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Abstract. We introduce the class of Orlicz-type modular spaces, that includes the Orlicz-

Lorentz spaces, Orlicz spaces, Musielak-Orlicz spaces, etc., and we characterize the Grothendieck
property for this class of Banach spaces and some quotients.

1. Introduction and preliminaries

A Banach space X is said to have the Grothendieck property (for short, X is Grothendieck) if,
for every sequence {un : n ≥ 1} of the dual X∗, un weak converges to 0 iff un weak∗ converges
to 0. (see [2, pg. 179]). For instance, ℓ∞(I) and the space B(Ω,Σ) of bounded real Σ-measurable
functions f : Ω → R on a measurable space (Ω,Σ), equipped with the supremum norm, are
Grothendieck spaces. The reader is referred to [2, p. 179] and [10, p. 348] for more information
about the Grothendieck property.

The aim of this paper is to study and characterize the Grothendieck property in the class
of Orlicz-type modular spaces (this class includes Orlicz spaces, Musielak-Orlicz spaces, Orlicz-
Lorentz spaces, etc., see below for definitions) and some quotients spaces of this class. As an
antecedent we cite the paper [4] in which it is proved that the quotient space ℓφ(I)/hφ(I) is a
Grothendieck M -space, φ being an Orlicz function, ℓφ(I) the Orlicz space ℓφ(I) := {f ∈ RI : ∃λ >
0,
∑
i∈I φ(λfi) < ∞} and hφ(I) the closure in ℓφ(I) of the subspace integrated by the elements

with finite support.

Let us fix our notation, terminology and definitions. If I is an infinite set, let βI be the Stone-
Čech compactification of I and I∗ = βI \ I. If J is a subset of I, then cJ := I \ J will be the

complement of J and J∗ = J
βI \J ⊂ I∗. If X is a Banach space, let B(X) and S(X) be the closed

unit ball and unit sphere of X, respectively, and X∗ its topological dual.

If Σ is a σ-algebra of subsets of a set Ω, let ba(Σ) denotes the space of bounded real signed finitely
additive measures on Σ and B(Σ) the space of bounded real Σ-measurable functions f : Ω → R.
Recall that B(Σ) with the supremum norm is a Grothendieck Banach space (see [2, Cor. 1.3, p.
149]) with dual B(Σ)∗ = ba(Σ). In the sequel we will deal with a Γ-finite positive measure
space (Ω,Σ, µ) where: (i) Γ is an arbitrary set such that we have a finite positive measure space
(Ωγ ,Σγ , µγ) for every γ ∈ Γ; (iii) (Ω,Σ, µ) is the sum (Ω,Σ, µ) =

⊕
γ∈Γ(Ωγ ,Σγ , µγ), which means

the following:

(1) Ω =
⊎
γ∈Γ Ωγ (

⊎
means disjoint union).

(2) A ⊂ Ω satisfies A ∈ Σ if and only if A ∩ Ωγ ∈ Σγ , ∀γ ∈ Γ.
(3) If A ∈ Σ, then µ(A) =

∑
γ∈Γ µγ(A ∩ Ωγ), ∀A ∈ Σ. Note that µ(A) = ∞ is allowed and

µ(A) = 0 iff µγ(A ∩ Ωγ)0.

We deal with Γ-finite measures, instead of σ-finite measures, in order to work with spaces like the
Orlicz sequence spaces ℓφ(I), when I is uncountable. Of course, this strategy has some difficulties
because the usual measure theory refers to σ-finite measures and so we must verify for Γ-finite
measures the validity of some results, that we know hold for σ-finite measures. Let us adopt the
following terminology:
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(a) Ωa will be the union of all the atoms of µ and Ωd := Ω \ Ωa. µa and µd indicate the
atomic part and the purely non atomic part of µ, respectively. M(µ) denotes the family
of all (equivalence classes of) µ-measurable functions f : Ω → R ∪ {±∞}. We know that
M(µ) is a σ-complete lattice with the order x ≤ y if and only x(t) ≤ y(t) µ-a.e. in Ω. L0(µ) will be
the space of all (equivalence classes of) µ-measurable real functions f : Ω → R. We know
that L0(µ) is a σ-complete vector lattice, which is a sublattice of M(µ). A function f ∈ L0(µ) is
said to be a real simple function if f =

∑n
i=1 xi ·1Ai

, where xi ∈ R and Ai ∈ Σ with µ(Ai) <∞.
Let S0 denote the ideal of L0(µ) generated by the subspace of real simple Σ-measurable
functions.

(b) A normed space (E, ∥ · ∥) is called a normed function space over (Ω,Σ, µ) if the following
requirements are fulfilled: (i) E is a subspace of L0(µ); (ii) if x ∈ E, y ∈ L0(µ) and |y| ≤ |x|, µ-
a.e., then y ∈ E and ∥y∥ ≤ ∥x∥. A Banach function space is a normed function space which is
complete in the norm.

(c) Let (E, ∥ · ∥) be a Banach function space. A vector x ∈ E is said to be order-continuous
(for short, o-continuous) if for every downward directed set {xi}i∈I in E such that xi ↓ 0 and
0 ≤ xi ≤ |x|, µ-a.e., for some x ∈ E, we have ∥xi∥ ↓ 0. Denote by Ea the closed ideal of o-
continuous elements of E. If E = Ea, then E is called o-continuous. We say that E has the Fatou
property if xn ∈ E, 0 ≤ xn ↑ x in order for some x ∈ L0(µ) and supn ∥xn∥ < ∞ imply x ∈ E
and ∥x∥ = limn→∞ ∥xn∥.

(d) Let Z be a real Banach lattice. Then: (i) Z is said to be an M -space if ∥x∨ y∥ = ∥x∥ ∨ ∥y∥
for every x, y ∈ Z+; (ii) Z is said to be an L1-space if ∥x+ y∥ = ∥x∥+ ∥y∥ for every x, y ∈ Z with
|x| ∧ |y| = 0; (iii) recall that Z is an M -space if and only if Z∗ is an L1-space (see [12, p. 25]); (iv)
(B(Σ), ∥ · ∥∞) is an M -space and so ba(Σ) = B(Σ)∗ is an L1-space.

Now we introduce several notions in order to define the concept of Orlicz-type modular space,
that will be the context in which we will work.

Definition 1.1. Let (Ω,Σ, µ) be a positive Γ-finite measure space. Then

(1) A mapping ρ :M(µ)+ → [0,∞] is said to be

(1a) monotone if ρ(x) ≤ ρ(y) whenever x, y ∈M(µ)+ and x ≤ y.

(1b) left-continuous if ρ(xn) ↑ ρ(x), whenever x, xn ∈M(µ)+, n ≥ 1, and xn ↑ x.
(1c) 1-convex if ρ(αx+ βy) ≤ αρ(x) + βρ(y) for x, y ∈M(µ)+ and α, β ≥ 0, α+ β = 1.

(2) A Köthe semimodular on (Ω,Σ, µ) is a mapping ρ : L0(µ) ∪M(µ)+ → [0,+∞] such that

(2a) The restriction of ρ to M(µ)+ is a monotone left-continuous and 1-convex mapping.

(2b) ρ(f) = ρ(|f |) for every f ∈ L0(µ) and, if A ∈ Σ with µ(A) < ∞, then ρ(λ1A) < ∞ for
some λ > 0.

(2c) ρ(0) = 0 and f = 0 µ-a.e. whenever f ∈M(µ)+ and ρ(λf) = 0 for all λ > 0.

(3) If ρ is a Köthe semimodular on (Ω,Σ, µ), we define the modular space Lρ(µ) as follows

Lρ(µ) := {f ∈ L0(µ) : lim
λ→0

ρ(λf) = 0}.

Clearly, Lρ(µ) satisfies Lρ(µ) = {f ∈ L0(µ) : ∃λ > 0, ρ(λf) < +∞}. For every f ∈ Lρ(µ), define
the Luxemburg norm ∥f∥L as:

∥f∥L = inf{λ > 0 : ρ(f/λ) ≤ 1}.

A subset A ⊂ Lρ(µ) is said to be ρ-dense in Lρ(µ) if for every f ∈ Lρ(µ) with ρ(f) < +∞ and
every ϵ > 0 there exists yϵ ∈ A such that ρ(f − yϵ) < ϵ.

(4) ρ is an Orlicz-type semimodular on (Ω,Σ, µ) if and only if : (i) ρ is a Köthe semimodular
on (Ω,Σ, µ) such that ρ(f ∨ g) ≤ ρ(f) + ρ(g) for every pair f, g ∈ M(µ)+; (ii) ρ is finitely
determined, that is, if ρ(f) > a ≥ 0, for some f ∈ L0(µ), there exists a subset A ∈ Σ with
0 < µ(A) <∞ such that ρ(f · 1A) > a.
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(5) A Banach space E is said to be an Orlicz-type modular space if and only if there exists a
Γ-finite measure space (Ω,Σ, µ) and an Orlicz-type semimodular ρ on (Ω,Σ, µ) such that E :=
(Lρ(µ), ∥ · ∥L).

Remark 1.2. (1) The Orlicz spaces, Musielak-Orlizc spaces, Lorentz spaces, etc., are Orlicz-type
modular spaces. So all the theory developed in this paper holds for these spaces.

(2) Let ρ be a Köthe semimodular on (Ω,Σ, µ). The following facts are easily proved

(21) (Lρ(µ), ∥ · ∥L) is a σ-complete normed function space, that fulfills the Fatou property.
Actually it is a Banach function space. Moreover, S0 ⊂ Lρ(µ) by (2b).

(22) If f ∈M(µ)+ satisfies ρ(f) <∞, then f <∞ µ-a.e. Indeed, let A := {w ∈ Ω : f(w) = +∞}
and observe that t1A ≤ sf for every 0 ≤ t and s > 0. So, as ρ is monotone, for every 0 ≤ t and
s > 0 we have ρ(t1A) ≤ ρ(sf) ↓ 0 when s ↓ 0. Thus 1A = 0 µ-a.e. by (2c), that is, µ(A) = 0.

2. Lρ(µ)/H(S) is a Grothendieck M-space

Let (Ω,Σ, µ) be a Γ-finite measure space and ρ be an Orlicz-type semimodular on (Ω,Σ, µ). If
S ⊂ Lρ(µ) is an ideal, we will denote

H(S) := {f ∈ Lρ(µ) : ∀λ > 0, ∃s ∈ S such that ρ
(f − s

λ

)
< +∞}.

It is easy to see that H(S) is a closed ideal of Lρ(µ) such that H(H(S)) = H(S) = S. For each
f ∈ Lρ(µ) we define

δ(f) := inf{λ > 0 : ∃s ∈ S such that ρ
(f − s

λ

)
< +∞}.

Observe that δ(f) < +∞, ∀f ∈ Lρ(µ), by definition of Lρ(µ).

In the following we see a series of lemmas that we need in order to establish the fundamental
result of Theorem 2.8.

Lemma 2.1. Let (Ω,Σ, µ) be a Γ-finite measure space and ρ be an Orlicz-type semimodular on
(Ω,Σ, µ). If {fn : n ≥ 1} ⊂M(µ)+, then

ρ(sup
n≥1

fn) ≤
∑
n≥1

ρ(fn).

Proof. Since ρ satisfies ρ(g1 ∨ g2) ≤ ρ(g1) + ρ(g2), ∀g1, g2 ∈M(µ)+, then

ρ(sup{fi : i = 1, 2, . . . , k}) ≤
k∑
i=1

ρ(fi).

As sup{fi : i = 1, 2, . . . , k} ↑ supn≥1 fn when k → ∞ and ρ is left-continuous, we have

ρ(sup
n≥1

fn) = lim
k→∞

ρ(sup{fi : i = 1, 2, . . . , k}) ≤ lim
k→∞

k∑
i=1

ρ(fi) =
∑
i≥1

ρ(fi).

�

Lemma 2.2. Let (Ω,Σ, µ) be a Γ-finite measure space, ρ an Orlicz-type semimodular on (Ω,Σ, µ)
and S ⊂ Lρ(µ) an ideal such that H(S) is ρ-dense in Lρ(µ). Then

(1) For every f ∈ Lρ(µ), the distance

dist(f,H(S)) := inf{∥f − h∥L : h ∈ H(S)}

from f to H(S) satisfies dist(f,H(S)) = δ(f).

(2) If x∗ ∈ H(S)⊥ := {z ∈ Lρ(µ)
∗ : ⟨z, x⟩ = 0, ∀x ∈ H(S)}, then

∥x∗∥ = sup{⟨x∗, f⟩ : f ∈ Lρ(µ) with ρ(f) < +∞}.
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Proof. (1) Let f ∈ Lρ(µ) and fix ϵ > 0. By definition of δ(f), there exists s ∈ S such that

ρ( f−s
δ(f)+ϵ ) < +∞. Since H(S) is ρ-dense in Lρ(µ), there exist y ∈ H(S) such that ρ

(
f−s−y
δ(f)+ϵ

)
< 1,

which implies dist(f,H(S)) ≤ δ(f) + ϵ, because s + y ∈ H(S). Hence, as ϵ > 0 is arbitrary, we
get dist(f,H(S)) ≤ δ(f). Let us prove that dist(f,H(S)) ≥ δ(f). If δ(f) = 0 this is clear. So,
suppose that δ(f) > 0.

Claim. For every y ∈ H(S) and every positive number 0 < λ < δ(f) we have ρ( f−yλ ) = +∞.

Indeed, otherwise for some 0 < λ < δ(f) and some y ∈ H(S) we would have ρ( f−yλ ) < +∞.
Take t > 0 such that λ < t < δ(f) and denote r := λ/t. Then 0 < r < 1 and there exists s ∈ S
such that ρ( y−s

(1−r)t ) < +∞. Since f−s
t = r f−yrt + (1− r) y−s

(1−r)t , we have

ρ
(
f−s
t

)
≤ rρ

(
f−y
λ

)
+ (1− r)ρ

(
y−s

(1−r)t
)
< +∞.

Since t < δ(f), taking into account the definition of δ(f), we get a contradiction. So, the Claim
holds.

From the Claim we deduce that ∥f − y∥ ≥ δ(f), ∀y ∈ H(S), that is, dist(f,H(S)) ≥ δ(f), and
this completes the proof of (1).

(2) First, since B(Lρ(µ)) ⊂ {f ∈ Lρ(µ) with ρ(f) < +∞}, it is clear that

∥x∗∥ ≤ sup{⟨x∗, f⟩ : f ∈ Lρ(µ) with ρ(f) < +∞}.

On the other hand, since H(S) is ρ-dense in Lρ(µ), for each f ∈ Lρ(µ) with ρ(f) < +∞ there
exists yf ∈ H(S) such that ρ(f − yf ) ≤ 1, which implies f − yf ∈ B(Lρ(µ)). So, as x

∗ ∈ (H(S))⊥
we have

sup{⟨x∗, f⟩ : f ∈ Lρ(µ) with ρ(f) < +∞} =

= sup{⟨x∗, f − yf ⟩ : f ∈ Lρ(µ) with ρ(f) < +∞} ≤ ∥x∗∥

and this completes the proof. �

Throughout all this section ρ will be an Orlicz-type semimodular on (Ω,Σ, µ) and S an ideal

of Lρ(µ) such that H(S) is ρ-dense in Lρ(µ). Let X =
Lρ(µ)
H(S) and let Q : Lρ(µ) → Lρ(µ)

H(S) be

the canonical quotient mapping. Observe that the dual space X∗ =
(Lρ(µ)
H(S)

)∗
is isometrically

isomorphic with the subspace H(S)⊥ of (Lρ(µ))
∗. So, we identify both spaces and by simplicity

we write ⟨x∗, f⟩ instead of ⟨x∗, Q(f)⟩ for every x∗ ∈ X∗ and f ∈ Lρ(µ).

Lemma 2.3. Let (Ω,Σ, µ) be a Γ-finite measure space and ρ an Orlicz-type semimodular on

(Ω,Σ, µ), S ⊂ Lρ(µ) an ideal such that H(S) is ρ-dense in Lρ(µ). Then X :=
Lρ(µ)
H(S) is an M -

space.

Proof. Let x, y ∈ X+ and prove that ∥x ∨ y∥ = ∥x∥ ∨ ∥y∥. Since x ∨ y ≥ x, x ∨ y ≥ y, then
∥x∨y∥ ≥ ∥x∥, ∥y∥, whence we get ∥x∨y∥ ≥ ∥x∥∨∥y∥. Let us prove that ∥x∨y∥ ≤ ∥x∥∨∥y∥. Pick
+∞ > λ > ∥x∥ ∨ ∥y∥ and choose f, g ∈ Lρ(µ)

+ such that Qf = x, Qg = y and ∥f∥ < λ, ∥g∥ < λ.
So, by the definition of the Luxemburg norm, we have ρ(f/λ) ≤ 1 and ρ(g/λ) ≤ 1. Since ρ is an
Orlicz-type semimodular we get

ρ
(f ∨ g

λ

)
≤ ρ

(f
λ

)
+ ρ

( g
λ

)
≤ 2.

By Lemma 2.2 we have dist(f ∨ g,H(S)) ≤ λ, whence we get ∥x ∨ y∥ = ∥Q(f ∨ g)∥ = dist(f ∨
g,H(S)) ≤ λ. So, ∥x ∨ y∥ ≤ ∥x∥ ∨ ∥y∥ and this completes the proof. �

If X =
Lρ(µ)
H(S) and ξ ∈ X∗+ = H(S)⊥+, for each E ∈ Σ and h ∈ Lρ(µ) define ξE : Lρ(µ) → R as

ξE(h) = ξ(hE) where hE = h · 1E . Clearly, ξE ∈ X∗+. Define the mapping νξ : Σ → [0,+∞) as
νξ(E) = ∥ξE∥.
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Lemma 2.4. If x∗ ∈ X∗+, then νx∗ ∈ ba(Σ) and, given ϵ > 0, there exists f ∈ Lρ(µ)
+
(depending

on x∗ and ϵ) with ρ(f) < ϵ such that
(A) ∀E ∈ Σ, νx∗(E) = ⟨x∗, fE⟩; (B) ∀g ∈ B(Σ), νx∗(g) = ⟨x∗, fg⟩.

Proof. Let E,F ∈ Σ be two disjoint subsets. Then
(i) x∗E∪F = x∗E + x∗F . Obvious.

(ii) x∗E ∧ x∗F = 0. Indeed, for every f ∈ Lρ(µ)
+
we have

0 ≤ ⟨x∗E ∧ x∗F , f⟩ = inf{⟨x∗E , g⟩+ ⟨x∗F , f − g⟩ : 0 ≤ g ≤ f, g ∈ Lρ(µ)
+} ≤

≤ ⟨x∗E , fF ⟩+ ⟨x∗F , f − fF ⟩ = 0.

(iii) ∥x∗E∪F ∥ = ∥x∗E∥+ ∥x∗F ∥. First, ∥x∗E∪F ∥ ≤ ∥x∗E∥+ ∥x∗F ∥ because x∗E∪F = x∗E + x∗F . On the

other hand, given ϵ > 0, by Lemma 2.2 there exist f, g ∈ Lρ(µ)
+

with ρ(f) < +∞, ρ(g) < +∞
such that

⟨x∗E , f⟩ > ∥x∗E∥ − ϵ/2 and ⟨x∗F , g⟩ > ∥x∗F ∥ − ϵ/2.

So, as ρ(f ∨ g) ≤ ρ(f) + ρ(g) < +∞ we have by Lemma 2.2

∥x∗E∪F ∥ ≥ ⟨x∗E∪F , f ∨ g⟩ ≥ ⟨x∗E , f⟩+ ⟨x∗F , g⟩ > ∥x∗E∥+ |x∗F ∥ − ϵ,

and from this fact we get ∥x∗E∪F ∥ = ∥x∗E∥+ ∥x∗F ∥.
Therefore, the mapping νx∗ : Σ → [0. + ∞) such that νx∗(E) = ∥x∗E∥, ∀E ∈ Σ, satisfies

νx∗ ∈ ba(Σ)+.

(A) Now we find the function f ∈ Lρ(µ)
+

fulfilling the requirements of the statement. By

Lemma 2.2 for each k ∈ N we can choose a function f̃k ∈ Lρ(µ)
+

such that ρ(f̃k) < +∞ and

⟨x∗, f̃k⟩ ≥ ∥x∗∥ − 1
k . As H(S) is ρ-dense in Lρ(µ), we can find hk ∈ H(S) such that 0 ≤ hk ≤ f̃k

and ρ(f̃k − hk) ≤ ϵ
2k
, k ≥ 1. Let fk = f̃k − hk, k ≥ 1. Then ρ(fk) ≤ ϵ

2k
and, as x∗ ∈ (H(S))⊥,

also

⟨x∗, fk⟩ = ⟨x∗, f̃k⟩ ≥ ∥x∗∥ − 1
k .

Let f := sup{fk : k ≥ 1}. Since ρ is an Orlicz-type semimodular, by Lemma 2.1 we have

ρ(f) ≤
∑
k≤1

ρ(fk) ≤
∑
k≥1

ϵ

2k
= ϵ.

Hence, f ∈ Lρ(µ)
+
and ∥x∗∥ ≥ ⟨x∗, f⟩ by Lemma 2.2. So, as f ≥ fk we have

∥x∗∥ ≥ ⟨x∗, f⟩ ≥ ⟨x∗, fk⟩ ≥ ∥x∗∥ − 1

k
, ∀k ≥ 1.

Thus νx∗(Ω) = ∥x∗∥ = ⟨x∗, f⟩. Let E ∈ Σ. Then

νx∗(E) = ∥x∗E∥ = sup{⟨x∗, hE⟩ : h ∈ Lρ(µ), ρ(h) < +∞} ≥ ⟨x∗, fE⟩.

Analogously, if cE = Ω \ E, then νx∗(cE) ≥ ⟨x∗, fcE⟩. As

⟨x∗, fE⟩+ ⟨x∗, fcE⟩ = ⟨x∗, f⟩ = νx∗(Ω) = νx∗(E) + νx∗(cE),

we get that νx∗(E) = ⟨x∗, fE⟩.

(B) Let F ⊂ B(Σ) be the subspace of real Σ-measurable step-functions g : Ω → R such that
g =

∑n
i=1 ai · 1Ai , where ai ∈ R and A1, ..., An are disjoint elements of Σ. Observe that, if g ∈ F ,

it is trivial that νx∗(g) = ⟨x∗, gf⟩. So, let g ∈ B(Σ). As F is dense in (B(Σ), ∥ · ∥∞), there exists
a sequence {gn : n ≥ 1} ⊂ F such that ∥g − gn∥∞ → 0. So, νx∗(g) = limn→∞ νx∗(gn) because
νx∗ ∈ ba(Σ) = B(Σ)∗.

Claim. gnf → gf in (Lρ(µ), ∥ · ∥L).
Indeed, let λ > 0 and choose n0 ∈ N such that ∥g − gn∥∞/λ ≤ (ρ(f) + 1)−1 for every n ≥ n0.

Since |f(g − gn)/λ| ≤ |f/(ρ(f) + 1)|, for every n ≥ n0 we have

ρ
(f(g − gn)

λ

)
≤ ρ

( f

ρ(f) + 1

)
≤ ρ(f)

ρ(f) + 1
≤ 1.
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So, ∥f(g − gn)∥L ≤ λ and this proves that gnf → gf in (Lρ(µ), ∥ · ∥L). Thus, we have

νx∗(g) = lim
n→∞

νx∗(gn) = lim
n→∞

⟨x∗, fgn⟩ = ⟨x∗, fg⟩.

�

Lemma 2.5. Given {x∗n : n ≥ 1} ⊂ X∗+ and ϵ > 0, there exists f ∈ Lρ(µ)
+

with ρ(f) < ϵ such
that for every n ≥ 1 we have

(A) ∀E ∈ Σ, νx∗
n
(E) = ⟨x∗n, fE⟩; (B) ∀g ∈ B(Σ), νx∗

n
(g) = ⟨x∗n, fg⟩.

Proof. By Lemma 2.4 for every n ∈ N there exists fn ∈ Lρ(µ)
+
such that ρ(fn) <

ϵ
2n and

(a) ∀E ∈ Σ, νx∗
n
(E) = ⟨x∗, fnE⟩; (b) ∀g ∈ B(Σ), νx∗

n
(g) = ⟨x∗, fng⟩.

Let f := supn≥1 fn. As ρ is an Orlicz-type semimodular, by Lemma 2.1 we get

ρ(f) ≤
∑
n≥1

ρ(fn) <
∑
n≥1

ϵ
2n = ϵ.

So, for every n ≥ 1 and every E ∈ Σ we have

νx∗
n
(E) = ⟨x∗n, fnE⟩ ≤ ⟨x∗n, fE⟩ ≤ ∥x∗nE∥ = νx∗

n
(E),

whence we get νx∗
n
(E) = ⟨x∗n, fE⟩. Finally, if g ∈ B(Σ) and n ≥ 1, the argument of the part (B) of

the proof of Lemma 2.4 yields that νx∗
n
(g) = ⟨x∗n, fg⟩. �

If x∗ ∈ X∗ and x∗ = x∗+ − x∗− with x∗+, x∗− ∈ X∗+, define the mapping νx∗ : Σ → R
as νx∗(E) = νx∗+(E) − νx∗−(E) for every E ∈ Σ. Since νx∗+ , νx∗− ∈ ba(Σ), it is clear that
νx∗ ∈ ba(Σ) = (B(Σ))∗ and so νx∗(g) = νx∗+(g)− νx∗−(g), ∀g ∈ B(Σ).

Lemma 2.6. Given {x∗n : n ≥ 1} ⊂ X∗ and ϵ > 0, there exists f ∈ Lρ(µ)
+

with ρ(f) < ϵ such
that for every n ≥ 1 we have

(A) ∀E ∈ Σ, νx∗
n
(E) = ⟨x∗n, fE⟩; (B) ∀g ∈ B(Σ), νx∗

n
(g) = ⟨x∗n, fg⟩.

Proof. By Lemma 2.5 there exists f ∈ Lρ(µ)
+
such that ρ(f) < ϵ and

νx∗+
n
(E) = ⟨x∗+n , fE⟩, νx∗−

n
(E) = ⟨x∗−n , fE⟩, νx∗+

n
(g) = ⟨x∗+n , fg⟩, νx∗−

n
(g) = ⟨x∗−n , fg⟩,

for every n ∈ N, E ∈ Σ and g ∈ B(Σ). So f satisfies the statement. �

Lemma 2.7. There exists an order-isomorphic and isometric embedding ν of the space X∗ into
ba(Σ).

Proof. For every x∗ ∈ X∗ we define ν(x∗) = νx∗ , which is in ba(Σ) by Lemma 2.5.

Claim 1. ν is linear.

Indeed, let x∗, y∗ ∈ X∗ and α, β ∈ R. By Lemma 2.6 there exists f ∈ Lρ(µ)
+

with ρ(f) < ∞
such that for every E ∈ Σ

ναx∗+βy∗(E) = ⟨αx∗ + βy∗, fE⟩, νx∗(E) = ⟨x∗, fE⟩ and νy∗(E) = ⟨y∗, fE⟩.
So, for every E ∈ Σ we have

ναx∗+βy∗(E) = ⟨αx∗ + βy∗, fE⟩ = α⟨x∗, fE⟩+ β⟨y∗, fE⟩ = (ανx∗ + βνy∗)(E),

and this proves that ν is linear.

Claim 2. νx∗∨y∗ = νx∗ ∨ νy∗ for every x∗, y∗ ∈ X∗.

Indeed, by Lemma 2.6 there exists f ∈ Lρ(µ)
+
with ρ(f) <∞ such that for every g ∈ B(Σ)

νx∗∨y∗(g) = ⟨x∗ ∨ y∗, gf⟩, νx∗(g) = ⟨x∗, gf⟩ and νy∗(g) = ⟨y∗, gf⟩.
So, for every g ∈ B(Σ)+ we have

νx∗∨y∗(g) = ⟨x∗ ∨ y∗, gf⟩ = sup{⟨x∗, fh1⟩+ ⟨y∗, fh2⟩ : h1, h2 ∈ B(Σ)+, h1 + h2 = g} =

= sup{νx∗(h1) + νy∗(h2) : h1, h2 ∈ B(Σ)+, h1 + h2 = g} = (νx∗ ∨ νy∗)(g)
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and this proves that νx∗∨y∗ = νx∗ ∨ νy∗ .

Claim 3. ν is an isometry.

Indeed, pick x∗ ∈ X∗+ and observe that (νx∗)+ = νx∗+ and (νx∗)− = νx∗− by Claim 2. So,
taking into account that ba(Σ) and X∗ are L1-spaces we have

∥νx∗∥ = ∥(νx∗)+∥+ ∥(νx∗)−∥ = ∥νx∗+∥+ ∥νx∗−∥ = ∥x∗+∥+ ∥x∗−∥ = ∥x∗∥.

Thus, ν is an order-isomorphic and isometric embedding of the space X∗ into ba(Σ). �

Theorem 2.8. Let (Ω,Σ, µ) be a Γ-finite measure space, ρ an Orlicz-type semimodular on (Ω,Σ, µ)

and S ⊂ Lρ(µ) an ideal such that H(S) is ρ-dense in Lρ(µ). Then the space X =
Lρ(µ)
H(S) is a

Grothendieck M -space.

Proof. First, X =
Lρ(µ)
H(S) is an M -space by Lemma 2.3. Let {x∗n : n ≥ 1} ⊂ X∗ be a sequence such

that x∗n
w∗

→ 0. By Lemma 2.6 there exists f ∈ Lρ(µ)
+
with ρ(f) < +∞ such that νx∗

n
(g) = ⟨x∗n, fg⟩

for every n ≥ 1 and every g ∈ B(Σ). Since fg ∈ Lρ(µ), ∀g ∈ B(Σ), and x∗n
w∗

→ 0, then νx∗
n
(g) →

0, ∀g ∈ B(Σ), that is, νx∗
n

w∗

→ 0 in (B(Σ)∗, w∗). Since B(Σ) is Grothedieck, we get νx∗
n

w→ 0. Finally

observe that ν : X∗ → ba(Σ) is an isomorphism by Lemma 2.7. So, x∗n
w→ 0 and this completes the

proof. �

3. When Lρ(µ) is Grothendieck?

Let (Ω,Σ, µ) be a Γ-finite measure space and X a Banach function space on (Ω,Σ, µ). Then:

(1) A functional G ∈ X∗ is said to be an integral functional if |G|(fn) →
n→∞

0 whenever {fn : n ≥
1} is a sequence in X such that fn ↓ 0. Let X∗

i ⊂ X∗ denote the subspace of integral functionals
of X∗. The Köthe dual X ′ of X is the subspace of all elements G ∈ X∗ (in fact, G ∈ X∗

i ) such that
there exists a function g ∈ L0(µ) fulfilling fg ∈ L1(µ) and G(f) =

∫
Ω
fgdµ for every f ∈ X. When

µ is a σ-finite measure it is well known (see [14, Th. 3, p. 462]) that X∗
i = X ′. We claim that the

equality X∗
i = X ′ also holds for Γ-finite measure spaces. Indeed, fix G ∈ X∗

i . By [14, Th. 3, p.
462] for each γ ∈ Γ there exists a Σ-measurable function gγ : Ωγ → R such that fgγ ∈ L1(µ) and
G(f) =

∫
Ωγ
fgγdµ for every f ∈ X with supp(f) ⊂ Ωγ . So, if g ∈ L0(µ) is such that g � Ωγ = gγ ,

then it is not hard to prove that fg ∈ L1(µ) and G(f) =
∫
Ω
fgdµ for every f ∈ X.

(2) A non-negative functional G ∈ X∗+ is called a singular functional whenever it follows from
G1 ∈ X∗

i and 0 ≤ G1 ≤ G that G1 = 0. An arbitrary element G ∈ X∗ is called singular if
the positive and negative components G+, G− of G are singular. Let X∗

s denote the subspace of
singular functionals of X∗. It is well known that the subspaces X∗

i and X∗
s are mutually disjoint

closed ideals of X∗ such that X∗ = X∗
i ⊕X∗

s (see [14, Th. 2, p. 467]). It is easy to see that the
subspace Xa of o-continuous elements of X satisfies Xa = (X∗

s )
⊥. Moreover, if supp(Xa) = Ω,

then (Xa)⊥ = X∗
s (see [14, p. 481]). So, if supp(Xa) = Ω, then X∗ = X∗

i if and only if X = Xa.

If a Banach lattice X is Grothendieck, then its dual X∗ is o-continuous (see [10, Theorem 5.3.13,
p. 355]). The converse is not true because ℓ1(I) is o-continuous but c0(I) is not Grothendieck.
However, as we show in the following result, when X is an Orlicz-type modular space (with some
minor requirements), X is Grothendieck if and only if the subspace of integral functionals (or
Köthe dual) X∗

i is o-continuous,

Theorem 3.1. Let (Ω,Σ, µ) be a Γ-finite measure space and ρ an Orlicz-type semimodular on
(Ω,Σ, µ). Assume that S1 ⊂ Lρ(µ) is an ideal such that: (i) H(S1) is ρ-dense in Lρ(µ); (ii)
Lρ(µ)

a = H(S1), where Lρ(µ)
a is the subspace of o-continuous elements of Lρ(µ); (iii) supp(S1) =

Ω. Then

(A) Lρ(µ)/H(S1) is a Grothendieck M -space.

(B) The following statements are equivalent:
(1) Lρ(µ) is Grothendieck; (2) Lρ(µ)

∗
i is o-continuous.
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Proof. (A) follows from Proposition 2.8.

(B) First, recall that the dual space Lρ(µ)
∗ has the expression Lρ(µ)

∗ = Lρ(µ)
∗
i

d
⊕ Lρ(µ)

∗
s,

where
d
⊕ means the disjoint direct sum, Lρ(µ)

∗
i is the subspace of integral functionals and Lρ(µ)

∗
s

the subspace of singular functionals. Since the support or carrier supp(Lρ(µ)
a) of Lρ(µ)

a is
supp(Lρ(µ)

a) = supp(H(S1)) = Ω, then (Lρ(µ)
a)⊥ = Lρ(µ)

∗
s (see [14, pg. 481]). On the other

hand, under the conditions of the statement, Lρ(µ)/H(S1) is Grothendieck by (A). Thus, as
Lρ(µ)

a = H(S1), we have

(Lρ(µ)/H(S1))
∗ = (H(S1))

⊥ = (Lρ(µ)
a)⊥ = Lρ(µ)

∗
s.

So, the sequential weak∗ and weak convergences coincide in Lρ(µ)
∗
s. Moreover, Lρ(µ)

∗
s is o-

continuous, because it is the dual of a Grothendieck Banach lattice (see [10, Theorem 5.3.13,
p. 355]).

(1) ⇒ (2). Assume that Lρ(µ) is Grothendieck. Then Lρ(µ)
∗ is o-continuous (see [10, Theorem

5.3.13, p. 355]). So Lρ(µ)
∗
i is o-continuous.

(2) ⇒ (1). In order to prove that Lρ(µ) is Grothendieck we use [10, Theorem 5.3.13, p. 355].
So, we must check the following three conditions:

(i) First condition: Lρ(µ) has the interpolation property (I). Recall ([10, Def. 1.1.7 , p. 7]) that
a vector lattice E has the interpolation property (I) if for all sequences (xn)n≥1, (ym)m≥1 ⊂ E
such that xn ≤ ym, ∀n,m ∈ N, there exists u ∈ E such that xn ≤ u ≤ ym, ∀n,m ∈ N. In our case
Lρ(µ) has the interpolation property (I) because Lρ(µ) is σ-complete.

(ii) Second condition: Lρ(µ)
∗ is o-continuous. This is true because we have the decomposition

Lρ(µ)
∗ = Lρ(µ)

∗
i

d
⊕Lρ(µ)∗s and: (i) Lρ(µ)∗i is o-continuous by hypothesis; (ii) Lρ(µ)

∗
s is o-continuous

because it is the dual of the Grothendieck Banach lattice Lρ(µ)/H(S1). So, Lρ(µ)
∗ is o-continuous.

(iii) Third condition: if {zn : n ≥ 1} ⊂ B(Lρ(µ)
∗)+ is a pairwise disjoint sequence satisfying

zn
w∗

→ 0, then zn
w→ 0. Let us prove this condition. Consider the decomposition zn = z1n + z2n

with z1n ∈ B(Lρ(µ)
∗
i )

+ and z2n ∈ B(Lρ(µ)
∗
s)

+ so that {z1n, z2n : n ≥ 1} are pairwise disjoint as
elements of Lρ(µ)

∗. Moreover, since Lρ(µ)
∗
i ⊂ L0(µ), each z1n can be considered as a function of

L0(µ)+ such that supp(z1n)∩ supp(z1m) = ∅ if n ̸= m.

Claim 1. z1n
w∗

→ 0.

Indeed, suppose that z1n does not converge to 0 in the weak∗-topology. Then there exists a
vector u ∈ B(Lρ(µ)) and a positive number 0 < ϵ ≤ 1 such that, by passing to a subsequence if
necessary, we have ⟨z1n, u⟩ > ϵ, ∀n ≥ 1. Let un = u · 1supp(z1n), n ≥ 1. Notice that un ∈ Lρ(µ),
1 ≥ ∥u∥ ≥ ∥un∥ ≥ ⟨z1n, un⟩ = ⟨z1n, u⟩ > ϵ for all n ≥ 1 and ⟨z1n, uk⟩ = 0, if n ̸= k. Since maybe
⟨z2n, un⟩ ̸= 0, we need to pass to another vector vn ∈ H(S1) such that |vn| ≤ |un| and ⟨z2n, vn⟩ = 0.
Let us choose vn. As z1nun ∈ L1(µ) and +∞ >

∫
Ω
|z1nun|dµ ≥ ⟨z1n, un⟩ = ⟨z1n, u⟩ > ϵ, by the

dominated convergence theorem there exist 0 ≤Mn <∞ and a finite subset Γn ⊂ Γ such that, if

vn := ((un ∧Mn) ∨ (−Mn)) · 1∪γ∈ΓnΩγ ,

then vn ∈ S0, |vn| ≤ |un|, ⟨z2n, vn⟩ = 0, ∥vn∥ ≥ ⟨zn, vn⟩ = ⟨z1n, vn⟩ > ϵ and ⟨zk, vn⟩ = ⟨z1k, vn⟩ = 0
if k ̸= n. Define the operator S : ℓ∞ → Lρ(µ) as S((tn)n≥1) =

∑
n≥1 tnvn for every (tn)n≥1 ∈ ℓ∞.

Observe that S is well defined because for every (tn)n≥1 ∈ ℓ∞ we have, on the one hand

∥
∑
n≥1

tnvn∥ ≤ sup{|tn| : n ≥ 1} · ∥
∑
n≥1

vn∥ ≤

≤ sup{|tn| : n ≥ 1}∥u∥ ≤ sup{|tn| : n ≥ 1} = ∥(tn)n≥1∥ℓ∞ ,
and, on the other hand

∥
∑
n≥1

tnvn∥ ≥ sup{|tn| · ∥vn∥ : n ≥ 1} > ϵ sup{|tn| : n ≥ 1} = ϵ∥(tn)n≥1∥ℓ∞ .

So, S is an isomorphism between ℓ∞ and S(ℓ∞) with ∥S∥ ≤ 1. Define the operator T : Lρ(µ) → c0

as follows: for every x ∈ Lρ(µ), we put T (x) = ((⟨zn, x⟩)n≥1). As zn
w∗

→ 0, it is clear that T is a
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linear operator such that ∥T∥ ≤ 1. Now we consider the operator T ◦ S : ℓ∞ → c0 and prove the
following fact.

Fact. The restriction T ◦ S� c0 of T ◦ S to the canonical subspace c0 of ℓ∞ is a (natural)
isomorphism between c0 and the final space c0. Moreover, T ◦ S(B(c0)) ⊃ ϵB(c0), and so, T ◦
S(B(ℓ∞)) ⊃ ϵB(c0).

Indeed, let y := (y1, y2, . . . ) ∈ ϵB(c0). Since ⟨zn, vn⟩ = ⟨z1n, vn⟩ > ϵ and |yn| ≤ ϵ, we can
find tn ∈ [−1, 1], n ≥ 1, such that tn → 0 and tn⟨zn, vn⟩ = yn. So, t := ((tn)n≥1) ∈ B(c0) and
T ◦ S(t) = y.

Thus, c0 is a quotient of ℓ∞, a contradiction which proves the Claim 1.

Claim 2. (Lρ(µ)
∗
i )

∗ = (Lρ(µ)
∗
i )

∗
i = Lρ(µ).

Indeed, since by hypothesis Lρ(µ)
∗
i is o-continuous we have (Lρ(µ)

∗
i )

∗ = (Lρ(µ)
∗
i )

∗
i , that is,

if G ∈ (Lρ(µ)
∗
i )

∗, there exists g ∈ L0(µ) such that for every Hf ∈ Lρ(µ)
∗
i , with f ∈ L0(µ)

representing the functional Hf , then fg ∈ L1(µ) and ⟨G,Hf ⟩ =
∫
Ω
fgdµ. Let us prove that

(Lρ(µ)
∗
i )

∗
i = Lρ(µ). When µ is σ-finite, this fact holds true because Lρ(µ) has the Fatou property

and by [14, Th. 1, p. 470]. Let us consider the general case, that is, µ Γ-finite. First, clearly
Lρ(µ) ⊂ (Lρ(µ)

∗
i )

∗ = (Lρ(µ)
∗
i )

∗
i . Prove that (Lρ(µ)

∗
i )

∗
i ⊂ Lρ(µ). It is enough to show that, if

G ∈ (Lρ(µ)
∗
i )

∗
i with ∥G∥(Lρ(µ)∗i )

∗
i
≤ 1, G ≥ 0, and g ∈ L0(µ)

+ represents G (that is, fg ∈ L1(µ)

and ⟨G,Hf ⟩ =
∫
Ω
fgdµ, ∀Hf ∈ Lρ(µ)

∗
i ), then ρ(g) ≤ 1. Suppose that ρ(g) > 1. By the definition

of Orlicz-type semimodular, there exists A ∈ Σ with µ(A) < ∞ such that ρ(g1A) > 1. Let µA be
the restriction of µ to A. Then Lρ(µA) := {f1A : f ∈ Lρ(µ)}. Since µA is σ-finite and Lρ(µA)
has the Fatou property, then (Lρ(µA)

∗
i )

∗
i = Lρ(µA) and the norms ∥ · ∥(Lρ(µA)∗i )

∗
i
and ∥ · ∥Lρ(µA)

coincide (see [14, Th. 1, p. 470]). Since g1A ∈ (Lρ(µA)
∗
i )

∗
i = Lρ(µA) and Lρ(µA) ⊂ Lρ(µ), then

g1A ∈ Lρ(µ). Moreover

∥g1A∥Lρ(µ) = ∥g1A∥Lρ(µA) = ∥g1A∥(Lρ(µA)∗i )
∗
i
≤ ∥G∥(Lρ(µ)∗i )

∗
i
≤ 1.

Hence we get ρ(g1A) ≤ 1, a contradiction, which proves that ρ(g) ≤ 1 and so g ∈ Lρ(µ).

Claim 3. z1n
w→ 0.

Indeed, by Claim 2 we have (Lρ(µ)
∗
i )

∗ = (Lρ(µ)
∗
i )

∗
i = Lρ(µ). So, on Lρ(µ)

∗
i coincide the

w∗-topology σ(Lρ(µ)
∗
i , Lρ(µ)) and the w-topology σ(Lρ(µ)

∗
i , (Lρ(µ)

∗
i )

∗). Hence, we get z1n
w→ 0

because z1n
w∗

→ 0 by Claim 1.

Claim 4. z2n
w→ 0.

Indeed, as z2n = zn − z1n, then z2n
w∗

→ 0, because z1n
w∗

→ 0 and zn
w∗

→ 0. Now we apply that

Lρ(µ)/H(S1) is Grothendieck and the fact that Lρ(µ)
∗
s = (Lρ(µ)/H(S1))

∗. So, we obtain z2n
w→ 0.

Finally, from Claim 3 and Claim 4 we obtain zn
w→ 0 and this completes the proof. �

4. The Grothendieck property for Orlicz-Lorentz spaces

Let us introduce the notion of Orlicz-Lorentz spaces. If (Ω,Σ, µ) is a complete Γ-finite measure
space, for every h ∈M(µ), the distribution function µh : [0,∞) → [0,∞] associated to h is defined
by

µh(t) = µ({w ∈ Ω : |h(w)| > t}), t ∈ [0,∞),

and the nonincreasing rearrangement function h∗ : (0,∞) → [0,∞] of h is defined by

h∗(t) = inf{λ > 0 : µh(λ) ≤ t}, inf ∅ = ∞.

Let φ : R ∪ {±∞} → [0,+∞] denote an Orlicz function, i.e. a convex function which is even,
nondecreasing and left continuous for x ≥ 0, φ(0) = 0 and φ(x) → ∞ as x → ∞ (see [1],[9]).
Define a(φ) = sup{t ≥ 0 : φ(t) = 0} and τ(φ) := sup{t ≥ 0 : φ(t) < ∞}. The complementary
function of φ is a new Orlicz function ψ defined for u ≥ 0 as ψ(u) = sup{tu− φ(t) : 0 ≤ t < ∞}.
The Orlicz function φ satisfies: (i) the ∆2-condition at 0 (for short, φ ∈ ∆0

2) if φ(t) > 0 for t > 0
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and lim supt→0
φ(2t)
φ(t) < ∞; (ii) the ∆2-condition at ∞ (for short, φ ∈ ∆∞

2 ) if φ(t) < ∞ for every

0 ≤ t < ∞ and lim supt→∞
φ(2t)
φ(t) < ∞; (iii) the ∆2-condition (for short, φ ∈ ∆2) if φ ∈ ∆0

2 and

φ ∈ ∆∞
2 . A function w : (0,∞) → (0,∞) is said to be a weight function if it is nonincreasing,∫ 1

0
w(t)dt <∞ and

∫∞
0
w(t)dt = ∞.

Let φ be an Orlicz function and w : (0,∞) → (0,∞) a weight function. We define the mapping
I(φ,w) : L0(µ) ∪M(µ)+ → [0,∞] associated to φ and w as

I(φ,w)(f) =

∫ ∞

0

φ(f∗)wdt, f ∈ L0(µ).

Let us check that I(φ,w) is an Orlicz-type semimodular.

(0) Let f ∈ M(µ)+, A := {w ∈ Ω : f(w) > a(φ)} and g := f1A. Then it is easy to see that
φ(f∗) = φ(g∗) and so I(φ,w)(f) = I(φ,w)(g).

(1) Clearly, I(φ,w)(0) = 0, I(φ,w)(f) = I(φ,w)(−f) and, if I(φ,w)(λf) = 0, ∀λ > 0, then f = 0.
Moreover, I(φ,w)(f) = ∞ as soon as ∞ = µ({|f | > t}) =: µf (t) for some t > a(φ).

(2) I(φ,w) is monotone because 0 ≤ g∗ ≤ f∗ and 0 ≤ φ(g∗) ≤ φ(f∗) whenever |g| ≤ |f |.

(3) I(φ,w) is left-continuous. Indeed, if {fn : n ≥ 1} ⊂M(µ)+ is a sequence such that 0 ≤ fn ↑ f0,
then f∗n ↑ f∗0 . Since φ is left-continuous, also φ(f∗n) ↑ φ(f∗0 ) and so by the monotone convergence
theorem we have I(φ,w)(fn) ↑ I(φ,w)(f0).

(4) If A ∈ Σ with µ(A) <∞ and λ > 0 satisfies φ(λ) <∞, then I(φ,w)(λ1A) =
∫ µ(A)

0
φ(λ)wdt <

∞.

(5) I(φ,w) is 1-convex and satisfies I(φ,w)(f ∨ g) ≤ I(φ,w)(f) + I(φ,w)(g), ∀f, g ∈ L0(µ)∪M(µ)+.
To prove these properties we proceed in several steps, namely:

Step 1. We suppose that f, g are real Σ-measurable step-functions, that is, f :=
∑n
i=1 ai1Ai

and g :=
∑m
i=1 bi1Bi with 0 ≤ ai, bi and Ai, Bp ∈ Σ with Ai ∩ Aj = ∅ = Bp ∩ Bq whenever

i ̸= j, p ̸= q. In this case it is easy to see that I(φ,w)(αf + βg) ≤ αI(φ,w)(f) + βI(φ,w)(g), when
0 ≤ α, β, α+ β = 1, and I(φ,w)(f ∨ g) ≤ I(φ,w)(f) + I(φ,w)(g).

Step 2. Let f, g ∈ M(µ)+ and α, β ≥ 0 with α + β = 1. Find two sequences of Σ-measurable
step-functions 0 ≤ fn ≤ fn+1 ↑ f, 0 ≤ gn ≤ gn+1 ↑ g. Then 0 ≤ αfn + βgn ↑ αf + βg and
0 ≤ fn ∨ gn ↑ f ∨ g, whence 0 ≤ (αfn + βgn)

∗ ↑ (αf + βg)∗ and 0 ≤ (fn ∨ gn)∗ ↑ (f ∨ g)∗. Thus,
I(φ,w)(αfn + βgn) ↑ I(φ,w)(αf + βg) and I(φ,w)(fn ∨ gn) ↑ I(φ,w)(f ∨ g). By Step 1

I(φ,w)(αfn + βgn) ≤ αI(φ,w)(fn) + βI(φ,w)(gn) ≤ αI(φ,w)(f) + βI(φ,w)(g),

and

I(φ,w)(fn ∨ gn) ≤ I(φ,w)(fn) + I(φ,w)(gn) ≤ I(φ,w)(f) + I(φ,w)(g).

Therefore, we finally get

I(φ,w)(αf + βg) ≤ αI(φ,w)(f) + βI(φ,w)(g) and I(φ,w)(f ∨ g) ≤ I(φ,w)(f) + I(φ,w)(g).

(6) I(φ,w) is finitely determined. Indeed, let f ∈ M(µ)+ be such that I(φ,w)(f) > a ≥ 0. Put

A0 := {w ∈ Ω : f(w) > a(φ)} and An := {w ∈ Ω : f(w) > a(φ) + 1
n}, ∀n ≥ 1. Then f1An ↑

f1A0 and so I(φ,w)(f1An) ↑ I(φ,w)(f1A0), because I(φ,w) is left-continuous. Since I(φ,w)(f1A0) =
I(φ,w)(f) (by (0)), there exists p ∈ N such that I(φ,w)(f1Ap) > a. If µ(Ap) < ∞ we are done.
Otherwise, µ(Ap) = ∞ and we can choose a sequence {Apm : m ≥ 1} ⊂ Σ such that µ(Apm) <
∞, Apm ⊂ Ap,m+1 ⊂ Ap, m ≥ 1, and µ(Apm) ↑ ∞. Then

I(φ,w)(f1Apm) ≥
∫ µ(Apm)

0

φ(a(φ) + 1
p )wdt→ ∞ for m→ ∞.

So, there exists q ∈ N such that I(φ,w)(f1Apq ) > a.

Thus, I(φ,w) is an Orlicz-type semimodular on (Ω,Σ, µ) and so we can apply the results of
Sections 2 and 3 to the associated modular Banach space (L0(µ))I(φ,w)

, which is called the Orlicz-

Lorentz space and denoted by Λ(φ,w)(µ). When φ(t) = |t|, then Λ(φ,w)(µ) is the Lorentz space
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Λ(w)(µ). If w(0+) := limt↓0 w(t) < ∞ and limt→µ(Ω) w(t) > 0, it is clear that Λ(φ,w)(µ) is order-
isomorphic to the Orlicz space Lφ(µ). Let HΛ(φ,w)(µ) be the ideal HΛ(φ,w)(µ) := {f ∈ Λ(φ,w)(µ) :
I(φ,w)(λf) <∞, ∀λ > 0}.

Proposition 4.1. Let (Ω,Σ, µ) be a complete Γ-finite measure space, φ be an Orlicz function and
w : (0,∞) → (0,∞) a weight function. Then S0 is I(φ,w)-dense in Λ(φ,w)(µ). Moreover, if µ = µa
(that is, µ is purely atomic) and Sa is the subspace spanned by the functions of the form 1A, A
being an atom, then Sa is I(φ,w)-dense in Λ(φ,w)(µ).

Proof. (1) Let us prove that S0 is I(φ,w)-dense in Λ(φ,w)(µ). Pick f ∈ Λ(φ,w)(µ) such that
I(φ,w)(f) <∞ and let 0 < ϵ <∞. We have to find a function g ∈ H(S0) such that I(φ,w)(f−g) ≤ ϵ.
If 0 < a(φ) = τ(φ), then f∗ ≤ a(φ) and so φ(f∗) = 0 and actually I(φ,w)(f) = 0. Thus taking
g := 0 ∈ S0 we have I(φ,w)(f − g) = 0 ≤ ϵ.

Assume now that a(φ) < τ(φ). Observe that the measurable set A := {w ∈ Ω : |f(w)| > a(φ)} is
σ-finite, we say, A := ∪n≥1{w ∈ Ω : |f(w)| > a(φ)+ 1

n}, with µ({w ∈ Ω : |f(w)| > a(φ)+ 1
n}) <∞.

Define
fn := f · 1

{|f |>a(φ)+ 1
n}

· 1{|f |≤n}, n ≥ 1.

Observe that fn ∈ S0, n ≥ 1. If gn := f − fn, n ≥ 1, it is clear that {|gn| > a(φ) + 1
k} ⊂ {|f | >

a(φ)+ 1
k}, ∀n, k ≥ 1, and {|gn| > a(φ)+ 1

k} ↓ ∅ when n→ ∞, whence we get , ∀k ≥ 1, µgn(a(φ)+
1
k )↓0 when n→ ∞. Thus g∗n↓g0 when n→ ∞ for some measurable function g0 : [0,∞) → [0,∞]
such that 0 ≤ g0 ≤ a(φ) and this implies φ(g∗n) ↓

n→∞
0, because a(φ) < τ(φ). Therefore, as

0 ≤ g∗n ≤ f∗ and I(φ,w)(f) < ∞, by the dominated convergence theorem we get I(φ,w)(f − fn) =

I(φ,w)(gn) ↓
n→∞

∫∞
0
φ(g0)wdt = 0. So, there exists n0 ∈ N such that I(φ,w)(f − fn) ≤ ϵ, ∀n ≥ n0,

and this proves that S0 is I(φ,w)-dense in Λ(φ,w)(µ) when a(φ) < τ(φ).

(2) Assume that µ = µa and pick f ∈ Λ(φ,w)(µ) such that I(φ,w)(f) < ∞ and let 0 < ϵ < ∞.
We have to find a function g ∈ Sa such that I(φ,w)(f − g) ≤ ϵ. If 0 < a(φ) = τ(φ), we can pick
g = 0 ∈ Sa as in the part (1).

Assume that a(φ) < τ(φ). As the measurable set A := {w ∈ Ω : |f(w)| > a(φ)} is σ-finite, then
A = ⊎n≥1An where {An : n ≥ 1} is a disjoint sequence of atoms with µ(An) <∞. Define

fn := f · 1
{|f |>a(φ)+ 1

n}
· 1∪n

i=1Ai , n ≥ 1.

Observe that fn ∈ Sa, ∀n ≥ 1. As in the part (1), there exists n0 ∈ N such that I(φ,w)(f − fn) ≤
ϵ, ∀n ≥ n0, and this proves that Sa is I(φ,w)-dense in Λ(φ,w)(µ) when a(φ) < τ(φ). �

Proposition 4.2. Let (Ω,Σ, µ) be a complete Γ-finite measure space, φ be an Orlicz function and
w : (0,∞) → (0,∞) a weight function. Then

(A) If φ is finite we have HΛ(φ,w)(µ) = H(S0) = (Λ(φ,w)(µ))
a.

(B) If τ(φ) <∞ and Ω = Ωd ⊎Ωa, µ = µd + µa, then H(Sa) = Sa = (Λ(φ,w)(µ))
a, where Sa is

the subspace spanned by the functions of the form 1A, A being an atom.

Proof. (A) Let us see that HΛ(φ,w)(µ) = H(S0) = (Λ(φ,w)(µ))
a when φ is finite.

(i) First, HΛ(φ,w)(µ) ⊂ H(S0) by the definitions of these subspaces.

(ii) As (Λ(φ,w)(µ))
a is a closed ideal andH(S0) = S0, in order to prove thatH(S0) ⊂ (Λ(φ,w)(µ))

a,
it is enough to check that 1A ∈ (Λ(φ,w)(µ))

a whenever A ∈ Σ and µ(A) < ∞. Since Λ(φ,w)(µ)
is σ-o-complete, it is enough to show that, if 0 ≤ fn ≤ fn−1 ≤ 1A is a sequence of elements
of Λ(φ,w)(µ) such that fn ↓ 0 in order, then ∥fn∥ ↓ 0 when n → ∞. As µ(A) < ∞, then
f∗n ↓ 0. So, let λ > 0 and observe that I(φ,w)(1A/λ) < ∞ (because φ is finite and µ(A) < ∞)
and φ((1A/λ)

∗) ≥ φ((fn/λ)
∗) ↓ 0. Thus, we get I(φ,w)(fn/λ) ↓ 0 by the dominated convergence

theorem and so ∥fn∥ ↓ 0 when n→ ∞.

(iii) Finally let us see that (Λ(φ,w)(µ))
a ⊂ HΛ(φ,w)(µ). So, pick f ∈ Λ(φ,w)(µ) \HΛ(φ,w)(µ) and

prove that f /∈ (Λ(φ,w)(µ))
a. Without loss of generality, assume that 0 ≤ f and I(φ,w)(f) = ∞.
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For each (F, n) ∈ F × N (F = finite subsets of Γ) define

f(F,n) := (f · 1∪γ∈FΩγ ) ∧ n.
Observe that f(F,n) ∈ HΛ(φ,w)(µ) and {f − f(F,n) : (F, n) ∈ F × N} is a downward directed set
such that f ≥ f − f(F,n) ↓ 0. Moreover

+∞ = I(φ,w)(f) = I(φ,w)((f − f(F,n)) + f(F,n)) =

= I(φ,w)(
1
22(f − f(F,n)) +

1
22f(F,n)) ≤

1
2I(φ,w)(2(f − f(F,n))) +

1
2I(φ,w)(2f(F,n)),

whence we get I(φ,w)(2(f − f(F,n))) = +∞ and so ∥f − f(F,n)∥ ≥ 1/2 for every (F, n) ∈ F × N.
Thus f is not o-continuous.

(B) First, we know that H(Sa) = Sa. Since clearly Sa ⊂ (Λ(φ,w)(µ))
a we get Sa ⊂ (Λ(φ,w)(µ))

a

because (Λ(φ,w)(µ))
a is a closed ideal.

Claim. If f ∈ (Λ(φ,w)(µ))
a, then supp(f) ⊂ Ωa.

Indeed, it is enough to prove that if A ∈ Σ with A ⊂ Ωd and µ(A) > 0, then 1A /∈ (Λ(φ,w)(µ))
a.

Since µd is diffuse and µd(A) > 0, without loss of generality we can suppose that there exists a
sequence {An : n ≥ 1} ⊂ Σ such that An ↑ A and µ(A \ An) > 0, n ≥ 1. Then 1A\An

↓ 0

and also I(φ,w)((τ(φ) + ϵ) · 1A\An
) = +∞, ∀ϵ > 0. Thus ∥1A\An

∥ ≥ 1
τ(φ) > 0 and this yields

1A /∈ Λ(φ,w)(µ)
a
.

Now let f ∈ Λ(φ,w)(µ)
a
and prove that f ∈ Sa. By the Claim we have supp(f) ⊂ Ωa. Let

{Ai : i ∈ I} be the family of atoms of µ and fi := f � Ai. Then |f −
∑
i∈J fi · 1Ai | ↓ 0 when

J ⊂ I is a finite subset. Thus ∥f −
∑
i∈J fi · 1Ai∥ ↓ 0 when J ⊂ I is a finite subset, because f is

o-continuous. Since
∑
i∈J fi · 1Ai ∈ Sa for J ⊂ I a finite subset, we conclude that f ∈ Sa. �

Proposition 4.3. Let (Ω,Σ, µ) be a complete Γ-finite measure space, φ an Orlicz function and
w : (0,∞) → (0,∞) a weight function. Then

(A) If S ⊂ Λ(φ,w)(µ) is an ideal such that H(S) is I(φ,w)-dense in Λ(φ,w)(µ), then Λ(φ,w)(µ)/H(S)
is a Grothendieck M -space. In particular, Λ(φ,w)(µ)/H(S0) is a Grothendieck M -space

(B) If either φ is a finite Orlicz function or µ = µa, the following statements are equivalent:

(1) Λ(φ,w)(µ) is Grothendieck ; (2) (Λ(φ,w)(µ))
∗
i is o-continuous.

Proof. (A) This follows from Proposition 2.8 and Proposition 4.1.

(B) This follows from Proposition 3.1, Proposition 4.1 and Proposition 4.2. �

Looking at Proposition 4.3, it is clear that, in order to see if Λ(φ,w)(µ) is Grothendieck, the key
is to determine who is (Λ(φ,w)(µ))

∗
i and when this space is o-continuous. If φ(t) = |t| (or more

generally, φ is equivalent to g(t) = t) we have the following result.

Proposition 4.4. Let (Ω,Σ, µ) be a Γ-finite measure space, φ an Orlicz function equivalent to
g(t) = t and w : (0,∞) → (0,∞) a weight function. Then the space Λ(φ,w)(µ), which is isomorphic
to the Lorentz space Λw(µ), is not Grothendieck, provided it is infinite-dimensional.

Proof. This holds true because it is well known (see [13, pg. 177], [3, Th. 5.1]) that every
infinite dimensional Lorentz space Λw(µ) contains a complemented copy of ℓ1. As a quotient of a
Grothendieck spaces is also Grothendieck and ℓ1 is not, we conclude the statement. �

It is well known that the Köthe-dual (Λw(µ))
∗
i = MS where (MS , ∥ · ∥S) is the Marcinkiewicz

space, which is defined as follows:

(4.1) MS := {f ∈ L0(µ) : ∥f∥S := sup
t∈(0,∞)

∫ t
0
f∗(s)ds

S(t) <∞},

S(t) being S(t) =
∫ t
0
w(s) · ds.
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Corollary 4.5. Let (Ω,Σ, µ) be a Γ-finite measure space and w : (0,∞) → (0,∞) a weight
function.

(1) If φ is an Orlicz function equivalent to g(t) = t, then the Köthe-dual space (Λ(φ,w)(µ))
∗
i is

not o-continuous, provided Λ(φ,w)(µ) is infinite-dimensional.

(2) The Marcinkiewicz space (MS , ∥ · ∥S) (defined in (4.1)) is not o-continuous, provided it is
infinite-dimensional.

Proof. �

Let (Ω,Σ, µ) be a complete Γ-finite measure space, φ be an Orlicz function and w : (0,∞) →
(0,∞) a weight function. Define the functional J(φ,w) : L0(µ) → [0,∞] so that

J(φ,w)(f) =

∫ ∞

0

φ(f∗/w)wdt, ∀f ∈ L0(µ),

and let

M(φ,w)(µ) := {f ∈ L0(µ) : J(φ,w)(λf) <∞ for some λ > 0}
and

HM(φ,w)(µ) := {f ∈ L0(µ) : J(φ,w)(λf) <∞ for every λ > 0}.
Let us remark the following observations

(O1) The weight w is said to be regular when S(2t) ≥ (1 + a)S(t), t > 0, for some 0 < a ≤ 1,

where S(t) =
∫ t
0
w(s)ds. Thus S(2t)− S(t) ≥ aS(t) → ∞ when t → ∞. It is very easy to see the

equivalence of the following statements: (i) w is regular; (ii) S(t) ≤ btw(t), t ≥ 0, with 1 ≤ b <∞;
(iii) w(t/2) ≤ Cw(t), t ≥ 0, with 2 ≤ C <∞.

(O2) If w is a regular weight, we say, w(t/2) ≤ Cw(t), t ≥ 0, with 2 ≤ C <∞, then J(φ,w)(f +
g) ≤ J(φ,w)(2Cf)+J(φ,w)(2Cg) for every f, g ∈ L0(µ). Indeed, since (f+g)

∗(t) ≤ f∗(t/2)+g∗(t/2)

and φ( a
w(t) )w(t) ≤ φ( Ca

w(t/2) )w(t/2) for every a ≥ 0 and t > 0, we have

J(φ,w)(f + g) =

∫ ∞

0

φ
( (f + g)∗(t)

w(t)

)
w(t)dt ≤

∫ ∞

0

φ
( 1
22f

∗(t/2) + 1
22g

∗(g/2)

w(t)

)
w(t)dt ≤

≤ 1

2

∫ ∞

0

φ
(2f∗(t/2)

w(t)

)
w(t)dt+

1

2

∫ ∞

0

φ
(2g∗(t/2)

w(t)

)
w(t)dt ≤

≤
∫ ∞

0

φ
(2Cf∗(t/2)

w(t/2)

)
w(t/2)d(t/2) +

∫ ∞

0

φ
(2Cg∗(t/2)

w(t/2)

)
w(t/2)d(t/2) =

= J(φ,w)(2Cf) + J(φ,w)(2Cg).

Observe that this fact implies that M(φ,w)(µ) is a linear subspace of L0(µ). If the weight w is not
regular, the subset M(φ,w)(µ) can be not linear.

(O3) Suppose that either φ(t) = t or φ is an Orlicz N -function (see [9]) and w is a regular
weight. Under these conditions Hudzik, Kaminska and Mastylo (see [7, Th. 2], see [9]) proved
that the Köthe dual (Λ(φ,w)(µ))

∗
i of Λ(φ,w)(µ) coincides, as a set, with the subspace M(ψ,w)(µ) of

L0(µ), ψ being the Orlicz function complementary of φ. Moreover, if we define the homogeneous
functional

∥|f∥| := inf{λ > 0 : J(ψ,w)(
f
λ ) ≤ 1}, f ∈M(ψ,w)(µ),

then ∥| · ∥| is a quasinorm equivalent to the dual norm of (Λ(φ,w)(µ))
∗
i such that by a calculus like

in (O2) we have

∀f, g ∈M(ψ,w)(µ), ∥|f + g∥| ≤ 2C(∥|f∥|+ ∥|g∥|).
So, in what follows we restrict ourself to the case such that φ is an Orlicz N -function and w is a
regular weight.

Lemma 4.6. Let (Ω,Σ, µ) be a complete Γ-finite measure space, φ an Orlicz function and w a
weight. Then

(1) If f ∈ L0(µ) satisfies J(φ,w)(f) <∞, then µ({|f | > t+ a(φ)}) <∞, ∀t > 0.
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(2) If w is a regular weight, there exists 1 ≤ K <∞ such that w(n)
w(n+1) ≤ K, ∀n ≥ 1.

(3) If φ is an Orlicz N-function and w is a regular weight, then HM(ψ,w)(µ) = (M(ψ,w)(µ))
a,

ψ being the Orlicz function complementary of φ.

Proof. (1) If µ({|f | > t0 + a(φ)}) = ∞ for some t0 > 0, then f∗(u) ≥ t0 + a(φ), ∀u ≥ 0, whence
J(φ,w)(f) = ∞, a contradiction.

(2) As w is regular, then S(2t) ≥ (1 + a)S(t) for some 0 < a ≤ 1, where S(t) =
∫ t
0
w(s)ds.

Choose n0 ∈ N such that 1
S(n)

∫ n+1

n
w(s)ds < a

2 , ∀n ≥ n0. Suppose that the statement fails. Then

we can pick m ≥ n0 such that w(m+1)
w(m) < a

2 and so for every s ∈ (m+ 1, 2m], we have

w(s)

w(s−m− 1)
≤ w(s)

w(m)
≤ w(m+ 1)

w(m)
<
a

2
.

Thus

S(2m)− S(m) =

∫ 2m

m

w(s)ds =

∫ m+1

m

w(s)ds+

∫ 2m

m+1

w(s)ds < a
2S(m) +

∫ 2m

m+1

a
2w(s−m− 1)ds =

= a
2S(m) +

∫ m−1

0

a
2w(s)ds ≤

a
2S(m) + a

2S(m) = aS(m).

Therefore S(2m) < (1 + a)S(m), a contradiction.

(3) First, we show that HM(ψ,w)(µ) ⊂ (M(ψ,w)(µ))
a. Let 0 ≤ f ∈ HM(ψ,w)(µ) and choose a

sequence 0 ≤ fn+1 ≤ fn ≤ f of measurable functions such that fn ↓ 0. Then {fn > t} ⊂ {f > t}
and {fn > t} ↓ ∅ for every t > 0. Since ψ is an N -function, then a(ψ) = 0. Thus µ({f > t}) <
∞, ∀t > 0, by (1) and we get µ({fn > t}) ↓ 0, ∀t > 0, whence f∗n ↓ 0. Let λ > 0 and observe

that
∫∞
0
ψ( f

∗

λw )wdt < ∞ because f ∈ HM(ψ,w)(µ). Thus, since ψ( f
∗

λw )w ≥ ψ(
f∗
n

λw )w ↓ 0, by the
dominated convergence theorem we get J(ψ,w)(fn/λ) ↓ 0 and so ∥|fn∥| ↓ 0. As f is σ-complete,
this proves that f is o-continuous.

Let us prove the converse inclusion, that is, (M(ψ,w)(µ))
a ⊂ HM(ψ,w)(µ). Pick f ∈M(ψ,w)(µ) \

HM(ψ,w)(µ) and prove that f /∈ (M(ψ,w)(µ))
a. Without loss of generality, assume that 0 ≤ f and

J(ψ,w)(f) = ∞. For each (F, n) ∈ F × N (F = finite subsets of Γ) define

f(F,n) := (f · 1∪γ∈FΩγ ) ∧ n.

Observe that f(F,n) ∈ HM(ψ,w)(µ) and {f − f(F,n) : (F, n) ∈ F × N} is a downward directed set
such that f ≥ f − f(F,n) ↓ 0. Moreover, if the regular weight w satisfies w(t/2) ≤ Cw(t) with
2 ≤ C <∞, then by (O2)

+∞ = J(ψ,w)(f) = J(ψ,w)((f − f(F,n)) + f(F,n)) ≤ J(ψ,w)(2C(f − f(F,n))) + J(ψ,w)(2Cf(F,n)).

Since J(ψ,w)(2Cf(F,n)) <∞, we get J(ψ,w)(2C(f − f(F,n))) = +∞ and so ∥|f − f(F,n)∥| ≥ 1/(2C),
for every (F, n) ∈ F × N. Thus f is not o-continuous. �

Lemma 4.7. Let (Ω,Σ, µ) be a complete Γ-finite measure space, ψ an Orlicz N -function and w a
regular weight. Then

(1) If µ is atomless and 0 < µ(Ω) <∞, then M(ψ,w)(µ) is o-continuous if and only if ψ ∈ ∆∞
2 .

(2) If µ is atomless and µ(Ω) = ∞, then M(ψ,w)(µ) is o-continuous if and only if ψ ∈ ∆2.

(3) If (Ω,Σ, µ) is the counting measure space on an infinite set I, thenM(ψ,w)(µ) is o-continuous

if and only if ψ ∈ ∆0
2.

Proof. First, observe that we ask for ψ and w to be an Orlicz N -function and a regular weight,
respectively, because only under these conditions we know that M(ψ,w)(µ) is, as a set, the Köthe
dual (Λ(φ,w)(µ))

∗
i of Λ(φ,w)(µ) and the quasinorm ∥| · ∥| is equivalent to the norm of (Λ(φ,w)(µ))

∗
i

(see [7]), φ being the Orlicz N -function complementary of ψ.

(1) Suppose that ψ ∈ ∆∞
2 and pick some 0 ≤ f ∈ M(ψ,w)(µ). We have to prove that f is

o-continuous. Assume that J(ψ,w)(f) <∞ and let λ > 1. Since ψ ∈ ∆∞
2 , there exists 0 < Kλ <∞
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such that ψ(λt) ≤ Kλψ(t), ∀t > 1. Thus, as µ(Ω) <∞, we have

J(ψ,w)(λf) =

∫ µ(Ω)

0

ψ
(λf∗
w

)
wdt =

∫
{ f

∗

w ≤1}
ψ
(λf∗
w

)
wdt+

∫
{ f

∗

w >1}
ψ
(λf∗
w

)
wdt ≤

≤ ψ(λ)

∫ µ(Ω)

0

wdt+Kλ

∫ µ(Ω)

0

ψ
(f∗
w

)
wdt <∞.

Since λ > 1 is arbitrary we get f ∈ HM(ψ,w)(µ). This proves that f is o-continuous because
HM(ψ,w)(µ) = (M(ψ,w)(µ))

a by Lemma 4.6.

Now we prove the converse statement. Without loss of generality, we assume that Ω = [0, 1]
and that µ is the Lebesgue measure on [0, 1]. We suppose that ψ /∈ ∆∞

2 and we construct in
M(ψ,w)(µ) an order-isomorphic copy of ℓ∞. Let 2 ≤ C <∞ be such that w(t) ≤ Cw(2t) for every
t > 0. Since ψ /∈ ∆∞

2 , there exists a sequence {uk : k ≥ 1} ⊂ (0,∞) such that 0 < uk ↑ ∞,

ψ((C+1
C )uk) > 2k+1ψ(uk),

2
3ψ(u1)

≤
∫ 1

0
wdt and 1

2k+1ψ(uk+1)
≤ 1

4
1

2kψ(uk)
, k ≥ 1. Then∑

k≥1

1
2kψ(uk)

≤ 1
2ψ(u1)

(1 + 4−1 + 4−2 + · · · ) = 2
3ψ(u1)

≤
∫ 1

0

wdt.

Let {rk : k ≥ 1} ⊂ (0, 1], rk ↓ 0, be such that
∑
k≥1

1
2kψ(uk)

=
∫ r1
0
wdt and 1

2kψ(uk)
=

∫ rk
rk+1

wdt, k ≥
1. Observe that for n ≥ 1

w(rn+1)rn+1 ≤
∫ rn+1

0

wdt =
∑
k>n

1
2kψ(uk)

≤ 1
2nψ(un)

(4−1 + 4−2 + · · · ) =

= 1
3

1

2nψ(un)
= 1

3

∫ rn

rn+1

wdt ≤ 1
3 (rn − rn+1)w(rn+1),

whence 4rn+1 ≤ rn. Denote pk := rk − rk+1 and define fk := ukw1(rk+1,rk], k ≥ 1, and f :=∑
k≥1 fk. Then

(a) Clearly the functions fk have disjoint supports, f∗ = f and

J(ψ,w)(f) =

∫ r1

0

ψ
(f∗
w

)
wdt =

∑
k≥1

∫ rk

rk+1

ψ(uk)wdt =
∑
k≥1

2−k = 1.

Thus ∥|fk∥| ≤ ∥|f∥| ≤ 1.

(b) Let us compute J(ψ,w)((C + 1)fk). Observe that: (I) f∗k (t) = ukw(t + rk+1), if 0 < t ≤ pk,
and f∗k (t) = 0 if t > pk; (II) if t ≥ rk+1, then 2t ≥ t+ rk+1 and so w(t) ≤ Cw(2t) ≤ Cw(t+ rk+1).
Thus

J(ψ,w)((C + 1)fk) =

∫ pk

0

ψ
(
(C + 1)

f∗k
w

)
wdt ≥

∫ pk

rk+1

ψ
(
(C + 1)

ukw(t+ rk+1)

Cw(t+ rk+1)

)
wdt =

=

∫ pk

rk+1

ψ
(C + 1

C
uk

)
wdt > 2(k+1)

∫ pk

rk+1

ψ(uk)wdt.

Since w is decreasing and pk ≥ rk+1 +
pk
2 (that is, pk is equal or greater than the middle point

rk+1 +
pk
2 of the interval [rk+1, rk]) then∫ pk

rk+1

ψ(uk)wdt ≥ 1
2

∫ rk

rk+1

ψ(uk)wdt = 2−k−1.

Thus, finally we have J(ψ,w)((C+1)fk) > 1 and so ∥|fk∥| ≥ (C+1)−1, k ≥ 1. Taking into account
the equivalence between the quasinorm ∥| · ∥| and the dual norm of (Λ(φ,w)(µ))

∗
i , it is clear that

the mapping T : ℓ∞ → M(ψ,w)(µ) such that T ((ak)k≥1) =
∑
k≥1 akfk, (ak)k≥1 ∈ ℓ∞, is an order-

isomorphism between ℓ∞ and T (ℓ∞). Therefore M(ψ,w)(µ) contains an order-isomorphic copy of
ℓ∞, a contradiction, because M(ψ,w)(µ) is o-continuous by hypothesis.

(2) Suppose that ψ ∈ ∆2 and prove that M(ψ,w)(µ) is o-continuous. Let f ∈ M(ψ,w)(µ) and
assume that J(ψ,w)(f) <∞. Then for every λ > 0 we have J(ψ,w)(λf) <∞ because ψ ∈ ∆2, that
is, f ∈ HM(ψ,w)(µ). Now apply that HM(ψ,w)(µ) = (M(ψ,w)(µ))

a by Lemma 4.6.
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Suppose that M(ψ,w)(µ) is o-continuous and prove that ψ ∈ ∆2. First, ψ ∈ ∆∞
2 by the part

(1). Assume that ψ /∈ ∆0
2. We have to construct in M(ψ,w)(µ) an order-isomorphic copy of ℓ∞ by

using an argument similar to the one of the part (1). Without loss of generality, we suppose that
Ω = [0,∞) and that µ is the Lebesgue measure. Let 2 ≤ C < ∞ be such that w(t) ≤ Cw(2t) for
every t > 0. Since ψ /∈ ∆0

2, there exists a sequence {uk : k ≥ 1} ⊂ (0,∞) and a two sequences of
integers {rk : k ≥ 1} and {pk : k ≥ 1} such that:

(i) 0 < uk+1 < uk and ψ((C+1
C )uk) > 2k+2ψ(uk), k ≥ 1.

(ii) 0 = r1 < r2 < r3 < · · · with pk = rk+1−rk, pk ≥ 2rk, k ≥ 2, and 2−k−1 ≤
∫ rk+1

rk
ψ(uk)w(t)dt ≤

2−k, k ≥ 1.

To do this construction we proceed step by step:

Step 1. Choose u1 > 0 such that ψ((C+1
C )u1) > 21+2ψ(u1) and

∫ 1

0
ψ(u1)wdt < 2−1−1. So,

there exists r2 ∈ N, r2 ≥ 2, such that 2−1−1 ≤
∫ r2
0
ψ(u1)w(t)dt ≤ 2−1.

Step 2. Choose 0 < u2 < u1 such that ψ((C+1
C )u2) > 22+2ψ(u2) and∫ 3r2

r2
ψ(u2)wdt < 2−2−1. So, there exists r3 ∈ N, r3 ≥ 3r2, such that 2−2−1 ≤

∫ r3
r2
ψ(u2)w(t)dt ≤

2−2. Observe that, if p2 := r3 − r2, then p2 ≥ 2r2.

Further we proceed by iteration. For k ≥ 1 define fk ∈ L0(µ) as fk := uk · w · 1(rk,rk+1]. Let
f :=

∑
k≥1 fk. Then

(a) Clearly the functions fk have disjoint supports, f∗ = f and

J(ψ,w)(f) =

∫ ∞

0

ψ
( f
w

)
wdt =

∑
k≥1

∫ rk+1

rk

ψ(uk)wdt ≤
∑
k≥1

2−k = 1.

Thus ∥|fk∥| ≤ ∥|f∥| ≤ 1.

(b) Let us compute J(ψ,w)((C +1)fk). Observe that: (I) f∗k (t) = ukw(t+ rk), if 0 < t ≤ pk, and
f∗k (t) = 0 if t > pk; (II) if t ≥ rk, then 2t ≥ t+ rk and so w(t) ≤ Cw(2t) ≤ Cw(t+ rk). Thus

J(ψ,w)((C + 1)fk) =

∫ pk

0

ψ
(
(C + 1)

f∗k
w

)
wdt ≥

≥
∫ pk

rk

ψ
(
(C + 1)

ukw(t+ rk)

Cw(t+ rk)

)
wdt =

∫ pk

rk

ψ
(C + 1

C
uk

)
wdt > 2(k+2)

∫ pk

rk

ψ(uk)wdt.

Since w is decreasing and pk ≥ rk+
pk
2 (that is, pk is equal or greater than the middle point rk+

pk
2

of the interval [rk, rk + pk]) then∫ pk

rk

ψ(uk)wdt ≥ 1
2

∫ rk+pk

rk

ψ(uk)wdt ≥ 2−k−2.

Thus, finally we have J(ψ,w)((C+1)fk) > 1 and so ∥|fk∥| ≥ (C+1)−1, k ≥ 1. Taking into account
the equivalence between the quasinorm ∥| · ∥| and the dual norm of (Λ(φ,w)(µ))

∗
i , it is clear that

the mapping T : ℓ∞ → M(ψ,w)(µ) such that T ((ak)k≥1) =
∑
k≥1 akfk, (ak)k≥1 ∈ ℓ∞, is an order-

isomorphism between ℓ∞ and T (ℓ∞). Therefore M(ψ,w)(µ) contains an order-isomorphic copy of
ℓ∞, a contradiction, because M(ψ,w)(µ) is o-continuous by hypothesis.

(3) Suppose that ψ ∈ ∆0
2 and prove that M(ψ,w)(µ) is o-continuous. Pick f := (fi)i∈I ∈

M(ψ,w)(µ) and assume that J(ψ,w)(f) <∞.

Claim. f, f∗ and f∗

w are bounded functions.

Indeed, first fi → 0 when i ∈ I (that is, (fi)i∈I ∈ c0(I)) because otherwise f
∗ ≥ d > 0 on [0,∞)

and this contradicts the fact that J(ψ,w)(f) < ∞. So, f and f∗ are bounded and f∗(t) ↓ 0 when
t → ∞. Moreover, f∗/w is bounded. Indeed, assume that f∗/w is not bounded on (0,∞). As
f∗/w is bounded on the interval (0, δ) for every δ > 0, there exists a sequence {xk : k ≥ 1} ⊂ R
such that xk ↑ ∞ and f∗(xk)/w(xk) ≥ k, ∀k ≥ 1. Then, taking into account that f∗ and w are



GROTHENDIECK PROPERTY AND ORLICZ-TYPE MODULAR SPACES 17

non-increasing functions, and the fact w(t/2) ≤ Cw(t), ∀t > 0, we have:

∀k ≥ 1, ∀t ∈ [xk

2 , xk],
f∗(t)

w(t)
≥ f∗(xk)

w(xk/2)
≥ f∗(xk)

Cw(xk)
≥ k

C
.

So, for every k ≥ 1 we have

J(ψ,w)(f) =

∫ ∞

0

ψ
(f∗
w

)
wdt ≥

∫ xk

xk/2

ψ
(f∗
w

)
wdt ≥

∫ xk

xk/2

ψ
( k
C

)
wdt = ψ

( k
C

)
(S(xk)− S(xk/2)).

On the other hand, S(xk) − S(xk/2) → +∞ when k → ∞ by (O1) and so ψ(k/C)(S(xk) −
S(xk/2)) → ∞, a contradiction because J(ψ,w)(f) <∞.

Therefore, as ψ ∈ ∆0
2, we have J(ψ,w)(2

nf) < ∞, ∀n ≥ 1, and so f ∈ HM(ψ,w)(µ). Hence
M(ψ,w)(µ) is o-continuous by Lemma 4.6.

Now we prove the converse statement. We suppose that ψ /∈ ∆0
2 and we construct in M(ψ,w)(µ)

an order-isomorphic copy of ℓ∞. Without loss of generality, we assume that I = N. Moreover, if λ is
the Lebesgue measure on [0,∞), we shall work in the subspaceM0

(ψ,w)([0,∞), λ) ofM(ψ,w)([0,∞), λ)

consisting of those elements which are constant in each interval (n − 1, n], n ≥ 1, because
(M(ψ,w)(I, µ), ∥| · ∥|) is order-isometric to (M0

(ψ,w)([0,∞), λ), ∥| · ∥|). Since ψ /∈ ∆0
2, by the above

part (2) there exist a sequence {uk : k ≥ 1} ⊂ R, 0 < uk+1 < uk < .., a sequence of integers
0 = r1 < r2 < · · · , and a sequence {fk : k ≥ 1} ⊂ M(ψ,w)([0,∞), λ) with disjoint supports
supp(fk) ⊂ (rk, rk+1] such that the mapping T ((ak)k≥1) =

∑
k≥1 akfk, (ak)k≥1 ∈ ℓ∞, is an order-

isomorphism. For every k ≥ 1 define

xk :=

−1+rk+1∑
j=rk

ukw(j + 1) · 1(j,j+1].

Clearly, {xk : k ≥ 1} is a sequence in M0
(ψ,w)([0,∞), λ) whose elements are pairwise disjoint. As

w is a regular weight, there exists (see Lemma 4.6) a constant 1 ≤ K < ∞ such that w(n)
w(n+1) ≤

K, ∀n ≥ 1. It is easy to see that for k ≥ 2 we have

xk ≤ fk ≤
−1+rk+1∑
j=rk

ukw(j) · 1(j,j+1] ≤ Kxk.

So, for k ≥ 2 we have: (i) ∥|xk∥| ≤ ∥|
∑
i≥2 xi∥| ≤ ∥|

∑
i≥2 fi∥| ≤ 1; (ii) ∥|xk∥| ≥ K−1∥|fk∥| ≥

K−1(C + 1)−1. Thus the mapping S((ak)k≥1) =
∑
k≥1 akxk+1, (ak)k≥1 ∈ ℓ∞, is an order-

isomorphism, and this completes the proof of the part (3). �

Corollary 4.8. Let (Ω,Σ, µ) be a complete Γ-finite measure space, φ an Orlicz N -function, ψ the
complementary Orlicz function of φ and w a regular weight. Then

(1) If µ is atomless and 0 < µ(Ω) <∞, then Λ(φ,w)(µ) is Grothendieck if and only if ψ ∈ ∆∞
2 .

(2) If µ is atomless and µ(Ω) = ∞, then Λ(φ,w)(µ) is Grothendieck if and only if ψ ∈ ∆2.

(3) If (Ω,Σ, µ) is the counting measure space on an infinite set I, then Λ(φ,w)(µ) is Grothendieck

if and only if ψ ∈ ∆0
2.

Proof. The proof follows from Proposition 4.3, Lemma 4.7 and the result of [7] that states that,
under the given conditions, the Köthe dual (Λ(φ,w)(µ))

∗
i of Λ(φ,w)(µ) coincides, as a set, with the

space M(ψ,w)(µ). �

5. The Grothendieck property for Orlicz spaces

Let (Ω,Σ, µ) be a Γ-finite measure space, S0 the ideal of L0(µ) generated by the simple Σ-
measurable real functions, φ and Orlicz function and Iφ : L0(µ)∪M(µ)+ → [0,+∞] be the Orlicz
functional such that Iφ(f) =

∫
Ω
φ(f) · dµ. It is easy to see that Iφ is an Orlicz-type semimodular.

Let Lφ(µ) := {f ∈ L0(µ) : ∃λ > 0 such that Iφ(f/λ) < +∞} be he corresponding Orlicz space
with the Luxemburg norm ∥f∥ = inf{λ > 0 : Iφ(f/λ) ≤ 1}. When we work with the counting
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measure µ on a set I, we put ℓφ(I) instead of Lφ(µ). Observe that the functional Iφ and the
Orlicz space Lφ(µ) coincide with the functional I(φ,w) and the Orlicz-Lorentz space Λ(φ,w)(µ),
respectively, when w is the regular weight w(t) = 1, ∀t ∈ (0,∞). So, we can apply all the results
of the previous section. Let

Hφ(µ) := {f ∈ Lφ(µ) : ∀λ > 0, Iφ(λf) < +∞}.

Clearly, Hφ(µ) is a closed ideal of Lφ(µ) such that, if τ(φ) <∞, then Hφ(µ) = {0}.

Proposition 5.1. Let (Ω,Σ, µ) be a complete Γ-finite measure space, φ an Orlicz function and ψ

the Orlicz function complementary of φ. Let Lφ(µ)
∗ = Lφ(µ)

∗
i

d
⊕Lφ(µ)∗s be the disjoint decomposition

of Lφ(µ)
∗ into the subspace of integral functionals Lφ(µ)

∗
i and singular functionals Lφ(µ)

∗
s. Then

(A) Lφ(µ)
∗
i = Lψ(µ).

(B) H(S0) is Iφ-dense in Lφ(µ) and, if µ = µa, then H(Sa) is Iφ-dense in Lφ(µ), Sa being the
ideal generated by the functions of the form 1A, A being an atom of µ.

(C) If φ is finite then Hφ(µ) = H(S0) = Lφ(µ)
a.

(D) If τ(φ) <∞, then Lφ(µ)
a = H(Sa) = Sa.

Proof. (A) It is well known that the subspace of integral functionals Lφ(µ)
∗
i on an Orlicz space

Lφ(µ) with the Luxemburg norm is the Orlicz space Lψ(µ) with the Amemiya-Orlicz norm, ψ
being the Orlicz function complementary of φ.

(B), (C) and (D) follow from Proposition 4.1 and Proposition 4.2. �

Proposition 5.2. Let (Ω,Σ, µ) be a complete Γ-finite measure space, φ an Orlicz function and ψ
the Orlicz function complementary of φ. Then

(A) Lφ(µ)/H(S0) is a Grothendieck M -space.

(B) If either φ is a finite Orlicz function or µ = µa, the following statements are equivalent:

(1) Lφ(µ) is Grothendieck ; (2) Lψ(µ) is o-continuous.

Proof. This follows from Proposition 5.1 and Proposition 4.3. �

Lemma 5.3. Let (Ω,Σ, µ) be a complete Γ-finite measure space and ψ an Orlicz function. Then

(1) If µ is atomless and 0 < µ(Ω) <∞, then Lψ(µ) is o-continuous if and only if ψ ∈ ∆∞
2 .

(2) If µ is atomless and µ(Ω) = ∞, then Lψ(µ) is o-continuous if and only if ψ ∈ ∆2.

(3) If (Ω,Σ, µ) is the counting measure space on a infinite set I, then ℓψ(I) is o-continuous if
and only if ψ ∈ ∆0

2.

Proof. The proof is analogous to the one of Lemma 4.7, using the regular weight w(t) = t and
taking into account that now we do not ask for ψ to be an Orlicz N -function and so it can be
a(ψ) > 0 and τ(ψ) <∞. �

Proposition 5.4. Let (Ω,Σ, µ) be a complete Γ-finite measure space, µa and µd the atomic and
purely non-atomic parts of µ, respectively, and ψ an Orlicz function. Then the following statements
are equivalent:

(1) Lψ(µ) is o-continuous.

(2) The following conditions C(ψ, µd) and C(ψ, µa) are fulfilled:

(A) Condition C(ψ, µd). If µd = 0, then C(ψ, µd) is nothing. Suppose that µd > 0. Then

C(ψ, µd) is the following condition: (A1) if 0 < µ(Ωd) < ∞, ψ ∈ ∆∞
2 , and (A2) if µ(Ωd) = ∞,

ψ ∈ ∆2.
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(B) Condition C(ψ, µa). If the family of atoms {Ai : i ∈ I} is finite, then C(ψ, µa) is nothing.

Suppose that the family of atoms {Ai :∈ I} is infinite. Then C(ψ, µa) is the fact that (µ(Ai)ψ)i∈I
satisfies the condition δ02 (see the next section).

Proof. First, as Lψ(µ) = Lψ(µd)
d
⊕Lψ(µa), it is clear that Lψ(µ) is o-continuous if and only if both

Lψ(µd) and Lψ(µa) are o-continuous.

(A) Suppose that 0 < µd(Ωd). Then by Lemma 5.3 Lψ(µd) is o-continuous if and only the
condition C(ψ, µd) is fulfilled.

(B) If the family of atoms {Ai : i ∈ I} is finite, then Lψ(µa) is finite-dimensional and so it
is o-continuous. Suppose that the family of atoms {Ai : i ∈ I} is infinite. Observe that the
space Lψ(µa) is order-isometric to the Musielak-Orlicz space ℓφ(I) (see the next section), where
φ := (µ(Ai)ψ)i∈I . Thus Lψ(µa) is o-continuous if and only the condition C(ψ, µa) is fulfilled,
because it is well known that a Musielak-Orlicz sequence space ℓφ(I) (where φ := (φi)i∈I is a
family of Orlicz functions) is o-continuous if and only if φ satisfies the condition δ02 . �

Corollary 5.5. Let I be an infinite set, φ an Orlicz function and ψ the Orlicz function complementary
of φ. Then ℓφ(I) is Grothendieck if and only if ψ ∈ ∆0

2.

Proof. By Proposition 5.2, ℓφ(I) is Grothendieck if and only if ℓψ(I) is o-continuous if and only if
ψ ∈ ∆0

2 by Lemma 5.3. �

Corollary 5.6. Let φ be an Orlicz function and ψ the Orlicz function complementary of φ. Then:

(A) Lφ([0,+∞)) is Grothendieck if and only if ψ ∈ ∆2.

(B) Lφ([0, 1]) is Grothendieck if and only if ψ ∈ ∆∞
2 .

Proof. This follows from Proposition 5.2 and Proposition 5.4. �

6. The Grothendieck property for Musielak-Orlicz spaces

If (Ω,Σ, µ) is a complete Γ-finite measure space, a function φ : Ω× (R∪{±∞}) → [0,∞] is said
to be a Musielak-Orlicz function (see [11, p. 33]) if: (i) φ(w, ·) : R ∪ {±∞} → [0,∞] is an Orlicz
function for each w ∈ Ω; (ii) φ(·, t) : Ω → [0,∞] is a Σ-measurable function for every t ∈ R∪{±∞}.
Define the functional Iφ : L0(µ) ∪M(µ) → [0,∞] as follows

∀f ∈ L0(µ) ∪M(µ), Iφ(f) =

∫
Ω

φ(w, f(w))dµ.

It is easy to see that Iφ is an Orlicz-type semimodular. The Musielak-Orlicz space Lφ(µ) is the
modular space (L0(µ))Iφ associated to the semimodular Iφ, that is

Lφ(µ) := {f ∈ L0(µ) : ∃λ > 0 such that Iφ(λf) <∞}.
When µ is the counting measure on a set I, we put ℓφ(I) instead of Lφ(µ), φ being in this case a
family of Orlicz functions φ := (φi)i∈I . We consider in Lφ(µ) the Luxemburg norm

∥f∥ := inf{λ > 0 : Iφ(f/λ) ≤ 1}.

Proposition 6.1. Let (Ω,Σ, µ) be a complete Γ-finite measure space and φ a Musielak-Orlicz
function. Then

(A) H(S0) is Iφ-dense in Lφ(µ) and, if µ = µa, then H(Sa) is Iφ-dense in Lφ(µ).

(B) If either φ is locally integrable (that is,
∫
A
φ(w, t)dµ <∞ for every t ∈ R and every A ∈ Σ

with µ(A) <∞) or µ = µa, then the following statements are equivalent

(a) Lφ(µ) is Grothendieck; (b) (Lφ(µ)
∗
i is o-continuous.

Proof. (A) Let us prove that H(S0) is Iφ-dense in Lφ(µ). Let f ∈ Lφ(µ) be such that Iφ(f) <∞
and ϵ > 0. Since

∫
Ω
φ(w, f(w))dµ < ∞, then Γ0 := {γ ∈ Γ :

∫
Ωγ
φ(w, f(w))dµ > 0} is countable,

we say, Γ0 := {γn : n ≥ 1}. Moreover,
∫
Ω
φ(w, f(w))dµ =

∫
∪n≥1Ωγn

φ(w, f(w))dµ. Let fn := ((f �
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∪ni=1Ωγi) ∧ n) ∨ (−n). Clearly fn ∈ S0, |f | ≥ |f − fn| and so φ(w, f(w)) ≥ φ(w, (f − fn)(w)) a.e.
and φ(w, (f −fn)(w)) ↓ 0 a.e. Thus by the dominated convergence theorem we have Iφ(f −fn) ↓ 0
and there exists p ∈ N such that Iφ(f − fp) < ϵ.

Analogously it is proved that H(Sa) is Iφ-dense in Lφ(µ), if µ = µa.

(B) We consider two cases, namely: (I) φ is locally integrable; (II) µ = µa.

(I) Suppose that φ is locally integrable. Then Iφ(λf) <∞ for every λ ∈ R and every f ∈ S0 and
also for every f ∈ H(S0). Actually H(S0) = {f ∈ Lφ(µ) : Iφ(λf) < ∞, ∀λ > 0}. By Proposition
3.1 it is enough to prove that H(S0) = Lφ(µ)

a.

(i) As (Lφ(µ))
a is a closed ideal and H(S0) = S0, in order to see that H(S0) ⊂ (Lφ(µ))

a, it is
enough to verify that 1A ∈ (Lφ(µ))

a whenever A ∈ Σ and µ(A) <∞. Since Lφ(µ) is σ-o-complete,
it is enough to show that, if 0 ≤ fn ≤ fn−1 ≤ 1A is a sequence of elements of Lφ(µ) such that
fn ↓ 0 in order, then ∥fn∥ ↓ 0 when n → ∞. So, let λ > 0 and observe that Iφ(1A/λ) < ∞
(because µ(A) < ∞ and φ is locally integrable) and 1A/λ ≥ fn/λ ↓ 0. Thus, we get Iφ(fn/λ) ↓ 0
by the dominated convergence theorem and so ∥fn∥ ↓ 0 when n→ ∞.

(ii) Let us see that (Lφ(µ))
a ⊂ H(S0). So, pick f ∈ Lφ(µ)\H(S0) and prove that f /∈ (Lφ(µ))

a.
Without loss of generality, assume that 0 ≤ f and Iφ(f) = ∞. For each (F, n) ∈ F ×N (F = finite
subsets of Γ) define

f(F,n) := (f · 1∪γ∈FΩγ ) ∧ n.
Observe that f(F,n) ∈ S0 and {f − f(F,n) : (F, n) ∈ F × N} is a downward directed set such that
f ≥ f − f(F,n) ↓ 0. Moreover

+∞ = Iφ(f) = Iφ((f − f(F,n)) + f(F,n)) =

= Iφ(
1
22(f − f(F,n)) +

1
22f(F,n)) ≤

1
2Iφ(2(f − f(F,n))) +

1
2Iφ(2f(F,n)),

whence we get Iφ(2(f − f(F,n))) = +∞ and so ∥f − f(F,n)∥ ≥ 1/2 for every (F, n) ∈ F × N. Thus
f is not o-continuous.

(II) By (A) and Proposition 3.1 it is enough to prove that H(Sa) = Lφ(µ)
a. Since clearly

1A ∈ Lφ(µ)
a when A ∈ Σ is an atom, then Sa ⊂ Lφ(µ)

a and so H(Sa) = Sa ⊂ Lφ(µ)
a.

Now let f ∈ Lφ(µ)
a and prove that f ∈ Sa. Let {Ai : i ∈ I} be the family of atoms of µ. Then

|f −
∑
i∈J fi · 1Ai | ↓ 0 when J ⊂ I is a finite subset. Thus ∥f −

∑
i∈J fi · 1Ai∥ ↓ 0 when J ⊂ I is

a finite subset, because f is o-continuous. Since
∑
i∈J fi · 1Ai ∈ Sa when J ⊂ I is a finite subset,

we conclude that f ∈ Sa. �

We are interested in the Musielak-Orlicz sequence space ℓφ(I), I being a set and φ := (φi)i∈I a
family of Orlicz functions. For this space clearly S0 = Sa.

Definition 6.2. A family of Orlicz functions φ := (φi)i∈I satisfies the δ02 condition if there are
two positive constants a and K, a finite subset I0 ⊂ I and a family {ci : i ∈ I} ⊂ [0,∞] such
that

∑
i∈I\I0 ci < ∞ and for every i ∈ I and u ∈ R satisfying φi(u) ≤ a there holds φi(2u) ≤

Kφi(u) + ci.

Corollary 6.3. Let I be a set, φ := (φi)i∈I a family of Orlicz functions and ψ := (ψi)i∈I the
complementary function of φ. Then

(1)
ℓφ(I)
H(S0)

is a Grothendieck M-space.

(2) The following statement are equivalent

(a) ℓφ(I) is Grothendieck; (b) ψ ∈ δ02.

Proof. (1) This follows from Proposition 3.1 and Proposition 6.1.

(2) Observe that (ℓφ(I))
∗
i = ℓψ(I), where ψ := (ψi)i∈I and ψi is the Orlicz function complementary

of φi for all i ∈ I. On the other hand, it is well known that a Musielak-Orlicz sequence space ℓψ(I)
is o-continuous if and only if ψ ∈ δ02 . Now it is enough to apply Proposition 6.1. �
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and Orlicz-Lorentz spaces, Houston J. Math., 22(1996), 639-663.
[7] H. Hudzik, A. Kaminska and M. Mastylo, On the dual of Orlicz-Lorentz spaces, Proc. Amer. Math. Soc.,

130 (2002), 1645-1654.

[8] A. Kaminska and Y. Raynaud, New formulas for decreasing rearrangements and a class of Orlicz-Lorentz
spaces, preprint, 2012.
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