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Abstract

A subset Y of a dual Banach space X∗ is said to have the property (P ) if cow∗
(H) = co(H) for every weak∗-compact subset H

of Y . The purpose of this paper is to give a characterization of the property (P ) for subsets of a dual Banach space X∗, and to study
the behavior of the property (P ) with respect to additions, unions, products, whether the closed linear hull [Y ] has the property (P )

when Y does, etc. We show that the property (P ) is stable under all these operations in the class of weak∗ K-analytic subsets of X∗.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

A subset Y of a dual Banach space X∗ is said to have the property (P ) if cow∗
(H) = co(H) for every weak∗-

compact subset H of Y . The purpose of this paper is twofold: (i) first, to give a characterization of the property (P )

for subsets of the dual Banach space X∗; (ii) second, to study the stability of the property (P ), that is, its behavior
with respect to additions, unions, products, whether the closed linear hull [Y ] has the property (P ) when Y does, etc.

In Section 2 we give a characterization of the property (P ) for subsets of a dual Banach space X∗. Haydon [6]
characterized the property (P ) for a whole dual Banach space X∗ as follows: X∗ has the property (P ) if and only if
X fails to have a copy of �1 if and only if every z ∈ X∗∗ is universally measurable on (X∗,w∗). It happens that a dual
Banach space X∗ can have subsets with the property (P ) (actually X∗ always has such subsets), although X could
contain a copy of �1. This fact suggests that (P ) is a property dependent on subsets. So, it would be interesting to give
an inner characterization of this property.
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There are some interesting criteria for a weak∗-compact subset K of a dual Banach space X∗ to have the prop-
erty (P ). Indeed, Saab and Talagrand (see [11,16]) proved that, if K is weakly K-analytic, then K has the property (P ).
Saab proved [12] that, if K is a weak∗ compact convex subset of X∗ and every functional x∗∗ ∈ X∗∗ is universally
measurable on K , then K has the property (P ). Cascales, Namioka, Orihuela and Vera (see [1–3]) have given different
criteria for the property (P ), for example, they proved that, if the weak∗ compact subset K is weakly Lindelöf, then
K has the property (P ).

The fragmentability is also a useful notion related with the property (P ). Namioka proved [9, 2.3. Theorem] that
a subset Y ⊂ X∗ has the property (P ) whenever (Y,w∗) is norm-fragmented. So, norm-fragmentability implies the
property (P ). The converse is not true. Indeed, let X be the James Tree space JT (see [8]), which is a non-Asplund
separable Banach space without a copy of �1. So, JT∗ has the property (P ) by [6] but the closed unit ball B(JT∗)
of JT∗ is not norm-fragmentable, because the norm-fragmentability of B(X∗) is equivalent to the Asplundness of X

(see [9, 1.3. Theorem]).
We characterize the property (P ) for arbitrary subsets Y ⊂ X∗ by means of a structure that we call a w∗–N-family.

This notion was introduced in [5, Definition 3.5], where we proved that, if a subset Y of a dual Banach space X∗ fails
to have a w∗–N-family (in particular, if Y does not contain a copy of the basis of �1(c)), then cow∗

(H) = co(H) for
every weak∗-compact subset H of Y , that is, the lack of a w∗–N-family implies the property (P ).

Section 3 is devoted to study the stability of the property (P ) under unions, additions, products, closed linear hulls,
etc. We prove that the property (P ) is stable under all these operations in the class of K-analytic subsets of (X∗,w∗).
Moreover, we show that for this class of K-analytic subsets of (X∗,w∗) (Proposition 3.8) the property (P ) is equiv-
alent to the lack of a w∗–N-family. For non-K-analytic subsets this equivalence can fail. Actually, we give examples
of subsets that simultaneously have the property (P ) and contain a w∗–N-family.

Our notation is standard. If A and I are sets, a ∈ AI and i ∈ I , then ai (or a(i)) denotes the ith coordinate of a

and πi :AI → A the ith projection mapping such that πi(a) = ai . |I | is the cardinality of I and c := |R|. If B is a
subset of I , cB := I \ B will denote the complement of B . A sequence {Um,Vm: m � 1} of subsets of I is said to
be independent if Um ∩ Vm = ∅, ∀m � 1, and (

⋂
m∈M Um) ∩ (

⋂
n∈N Vn) 	= ∅ for every pair of disjoint finite subsets

M,N of N. βI denotes the Stone–Čech compactification of I (the I is endowed with the discrete topology) and
I ∗ := βI \ I . The Cantor compact space {0,1}N is denoted by C.

We shall consider only Banach spaces over the real field. If X is a Banach space, let B(a; r) := {x ∈ X:
‖x − a‖ � r} be the closed ball with center at a ∈ X and radius r � 0. B(X) and S(X) will be the closed unit
ball and unit sphere of X, respectively, and X∗ its topological dual. The weak∗-topology of the dual Banach space
X∗ is denoted by w∗ and the weak topology of X by w. If A is a subset of X, then [A] and [A] denote the lin-
ear hull and the closed linear hull of A, respectively. If C is a convex subset of X∗, for x∗ ∈ X∗ and A ⊂ X∗, let
d(x∗,C) = inf{‖x∗ − c‖: c ∈ C} be the distance from x∗ to C and d̂(A,C) = sup{d(a,C): a ∈ A} the distance
from A to C. co(A) denotes the convex closure of the set A, co(A) is the ‖ · ‖-closure of co(A) and cow∗

(A)

the w∗-closure of co(A). Given 1 � M < ∞, a convex subset C of X∗ is said to have M-control inside X∗ if
d̂(cow∗

(K),C) � Md̂(K,C) for every w∗-compact subset K of X∗.
If K is a w∗-compact subset of a dual Banach space X∗ and μ a Radon Borel probability on K , then r(μ) will

denote the barycenter of μ. Recall that:

(i) r(μ) ∈ cow∗
(K);

(ii) x∗ ∈ cow∗
(K) if and only if there exists a Radon Borel probability μ on K such that r(μ) = x∗;

(iii) r(μ)(x) = ∫
K

x∗(x) dμ(x∗) for all x ∈ X.

∑
i∈I ⊕pXi denotes the �p-sum of the family of Banach spaces {Xi : i ∈ I } and πi the canonical i-projection

of
∑

i∈I ⊕pXi onto Xi .

2. Characterizations of the property (P )

We begin this Section 2 with the definitions of w∗–N-family and Cantor skeleton. The notion of w∗–N-family was
introduced in [5, Definition 3.5]. In this paper we work meanly with the notion of Cantor skeleton, which is similar to
that of w∗–N-family.
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Definition 2.1. Let X be a Banach space.

(1) A subset F of X∗ is said to be a w∗–N-family of width d > 0 if F is bounded and has the form

F = {ηM,N : M,N disjoint subsets of N},
and there exist two sequences {rm: m � 1} ⊂ R and {xm: m � 1} ⊂ B(X) such that for every pair of disjoint
subsets M,N of N we have

ηM,N(xm) � rm + d, ∀m ∈ M, and ηM,N(xn) � rn, ∀n ∈ N.

Moreover, if rm = r0, ∀m � 1, we say that F is a uniform w∗–N-family in X∗.
(2) A subset A of X∗ is said to be a Cantor skeleton of width δ > 0 if A is a bounded set of the form A = {kσ : σ ∈ C}

and there exist sequences {an: n � 1} ⊂ R and {xm: m � 1} ⊂ B(X) such that, for each σ ∈ {0,1}N and for every
m � 1, we have 〈kσ , xm〉 � am, if σ(m) = 0, and 〈kσ , xm〉 � am + δ, if σ(m) = 1. Moreover, if an = a, ∀n � 1,
we say that A is a uniform Cantor skeleton. A w∗-compact subset K of X∗ is said to be endowed with a Cantor
skeleton K if K is a Cantor skeleton and Kw∗ = K .

Remark 2.2. (0) w∗–N-families and Cantor skeletons are actually the same thing, but working with Cantor skeletons
is easier. Let us explain this fact. Suppose that F := {ηM,N : M,N disjoint subsets of N} is a w∗–N-family in X∗ such
that

ηM,N(xm) � rm + δ, ∀m ∈ M, and ηM,N(xn) � rn, ∀n ∈ N.

For each σ ∈ {0,1}N, let M := {n ∈ N: σ(n) = 1} and N := N \M , and define hσ := ηM,N . Then, it is easy to see that
K := {hσ : σ ∈ {0,1}N} is a Cantor skeleton of width δ in X∗. Of course, K is uniform if F is uniform. The converse
is also true: if {hσ : σ ∈ {0,1}N} is a Cantor skeleton of width δ > 0 associated with the sequences {rm: m � 1} ⊂ R

and {xm: m � 1} ⊂ B(X), for each pair of disjoint subset M,N of N choose σM,N ∈ C such that σM,N(m) = 1,
∀m ∈ M and σM,N(n) = 0, ∀n ∈ N . So, if for each pair of disjoint subset M,N of N we define ηM,N = kσM,N

, then
{ηM,N : M,N disjoint subsets of N} is a w∗–N-family in X∗.

(1) Let K be a w∗-compact subset endowed with a Cantor skeleton A = {kσ : σ ∈ C} of width δ > 0 associated
with the sequences {rm: m � 1} ⊂ R and {xm: m � 1} ⊂ B(X). Then we have:

(11) For every k ∈ K and every m � 1 either 〈k, xm〉 � am or 〈k, xm〉 � am + δ. Moreover, if we define the mapping
Φ :K → C = {0,1}N as

∀k ∈ K, ∀m � 1, Φ(k)(m) =
{

1 if 〈k, xm〉 � am + δ,

0 if 〈k, xm〉 � am,

we have that Φ is a continuous mapping that satisfies Φ(K) = C.
(12) In general, K may not be homeomorphic to C, even K may not contain a subspace homeomorphic to C.

Indeed, pick the compact space βN considered homeomorphically embedded into (B(C(βN)∗),w∗). It is clear that
co(βN) � cow∗

(βN) because co(βN) is the set of purely atomic probabilities on βN and cow∗
(βN) is the set of all

Radon probabilities on βN. This fact implies (by the next Proposition 2.5) that there exists a w∗-compact subset K

of βN endowed with a uniform Cantor skeleton with respect to C(βN)∗. However, K cannot contain a homeomorphic
copy of C because βN fails to contain non-trivial convergent sequences.

(13) For every 0 < η < δ there exist an infinite subset Nη ⊂ N, a real number bη and a subset Aη ⊂ A such that Aη

is a uniform Cantor skeleton of width η associated to the number bη and the sequence {xm: m ∈ Nη} ⊂ B(X). Indeed,
since the family {an: n � 1} ⊂ R is bounded, there exists bη ∈ R such that Nη := {m ∈ N: bη + η − δ � am � bη}
is infinite. Let π : {0,1}N → {0,1}Nη be the canonical projection and for each τ ∈ {0,1}Nη choose σ(τ) ∈ π−1(τ ).
Define hτ := kσ(τ) for each τ ∈ {0,1}Nη . Then it is easy to see that Aη := {hτ : τ ∈ {0,1}Nη} is a uniform skeleton of
width η > 0 associated with bη ∈ R and the sequence {xm: m ∈ Nη} ⊂ B(X).

In order to prove Proposition 2.5 we use the following lemmas.

Lemma 2.3. Let C := {0,1}N be the Cantor compact set considered as a subset of the compact space (B(�∞(N)),w∗).
There exists a w∗-compact subset D ⊂ C, homeomorphic to C, such that co(D) � cow∗

(D). Actually, there exists
z0 ∈ cow∗

(D) such that d(z0, co(D)) = 1 = d̂(cow∗
(D), co(D)).
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Proof. Consider the Cantor compact space C = {0,1}N and the set S := {0,1}<N = {0,1}∪ {0,1}2 ∪{0,1}3 ∪· · · . Let
λ be the Haar probability on {0,1}N. If σ = (σ1, σ2, . . .) ∈ C and n ∈ N, put σ�n = (σ1, σ2, . . . , σn) ∈ S . If A ⊂ {0,1}n,
let fA : C → {0,1} be the continuous mapping defined by

∀σ ∈ C, fA(σ ) =
{

1 if σ�n ∈ A,

0 if σ�n /∈ A.

For each n ∈ N we define In as

In := {
fA: A ⊂ {0,1}n with |A| = 2n − n

}
.

Observe that In is finite and
∫

C fA dλ = 1−n2−n for each fA ∈ In. Let I := ⋃
n�1 In. Clearly, |I | = ℵ0 and so we can

put I = {fAm : m � 1}. We shall identify I with N by means of the identification of m and fAm . So, instead of �∞(N)

we also write �∞(I ). Observe that:

(1) The family I separates points in C.
(2) For every k ∈ N, the subset {fA ∈ I :

∫
C fA dλ � 1 − 1

k
} is finite. So, limm→∞

∫
C fAm dλ → 1.

(3) Let {σj : j = 1, . . . , k} be a finite subset of C. Then for each n � k, there is fA ∈ In such that fA(σj ) = 0 for each
j = 1, . . . , k.

(4) For every fA ∈ I there exists σ ∈ C such that fA(σ ) = 1.

Let ψ : C → {0,1}I ⊂ B(�∞(I )) be the mapping such that

∀i = fA ∈ I, ∀σ ∈ C, ψ(σ )(i) = fA(σ ).

Clearly, ψ is a continuous injective mapping, when we consider in {0,1}I the w∗-topology of �∞(I ), that coincides
with the product topology of {0,1}I . Thus D := ψ(C) ⊂ {0,1}I is a compact subset, homeomorphic to C. Let μ :=
ψ(λ) be the Radon Borel probability on D image of the Haar probability λ under the continuous mapping ψ , and
let r(μ) =: z0 ∈ cow∗

(D) be the barycenter of μ. Clearly, z0 ∈ [0,1]I and so d(z0, co(D)) � 1. Note that for each
i = fA ∈ In we have

z0(fA) = πi(z0) =
∫
D

πi dμ =
∫
C

πi

(
ψ(σ)

)
dλ(σ ) =

∫
C

fA dλ = 1 − n2−n. (2.1)

In order to show that d(z0, co(D)) = 1, it is enough to show that ‖z0 − p‖ = 1 for each p ∈ co(D). Let p =∑k
j=1 tjψ(σj ), where tj ∈ [0,1], ∑k

j=1 tj = 1 and σj ∈ C for each j . Then by (3) for each n � k, one can choose an
fA ∈ In with the property stated there. Therefore using Eq. (2.1)

1 � ‖z0 − p‖ � z0(fA) −
k∑

j=1

tjψ(σj )(fA) = z0(fA) = 1 − n2−n.

Since n � k is arbitrary, ‖z0 − p‖ = 1. �
Lemma 2.4. Let K be a w∗-compact subset of a dual Banach space X∗ such that K contains a Cantor skeleton of
width δ > 0. Then there exists a w∗-compact subset H of K such that d̂(cow∗

(H), co(H)) � δ.

Proof. Let A := {kσ : σ ∈ C} be a Cantor skeleton of width δ > 0 inside K . Without loss of generality, we suppose
that K = Aw∗

.
(A) First, we assume that K is a w∗-compact subset of �∞ and A a uniform Cantor skeleton of width δ = 1 of K

so that, for each σ ∈ {0,1}N and for every m � 1, we have πm(kσ ) � 0, if σ(m) = 0, and πm(kσ ) � 1, if σ(m) = 1.
Consider the continuous mapping Φ :K → C such that ,∀k ∈ K , Φ(k)(m) = 1, if km � 1, and Φ(k)(m) = 0, if
km � 0. Clearly, Φ(K) = C. By the proof of Lemma 2.3 there exist a w∗-compact subset D ⊂ C ⊂ �∞ and a Radon
probability μ on D so that μ = ψλ, where λ is the Haar probability on C and ψ : C → {0,1}I is the mapping such that
ψ(σ)(i) = fA(σ ), ∀i = fA ∈ I . Let z0 = r(μ) be the barycenter of μ, that satisfies z0 ∈ cow∗

(D) \ co(D). Let

D1
m = {

d ∈ D: πm(d) = 1
}

and D0
m = {

d ∈ D: πm(d) = 0
}
, m � 1.

Claim 1. μ(D1
m) → 1 and so μ(D0

m) = μ(D \ D1
m) → 0 for m → ∞.
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Indeed, in Lemma 2.3 we have identified N with the set I = {fA: A ⊂ {0,1}n with |A| = 2n − n and n ∈ N}. So,
with the notation of Lemma 2.3, if fAm ∈ I is the element of I corresponding to m ∈ N, we have

μ
(
D1

m

) =
∫
D

πm(x)dμ(x) =
∫
C

πm ◦ ψ(σ)dλ(σ ) =
∫
C

ψ(σ)(fAm)dλ(σ ) =
∫
C

fAm(σ )dλ(σ ).

Now apply that limm→∞
∫

C fAm dλ = 1 by (2) in the proof of Lemma 2.3.

Claim 2. If Φ−1(D) =: H ⊂ K , then there exists u0 ∈ cow∗
(H) such that d(u0, co(H)) � 1.

Indeed, since Φ(H) = D and Φ is w∗–w∗-continuous, there exists a Radon Borel probability ν on H such that
Φν = μ. Let u0 := r(ν) be the barycenter of ν, that satisfies u0 ∈ cow∗

(H).

Sub-Claim. Given ε > 0, there exists nε ∈ N such that πm(u0) � 1 − ε, ∀m � nε .

Indeed, observe that πm(u0) = πm(r(ν)) = ∫
H

πm(h)dν(h), ∀m � 1. Let 0 � M < ∞ be such that ‖h‖ � M ,
∀h ∈ H, and choose η > 0 with ε � η(1 + M). Now we choose nε ∈ N such that μ(D1

m) � 1 − η, ∀m � nε (and
μ(D0

m) � η). Then for m � nε we have∫
H

πm(h)dν(h) =
∫

Φ−1(D1
m)

πm(h)dν(h) +
∫

Φ−1(D0
m)

πm(h)dν(h) �
∫

Φ−1(D1
m)

1dν(h) +
∫

Φ−1(D0
m)

(−M)dν(h)

= ν
(
Φ−1(D1

m

)) − Mν
(
Φ−1(D0

m

)) = μ
(
D1

m

) − Mμ
(
D0

m

)
� 1 − η − Mη � 1 − ε.

In order to show that d(u0, co(H)) � 1, it is sufficient to show that ‖u0 − p‖ � 1 for each p ∈ co(H). Let p =∑k
j=1 tj hj , where tj ∈ [0,1], ∑k

j=1 tj = 1, hj ∈ H and Φ(hj ) =: dj ∈ D for each j . By (3) of the proof of Lemma 2.3
there exists a sequence of integers m1 < m2 < · · · such that πmr (dj ) = 0 for r � 1 and j = 1, . . . , k. So, by the
definition of Φ we have πmr (hj ) � 0 for r � 1 and j = 1, . . . , k, that is, πmr (p) � 0 for r � 1. Thus from the
Sub-Claim we obtain ‖u0 −p‖ � 1. So, this proves Claim 2 and completes the proof of the statement in this case (A).

(B) Now, we suppose that K is a w∗-compact subset of �∞ endowed with a Cantor skeleton A := {kσ : σ ∈ C}
of width δ > 0 associated with the numbers (an)n�1 ∈ �∞ and the sequence of canonical projections {πm: m � 1},
where πm(k) = km, ∀k ∈ �∞. Let T :�∞ → �∞ be the mapping such that T (x)(n) = (xn − an)/δ, ∀n ∈ N. Then
T is an affine mapping which is w∗–w∗-continuous and ‖ · ‖-continuous. If L = T (K), then L is a w∗-compact
subset endowed with a uniform Cantor skeleton T (A), which satisfies the requirements of case (A). So, there exists
a w∗-compact subset W ⊂ L and a point w0 ∈ cow∗

(W) such that d(w0, co(W)) � 1. Let H := T −1(W). Clearly,
H is a w∗-compact subset of K such that T (H) = W , T (co(H)) ⊂ co(W) and T (cow∗

(H)) = cow∗
(W). Thus, if

u0 ∈ cow∗
(H) satisfies T (u0) = w0, then d(u0, co(H)) � δ, by the form of the mapping T .

(C) Finally, we suppose that K is a w∗-compact subset of an arbitrary dual Banach space X∗ endowed with
a Cantor skeleton A := {kσ : σ ∈ C} of width δ > 0 associated with the numbers (an)n�1 ∈ �∞ and the se-
quence {xn: n � 1} ⊂ B(X). Consider the continuous operator T :�1 → X such that, ∀(λn)n�1 ∈ �1, T ((λn)n�1) =∑

n�1 λnxn ∈ X. Observe that ‖T ‖ � 1. Then, T ∗(K) is a w∗-compact subset of �∞ and {T ∗(kσ ): σ ∈ C} is a Can-
tor skeleton of T ∗(K) of width δ > 0, that satisfies the requirements of case (B). So, there exists a w∗-compact
subset W ⊂ T ∗(K) and a point w0 ∈ cow∗

(W) such that d(w0, co(W)) � δ. Let H := T ∗−1(W) ∩ K . Then H

is a w∗-compact subset of K such that T ∗(H) = W and T ∗(cow∗
(H)) = cow∗

(W). Let u0 ∈ cow∗
(H) be such

that T ∗(u0) = w0. Taking into account the fact that ‖T ∗‖ � 1 and that co(W) ⊂ T ∗(co(H)) ⊂ co(W), we get
d(u0, co(H)) � d(T ∗(u0), T

∗(co(H))) = d(w0, co(W)) � δ and this completes the proof of the lemma. �
Let (X, τ) be a Hausdorff topological space, Y a subset of X and μ a finite positive Borel Radon measure on X.

B0(X) will denote the σ -algebra of Borel subsets of X. The positive Radon measure μ is carried by Y if there
exists a sequence of compact subsets {Kn: n � 1} of Y such that Kn ⊂ Kn+1 and μ(Kn) ↑ μ(X). Y is said to be
a universally measurable subset of X if Y is μ-measurable for every finite positive Borel Radon measure μ on X.
A mapping f :X → R is said to be μ-measurable if f −1(G) is μ-measurable for all open subset G of R. If (Z,T ) is
a topological space, a mapping f :X → Z is said to be Lusin μ-measurable if for each ε > 0 there exists a compact
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subset K of X such that μ(X \K) � ε and f � K is continuous. Recall that by Lusin’s Theorem a mapping f :X → R

is μ-measurable if and only f is Lusin μ-measurable. A mapping f :X → Z is said to be universally measurable
on Y if and only if f is Lusin μ-measurable for every positive finite Radon Borel measure μ carried by Y , which is
equivalent to say that, for every compact subset K ⊂ Y and for every Radon Borel probability μ on K , f is Lusin
μ-measurable.

Proposition 2.5. Let X be a Banach space and Y a subset of X∗. The following statements are equivalent:

(1) Y does not have the property (P ).
(2) There exist a w∗-compact subset H of Y and two real numbers a < b such that for every finite family F of w∗-

open subsets of X∗ with V ∩ H 	= ∅, ∀V ∈ F , there exists xF ∈ B(X) fulfilling that

inf〈V ∩ H,xF 〉 < a < b < sup〈V ∩ H,xF 〉, ∀V ∈ F .

(3) There exists a w∗-compact subset K of Y endowed with a uniform Cantor skeleton.
(4) There exist a functional ψ ∈ X∗∗ which is not universally measurable on Y .
(5) There exists a w∗-compact subset H of Y which is uniformly non-fragmentable, that is, there exists δ > 0 such

that for every finite family F of w∗-open subsets of X∗ with V ∩ H 	= ∅, ∀V ∈ F , there exist xF ∈ B(X) and
rF ∈ R such that

inf〈V ∩ H,xF 〉 < rF < rF + δ < sup〈V ∩ H,xF 〉, ∀V ∈ F .

(6) There exists a w∗-compact subset H of Y that contains a w∗–N-family.

Proof. (1) ⇒ (2). Since Y does not have the property (P ), there exists a w∗-compact subset K ⊂ Y such that
d̂(cow∗

(K), co(K)) > d > 0. By [5, Lemma 3.2] (see also the proof of [6, 3.1. Proposition]) there exist r0 ∈ R,
ψ ∈ S(X∗∗) and a w∗-compact subset H ⊂ K such that: (i) ψ(k) < r0, ∀k ∈ K ; (ii) for every w∗-open subset V of X∗
with V ∩ H 	= ∅ there exists ξ ∈ cow∗

(V ∩ H) such that ψ(ξ) > r0 + d . Therefore, if F is a finite family of w∗-open
subsets of X∗ such that V ∩ H 	= ∅, ∀V ∈ F , there exist kV ∈ V ∩ H and ξV ∈ cow∗

(V ∩ H) so that ψ(kV ) < r0 and
ψ(ξV ) > r0 + d for every V ∈ F . Thus, as B(X) is w∗-dense in B(X∗∗), we can find a vector xF ∈ B(X) such that

inf〈V ∩ H,xF 〉 < r0 < r0 + d < sup
〈
cow∗

(V ∩ H),xF
〉
, ∀V ∈ F .

Since xF ∈ X, then sup〈cow∗
(V ∩ H),xF 〉 = sup〈V ∩ H,xF 〉 and so (2) holds with a := r0 and b := r0 + d .

(2) ⇒ (3). Let H be a w∗-compact subset of Y fulfilling (2). First, we construct an independent sequence
{(Am,Bm): m � 1} in H .

Step 1. By (2) there exists x1 ∈ B(X) such that

inf〈H,x1〉 < a < b < sup〈H,x1〉.
Define V11 = {h ∈ X∗: 〈h,x1〉 < a} and V12 = {h ∈ X∗: 〈h,x1〉 > b}. Observe that V1i ∩ H 	= ∅, i = 1,2.

Step 2. By (2) there exists x2 ∈ B(X) such that

inf〈V1i ∩ H,x2〉 < a < b < sup〈V1i ∩ H,x2〉, i = 1,2.

Let V21 = {h ∈ X∗: 〈h,x2〉 < a} and V22 = {h ∈ X∗: 〈h,x2〉 > b}. Observe that V1i ∩ V2j ∩ H 	= ∅, i, j = 1,2.

Further, we proceed by iteration. We obtain a sequence {Vn1,Vn2: n � 1} of w∗-open subsets of X∗ such that
V1i1 ∩ · · · ∩ Vnin ∩ H 	= ∅, ij ∈ {1,2}, n � 1. Thus, if we define

Am = {
h ∈ H : 〈h,xm〉 � b

}
and Bm = {

h ∈ H : 〈h,xm〉 � a
}
, m � 1,

then it is easy to verify that {(Am,Bm): m � 1} is an independent sequence of w∗-closed subsets of H . Now, for each
σ ∈ {0,1}N and each n ∈ N, let C(σ,n) = An, if σ(n) = 1, and C(σ,n) = Bn, if σ(n) = 0. By compactness, it is clear that⋂

n�1 C(σ,n) 	= ∅, ∀σ ∈ {0,1}N. So, we can choose hσ ∈ ⋂
n�1 C(σ,n), ∀σ ∈ {0,1}N. Let K := {hσ : σ ∈ {0,1}N}w∗

. It

is easy to see that {hσ : σ ∈ {0,1}N} is a uniform Cantor skeleton of K of width b − a.
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(3) ⇒ (4). Let K be a w∗-compact subset of Y endowed with a uniform Cantor skeleton {hσ : σ ∈ {0,1}N} of
width δ > 0 associated with the number r0 ∈ R and the sequence {xm: m � 1} ⊂ B(X). So, K = {hσ : σ ∈ {0,1}N}w∗

.
Let T :�1 → X be the continuous operator such that T (en) = xn, ∀n � 1, {en: n � 1} being the canonical basis of �1.
So, its adjoint T ∗ :X∗ → �∞ fulfills T ∗(x∗) = (x∗(xm))m, ∀x∗ ∈ X∗. Define the mapping Φ :�∞ → �∞ as follows

∀(an)n ∈ �∞, Φ
(
(an)n

) = 1

δ

((
(an − r0) ∨ 0

) ∧ δ
)
n
.

The mapping Φ is w∗–w∗-continuous and satisfies Φ ◦ T ∗(K) = {0,1}N = C. Let λ be the Haar probability on C
and μ a Radon probability on K such that Φ ◦ T ∗(μ) = λ, that is, λ is the image of μ under the w∗–w∗-continuous
mapping Φ ◦ T ∗. By a well-known Sierpinski’s argument ([15], [14, 14.5.1]), for every p ∈ βN \ N the point mass
δp ∈ S(�∗∞) is not λ-measurable. By [13, Theorem 9, p. 35] the mapping δp ◦ Φ ◦ T ∗ :K → R is not μ-measurable
on K , which actually means that {x∗ ∈ K: δp ◦ Φ ◦ T ∗(x∗) � 1} is not μ-measurable (because for every c ∈ C either
δp(c) = 1 or δp(c) = 0). As{

x∗ ∈ K: δp ◦ Φ ◦ T ∗(x∗) � 1
} = {

x∗ ∈ K: δp ◦ T ∗(x∗) � r0 + δ
}
,

we conclude that δp ◦ T ∗ ∈ X∗∗ is not μ-measurable. So, δp ◦ T ∗ ∈ X∗∗ is a functional which is not universally
measurable on Y .

(4) ⇒ (5). Let K be a w∗-compact subset of Y and μ a Radon Borel probability on K such that there exists a
functional ψ ∈ X∗∗ which fails to be μ-measurable on K . For every subset A ⊂ K we define the “inner measure
μ∗(A)” as follows

μ∗(A) = sup
{
μ(L): L a w∗-Borel subset of K with L ⊂ A

}
.

It is easy to see that: (i) μ∗ is monotone and 0 � μ∗(A) � 1, ∀A ⊂ K ; (ii) if A ⊂ K , there exists a Borel subset L ⊂ A

such that μ(L) = μ∗(A); (iii) if {An: n � 1} is a sequence of subsets of K with An+1 ⊂ An, then μ∗(
⋂

n�1 An) =
infn�1 μ∗(An); (iv) a subset A ⊂ K is not μ-measurable if and only if μ∗(A) + μ∗(K \ A) < 1. For every r ∈ R we
define

Ar = {
ξ ∈ K: ψ(ξ) > r

}
and Br = {

ξ ∈ K: ψ(ξ) < r
}
.

Since ψ fails to be μ-measurable, there exists r0 ∈ R such that Ar0 is not μ-measurable, that is, μ∗(Ar0) + μ∗(K \
Ar0) < 1. As K \ Ar0 = ⋂

n�1 B
r0+ 1

n
, we get μ∗(K \ Ar0) = infn�1 μ∗(Br0+ 1

n
) and so there is some δ0 > 0 such that

μ∗(Ar0) + μ∗(Br0+δ0) < 1.

Claim. There exists a non-empty w∗-compact subset H ⊂ K such that, if V is a w∗-open subset of X∗ with V ∩H 	= ∅,
then V ∩ H intersects simultaneously K \ Ar0 and K \ Br0+δ0 .

Indeed, let L ⊂ Ar0 and M ⊂ Br0+δ0 be Borel subsets such that μ(L) = μ∗(Ar0) and μ(M) = μ∗(Br0+δ0). Clearly,
μ(L ∪ M) � μ(L) + μ(M) = μ∗(Ar0) + μ∗(Br0+δ0) < 1, whence μ(K \ (L ∪ M)) > 0. Let H ⊂ K \ (L ∪ M) be
any w∗-compact subset such that, if ν := μ � H , then ν > 0 and supp(ν) = H . Let V be a w∗-open subset with
V ∩ H 	= ∅. Then μ(V ∩ H) > 0. Assume that V ∩ H ⊂ Ar0 . Put L′ = L ∪ (V ∩ H). Clearly, μ∗(Ar0) � μ(L′) =
μ(L) + μ(V ∩ H) > μ∗(Ar0), a contradiction that proves that (K \ Ar0) ∩ (V ∩ H) 	= ∅. In a similar way one can
prove that (K \ Br0+δ0) ∩ (V ∩ H) 	= ∅.

Let e > 0 be such that r0 + e < r0 + δ0 − e and define r1 := r0 + e and δ := δ0 − 2e. Then δ > 0. By the claim,
if F is a finite family of w∗-open subsets of X∗ such that V ∩ H 	= ∅, ∀V ∈ F , for each V ∈ F we can find vectors
ξV , ηV ∈ V ∩ H so that

ψ(ηV ) < r1 < r1 + δ < ψ(ξV ).

Since B(X) is w∗-dense in B(X∗∗), we can find a vector xF ∈ B(X) such that

〈ηV , xF 〉 < r1 < r1 + δ < 〈ξV , xF 〉, ∀V ∈ F .

(5) ⇒ (6). Let H be a w∗-compact subset of Y , which is uniformly non-fragmentable for some δ > 0. By using an
argument similar to the one of the implication (2) ⇒ (3), we find two sequences {rm: m � 1} ⊂ R and {xm: m � 1} ⊂
B(X) such that, if

Am = {
h ∈ H : 〈h,xm〉 � rm + δ

}
and Bm = {

h ∈ H : 〈h,xm〉 � rm
}
, m � 1,
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then {(Am,Bm): m � 1} is an independent sequence of w∗-closed subsets of H . By an argument of compactness,
for each pair of disjoint subsets M,N of N we have (

⋂
m∈M Am) ∩ (

⋂
n∈N Bn) 	= ∅. So, we can choose ηM,N ∈

(
⋂

m∈M Am) ∩ (
⋂

n∈N Bn). Clearly, {ηM,N : M,N disjoint subsets of N} is a w∗–N-family in H such that

ηM,N(xm) � rm + δ, ∀m ∈ M, and ηM,N(xn) � rn, ∀n ∈ N.

(6) ⇒ (1). Let {ηM,N : M,N disjoint subsets of N} be a w∗–N-family in some w∗-compact subset H of Y . For
each σ ∈ {0,1}N, let M := {n ∈ N: σ(n) = 1} and N := N \ M , and define hσ := ηM,N . Then, it is easy to see that

{hσ : σ ∈ {0,1}N} is a Cantor skeleton of the w∗-compact subset {hσ : σ ∈ {0,1}N}w∗ =: K ⊂ H . Now it is enough to
apply Lemma 2.4. �
Remark 2.6. By Proposition 2.5, if Y is a w∗-compact subset of a dual Banach space X∗, then Y fulfills the prop-
erty (P ) if and only if Y does not contain a Cantor skeleton. Actually, this equivalence holds for the class of K-analytic
subsets of (X∗,w∗) (see Proposition 3.8). On the other hand, there exist subsets Y (non-w∗–K-analytic) of X∗ that
simultaneously have the property (P ) and contain a Cantor skeleton. Let us see an example. In [4, Proposition 5] we
have proved the following fact: if Z is a Banach space with a copy of �1(c), there exists a dual Banach space X∗
with an isomorphic copy Y of Z such that Y has the property (P ), but Y fails to have 3-control inside X∗. Thus, by
[5, Proposition 3.5] Y contains a w∗–N-family and so a Cantor skeleton.

3. Stability of the property (P )

This section is devoted to the questions: (i) Is the property (P ) stable for unions, additions and products? (ii) If
Y is a subset of X∗ with the property (P ), does the closed linear span [Y ] have the property (P )? We obtain in
the sequel positive answers when Y is K-analytic in (X∗,w∗). The good behavior of the class of K-analytic subsets
is due to the following fact [13, Theorem 12, p. 126]: if X,Z are topological spaces, Y a K-analytic subset of X

and φ :X → Z a continuous mapping, then, for every Radon Borel probability μ carried by φ(Y ), there exists a
Radon Borel probability ν carried by Y such that φν = μ; so, by [13, Theorem 9, p. 35] a mapping f :φ(Y ) → R is
universally measurable on φ(Y ) iff f ◦ φ is universally measurable on Y .

Let us recall some topological notions. If (X, τ) is a topological space, a subset Y ⊂ X is said to be K-analytic in
(X, τ) if there is an upper-semicontinuous compact set-valued map φ : NN → 2X such that φ(σ) is compact, for every
σ ∈ NN, and Y = ⋃

σ∈NN φ(σ) (see [10, p. 11]). Recall that the set-valued map φ is said to be upper-semicontinuous
if for each σ ∈ NN and for an open subset U of X such that φ(σ) ⊂ U there exists a neighborhood G of σ with
φ(G) ⊂ U . If (X, τ) is Hausdorff, every K-analytic subset of X is universally measurable in X [10, pp. 42 and 346].
The union, intersection and product of a countable family of K-analytic subsets as well as closed subsets and contin-
uous images of K-analytic subsets are K-analytic.

A subset Y ⊂ X∗ of a dual Banach space X∗ is said to be w∗KA if it is K-analytic in (X∗,w∗).

Lemma 3.1. Let Xi,Zi be Hausdorff topological spaces and let ψi :Xi → Zi be a universally measurable mapping
for i = 1,2. The mapping ψ :X1 × X2 → Z1 × Z2 such that ψ(x1, x2) = (ψ1(x1),ψ2(x2)), ∀(x1, x2) ∈ X1 × X2, is
universally measurable.

Proof. Let μ be a Radon Borel probability on X1 × X2 and ε > 0. We show that there exists a compact subset Kε ⊂
X1 ×X2 such that ψ � Kε is continuous and μ(Kε) � 1−ε. Let μi := πi(μ), where πi :X1 ×X2 → Xi is the canonical
i-projection for i = 1,2. Recall that μi is a Radon Borel probability on Xi , i = 1,2. Moreover, for Bi ∈ B0(Xi),
i = 1,2, we have μ1(B1) = μ(B1 × X2) and μ2(B2) = μ(X1 × B2). So, as ψi is universally measurable on Xi , there
exists a compact subset Ki ⊂ Xi such that ψi � Ki is continuous and μi(Ki) � 1 − 1

2ε. Let Kε := K1 × K2. Then
trivially ψ � Kε is continuous. Moreover as cKε = (cK1 × X2) ∪ (X1 × cK2) we have

1 − μ(Kε) = μ
(
cKε

)
� μ

(
cK1 × X2

) + μ
(
X1 × cK2

) = μ1
(
cK1

) + μ2
(
cK2

)
� 1

2
ε + 1

2
ε = ε.

Thus ψ is universally measurable. �
Lemma 3.2. Let X1,X2 be Banach spaces, X = X1 ⊕1 X2 and Yi ⊂ X∗

i a subset fulfilling the property (P ) for
i = 1,2. Then Y := Y1 ⊕ Y2 ⊂ X∗ has the property (P ).
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Proof. By hypothesis X∗ = X∗
1 ⊕∞ X∗

2 and X∗∗ = X∗∗
1 ⊕1 X∗∗

2 . Let u ∈ X∗∗. Then u = u1 ⊕ u2 with u1 ∈ X∗∗
i , u2 ∈

X∗∗
2 and u(x∗

1 ⊕x∗
2 ) = u1(x

∗
1 )+u2(x

∗
2 ) for every x∗

1 ⊕x∗
2 ∈ X∗. By Proposition 2.5 ui is universally measurable on Yi ,

i = 1,2. Thus the mapping Φ :Y1 ⊕ Y2 → R ⊕∞ R such that Φ(y1 ⊕ y2) = (u1(y1) ⊕ u2(y2)), ∀y1 ⊕ y2 ∈ Y1 ⊕ Y2, is
universally measurable by Lemma 3.1. As the mapping S : R ⊕∞ R → R such that S(t, s) = t + s is continuous, we
conclude that the mapping S ◦ Φ :Y1 ⊕ Y2 → R is universally measurable. So u is universally measurable on Y1 ⊕ Y2
because u = S ◦ Φ . Thus Y1 ⊕ Y2 has the property (P ) by Proposition 2.5. �
Lemma 3.3. Let X,Z be Banach spaces, Y be a w∗KA subset of X∗ with the property (P ) and ϕ :X∗ → Z∗ be a
w∗–w∗-continuous affine mapping. Then ϕ(Y ) is a w∗KA subset of Z∗ with the property (P ).

Proof. First, it is trivial that ϕ(Y ) is w∗KA. Moreover, ψ := ϕ − ϕ(0) :X∗ → Z∗ is a linear norm-continuous map-
ping. Let μ be a Radon Borel probability on ϕ(Y ) and u ∈ Z∗∗ a functional. We shall prove that u is μ-measurable.
Since Y satisfies the property (P ) and u ◦ ψ ∈ X∗∗, then u ◦ ψ is universally measurable on Y by Proposition 2.5.
Thus u ◦ ϕ = u ◦ ψ + u(ϕ(0)) is also universally measurable on Y . By [13, Theorem 12, p. 126] there exists a Radon
Borel probability ν on Y such that ϕν = μ. Thus u is μ-measurable by [13, Theorem 9, p. 35] and so ϕ(Y ) has the
property (P ) by Proposition 2.5. �
Lemma 3.4. Let X be a Banach space.

(A) If {Un: n � 1} is a sequence of universally measurable subsets of (X∗,w∗) such that Un ⊂ Un+1 and each Un

has the property (P ), then
⋃

n�1 Un has the property (P ).
(B) If Y is a w∗KA subset of X∗, the following statements are equivalent:

(1) Y has the property (P );
(2) RY := {ty: t ∈ R, y ∈ Y } has the property (P ).

(C) If {Yn: n � 1} is a sequence of w∗KA subsets of X∗ each fulfilling the property (P ), then
⋃

n�1 Yn has the
property (P ).

Proof. (A) Let μ be a Radon Borel probability carried by
⋃

n�1 Un and u ∈ X∗∗. We want to prove that u is μ-
measurable. Fix ε > 0. Since Un ↑ ⋃

n�1 Un, there exists p ∈ N such that μ(Up) > 1 − ε. Let ν := μ � Up . Clearly
ν is a positive finite Radon Borel measure carried by Up , which has the property (P ). Thus u is ν-measurable and
so there exists a w∗-compact subset K ⊂ Up such that μ(K) = ν(K) > 1 − ε and u � K continuous. Therefore u is
Lusin μ-measurable and this proves the statement.

(B) As (2) ⇒ (1) is trivial, let us prove (1) ⇒ (2). Let u ∈ X∗∗ and let μ be a Radon Borel probability carried
by RY . We want to prove that u is μ-measurable. Let Φ : R ⊕∞ X∗ → X∗ be such that Φ(t ⊕ x∗) = tx∗, ∀t ⊕ x∗ ∈
R ⊕∞ X∗. Clearly Φ is a w∗–w∗-continuous mapping and Φ(R ⊕ Y) = RY . As R is a Kσ set, R ⊕ Y is a w∗KA
subset of R ⊕∞ X∗ = (R ⊕1 X)∗ and so by [13, Theorem 12, p. 126] there exists a Radon Borel probability ν carried
by R ⊕ Y such that Φν = μ.

Claim. u ◦ Φ is ν-measurable.

Indeed, as Y has the property (P ), u is universally measurable on Y by Proposition 2.5 and so the mapping
Ψ : R ⊕∞ X∗ → R ⊕∞ R such that Ψ (t ⊕ x∗) = t ⊕ u(x∗), ∀t ⊕ x∗ ∈ R ⊕∞ X∗, is universally measurable on R ⊕ Y

by Lemma 3.1. As the mapping Q : R ⊕∞ R → R such that Q(t ⊕ s) = ts is continuous, we conclude that Q ◦ Ψ

is universally measurable on R ⊕ Y and so Lusin ν-measurable. On the other hand, u ◦ Φ = Q ◦ Ψ . Hence u ◦ Φ is
ν-measurable.

Therefore u is μ-measurable by [13, Theorem 9, p. 35] and this proves that RY has the property (P ) by Proposi-
tion 2.5.

(C) First, RY1 ⊕ RY2 is w∗KA and has the property (P ) inside X∗ ⊕∞ X∗ by (B) and Lemma 3.2. As S :X∗ ⊕∞
X∗ → X∗ such that S(x∗ ⊕ y∗) = x∗ + y∗ is a linear w∗–w∗-continuous map, then RY1 + RY2 has the property (P )

by Lemma 3.3, whence we deduce that Y1 ∪ Y2 has the property (P ) because Y1 ∪ Y2 ⊂ RY1 + RY2. So, if Un :=⋃n
i=1 Yi , we get by induction that each Un has the property (P ) and is w∗KA and so universally measurable. Now

we apply (A). �
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Lemma 3.5. Let Y be a w∗KA subset of �∞ such that Y contains a Cantor skeleton {kσ : σ ∈ C} satisfying kσ (m) � 0,
if σ(m) = 0, and kσ (m) � 1, if σ(m) = 1. Then Y fails to have the property (P ).

Proof. Assume that Y has the property (P ). Let us recall the notation of the proofs of Lemmas 2.3 and 2.4, that is,
I = {fA: A ⊂ {0,1}n with |A| = 2n −n and n ∈ N},ψ,λ, μ = ψ(λ),D := ψ(C) ⊂ {0,1}I , D1

m,D0
m, etc. As |I | = ℵ0,

we may put I := {fAm : m � 1} and we identify I with N (and so �∞(I ) with �∞(N)) by means of the identification
of m with fAm . Let Φ :�∞(I ) → �∞(I ) be such that Φ((xn)n) = ((xn ∨ 0) ∧ 1)n for every (xn)n ∈ �∞(I ). Observe
that Φ is a w∗–w∗-continuous mapping. Define H := {kσ : σ ∈ C}w∗

, L := H ∩ Y and L0 := L ∩ Φ−1(D). Clearly L

and L0 are w∗KA bounded subsets of X∗ such that {kσ : σ ∈ C} ⊂ L, Φ(L) = {0,1}I and Φ(L0) = D. Suppose that
‖x‖ � 1 + a, ∀x ∈ L0, for some a � 0. Since μ is carried by D, by [13, Lemma 19 and Theorem 12, p. 126] there
exist a Radon Borel probability ρ on L0 and a sequence {Ln: n � 1} of w∗-compact subsets of L0 such that:

(a) Φρ = μ;
(b) Ln ⊂ Ln+1 for n � 1;
(c) ρ(Ln) ↑ 1.

Let u0 ∈ (1 + a)B(�∞(I )) be the barycenter r(ρ) of ρ.

Claim 1. 1 � lim infm→∞ u0(m) � 1 + a.

Indeed, if m ∈ I , then u0(m) = πm(u0) = ∫
L0

πm(x∗) dρ(x∗). So, as u0 ∈ (1 + a)B(�∞(I )) and L0 = (L0 ∩
Φ−1(D1

m)) � (L0 ∩ Φ−1(D0
m)) (� means disjoint union), we have

1 + a �
∫
L0

πm

(
x∗)dρ

(
x∗) =

∫

L0∩Φ−1(D1
m)

x∗
m dρ

(
x∗) +

∫

L0∩Φ−1(D0
m)

x∗
m dρ

(
x∗).

As πm(x∗) = x∗
m � πm(Φ(x∗)) = 1 on L0 ∩ Φ−1(D1

m) we have∫

L0∩Φ−1(D1
m)

x∗
m dρ

(
x∗) �

∫

L0∩Φ−1(D1
m)

πm

(
Φ

(
x∗))dρ

(
x∗) =

∫

D1
m

πm

(
y∗)dμ

(
y∗) = μ

(
D1

m

) −→
m→∞ 1.

On the other hand, as |x∗
m| � 1 + a for every x∗ ∈ L0, we have∣∣∣∣

∫

L0∩Φ−1(D0
m)

x∗
m dρ

(
x∗)∣∣∣∣ �

∫

L0∩Φ−1(D0
m)

(1 + a)dρ
(
x∗) = (1 + a)

∫

D0
m

dμ = (1 + a)μ
(
D0

m

) −→
m→∞ 0.

Thus

1 � lim inf
m→∞

∫
L0

πm

(
x∗)dρ

(
x∗) � 1 + a.

Claim 2. lim infm→∞ u0(m) � 0.

Indeed, let ρn := ρ � Ln denote the restriction of ρ to Ln. Clearly ρn(Ln) ↑ 1 when n → ∞. We consider two
cases.

Case 1. ρ = ρq for some q ∈ N.

In this case ρ is carried by the w∗-compact subset Lq and so u0 = r(ρ) ∈ cow∗
(Lq). Since Lq ⊂ Y and Y fulfills

the property (P ), we have u0 ∈ co(Lq). Thus, in order to show that lim infm→∞ u0(m) � 0, it is sufficient to show
that lim infm→∞ p(m) � 0 for every p ∈ co(Lq). Let p = ∑k

j=1 tj lj , where tj ∈ [0,1], ∑k
j=1 tj = 1, lj ∈ Lq and

Φ(lj ) =: dj ∈ D for j = 1, . . . , k. By (3) of the proof of Lemma 2.3 there exists a sequence of integers m1 < m2 < · · ·
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such that πmr (dj ) = 0 for r � 1 and j = 1, . . . , k. So, by the definition of Φ we have πmr (lj ) � 0 for r � 1 and
j = 1, . . . , k, that is, p(mr) � 0 for r � 1 and this proves that lim infm→∞ p(m) � 0.

Case 2. ρ(Ln) < 1 for every n ∈ N.

In this case, if τn = ρ − ρn, then τn is a positive finite Radon measure such that ‖τn‖ > 0, ∀n � 1. Without loss of
generality assume that ‖ρn‖ > 0, ∀n � 1. Then

u0 = r(ρ) = ‖ρn‖r
(

ρn

‖ρn‖
)

+ ‖τn‖r
(

τn

‖τn‖
)

and so

u0(m) = r(ρ)(m) = ‖ρn‖r
(

ρn

‖ρn‖
)

(m) + ‖τn‖r
(

τn

‖τn‖
)

(m)

for every m ∈ I . As ρn/‖ρn‖ is a Radon probability carried by the w∗-compact subset Ln and Ln fulfills the
property (P ), we have r(ρn/‖ρn‖) ∈ cow∗

(Ln) = co(Ln). Hence lim infm→∞ r(ρn/‖ρn‖)(m) � 0 as in the proof
of Case 1. On the other hand, r(τn/‖τn‖) ∈ (1 + a)B(�∞(I )) because τn/‖τn‖ is a Radon probability on L0 and
L0 ⊂ (1 + a)B(�∞(I )). So |r(τn/‖τn‖)(m)| � 1 + a for every m ∈ I . Since ‖ρn‖ ↑ 1 and ‖τn‖ ↓ 0 for n → ∞, we
get lim infm→∞ u0(m) � 0.

So we obtain a contradiction which proves the lemma. �
Lemma 3.6. Let X be a Banach space and Y be a w∗KA subset of X∗ fulfilling the property (P ). Then Y does not
contain a Cantor skeleton and so Y fulfills the property (P ).

Proof. Assume that Y contains a Cantor skeleton K := {kσ : σ ∈ C}. By Remark 2.2 we may assume that K is
a uniform Cantor skeleton, we say, for some sequence {xm: m � 1} ⊂ B(X) and a0, ε ∈ R with ε > 0, we have
kσ (xm) � a0, if σ(m) = 0, and kσ (xm) � a0 + ε, if σ(m) = 1. Now we perturb K in order to obtain a uniform Cantor
skeleton inside Y . Indeed, for each σ ∈ C choose hσ ∈ Y such that ‖hσ − kσ ‖ � ε/4. Then {hσ : σ ∈ C} is a bounded
subset of Y such that hσ (xm) � a0 + 1

4ε, if σ(m) = 0, and hσ (xm) � a0 + 1
4ε + 2

4ε, if σ(m) = 1. Define the mapping
T :X∗ → �∞(N) as follows

∀x∗ ∈ X∗, T
(
x∗) =

(
x∗(xm) − a0 − 1

4ε

2
4ε

)
m

.

Clearly the mapping T is affine norm-continuous and w∗–w∗-continuous. Observe that {T (hσ ): σ ∈ C} is a uniform
Cantor skeleton inside T (Y ) such that T (hσ )(m) � 0, if σ(m) = 0, and T (hσ )(m) � 1, if σ(m) = 1. On the other
hand, T (Y ) is a w∗KA subset of �∞(N) with the property (P ) by Lemma 3.3. Thus by Lemma 3.5 we get a contra-
diction, which proves that Y fails to contain a Cantor skeleton. Finally Y has the property (P ) by Proposition 2.5. �
Lemma 3.7. Let X be a Banach space and Y a subset of X∗. Then:

(1) If Y is w∗KA in X∗, [Y ] and [Y ] are w∗KA in X∗.
(2) If Y is w∗KA in X∗ and has the property (P ), then [Y ] has the property (P ).

Proof. (1) As R is a Kσ set, then R ⊕ Y and RY are w∗KA in R ⊕∞ X∗ and X∗, respectively. Thus RY ⊕ n
� ⊕ RY

is w∗KA in X∗ ⊕∞
n
� ⊕∞ X∗ because countable products of K-analytic sets are K-analytic. Since Φn :X∗ ⊕∞

n
� ⊕∞ X∗ → X∗ such that Φn(x

∗
1 ⊕ · · · ⊕ x∗

n) = ∑n
i=1 x∗

i is a w∗–w∗-continuous linear mapping, then Wn :=
Φ(RY ⊕ n

� ⊕ RY) is w∗KA in X∗. On the other hand, [Y ] = ⋃
n�1 Wn and [Y ] = ⋂

k�1([Y ] + 1
k
B(X∗)). So, [Y ]

and [Y ] are w∗KA in X∗ because finite additions as well as countable unions and intersections of K-analytic sets are
K-analytic.

(2) With the notation of (1), each subset Wn is w∗KA in X∗ and has the property (P ) by Lemmas 3.2–3.4. By
Lemma 3.4 [Y ] = ⋃

n�1 Wn is a w∗KA subset in X∗ with the property (P ). Finally [Y ] has the property (P ) by
Lemma 3.6. �
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Proposition 3.8. Let X be a Banach space and Y a w∗KA subset of X∗. The following statements are equivalent:

(1) Y has the property (P ).
(1′) Y does not contain a Cantor skeleton.
(1′′) Y does not contain a w∗–N-family.
(2) [Y ] has the property (P ).

(2′) [Y ] does not contain a Cantor skeleton.
(2′′) [Y ] does not contain a w∗–N-family.
(3) Every convex subset of [Y ] has 3-control inside X∗.

Proof. The implications (2) ⇒ (1), (2′) ⇒ (2′′) ⇒ (1′′) and (2′) ⇒ (1′) ⇒ (1′′) are trivial.
(1′′) ⇒ (1) follows from Proposition 2.5.
(3) ⇒ (2). Let K ⊂ [Y ] be a w∗-compact subset. Thus co(K) is a convex subset of [Y ] and so has 3-control

inside X∗. Hence

d̂
(
cow∗

(K), co(K)
)
� 3d̂

(
K, co(K)

) = 0.

Therefore cow∗
(K) = co(K) and this proves that [Y ] has the property (P ).

(1) ⇒ (2′) follows from Lemmas 3.7 and 3.6.
Finally (2′′) ⇒ (3) follows from [5, Proposition 3.5]. �

Remark 3.9. If Y is a subset of a dual Banach space X∗ and Y has the property (P ) but Y is not w∗KA, [Y ] and [Y ]
could fail to have the property (P ). Let us give a counterexample. Take X := �1. Then X∗ = �∞ does not have the
property (P ). As the unit sphere S(�∞) of �∞ satisfies |S(�∞)| = c, we put S(�∞) = {sα: α < c}. Let Rα := (0,1]sα ,
∀α < c, and observe that |Rα| = c. Since (B(�∞),w∗) is a polish space, if K is a w∗-compact subset of B(�∞),
either |K| � ℵ0 or |K| = c (see [7, 6.5. Corollary, p. 32]). Let W denote the family of w∗-compact subsets W

of B(�∞) such that |W | = c. It is an easy exercise to see that |W| = c. Thus we may put W = {Wα: α < c}. Now by
induction we choose in B(�∞) two sequences {rα: α < c} and {wα: α < c} such that rα ∈ Rα , wα ∈ Wα , ∀α < c, and
{rα: α < c} ∩ {wα: α < c} = ∅. Let Y := {rα: α < c}. Clearly [Y ] = [Y ] = �∞. We claim that Y has the property (P ).
Indeed, let K ⊂ Y be a w∗-compact subset. By construction K /∈ W . Thus |K| � ℵ0, whence [K] is separable. By
[5, Proposition 4.3] we have cow∗

(K) = co(K) and so Y has the property (P ). Finally Y fails to be w∗KA in �∞ by
Proposition 3.8, although Y is weak∗ countably K-determined because it is metric separable.

Acknowledgment

The authors are grateful to the referee who made numerous remarks and suggestions which helped to improve this paper.

References

[1] B. Cascales, I. Namioka, J. Orihuela, The Lindelöf property in Banach spaces, Studia Math. 154 (2003) 165–192.
[2] B. Cascales, I. Namioka, G. Vera, The Lindelöf property and fragmentability, Proc. Amer. Math. Soc. 128 (11) (2000) 3301–3309.
[3] B. Cascales, G. Vera, Topologies weaker than the weak topology of a Banach space, J. Math. Anal. Appl. 182 (1994) 41–68.
[4] A.S. Granero, M. Sánchez, The class of universally Krein–Šmulian Banach spaces, Bull. London Math. Soc. 39 (2007) 529–540.
[5] A.S. Granero, M. Sánchez, Distances to convex sets, Studia Math. 182 (2007) 165–181.
[6] R. Haydon, Some more characterizations of Banach spaces containing �1, Math. Proc. Cambridge Philos. Soc. 80 (1976) 269–276.
[7] A.S. Kechris, Classical Descriptive Set Theory, Springer-Verlag, New York, 1995.
[8] J. Lindenstrauss, C. Stegall, Examples of Banach spaces which do not contain �1 and whose duals are non-separable, Studia Math. 54 (1975)

81–105.
[9] I. Namioka, Radon–Nikodym compact spaces and fragmentability, Mathematika 34 (2) (1987) 258–281.

[10] C.A. Rogers, et al., Analytic Sets, Academic Press, 1980.
[11] E. Saab, Extreme points, separability, and weak K-analyticity in dual Banach spaces, J. London Math. Soc. 23 (1981) 165–170.
[12] E. Saab, Some characterizations of weak Radon–Nikodým sets, Proc. Amer. Math. Soc. 86 (1983) 307–311.



Author's personal copy

A.S. Granero, M. Sánchez / J. Math. Anal. Appl. 350 (2009) 485–497 497

[13] L. Schwartz, Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures, Oxford Univ. Press, Tata Inst. of Fund. Research,
1973.

[14] Z. Semadeni, Banach Spaces of Continuous Functions, Monogr. Mat., vol. 55, PWN, Warzsawa, 1971.
[15] W. Sierpinski, Sur une suite infinie de fonctions de clase 1 dont toute fonction d’accumulation est non mesurable, Fund. Math. 33 (1945)

104–105.
[16] M. Talagrand, Deux generalisations d’un théorème de I. Namioka, Pacific J. Math. 81 (1) (1979) 239–251.


