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ABSTRACT. In this survey article we review several known results about syzygies
for projective surfaces and present some new ones. We also give an outline of
some of the ideas and techniques to handle these types of problems.

0. INTRODUCTION

The study of how a variety can map in projective space is central to Algebraic
Geometry. An algebraic variety X is projective if it possesses an ample line
bundle A, that is, a line bundle A such that A®™ is a very ample line bundle. A
very ample line bundle embeds X in projective space. A projective variety has
different line bundles, therefore it has many different ways to map and to embed
in projective space. As a first step, given a line bundle L on X one would like
to know numerical invariants of L such as the dimension of its space of global
sections. One would also like to know under what conditions L is globally
generated (i.e., when L induces a morphism from X to projective space) and,
furthermore, under what conditions L is very ample.

Once we know that L is very ample, an interesting thing to do is to study
the equations of the image of X in the projective space. One would like to find
conditions on L so that the homogeneous coordinate ring R and the homogeneous
ideal I of X have the “simplest” possible structure. In this sense the first
property one can ask for is the normality of R.

If R is projectively normal, one can further ask for conditions under which
I is as simple as possible in terms of its generators. However, to write down
precise equations of a given embedding is in general very hard. A more tractable
problem would be to determine the degrees of the generators for I. These

1



2 F.J. GALLEGO & B.P. PURNAPRAJNA

questions have attracted a lot of attention in recent years, although for a smooth
algebraic curve C' of genus g the study of these problems can be traced back
to the nineteenth century. For curves, simple conditions in terms of the degree
of the line bundle L can be given so that R is normal and I is generated by
equations of the smallest possible degree, which is 2. Indeed, as a corollary of
the Theorem of Riemann-Roch, if the degree of L is greater than or equal to
29 + 1, then L is very ample. On the other hand, the Italian mathematician
Guido Castelnuovo proved, under the same hypothesis, that the coordinate ring
R of the image of C' is normal and that if the degree of L is greater than or
equal to 2g + 2, then I is generated by quadrics. Other important classical
results in this direction are the famous theorems of Noether and Enriques—Petri
(cf. [ACGH)) for a canonical curve, that is, for a curve embedded by its canonical
line bundle. These results tell precisely when a canonical curve is projectively
normal and its ideal generated by forms of degree two.

Castelnuovo’s result was rediscovered by several people: Mumford, Mattuck,
Fujita, St. Donat, among others. Recently Mark Green and Robert Lazarsfeld
brought a new perspective into this problem by looking at the minimal free reso-
lution of I, relating the study of the resolution, via Koszul cohomology, with the
study of the cohomology groups of certain vector bundles (cf. [G], [L]). Besides
proving several interesting theorems relating the geometry of an embedding of
an algebraic curve and its syzygies, they have also posed tantalizing conjectures
for curves.

Let L be a very ample line bundle on a variety X and let

0— F, 2 .. 2 2 25 Fp—R—0

be the minimal graded free resolution of the coordinate ring R of the image of
X by the embedding induced by L. The property IV, is defined as follows:

— L satisfies the property Ny if R is normal.

— L satisfies the property N; if in addition I is generated by quadrics, that
is, if the entries of the matrix of ¢; have degree 2.

— L satisfies the property N, if in addition to satisfying property N, the
resolution is linear from the second step until the p-th step, i.e., if the matrices
of ¢a,...,pp have linear entries.

Thus property N, does not only mean that the coordinate ring R is normal,
and that the homogeneous ideal I is generated in the lowest possible degree
(that is, degree 2, since the variety is not contained in a hyperplane). It says in
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addition that the module M; of relations or syzygies among the generators of 1
is generated in degree 1; that the next module of syzygies (the relations among
the generators of M) is also generated in degree 1 and so on, until arriving at
the syzygy module M,_;, which is also generated in degree 1.

We illustrate these notions by some examples. The simplest variety to study
is P1. The complete linear series of the line bundle Op:(n) embedds P! as a
rational normal curve of degree n. There is not much to say for the case Op1(1):
it satisfies property Ny. The line bundle Op1(2) embedds P! in P2 as a smooth
conic. Its coordinate ring is normal and its ideal is generated by a form of
degree 2, hence according to the above definition Op1(2) satisfies property Nj.
If the conic is for example 22 + y? + 22 = 0, we will write the resolution of the
coorditate ring R as:

2 2 2
0—S(-2) 2,6 s R—0.

By S(—2) we mean the graded module S shifted by —2, that is S(—2) is
generated in degree 2. We also observe that the map between S(—2) and S is
homogeneous of degree 0. We will describe the maps between the free modules
F; and F;_; with a matrix where the rows are the images of the generators of
F;, so that in the matrix we can read off the minimal generators of the (i — 1)-th
syzygy module of R.

The next case we look at is Op1(3). The line bundle Op1(3) embedds P! as
a rational normal curve of degree 3 in P3. A rational normal curve of degree 3
is cut out by 3 quadrics. Take for example I = (y? — zz,yz — zt, 22 — yt), the
ideal of the twisted cubic. This is the resolution of R = S/I:

y? — zz

(t —z y) yz — xt
2

- —yt

0 82(—3) Y T/ g3 gy N T 6 g .

Therefore the ideal I is generated by quadratic equations and the resolution
is linear in the next step. Hence Opi(3) satisfies property Np. In fact the
resolution does not have any more stages. The same happens for a rational
normal curve of degree n: its ideal is generated by quadrics and the resolution
is linear from that point to the end. Thus Op1(n) satisfies property N,,_1 (we
might even say it satisfies N, since there is no nonlinear step in the resolution,
the resolution ending after the (n — 1)-th step).
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To see a situation in which a line bundle satisfies N, but fails to satisfy Np41
we should look at higher genus curves. Let C' be an elliptic curve. On an elliptic
curve a degree 1 line bundle is effective but has a base-point, and a line bundle of
degree 2 induces a double cover of P!, hence it is not very ample nor it satisfies
property Ny. If the degree of L is greater than or equal to 3, L induces an
embedding. If L has degree 3, L embedds C in P2 as a smooth cubic curve C’.
Then its homogeneous coordinate ring is normal, for it is the ring of a smooth
hypersurface, but the ideal of C’ is generated by a cubic form. Therefore L
satisfies Ng but not NVy.

If L has degree 4, L embedds C as an elliptic normal quartic in P3, the
complete intersection of two quadrics F,G. The resolution of its coordinate ring

R is then the Koszul complex:
(e)
G
S?2(-2) —%

Thus L satisfies N; but not Ny because the entries G, —F of the matrix in
the second step are not linear entries.

If L has degree 5, the resolution of the ring R of the image of C' by the
embedding induced by L is this (we only write the Betti numbers):

(G —F)
-5

0— S(—4) S— R —0.

0 — S(=5) — §°(—3) — §°(-2) — S — R — 0.

Since the maps in the resolution are homegeneous of degree 0 we can read
off what maps are linear, from the twists of each free module in the resolution.
Then if L has degree 5, L satisfies No but not N3. This pattern continues as
the degree of L increases and in fact a degree p + 3 line bundle L on an elliptic
curve satisfies property IV, but not property Np1.

We go back now to the study in more generality of the property N, for curves.
Generalizing the result of Castelnuovo, Green proved that if L is a line bundle
of degree greater than or equal to 2g + p + 1 on a smooth curve C of genus g,
then L satisfies the property IN,. Note that the previous examples, rational and
elliptic curves, are particular cases of this.

The theorems of Castelnuovo, Green and the theorems of Noether, Enriques,
Petri and the famous Green’s conjecture for canonical curves unveil a deep rela-
tion between the topological and analytical invariants (genus, degree of the line
bundle, Clifford index) and the extrinsic algebraic and geometric properties of
a curve. Green’s conjecture, a central open question in the theory of curves, tell
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us that the Clifford index of a curve — a purely geometric quantity — can be read
off from the structure of the free resolution of the canonical ring.

Having reviewed some of the classical and modern results known for curves, a
natural thing to do is to look for higher dimensional analogues of these results.
The corollary of Riemann-Roch regarding very ampleness and the theorem of
Castelnuovo and Green can be restated as follows: Let A be an ample line bundle
on C, let K¢ be the canonical bundle of C and let L = Ko ® A®™. If n > 3,
then L is very ample. If n > p + 3, then L satisfies property N,.

The above reformulation suggests a direction to generalize the results of
Castelnuovo, Green and others, to higher dimensions. For higher dimensional
varieties Fujita and Mukai have made two conjectures which have attracted wide
attention during the last few years. Let X be a variety of dimension d and let
L be a line bundle of the form K x ® A®", where K x is the canonical bundle of
X and A is an ample line bundle on X. Then:

Conjecture (Fujita). Ifn > d+ 1, L is globally generated (i.e., L induces a
morphism to projective space); and if n > d + 2, L is very ample.

For an algebraic surface, we have the following:
Conjecture (Mukai). Ifn > p+4, L satisfies property N,.

Fujita’s conjecture holds in dimension 1 (as already said, it is an easy con-
sequence of Riemann—Roch) and in dimension 2 (Reider, 1988, [R]). The part
referring to global generation was proved in dimension 3 (Ein and Lazarsfeld,
1993, [EL2]; see also [F| and [Ka] for a finer version of the conjecture) and in
dimension 4 (Kawamata, 1997, [Ka]) and is open in dimension greater than
4. Concerning very ampleness, Fujita’s conjecture is open in dimension greater
than or equal to 3.

Much less is known regarding Mukai’s conjecture. It is true in dimension 1
(Green’s theorem), but it is not known in general for higher dimension. Not even
the easiest case is settled in general: dimension 2 and p = 0. For surfaces and
higher dimensional varieties some partial results were known: a result of Butler
(cf. [B]) for ruled varieties; Mukai’s conjecture for elliptic ruled surfaces for p = 0,
which was proved by Y. Homma (in fact she completely characterized those line
bundles on an elliptic ruled surface satisfying property Np); a result of Kempf
for Abelian varieties (implying in particular Mukai’s conjecture for p = 0,1 for
Abelian surfaces; cf. [Ke]). Moreover, if one imposes the extra assumption of
very ampleness on A, Ein and Lazarsfeld proved a beautiful general result (cf.
[EL1]), that we state here for the case of surfaces different from P2:
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Theorem 1.1.1. Let X be a projective variety and let A be a very ample line
bundle such that (X, A) # (P",Opn(1)). Then L = Kx ® A®P™" satisfies Np.

We remark that the knowledge of the IV, properties of the Veronese embed-
ding of P? is complete (see [OP]). The problem considered in 1.1.1 becomes
considerably hard, even for algebraic surfaces, if we relax the condition of very
ampleness on A to base-point-freeness. We have proved results along these lines
for algebraic surfaces (see [GP4)).

The questions we have posed are interesting in themselves and not just for
being generalizations of the results already known for curves. For a fixed pro-
jective variety X and an ample line bundle A on X, Kx ® A®" is very ample for
large n, by the very definition of very ampleness. Thus the problem of finding
explicit bounds for n arises naturally. Of course, one would like to find bounds
as sharp as possible, to reach eventually an optimal bound. Furthermore, if one
considers all ample line bundles on a given variety X, or even, if one considers
varieties belonging to a given class, it is natural to look for explicit uniform
bounds for n. In dimension 1 the uniform and optimal bound is given by the
previously mentioned corollary of Riemann—Roch. In dimension 2 the uniform
and optimal bound is given by Reider’s Theorem and, in general, the optimal
bound when one considers any variety of a given dimension should be the one
conjectured by Fujita.

It is natural and interesting to ask higher syzygy analogues of the above
questions. Indeed, if A is ample, Kx ® A®" satisfies property N, when n is
large enough (cf. [EL1], [I] and [N]). Thus one can ask for explicit and uniform
bounds on n for the adjunction bundle Kx ® A®" to satisfy property N,. The
uniform and optimal result for any variety of dimension 1 is Green’s theorem.
One expects the uniform and optimal bound for surfaces to be the conjectured
bound of Mukai. Since this is not yet known, a less ambitious but still worthy
task is to look for uniform bounds for interesting classes of surfaces.

Conventions and notation. Although some of the result we will discuss
hold in greater generality for the purpose of this exposition we will work over
an algebraically closed field k of characteristic 0 and we will restrict ourselves
to smooth surfaces. Hence, when we write surface we will mean smooth surface.

1. AN OVERVIEW OF THE RESULTS ON SYZYGIES OF SURFACES

In this section we review some of the known results regarding the syzygies
of algebraic surfaces. First we present the knowledge about Mukai’s conjecture
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on surfaces. After that, we introduce a new philosophy concerning the kind of
results one should expect to hold for surfaces, regarding the syzygies of embed-
dings induced by line bundles which are not necessarily adjunction bundles.

1.1. Results regarding Mukai’s conjecture.

As mentioned in the introduction, Mukai’s conjecture for surfaces is not
known in general. There are however several classes of surfaces for which the
conjecture is known to hold. For the remaining classes of surfaces explicit bounds
are known on n so that the line bundle K x ® A®" satisfies property N, for any
ample line bundle A on X. We summarize here these results.

We start with surfaces with negative Kodaira dimension, i.e., those
surfaces which are birationally equivalent to geometrically ruled surfaces. For
geometrically ruled surfaces, the following bound is known:

Theorem 1.1.2 (Butler, cf. [B]). Let X be a geometrically ruled surface,
let A be an ample line bundle on X and let L = Kx ® A®™. Ifn > 5, then L
satisfies property No. If n > 4p+ 4, p > 1, then L satisfies property Np.

This bound has been sharpened for elliptic ruled surfaces:

Theorem 1.1.3 (Homma, cf. [Hol] and [Ho2] ). Let X be a surface,
geometrically ruled over a smooth elliptic curve. Let A be an ample line bundle
on X and let L = Kx ® A®™. If n > 4, then L satisfies property Ny.

Theorem 1.1.4 (cf. [GP1], Corollary 4.6 and [GP2], Corollary 6.2). Let
X be a surface, geometrically ruled over a smooth elliptic curve. Let A be an
ample line bundle on X and let L = Kx @ A®™. Ifn>2p+3 and p > 1, then
L satisfies property Np.

These theorems show in particular that Mukai’s conjecture for projective
normality and normal presentation holds for elliptic ruled surfaces.

The previous results are for geometrically ruled surfaces. We now pay at-
tention to anticanonical rational surfaces, which are birationally ruled, but not
necessarily minimal. For these surfaces, we prove a higher syzygy analogue of
Reider’s theorem, which yields as an easy corollary an affirmative answer to
Mukai’s conjecture:

Theorem 1.1.5 (cf. [GP6]). Let X be an anticanonical surface (i.e., a surface
supporting an effective anticanonical divisor). Let A be an ample bundle and let
L=Kx ®A®". If n > p+4, then L satisfies property Np.
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We now focus on surfaces with Kodaira dimension 0. We have the
following bound:

Theorem 1.1.6 (cf. [GP4], Theorem 0.3; [GP5] ). Let X be a minimal
surface with Kodaira dimension 0 and let A be an ample line bundle. If n >
2p + 2, then Kx @ A®™ satisfies property N,,.

This result was known before for the special case of Abelian surfaces and due
to Kempf (cf. [Ke]). Theorem 1.1.6 says in particular that Mukai’s conjecture
holds for minimal surfaces of Kodaira dimension 0 and p = 0,1. This was also
previously known in the special case of K3 surfaces, due to St. Donat (cf. [S-D]

).

Finally we look at surfaces with positive Kodaira dimension. For min-
imal surfaces, we find explicit bounds in terms of intersection numbers of the
ample line bundle A:

Theorem 1.1.7 (cf. [GP4], Corollaries 5.10 and 5.13). Let S be a minimal
surface of positive Kodaira dimension, let A be an ample line bundle and let

_— [(A-(KSZ-TZA)-}-UT_ Let L = Kg @ A®".

1. If n > 2m, then L satisfies property No. If n > 3m, then L satisfies property
Nj.

2. If S is a regular surface of general type and n > mp + m,p > 1, then L
satisfies property Np.

1.2. Looking for results for general line bundles.

The results regarding Mukai’s conjecture we have just reviewed deal with
line bundles of the form Kx ® A®", where A is an ample line bundle on X. On
curves the use of adjoint line bundles yielded an equivalent reformulation of the
results of Castelnuovo, Green and others, which were first stated in terms of the
degree of the line bundle inducing the embedding. The point was that on a curve
any line bundle can be written as a power of an (ample) degree 1 line bundle.
Therefore a line bundle of high degree can be written as Kx ® A®™, where n
is also sufficiently high. For surfaces, this is no longer true. Take for instance
the case of elliptic ruled surfaces, and to be even more concrete, consider the
elliptic ruled surface of invariant e = —1 (cf. [H], V.2). Mukai’s conjecture is
true for p = 0,1 (see 1.1.3 and 1.1.4) and is sharp (see [Hol|, [Ho2] and [GP1]
)- On the other hand, Homma characterized numerically (cf. [Hol| and [Ho2])
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those line bundles which satisfy property Ny. Likewise in [GP1] we characterized
numerically those line bundles which satisfy property N;. One can then easily
see that there exist line bundles on X which cannot be written as Kx @ A®"
for n > 4 (resp. n > 5) and A ample line bundle, but satisfy property Ny (resp.
N;) notwithstanding. Thus, a statement such as Mukai’s cannot account for all
line bundles on X satisfying property V.

Therefore the goal is to find other ways to state syzygy results for line bundles
on surfaces. We observe that almost all the results we have mentioned fit into
the following meta-principle:

1.2.1. Let X be a surface. If L is the tensor product of (p+1) ample and base-
point-free line bundles on X (possibly different line bundles) satisfying “certain”
cohomological conditions, then L satisfies the condition N,,.

Indeed, if we review the results we have been talking about, we will see they
fit into 1.2.1. Consider for example the result by Ein and Lazarsfeld previously
stated as Theorem 1.1.1. If we specialize it to the case of a surface X, the
theorem says that if A is very ample, K x ® A®P*3 satisfies property N,. On the
other hand, Kx ® A®3 is very ample, in particular base-point-free, by Reider’s
theorem, and so is A, so one can write Kx ® A®P+3 as tensor product of p + 1
base-point-free line bundles on X. We take another example, namely Theorem
1.1.6. Observe that if X is a minimal surface of Kodaira dimension 0, it follows
also from Reider’s theorem that A®? is base-point-free for any ample line bundle
A on X. One can similarly see that the same is true for the results on elliptic
ruled surfaces, anticanonical rational surfaces, etc.

This suggests a way of stating results for line bundles which are not necessarily
adjoint bundles. In the light of this philosophy we present now the more general
results obtained for the different classes of surfaces:

For surfaces with geometric genus 0 (including ruled surfaces, Enriques
surfaces, etc.) we showed the following:

Theorem 1.2.2 (cf. [GP2], Theorem 2.2). Let X be a surface with geomet-
ric genus pg = 0. Let B be a nonspecial, ample, and base-point-free line bundle.
Then B®Pt! satisfies the property Ny, for allp > 1.

In fact a more general version of this theorem holds (see [GP2], Lemma 2.8)
in which different base-point-free line bundles are involved. The statement is
somewhat more technical, and we will not display it here. We will state instead
the following sequel of it for elliptic ruled surfaces:
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Theorem 1.2.3 (cf. [GP1], Theorem 4.2 and [GP2], Theorem 6.1). Let
X be a surface geometrically ruled over a smooth elliptic curve and let p > 1.
Let a, b be integers and let L be a line bundle in the numerical class of aCy+bf.
1 Ife=eX)=—-1landa>p+1,a+b>2p+2anda+2b>2p+ 2,
then L satisfies the property Np.
2 Ife=eX)>0anda >p+1, b—ae > 2p+ 2, then L satisfies the
property Np.

Moreover, if p =1, the above sufficient conditions are also necessary for L to
satisfy property N,.

The statement of the previous theorem shows the fact that we are considering
now line bundles of arbitrary “shape”, and not just line bundles of the form
Kx ® A®" where A is ample and n is suitably large.

We make the following conjecture (which would imply Mukai’s conjecture on
elliptic surfaces) on the characterization of the N, line bundles on an elliptic
surface:

Conjecture 1.2.4 ([GP2], 7.3). Let X be an elliptic ruled surface and let L
be a line bundle on X in the numerical class aCy + bf.

If e(X) = —1, L satisfies the property N, iff a > 1, a+b > p+ 3, and
a+2b>p+3.

If e(X) > 0, L satisfies the property Ny, iff a > 1 and b —ae > p + 3.

We look now at surfaces with Kodaira dimension 0. In [GP4] and [GP5]
we proved the following theorem which fits also in the philosophy of 1.2.1:

Theorem 1.2.5 (cf. [GP4], Theorem 0.2). Let X be a minimal surface with
Kodaira dimension 0 and let B,..., B, be numerically equivalent, ample and
base-point-free line bundles. Assume that the sectional genus of B; is greater
than or equal to 4 if X is an Enriques, Abelian or bielliptic surface and greater
than or equal to 3 if X is a K3 surface. Then B; ® ---® B, satisfies N, for all
n>p+1andp>1.

Note again that this theorem addresses line bundles more general than those
adjunction bundles related to Mukai’s conjecture. For instance, Theorem 1.2.5
implies that on an Abelian surface a line bundle of type (p + 1, 3p + 3) satisfies
property N,. This fact does not follow from results such as Kempf’s.

As in section 1.1, we end our tour by looking at surfaces with positive
Kodaira dimension:
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Theorem 1.2.6 (cf. [GP4], Theorem 5.1). Let S be a regular surface of
positive Kodaira dimension and geometric genus py > 4. Let B be an ample and
base-point-free line bundle such that H(B) = 0.
(1) If k(S) =1 and B?> > Kgs - B, then Ks ® B®" satisfies property Ny, for
alln > 2.
(2) If k(S) =2 and B2 > Kg - B, then Kg ® B®™ satisfies property Ny, for
alln > 2.
(3) Ifx(S) =2 and B?> > 2Ks- B, then Ks® B®™ and B®™ satisfy property
Ny, for all n,m > 2.
(4) If K(S) =2 and B* > 2Kg - B, then B®™ satisfies property N, for all
m>p+1,p>1.

Theorem 1.2.7 (cf. [GP4], Theorem 5.8). Let S be an irreqular surface of
positive Kodaira dimension. Let B be an ample line bundle such that B> > 5 and
B’ is base-point-free and H*(B') = 0 for all B' homologous to B (respectively
numerically equivalent). Let L homologous to K ® B®" (respectively numerically
equivalent).

(1) If k(S) =1 and B®> > Ks - B, then L satisfies property Ny if n > 2, and

L satisfies property N1 if n > 3.
(2) If 5(S) =2 and B*> > 2Kg - B, then L satisfies property Ny if n > 2;
(3) if k(S) =2 and B> > Ks - B, then L satisfies property Ny if n > 3.

As a consequence of Theorems 1.2.6 and 1.2.7 we obtain the following result
on pluricanonical embeddings of surfaces of general type:

Theorem 1.2.8 (cf. [GP4], Corollaries 5.9, 5.11, Theorems 5.12,

5.16). Let S be a surface of general type with ample canonical bundle.

a) Assume that either
1. Kg >5 or
2. K% > 2 and pg > 1, but it does not happen that ¢ = p, = 1 and Ké =3

or 4.

If n > 2p+ 4, then K?" satisfies property Ny,.

b) Assume that S is irreqular and K% > 5. Ifn > 5, then K?" satisfies property
No.

c¢) Assume that S is reqular and py > 3. If n > 2p+2 and p > 1, then K?"
satisfies property Np.

d) Assume that S is reqular, Kg is base-point-free and pg > 4. Ifn > p + 2,
p > 1, then K?" satisfies property Ny,.
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1.3. Reider-type results.

We consider now a different approach to this quest for results for general
line bundles: to prove results in terms of the intersection number of L with
the irreducible curves on the surface X, in the flavor of Reider’s theorem for
base-point-freeness and very ampleness. One of the versions of Reider’s theorem
(which, as noted in the introduction, implies Fujita’s conjecture for base-point-
freeness and very ampleness on surfaces) is the following:

Theorem 1.3.1 (cf. [R], Theorem 1). Let S a surface.
1. If L2 > 5 and L - C > 2 for every irreducible curve C on S, then Ks ® L
18 base-point-free.
2. If L2 > 10 and L - C > 3 for every irreducible curve C on S, then Ks ® L
18 very ample.

For anticanonical surfaces and property N, we obtain this precise analogue
of Reider’s Theorem for very ampleness:

Theorem 1.3.2 (cf. [GP6]). Let X be an anticanonical surface, let L be an
ample line bundle. If L> > (p+3)2+ 1 and L -C > p+ 3 for any irreducible
curve C, then Kx ® L satisfies Np.

This is the first result of its kind (for higher syzygies) for any surface. It is
a very interesting question to ask in which generality this kind of result is true.
In this sense we make the following conjecture:

Conjecture 1.3.3 (cf. [GP6]). Let X be a regular surface and L an ample
line bundle on X. If L?> > (p+3)2+ 1 and L -C > p+ 3 for any irreducible
curve C, then Kx ® L satisfies Np.

As noted in Section 1.1, Theorem 1.3.2 yields as a corollary Mukai’s conjecture
for anticanonical surfaces and 1.3.3 would yield Mukai’s conjecture for regular
surfaces.

2. FREE RESOLUTIONS AND KOSZUL COHOMOLOGY

In the next two sections we introduce some of the techniques and ideas used
to approach the questions and to prove the results presented in Sections 0 and
1.

In this section we explain why the vanishing of cohomology groups of certain
vector bundles on X imply results about the linearity of the free resolution of a
given embedding of X.
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The general set-up is this: Let X be a variety embedded in P” by the complete
series of a line bundle L (in particular, the image of X is not contained in a
hyperplane). We would like to relate the vanishings of graded Betti numbers of
the minimal free resolution of the homogeneous coordinate ring of X with the
vanishing of cohomology groups of certain vector bundles on X. We assume that
L satisfies property Ny (later we will also formulate this property in cohomology
terms, as the other properties N,). The fact that L satisfies Ny means that
R(L) = @;°_,H°(L®™) is the homogeneous coordinate ring of X. We will
denote this ring by R and we will denote the homogeneous coordinate ring
k[zg,...,z.] of P" by S. Let

O—FE,_1—FE _9—---—FE —-Ey=S—R—0 (2.1)

be the minimal free resolution of R over S.

The minimality of (2.1) means that the entries of the matrices corresponding
to each homomorphism in (2.1) belong to the irrelevant ideal. Thus each E; =
St (—f—1)@S*i+2 (—i—2)P- - -@S* ¢+l (—i—I;). Recall that the property N,
means that the resolution is linear until the pth stage, i.e., that E; = S%.i+1 (—j—
1) for some a; ;41 > 1 and all 1 <73 < p.

Therefore L satisfies the property N, iff a; ;4 =0foralll <i <pandallk >
2. We want to relate the vanishings of the graded Betti numbers to the vanish-
ings of certain cohomology groups. First note that a; ;41 = dim Tory (R, k); .
Indeed, since (2.1) is a minimal resolution, if we tensor it by k we obtain a
complex all whose boundary maps are zero. Hence Tor{ (R,k) is nothing but
the graded k-algebra E; ® k and Tor? (R, k); 4 = k%:i+*, so the claim is clear.

We have just computed Torf (R,k);1) using a free resolution of R. Now we
will use a free resolution of k, namely, the Koszul resolution:

r+1 2
0— /\ VesS(-r-1) —»---— /\ Ves(-2) - Ves(-1) = S—=k—=0 (2.2)

where V = H%(X, L) and P™ = P(V). If we tensor (2.2) by the coordinate ring
R =@, _,H°(L®™), we obtain that Tor} (R, k);1x is equal to the homology
at the middle of the sequence

i+1 1—1

/\ HO(L)®H" (L&) — /\H0 (L)®H"(L®*) — A\ HO(L)@H"(L®* 1) . (2.3)

To finish our task we introduce the vector bundle My, which is defined by the
following exact sequence:

0— M, —-HL)®Ox - L—0. (2.4)
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(The exact sequence (2.4) makes sense for any variety X and any vector bundle
L as long as L is globally generated).
From (2.4) we obtain this diagram:

0
i+l \ ®k—1
N T Mr®L
i+1 110 . ®k—1
AN HY(L)®L 0
o N -
/\z ML ®L®k — /\z HO(L) ® L®k — /\z—lML ®L®k+1
] | !
0 A" HO(L) @ L&KL

After taking global sections we see that the exactness of (2.3) at the middle
(and thus the vanishing of Tor?(R,k); %) is equivalent to the injectivity of

i+1 41

H' (\ M, ® L% ') — A\ H(L)® H' (L&) .

Recall that L is assumed to satisfy property Ny. This property can also be
characterized using My. Tensoring (2.4) with L®® we obtain

0 — Mp®L® — H°(L)® L® — L®*t1 0 (2.5)

(in fact, this is the left hand side vertical exact sequence of the diagram above,
when ¢ = 0). The line bundle L satisfies property Ny if and only if it is ample
and the map

HO(L) ® HO(L®S) — HO(L®S+1)

surjects for all s > 1. Taking cohomology in (2.5) we realize that L satisfies
property Ny if and only if the map

0 — H'(Mp ® L®) — H(L) @ H'(L®%)

is injective for all s > 1.
Thus we can summarize all the above in the following:
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Theorem 2.6 (Green, cf. [G]). Let X be a variety and let L be an ample
line bundle. The line bundle L satisfies property Ny if and only if

Hl(H/\l My ® L®%) — /+\1 H(L)® H'(L®?)

s ingective for all 0 < ¢ < p and all s > 1. A
In particular, L satisfies property Np if Hl(/\z_"1 My ® L®%) = 0 for all
0<i<pandalls>1.

If more information about X and L is available, the previous theorem can be
strengthen. For instance, if L®?® is non special for all s > 1, then the vanishing
of H1( /\ile My, ® L®%) is also a sufficient condition for L to satisfy property Np.
If we know in advance about the regularity of the resolution of R, we already
know the vanishings of some of the graded Betti numbers of the resolution. For
example, if the resolution is 3-regular, (which happens if H*(L®%~%) = 0 for all
i > 1, cf. [Mul]), to see if property N, holds one only has to check that a; ;42 =0
for all 1 < 4 < p, (hence it suffices to check the vanishing of HY(A“™! My ® L)
for all 4 > 0). Another reduction that can be made is the following: if L satisfies
property Ny and p is less than or equal to the codimension of X inside P" =
P(H°(L)), then for property N, it is only necessary to check that a, pix = 0
for all k > 2, hence it would be enough to check that HX(A™"" M, ® L®%) =0
for all s > 1. The reason for this is that, if m is the codimension of X in P",
we can dualize the minimal resolution of R obtaining a complex which is exact
until the m-th step. This is a resolution of some module, and it is obviously
again minimal. This means that in the resolution of R not only the minimum of
the degrees of the generators of the modules F; increases strictly in every step,
but also the maximum of the degrees of the generators increases strictly, until
the m-th step. Although it is interesting to have in mind these simplifications,
which may save some work when trying to prove the property N, the key idea
is the one stated in Theorem 2.6, which showed how to translate property N,
in terms of the cohomology of vector bundles.

3. COMPUTING KOSZUL COHOMOLOGY GROUPS OF SURFACES

As we have just seen we can reduce the study of the free resolution of an
embedded variety to the computation of the cohomology groups of certain vector
bundles. Thus we are interested in finding ways to compute these cohomology
groups on surfaces. Let X be a surface. We are concerned with line bundles L



16 F.J. GALLEGO & B.P. PURNAPRAJNA

fitting in 1.2.1, i.e., line bundles which are tensor product of p + 1 ample and
base-point-free line bundles on X. For most of this exposition we will assume
that the ample and base-point-free line bundles are all equal to B. We want to
show that L (is very ample and) satisfies property N,. Then according to the
arguments in Chapter 2, it suffices to prove the vanishings of

H'(\ M, ® L®?)

forall1 <7< p-+1andall s>1. As we also observed in Chapter 2, under
many circumstances it is not necessary to check all the vanishings but just a
few of them. At any event, since in this chapter we are not interested in giving
complete and slick proofs of any particular result, but rather an idea of how
to prove the vanishing of cohomology groups of this kind, we will focus our
attention on obtaining the vanishing of

p+1

H'(/\ M, ®L%) .

In fact, as property IV, is defined inductively, for the purpose of this exposition
we will assume that

i
H'(\ M, ® L®*)
vanishes for all 1 < i < p.

One way of attacking the problem is to obtain the vanishing of
' (ME @ 19°)

instead of computing directly the vanishing of the twists of the exterior product
of M. This works in general if the characteristic of the field is greater than p (if
we are working in order to prove property NNV,,) and, certainly, if the characteristic
of the field is 0.

Now H! (Mf’p e L®%) can be seen in our situation naturally as a cokernel
of a multiplication map « of global sections:

0 — HO(MPPT'@L®*) — HO(MPPQL®*)@H (L) % H'(MPPRL®* ™) —
H (M o L®%) — 0.
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Indeed, to obtain the above sequence we tensor (2.4) with M2P ® L®*, take
global sections and consider the long exact sequence of cohomology. The term
that follows H'(MSP™' © L®%) is in fact HY(MP? @ L®%) @ HO(L), but as
explained before, we assume the vanishings required to prove property Np_;
and in particular, the vanishing of H'(MSP @ L®%).

Thus our purpose now is to prove the surjectivity of a. Recall that L = B®P+1
with B base-point-free line bundle. To see the surjectivity of « it suffices to see
the surjectivity of

HO(ME” @ B®*) ® H(B) £ HO(ME” © B®*+
L L

for all s > 1. Now we perform a sort of induction on the number p+1 of copies of
B forming L. For that we use the following theorem by Castelnuovo, improved
by Mumford:

Theorem 3.1(cf. [Mu2]). Let L be a base-point-free line bundle on a variety
X and let F be a coherent sheaf on X. If H(F @ L™*) = 0 for all i > 1, then
the multiplication map

H(F® L®) ® H (L) —» H(F @ L&)

is surjective for all 1 > 0.

Therefore we reduce the surjectivity of a to seeing that H'(M2P @ B®~1)
and H?(M2P ® B®*~2) vanish. Using (2.4) the last vanishing can be reduced to
checking vanishings of the type H*(MP*® B®?), with i < p—1. Now to complete
the argument by induction on p we need to prove a first step for this induction.
In the proofs of our results this step is typically H'(MP*> ® B®*) = 0 for s > 2.
Until now we have used general, known methods. At this point, the geometry
of the surface X starts playing its role and the real work begins. Because of the
different approaches we use, we distinguish two classes of surfaces: the surfaces
with irregularity 0 and the surfaces with positive irregularity.

3.1. Surfaces with positive irregularity

We consider surfaces where the irregularity h'(Ox) is positive. The first
approach we present consists in finding a suitable decomposition of L as tensor
product of base-point-free line bundles. This decomposition will allow us to use
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Castelnuovo-Mumford arguments to obtain the surjectivity of multiplication
maps of vector bundles on the surface.

To explain this strategy we consider a particular example, namely, the case
of an Abelian surface X and a line bundle L = B®2, where B is ample and
base-point-free. The line bundle L satisfies property N;, although for simplicity
sake, in this article we will only outline how to see that L satisfies property Ny
(for the complete proof and details see [GP4], Theorem 4.1). We need to see
that

H°(L®") @ H°(L) — H°(L®"*1)

surjects for all n > 1. The most difficult point is to see that
H°(L)® H°(L) — H°(L%?).

For this we will write L as tensor product of suitable ample and base-point-free
line bundles B; and Bs. Precisely we want to find B; and Bj so that

H°(L) ® H(B,) — H°(L ® B))
H°(L ® B;) ® H*(By) — H°(L®?)

surject, and we want to prove this surjectivity using Theorem 3.1. Then we need
H'(B,), H(B%®?), H*(B®? ® B3) and H?(B; ® B}) all vanish. Since L = B®?
the first choice that comes in mind is B; = By = B but this does not work,
because H2(Ox) # 0 if X is an Abelian surface. What we do then is to alter B
by tensoring by a suitable 0 € Pic®(X) (recall that Pic®(X) is a complex torus
of dimension 2). Precisely we set By = B® 0 and By = B ® ?* with 0 not
of 2-torsion in Pic’(X). At this point we need to make an extra assumption
on B, namely, we want B2 > 5. Then by Reider theorem both B ® 9 and
B ® 9* are base-point-free. By our choice, H?(B; ® B3) = H°(d72)* = 0 and
H'(B,) = HY(B%?) = H?(B®? ® B) = 0 by Kodaira vanishing.

The key point of the above argument was the fact that Pic®(X) is “large”
enough. This allowed us to play with the decomposition of L as tensor product
of ample and base-point-free line bundles. As our results show, this approach
also works for other irregular surfaces. In other words, a thorough study of the
cohomology of the line bundles of an irregular surface X together with a way to
find smart decompositions for the line bundles on X can yield general syzygy
results on X. This was done for elliptic ruled surfaces in [GP1], Theorem 4.2
and [GP2], Theorem 6.1.
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3.2. Surfaces with irregularity zero

The strategy displayed in the previous section breaks down if h'(Ox) = 0
(think for instance of a K3 surface of Picard number 1 to consider a very ex-
treme case). We therefore use a different approach whose general outline is this:
we reduce the problem of showing the surjectivity of certain multiplication map
of global sections of vector bundles on the surface X to the problem of show-
ing the surjectivity of a multiplication map of semistable vector bundles on a
suitable divisor C' € |B|. One can regard this process as some sort of induction
on the dimension of the variety. Once we are arguing on a curve, we can use
modern results regarding surjectivity of multiplication maps of semistable bun-
dles on curves such as Butler’s (cf. [B]), Eisenbud-Koh-Stillman’s (cf. [EKS])
or Pareschi’s (cf. [P]), or classical results such as Noether’s or Enriques-Petri’s
for the canonical curve, which can also be reformulated in terms of surjectivity
of multiplication maps (cf. [GL1], [PP]).

To illustrate all the above we will focus on a particular case, the case in which
X is a K3 surface. We will show this

Theorem 3.1.1. Let X be a K3 surface. Let B be a base-point-free line bundle

such that B2 > 4. Then H'(M&2, ® B®*) =0 for all r,s > 2.

Qutline of proof. With the same arguments as before, we conclude that it is
sufficient to see the surjectivity of

H°(Mper ® B®) @ H*(B) 2 HY(Mpe, ® B®+Y), for all 7,5 > 2 .

This map S is the map of multiplication of sections of vector bundles on the
surface X to which we referred before. Now we choose the suitable divisor C'
needed to perform the argument by “induction on the dimension”. We choose
C to be a smooth member in |B|. Consider the commutative diagram

H(N)® H'(Ox) < H°(N)® H°(B) — H°(N)® H°(Bc)
{ { {
HO(N) < HYN®B) —» H(N®Bg),

where N = Mper ® B®* and for a sheaf F on X we write Fo = F ® O¢. From
this we see that for 8 to surject it is sufficient to show that

H°(Mper @ B®* ® O¢) ® H*(Be) 5 H'(Mpsr ® B2 @ O¢)
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surjects.
This map is difficult to handle because Mper ® B®* ® O¢ is not semistable.
Then we construct this commutative diagram to filtrate Mge-r ® O¢:

0 0 0
! \x \J

0— H'B® )0 — Mper®0c — Mps: —0
1 1 )

0— H'B® NH®0c — HYB®)®0Oc — H'(BE)®0c —0
1 ! )

0 — Bg" — Bg" -0
1 \J
0 0

From the above diagram we obtain that Mpge-r ® O¢ is the direct sum of
H°(B®™~1)® O¢ and Mpgr. Then to show that v surjects it suffices to show

that
H(Mper ® BE") ® H(Bc) = H*(Mper ® BE™*') and
H°(BE") ® H°(Bo) = H°(BE™*)

surject, for all r,s > 2. The surjectivity of n follows from the fact that the
canonical ring of C' is generated in degree 2. Now we look at §. Note that, in
contrast with Mpe- ® O¢, MBgr is semistable. Indeed, since r > 2, deg(Bgr) >

2g(C) as long as B2 > 2; then, by [B], Theorem 1.2, MB%T is semistable. In fact

0— H(B® ™) ® Oc = Mper ® Oc = Mpsr — 0

is the Harder-Narasimhan filtration of Mgs- ® O¢c. Therefore we have been able
to reduce the problem of seeing the surjectivity of 8 to seeing the surjectivity of
the map ¢, which is a multiplication map of global sections of semistable vector
bundles on the curve C' on X.

Then to finish the argument one can use results about surjectivity of mul-
tiplication maps on curves such as [B], Theorem 2.2 or [P], Corollary 4, or we
can directly observe that Hl(MBgr ® Mp, ® BE®) = 0. To see the latter,

recall that M Bgr 18 semistable. On the other hand B = K¢, thus by [PR]
or by a result of T.R. Ramadas and the second author in [GP5| , Theorem
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1.7, Mp,, is also semistable. Finally, by [Mi], Corollary 3.7, the vector bundle
FE = MBg;r ® Mp, ® B%S is semistable, so it is enough to see that its slope
is strictly bigger than 2¢g(C) — 2. We will first see that ,u(MB%r) > —2. Since
r> 2,

—deg(B&")
deg(Bg") — 9(C)

for the rank of M, g, equals h®(BS") — 1 = deg(B&") — g(C) and deg(MBgr) =

—deg(BE"). Therefore the desired inequality will follow if we show that r(2g(C)—
2) > 2¢(C). This holds as long as r > 2 and B? > 4. On the other hand
w(Mp,) = —2, hence u(E) > 2g(C) — 2, since s > 2 and B2 > 4. [

ﬂ(MBg)T) =

The previous example illustrates some methods to handle multiplication maps
on a regular surface X by studying analogous maps on suitable curves on X.
The choice of the divisor to which one reduces the multiplication map is not
always as canonical as above, but the example captures some of the spirit of our
methods.

3.3. Extremal curves with respect to the N, properties

The ideas introduced in the previous section are also useful when trying to
prove the sharpness of a syzygy result for surfaces. The philosophy is that the
failure of a line bundle L on a variety X to satisfy property N, can be traced
to the existence of an “extremal” curve C' on X, such that the restriction L to
C does not satisfy property N,. We mention three examples of this. The first
is the case of elliptic ruled surfaces and property Ny and N; (cf. [Hol], [Ho2]
and [GP1]). We focus on the elliptic ruled surface X of invariant —1. In [GP1]
we proved the following result:

Theorem 3.3.1 ([GP1], Theorem 4.2). Let X be an elliptic ruled surface
with invariant e(X) = —1. Let Cy be a minimal section of X and let f be a fiber
of X. Let L be a line bundle on X numerically equivalent to aCy+bf. The line
bundle L satisfies property N1 if and only ifa>1,a+b> 4 and a + 2b > 4.

As we mentioned at the end of Section 3.1, one of the implications, namely,
that L satisfies property Ny if a > 1, a4+ b > 4 and a + 2b > 4 is proved by
decomposing in a smart way any line bundle fulfilling these numerical conditions
and using then the ideas exposed in Section 3.1. We give now the idea of the
proof of the other implication. Consider for example a line bundle L numerically
equivalent aCy + bf, such that a + b = 3. We want to show that it cannot
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satisfy property N;. If such a line bundle L satisfied property N;, then so
would its restriction to Cy. Thus we assume L satisfies property N; and we
find a contradiction. Using constructions similar to those showed in the proof
of Theorem 3.1.1 , we obtain that

2
H'(\ Mrgo,, ®L) =0

On the other hand the line bundle L ® O¢, on Cj satisfies property Ny because
C)y is an elliptic curve and deg (L ® O¢,) = 3. Thus Theorem 2.6 implies that
L ® O¢, satisfies property N;. This is obviously false since the complete linear
series of L @ O¢, embeds Cy as a plane cubic.

The other relevant boundary of the convex set of N; line bundles on the
elliptic ruled surface X is also justified by the existence of “extremal” curves.
In this occasion they are elliptic curves F in the numerically equivalence class
of —Kx = 2Cy — f. Indeed, a line bundle L numerically equivalent to aCy + b f
and such that a + 2b = 3, restricts to E as a line bundle of degree 3, and if it
satisfied property N7, by the same arguments as above, so would its restriction
to F.

Another case in which we can trace the failure of properties N, to the ex-
istence of extremal curves is Calabi-Yau threefolds. Recall that a Calabi-Yau
threefold X is a regular threefold for which Kx = Ox.

For Calabi-Yau threefolds we have proved the following result:

Theorem 3.3.2 (cf. [GP3], Theorem 2.4.). Let X be a Calabi- Yau threefold.
Let B be an ample and base-point-free divisor with h®(B) > 5. Let L = B®P+2tk,
If k>0 and p > 1, L satisfies property Ny,.

We consider a Calabi-Yau threefold X (cf. [GP3], Example 2.5), which is a
cyclic triple cover of P3, ramified along a smooth sextic surface. Let B be the
pullback of Ops(1) to X. Therefore h®(B) = 4, so L = B®3 does not satisfy
the hypothesis of Theorem 3.3.2. Actually, L does not satisfy property N;.
We will outline the proof of this fact by showing the “extremal” curve which
prevents L from satisfying property Ni. Let S € |B| and let C be a smooth
curve in |B ® O¢|. The curve C has genus g(C) = 4 and L ® O¢ has degree
2g(C) + 1 =9, thus, by the result of Castelnuovo, L satisfies property Ny. On
the other hand Green and Lazarsfeld (cf. [GL2]), proved that a line bundle does
not satisfy property NV; if it is the tensor product of the canonical bundle on C
and an effective line bundle of degree 3. This is the case of L ® O¢c. However,
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arguing as in the case of elliptic ruled surfaces, if L satisfied property N3, so
would L ® O¢ and we conclude that L cannot satisfy property V;.

The last example of this phenomenon we show here is the Veronese embedding
of P". Ottaviani and Paoletti showed the following:

Theorem 3.3.3 ([OP], Theorem 2.1). The line bundle L = Opn(d) does not
satisfy property Ny, if p > 3d — 2, d > 3.

The bound on d they give for property N, to fail suggests the existence of
an extremal curve in the sense discussed in this section. Indeed, d < [’%2] and
if one considers a plane cubic C, the restriction L to C has degree less than or
equal to p + 2. However on an elliptic curve a line bundle satisfies property N,
if and only if its degree is greater than or equal to p + 3.
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