ON THE BIRATIONALITY OF PLURICANONICAL MAPS OF THREEFOLDS AND FOURFOLDS OF LARGE VOLUME

ANGELO FELICE LOPEZ

ABSTRACT. A celebrated result of Hacon-McKernan and Takayama asserts that, for every $n \geq 1$, there exists an integer m_n such that, for any smooth complex projective variety X of general type, the m-th pluricanonical map $\varphi_m: X \dashrightarrow \mathbb{P}H^0(mK_X)$ is birational onto its image for $m \geq m_n$. It is known that one can take $m_1 = 3, m_2 = 5$ and $m_3 = 73$.

On the other hand it is reasonable to assume that if the volume of X is large enough one should get better results.

In the talk we will give some explicit bounds for n = 3, 4: if n = 3 and $vol(X) > 2(1917)^3$ then φ_m is birational for $m \ge 5$; if n = 4 and $vol(X) > (2816)^4$ then φ_m is birational for $m \ge 817$. This improves a result obtained by Todorov for n = 3.

Moreover these bounds are, in some sense, optimal. For example, if a threefold X is birationally fibered by surfaces of general type with nonbirational fourth-canonical map, then certainly φ_4 is not birational for X. We show that if $\operatorname{vol}(X) > 2(6141)^3$ and φ_4 is not birational, then X is birationally fibered as above. Similar results hold for φ_3 and φ_2 .

This is work in collaboration with Lorenzo Di Biagio, most of which being part of his Ph.D. thesis.