THE SPACE $(\ell_{\varphi}/h_{\varphi}, weak)$ IS NOT A RADON SPACE

ANTONIO S. GRANERO

ABSTRACT. Consider the quotient Banach spaces (see [GH]) $\ell_{\varphi}(I)/h_{\varphi}(S)$, where I is an arbitrary set, φ is an Orlicz function, $\ell_{\varphi}(I)$ is the corresponding Orlicz space on I and $h_{\varphi}(S) = \{x \in \ell_{\varphi}(I) : \forall \lambda > 0, \exists s \in S \text{ such that } I_{\varphi}(\frac{x-s}{\lambda}) < \infty\}$, S being the ideal of elements of $\ell_{\varphi}(I)$ with finite support. These spaces are the natural generalization of the classical Banach space $\ell_{\infty}(I)/c_0(I)$. In [MR] it is proved that $(\ell_{\infty}(\mathbb{N})/c_0(\mathbb{N}), weak)$ is not a Radon space. Here we extend this result to the abroad class of quotient Banach spaces $\ell_{\varphi}(I)/h_{\varphi}(S)$ by showing that every $\ell_{\varphi}(I)/h_{\varphi}(S)$ space contains an isometric and order isomorphic copy of $\ell_{\infty}^{c}(\mathfrak{c})$, the subspace of $\ell_{\infty}(\mathfrak{c})$ integrated by the elements with countable support.

A Hausdorff topological space E is said to be a *Radon space* if every finite positive Borel measure μ on E is a Radon measure, i.e., $\mu(A) = \sup\{\mu(K) : K \subset A, K \text{ compact}\}$ for each Borel subset A of E. In [MR] it is proved that $(\ell_{\infty}(\mathbb{N})/c_0(\mathbb{N}), weak)$ is not Radon. Talagrand proved [T] that $(\ell_{\infty}^c(\aleph_1), weak)$ is not Radon, $\ell_{\infty}^c(\aleph_1)$ being the subspace of $\ell_{\infty}(\aleph_1)$ integrated by the elements with countable support. In this short note we show that the spaces $\ell_{\varphi}(I)/h_{\varphi}(S)$ contain an isometric and order isomorphic copy of $\ell_{\infty}^c(\mathfrak{c})$. So, equipped with the weak topology, they are not Radon.

The quotient spaces $\ell_{\varphi}(I)/h_{\varphi}(\mathcal{S})$ are the natural generalization of the spaces $\ell_{\infty}(I)/c_0(I)$ (see [GH], [LW]). Let us introduce these spaces. Let $\varphi : \mathbb{R} \to [0, +\infty]$ denote an Orlicz function, i.e. a function which is even, nondecreasing, left continuous for $x \geq 0$, $\varphi(0) = 0$ and $\varphi(x) \to \infty$ as $x \to \infty$. Observe that we do not need for φ to be convex. Define:

$$a(\varphi) = \sup\{t \ge 0 : \varphi(t) = 0\} \quad , \quad \tau(\varphi) = \sup\{t \ge 0 : \varphi(t) < \infty\}.$$

We assume that $\tau(\varphi) > 0$. Fix an arbitrary set I and, for $x \in \mathbb{R}^{I}$, define $I_{\varphi}(x) = \sum_{i \in I} \varphi(x_{i})$. Let $\ell_{\varphi}(I)$ be the corresponding Orlicz space, i.e.:

$$\ell_{\varphi}(I) = \{ x \in \mathbb{R}^{I} : \exists \lambda > 0 \text{ such that } I_{\varphi}(x/\lambda) < \infty \}.$$

¹⁹⁹¹ Mathematics Subject Classification. Primary 46B20.

Key words and phrases. Orlicz spaces, weak Radon spaces.

Supported in part by DGICYT grant PB 94-0243.

Consider in $\ell_{\varphi}(I)$ the F-norm $|\cdot|_{\varphi}$:

$$|x|_{\varphi} := \inf\{\lambda > 0 : I_{\varphi}(x/\lambda) \le \lambda\}, \ \forall x \in \ell_{\varphi}(I),$$

and the associated distance $d(x, y) = |x - y|_{\varphi}$. It is known that $(\ell_{\varphi}(I), d)$ is a complete F-space (see [Mu]).

Let $\mathcal{S} \subseteq \ell_{\varphi}(I)$ be the ideal of elements of finite support. Define $h_{\varphi}(\mathcal{S})$ as:

$$h_{\varphi}(\mathcal{S}) = \{ x \in \ell_{\varphi}(I) : \forall \lambda > 0, \exists s \in \mathcal{S} \text{ such that } I_{\varphi}(\frac{x-s}{\lambda}) < \infty \}$$

and $\delta(x)$ as:

$$\delta(x) = \inf\{\lambda > 0 : \exists s \in \mathcal{S} \text{ such that } I_{\varphi}(\frac{x-s}{\lambda}) < \infty\}, x \in \ell_{\varphi}(I).$$

Clearly, $h_{\varphi}(\mathcal{S})$ is a closed ideal of $\ell_{\varphi}(I)$ such that $\overline{\mathcal{S}} = h_{\varphi}(\mathcal{S})$ and, if φ is finite, we have $h_{\varphi}(\mathcal{S}) = \{x \in \ell_{\varphi}(I) : \forall \lambda > 0, \ I_{\varphi}(\lambda x) < \infty\}.$

In order to avoid the trivial case $\ell_{\varphi}(I) = h_{\varphi}(\mathcal{S})$, we must impose that I is infinite and $\varphi \notin \Delta_2^0$, i.e. φ doesn't satisfy the Δ_2 condition at 0.

If φ is convex we can consider the Luxemburg norm $\|\cdot\|_L$ and the Luxemburg distance d_L :

$$||x||_L = \inf\{\lambda > 0 : I_{\varphi}(x/\lambda) \le 1\}, \qquad d_L(x,y) = ||x-y||_L, \qquad x, y \in \ell_{\varphi}(I),$$

as well as the Amemiya-Orlicz norm $\|\cdot\|_o$ and the Amemiya-Orlicz distance d_o :

$$||x||_o = \inf_{k>0} \{ \frac{1}{k} (1 + I_{\varphi}(kx)) \}, \qquad d_o(x - y) = ||x - y||_o, \qquad x, y \in \ell_{\varphi}(I).$$

It is known that, $\forall x \in \ell_{\varphi}(I), \|x\|_{L} \leq \|x\|_{o} \leq 2\|x\|_{L}$ and that these norms define on $\ell_{\varphi}(I)$ the same topology as $|\cdot|_{\varphi}$. Denote by B_{φ}^{L} (resp. B_{φ}^{o}) and S_{φ}^{L} (resp. S_{φ}^{o}) the closed unit ball and unit sphere of $(\ell_{\varphi}(I), \|\cdot\|_{L})$ (resp. $(\ell_{\varphi}(I), \|\cdot\|_{o})$). Recall that a Banach *M*-space is a Banach lattice $(X, \|\cdot\|)$ such that $\|x \vee y\| = \|x\| \vee \|y\|$, whenever $x, y \in X^{+}$.

The quotient space $\ell_{\varphi}(I)/h_{\varphi}(\mathcal{S})$ has, among others, the following interesting properties (see [GH], [Wn]):

- (1) For each $x \in \ell_{\varphi}(I)$ we have $\delta(x) = d(x, h_{\varphi}(\mathcal{S}))$ and, if φ is convex, also $\delta(x) = d_L(x, h_{\varphi}(\mathcal{S})) = d_o(x, h_{\varphi}(\mathcal{S})).$
- (2) δ is a monotone seminorm on $\ell_{\varphi}(I)$ such that $ker(\delta) = h_{\varphi}(\mathcal{S})$.
- (3) Let $\|\cdot\|$ be the quotient F-norm on $\ell_{\varphi}(I)/h_{\varphi}(\mathcal{S})$. Then $(\ell_{\varphi}(I)/h_{\varphi}(\mathcal{S}), \|\cdot\|)$ $\|$) is a Banach *M*-space such that, if $Q : \ell_{\varphi}(I) \to \ell_{\varphi}(I)/h_{\varphi}(\mathcal{S})$ is the canonical quotient map, then $\|Q(x)\| = \delta(x)$. Moreover, if φ is convex, the space $\ell_{\varphi}(I)/h_{\varphi}(\mathcal{S})$ equipped with the quotient norms corresponding to the Luxemburg norm as well as to the Orlicz norm is order isomorphic and isometric to $(\ell_{\varphi}(I)/h_{\varphi}(\mathcal{S}), \|\cdot\|)$.

- (4) If $a(\varphi) > 0$, then $\ell_{\varphi}(I)/h_{\varphi}(\mathcal{S}) \cong (\ell_{\infty}(I)/c_o(I), \|\cdot\|_{\infty}) \cong (C(\beta I \setminus I), \|\cdot\|_{\infty})$ (order isomorphism and isometry).
- (5) $h_{\varphi}(\mathcal{S})$ is proximinal in $(\ell_{\varphi}(I), |\cdot|_{\varphi})$ and, if φ is convex, also in $(\ell_{\varphi}(I), ||\cdot||_{L})$. Recall that a subset $M \subset X$ of a metric space (X, d) is said to be *proximinal* if for each $x \in X$ there exists $y \in M$ such that $d(x, y) = \inf\{d(x, m) : m \in M\}$.
- (6) From the proximinality of $h_{\varphi}(\mathcal{S})$ in $\ell_{\varphi}(I)$ (see [Go]) we get that for each $z \in S_{\ell_{\varphi}(I)/h_{\varphi}(\mathcal{S})}$ there exists $x \in \ell_{\varphi}(I)$ such that Q(x) = z, $I_{\varphi}(x) \leq 1$ and $I_{\varphi}(\lambda(x-s)) = \infty, \ \forall \lambda > 1, \ \forall s \in \mathcal{S}.$

Let I be an infinite set, $\mathfrak{m} = \operatorname{card}(I)$ and $P_{\omega}(I) = \{A \subseteq I : \operatorname{card}(A) = \aleph_0\}$. Then, clearly, $\operatorname{card}(P_{\omega}(I)) = \mathfrak{m}^{\aleph_0} =: \mathfrak{n}$. Note that $\mathfrak{n} \geq \mathfrak{c}$, where $\mathfrak{c} = \operatorname{card}(\mathbb{R})$. Also there exists a family $\{A_t\}_{t\in\mathfrak{n}}$ in $P_{\omega}(I)$ such that $\operatorname{card}(A_t \cap A_s) < \aleph_0$, for $t \neq s$. Indeed, let $\{I_t\}_{t\in\mathfrak{m}}$ be a family of disjoint subsets of I such that $\operatorname{card}(I_t) = \mathfrak{m}, \forall t \in \mathfrak{m}$. Pick $i_t \in I_t, t \in \mathfrak{m}$, and choose a disjoint family $\{I_{ts}\}_{s\in\mathfrak{m}}$ of subsets of $I_t \setminus \{i_t\}$ such that $\operatorname{card}(I_{ts}) = \mathfrak{m}, s \in \mathfrak{m}$. Pick $i_{ts} \in I_{ts}$ and choose a disjoint family $\{I_{tsr}\}_{r\in\mathfrak{m}}$ of subsets of $I_{ts} \setminus \{i_{ts}\}$ such that $\operatorname{card}(I_{tsr}) = \mathfrak{m}, r \in \mathfrak{m}$. Pick $i_{tsr} \in I_{tsr}, r \in \mathfrak{m}$. By reiteration we obtain families of elements $\{i_t\}_{t\in\mathfrak{m}}, \{i_{ts}\}_{t,s\in\mathfrak{m}}, \text{etc., of } I$. Now consider the family \mathfrak{T} of sequences of the form $(i_{t_1}, i_{t_1t_2}, i_{t_1t_2t_3}, \ldots), t_j \in \mathfrak{m}, j \geq 1$. It is clear that $\operatorname{card}(\mathfrak{T}) = \mathfrak{m}^{\aleph_0} = \mathfrak{n}, \operatorname{card}(T) = \aleph_0, \forall T \in \mathfrak{T}$ and that, if $T, S \in$ $\mathfrak{T}, T \neq S$, then $\operatorname{card}(T \cap S) < \aleph_0$.

PROPOSITION 1. Let I be an infinite set and φ an Orlicz function such that $\ell_{\varphi}(I) \neq h_{\varphi}(S)$. Then there exists an isometric and order isomorphic copy of $(\ell_{\infty}^{c}(\mathfrak{n}), \|\cdot\|_{\infty})$ in $\ell_{\varphi}(I)/h_{\varphi}(S)$, with $\mathfrak{n} = \mathfrak{m}^{\aleph_{0}}$ and $\mathfrak{m} = card(I)$.

PROOF. Let $\{A_t\}_{t\in\mathfrak{n}}$ be a family of subsets of I such that $\operatorname{card}(A_t) = \aleph_0$ and $\operatorname{card}(A_t \cap A_s) < \aleph_0$, when $t \neq s$. Pick $x \in \ell_{\varphi}(I)^+$ such that $I_{\varphi}(x) \leq 1$, $Q(x) \in S_{\ell_{\varphi}(I)/h_{\varphi}(S)}$, $\operatorname{card}(\operatorname{supp}(x)) = \aleph_0$ and $I_{\varphi}(\lambda(x-s)) = \infty$, $\forall \lambda > 1$, $\forall s \in S$. Let $\operatorname{supp}(x) = \{j_r\}_{r\geq 1} \subset I$. If $t \in \mathfrak{n}$ and $A_t = \{i_k\}_{k\geq 1}$, define e^t :

$$e_i^t = \begin{cases} 0 , & \text{if } i \notin A_t \\ x_{j_r} , & \text{if } i = i_r , r \ge 1 \end{cases}$$

Then clearly, $\{Q(e^t)\}_{t\in\mathfrak{n}}$ are positive and disjoint elements of $S_{\ell_{\varphi}(I)/h_{\varphi}(S)}$. Consider an arbitrary countable family $\{t_k\}_{k\geq 1} \subset \mathfrak{n}$ and $(a_k) \in \ell_{\infty}$. We claim that $o - \sum_{k\geq 1} a_k Q(e^{t_k}) \in \ell_{\varphi}(I)/h_{\varphi}(S)$ and that $\|o - \sum_{k\geq 1} a_k Q(e^{t_k})\| = \|(a_k)\|_{\infty}$ (here $o - \sum$ is the order sum, i.e., if X is a vector lattice and $\{x_k\}_{k\geq 1} \subset X^+$, then $o - \sum_{k\geq 1} x_k = \sup_{n\geq 1} \sum_{k=1}^n x_k$, if this sup exists). Indeed, choose a countable family of subsets $B_k, k \geq 1$, such that: (i) $B_k \subset A_{t_k}$ and $\operatorname{card}(A_{t_k} \setminus B_k) < \aleph_0$; (ii) $\{B_k\}_{k\geq 1}$ is a disjoint family; (iii) $I_{\varphi}(e^{t_k} \cdot \mathbf{1}_{B_k}) \leq 2^{-k}$. Let $y = o - \sum_{k\geq 1} a_k e^{t_k} \cdot \mathbf{1}_{B_k}$. Observe that $I_{\varphi}(\frac{y}{\|(a_k)\|_{\infty}}) \leq 1$, $I_{\varphi}(\lambda \frac{y}{\|(a_k)\|_{\infty}}) = \infty$, $\forall \lambda > 1$ and $Q(e^{t_k} \cdot \mathbf{1}_{B_k}) = Q(e^{t_k})$. Thus, $y \in \ell_{\varphi}(I)$ and $Q(y) = o - \sum_{k\geq 1} a_k Q(e^{t_k})$. Since the elements

 $\{Q(e^t)\}_{t\in\mathfrak{n}} \subset S_{\ell_{\varphi}(I)/h_{\varphi}(S)}$ are disjoint and $\ell_{\varphi}(I)/h_{\varphi}(S)$ is an *M*-space, clearly, $\|Q(y)\| = \|(a_k)\|_{\infty}$. Thus the map $T : \ell_{\infty}^c(\mathfrak{n}) \to \ell_{\varphi}(I)/h_{\varphi}(S)$, with $T((a_t)) = 0 - \sum_{t\in\mathfrak{n}} a_t Q(e^t) := 0 - \sum_{t\in\mathfrak{n}} a_t^+ Q(e^t) - 0 - \sum_{t\in\mathfrak{n}} a_t^- Q(e^t)$, is an isometric order isomorphism. \Box

COROLLARY 2. Let I be an infinite set and φ an Orlicz function such that $\ell_{\varphi}(I) \neq h_{\varphi}(S)$. Then $(\ell_{\varphi}(I)/h_{\varphi}(S), weak)$ is not a Radon space.

PROOF. If *I* is infinite and $\mathfrak{m} = card(I)$, we have that $\mathfrak{n} = \mathfrak{m}^{\aleph_0} \geq \mathfrak{c}$. So, by PR. 1, there exist in $\ell_{\varphi}(I)/h_{\varphi}(\mathcal{S})$ an isometric and order isomorphic copy of $\ell_{\infty}^c(\mathfrak{c})$. Hence, $(\ell_{\varphi}(I)/h_{\varphi}(\mathcal{S}), weak)$ is not Radon by [T]. \Box

References

- [GH] A. S. Granero and H. Hudzik, *The classical Banach spaces* $\ell_{\varphi}/h_{\varphi}$, Proc. Amer. Math. Soc. (to appear).
- [Go] G.Godini, Characterization of proximinal linear subspaces in normed linear spaces, Rev. Roumaine Math. Pures Appl. 18 (1973), 901-906.
- [LW] I.E.Leonard and J.H.M.Whitfield, A classical Banach spaces: ℓ_{∞}/c_o , Rocky Mountain J. Math. **13** (1983), 531-539.
- [MR] J. L. de María and B. Rodríguez-Salinas, The space $(\ell_{\infty}/c_0, weak)$ is not a Radon space, Proc. Amer. Math. Soc. **112** (1991), 1095-1100.
- [Mu] J. Musielak, Orlicz spaces and modular spaces, Lect. Notes in Math. 1034, Springer Verlag, 1983.
- [T] M. Talagrand, Sur un theorem de L. Schwartz, C. R. Acad. Sci. Paris 286 (1978), 265-267.
- [Wn] W. Wnuk, On the order-topological properties of the quotient space L/L_A , Studia Math. **79** (1984), 139-149.

Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad Complutense de Madrid, 28040-Madrid, Spain

E-mail address: granero@ eucmax.sim.ucm.es