.

What can we say about approximation when X and Y are Nash sets with mono-
mial singularities?

Since Y is not a Nash manifold and we can not use tubular neighborhoods, the situation
gets more complicated. Thus we need to impose a condition in the codomain. Specifically,
we say that a Nash set with monomial singularities Y is a Nash monomial crossings if in
addition the irreducible components of Y are Nash manifolds.

Nash set with monomial singularities

but not Nash monomial crossings

Nash monomial crossings

Theorem. Let X ⊂ M be a Nash set with monomial singularities and let Y ⊂ N be
a Nash monomial crossings. Let m = dim(M), n = dim(N) and q = m

((
n

[n/2]

)
− 1
)

where [n/2] denotes the integer part of n/2. If ν≥q then every Sν map f : X → Y that
preserves irreducible components can be Sν−q approximated by Nash maps g : X → Y .

Application: Nash manifolds with corners

We apply the approximation result above to compare Sν and Nash classifications of affine
Nash manifolds with corners. This somehow complements Shiota’s results on Cν classifi-
cation of Nash manifolds [Sh, VI.2.2].
An (affine) Nash manifold with corners is a semialgebraic set Q ⊂ Ra that is a smooth
submanifold with corners of (an open subset of) Ra. In [FGR] it is proved that any Nash
manifold with corners Q ⊂ Ra is a closed semialgebraic subset of a Nash manifold
M ⊂ Ra of the same dimension and the Nash closure X in M of the boundary ∂Q is
a Nash normal crossings. Note that we can define naturally Sν functions and maps and
their topologies via the closed inclusion of Q in M ; of course this does not depend on the
affine Nash manifold M . A Nash manifold with corners Q has divisorial corners if it is
contained in a Nash manifold M as before such that the Nash closure X of ∂Q in M is
a normal crossing divisor (i.e. the irreducible components are Nash manifolds). As one
can expect this is not always the case and a careful study can be found in [FGR, 1.12].
For example, the intersection of the two circles above is a Nash manifold with divisorial
corners. However, the oval described by the cubic curve on the left is a Nash manifold
with corners but without divisorial corners.

Theorem. Let Q1 and Q2 be two m-dimensional affine Nash manifolds with divisorial
corners. If Q1 and Q2 are Sν diffeomorphic for some ν > m2 then they are Nash
diffeomorphic.
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Recall that...

Semialgebraic = Boolean combination of sets defined by polynomial equations and inequalities.
Nash (affine) manifold = smooth submanifold of Rn + semialgebraic.
Nash map f :M → R = smooth +semialgebraic (which implies analytic).
Nash set = zero set of a Nash map.
Smooth points of a semialgebraic set Z = points x ∈ Z where the germ Zx equals the germ of a Nash manifold. The
set of smooth points is an open dense subset of Z. The points that are not smooth are called singular.


