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Ciencias,3,28040-Madrid, Spain

Abstract

Let X be a Banach space, K ⊂ X∗ a w∗-compact subset and B a boundary
of K. We study when the fact co(B) ̸= cow

∗
(K) allows to “localize” inside K,

even inside B, a copy of the basis of ℓ1(c) and a structure that we call a w∗-
N-family. Among other things, we prove that: (i) if either K is w∗-metrizable
or B is a w∗-countable determined boundary of K, the fact co(B) ̸= cow

∗
(K)

implies that K contains a w∗-N-family and a copy of the basis of ℓ1(c); (ii) if
either B = Ext(K) or B is a w∗-K analytic boundary of K, then K contains a
copy of the basis of ℓ1(c) (resp., a w

∗-N-family) if and only if B does.

Keywords: convex sets, James boundaries, copies of ℓ1(c), extreme points,
w∗-K analytic sets
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1. Introduction

If K is a w∗-compact subset of a dual Banach space X∗, a subset B of K is
said to be a (James) boundary of K if every x ∈ X attains on B its maximum
on K. For instance, K itself and the set of extreme points Ext(K) of K are
boundaries of K. If B is a boundary of K, then cow

∗
(B) = cow

∗
(K) and also

co(B) = cow
∗
(K) in some cases. But, in general, co(B) ̸= cow

∗
(K). The aim

of this paper is to study “local” consequences of the fact co(B) ̸= cow
∗
(K). In

particular, we investigate:
(1) “Localization results” (localization of copies of the basis of ℓ1(c) and

localization of w∗-N-families (see below for definitions)), which are consequences
of the inequality co(B) ̸= cow

∗
(K). If co(K) ̸= cow

∗
(K), K contains a copy of

the basis of ℓ1(c) (c is the cardinality of R) by [10, Proposition 3.5]. So, it is
natural to ask if the same holds when co(B) ̸= cow

∗
(K), B being a boundary of

K. The answer to this question is, in general, negative (see the Counterexamples
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of Section 3), but in many cases a copy of the basis of ℓ1(c) can be “localized”
inside K, even inside B.

(2) Estimations of distances to some spaces of 1-Baire functions. Actually,
given d > 0 and a vector ψ ∈ X∗∗ such that sup ⟨ψ, cow

∗
(K)⟩ > sup ⟨ψ,B⟩+ d,

we relate d with the distance from ψ to different subspaces: the subspace of
ℓ∞(K) of 1-Baire bounded functions on K, the subspace of X∗∗ of 1-Baire
functions on (B(X∗), w∗), etc. We use these estimations as auxiliary results for
the technique of localizations.

(3) Finally, we apply the above results to give extensions of the Theorem of
Talagrand [19] for the w∗-topology of X∗ and the boundaries B of w∗-compact
subsetsK ofX∗. Recall that Talagrand Theorem asserts that, given an arbitrary
subset A of a Banach space X, A contains a copy of the basis of ℓ1(c) iff co(A)
does iff [A] does. So, it is natural to ask whether B contains a copy of the basis
of ℓ1(c) when cow

∗
(K) does, B being a boundary of K ⊂ X∗. Of course, if

co(B) = cow
∗
(K), the answer is affirmative by Talagrand Theorem, but when

co(B) ̸= cow
∗
(K) the ideas of Talagrand Theorem do not work. However, using

“localization” techniques we get some extension of the Talagrand Theorem and
this shows the importance of the “localization” point of view.

Concerning the inequality co(B) ̸= cow
∗
(K) and connected with the subject

of this paper, many and interesting results have been obtained. In particular,
this paper is indebted and closely related to the papers [5] and [4].

The paper is organized as follows. In Section 2 we estimate distances to some
spaces of 1-Baire functions. In Section 3 we apply these results to characterize
when the fact co(B) ̸= cow

∗
(K) -B being a boundary of the w∗-compact subset

K- implies the existence inside K of a w∗-N-family and a copy of the basis of
ℓ1(c). In Section 4 we study the w∗-countably determined boundaries. Finally,
in Section 5 we consider w∗-K analytic boundaries and the special boundary B =
Ext(K) and give extensions of Talagrand Theorem for these kind of boundaries.

Our notation is standard. If (X, ∥ · ∥) is a real Banach space (we shall
consider only Banach spaces over R), let B(X) and S(X) be the closed unit
ball and unit sphere of X, respectively, and X∗ its topological dual. The
weak∗-topology of X∗ is denoted by w∗ and the weak topology of X by w.
If A is a subset of X, then [A] and [A] denote the linear hull and the closed
linear hull of A, respectively. co(A) denotes the convex hull of the set A,
co(A) is the ∥ · ∥-closure of co(A) and, if A ⊂ X∗, we put cow

∗
(A) for the

w∗-closure of co(A). If C is a convex subset of X∗, for x∗ ∈ X∗ and A ⊂ X∗,
let dist(x∗, C) = inf{∥x∗ − c∥ : c ∈ C} be the distance from x∗ to C and
dist(A,C) = sup{dist(a,C) : a ∈ A} the distance from A to C. Observe that
dist(A,C) = dist(co(A), C) = dist(co(A), C).

If A is a subset of X∗, let Seq(X∗∗, A) be the family of those elements z ∈
X∗∗ such that there exists a sequence (xn)n≥1 ⊂ X with ⟨a, xn⟩ → ⟨z, a⟩, ∀a ∈
A. Clearly, Seq(X∗∗, A) is a subspace of X∗∗. We put Seq(X∗∗) instead of
Seq(X∗∗, X∗). Seq(X∗∗) is a norm-closed subspace of X∗∗ ([15]).

Let Xc :=
∪
{Y w∗

⊂ X∗∗ : Y a separable subspace of X}. It is easy to see
that Xc is a norm-closed subspace of X∗∗. Observe that B0 := Xc ∩B(X∗∗) is
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always a boundary of B(X∗∗).
If K is a Hausdorf compact space, M(K) denotes the space of Radon Borel

measures on K and P(K) the family of Radon Borel probabilities on K. If
k ∈ K, δk will be the Dirac measure with mass 1 on k. If K is a w∗-compact
subset of a dual Banach space X∗ and µ a Radon Borel probability on K, r(µ)
will denote the barycenter of µ.

2. Distances to the space of 1-Baire functions

If (T, τ) is a Hausdorf topological space, define B1(T ) and Bϵ
1(T ) as follows:

(a) B1(T ) (resp., B1b(T )) will denote the family of 1-Baire real functions
(resp., real bounded functions) on T . Recall that a function f : T → R is said
to be an 1-Baire function if there exists a sequence {fn : n ≥ 1} in the space of
real continuous functions C(T ) such that fn → f pointwise on T . Observe that
B1b(T ) is a closed subspace of ℓ∞(T ).

(b) If ϵ ≥ 0 let Bϵ
1(K) (resp., Bϵ

1b(T )) denote the family of functions (resp.,
bounded functions) f : T → R such that for every η > ϵ and every non-empty
subset F ⊂ T there exists an open subset V ⊂ T such that V ∩ F ̸= ∅ and
diam(f(V ∩F )) ≤ η. B0

1b(T ) is a closed subspace of ℓ∞(T ). In general, B1b(T ) ̸=
B0
1b(T ) but, if (T, τ) is a complete metrizable space, then B1b(T ) = B0

1b(T ) ([2,
1E, 1C]).

If K is a Hausdorf compact space and φ ∈ B1b(K), then φ̃ : C(K)∗ → R
will be:

∀µ ∈M(K), φ̃(µ) :=

∫
K

φdµ

Observe that: (i) φ̃ ∈ Seq(C(K)∗∗); (ii) the mapping B1b(K) ∋ φ → φ̃ ∈
C(K)∗∗ is an isometric isomorphism between B1b(K) -endowed with the supremum
norm of ℓ∞(K)- and Seq(C(K)∗∗).

Lemma 2.1. Let X be a Banach space, H a w∗-compact convex subset of X∗,
T : X → C(H) be the continuous operator such that Tx := x � H, ∀x ∈ X, and
ψ ∈ X∗∗. We have:

(A) If φ ∈ B1b(H) ⊂ ℓ∞(H), then ∥ψ � H−φ∥ ≤ ∥T ∗∗ψ−φ̃∥ ≤ 3∥ψ � H−φ∥.

(B) dist(ψ � H,B1b(H)) ≤ dist(T ∗∗ψ,Seq(C(H)∗∗)) ≤ 3dist(ψ � H,B1b(H)).

Proof. (A) First, observe that

∥ψ � H − φ∥ = sup{|(ψ − φ)(h)| : h ∈ H} = sup{|⟨T ∗∗ψ − φ̃, δh⟩| : h ∈ H} ≤
≤ sup{⟨T ∗∗ψ − φ̃, µ⟩ : µ ∈ B(C(H)∗)} = ∥T ∗∗ψ − φ̃∥.

Let us see that ∥T ∗∗ψ− φ̃∥ ≤ 3∥ψ � H −φ∥. For this we assume that ∥ψ � H −
φ∥ < 1

2η in ℓ∞(H) for some η > 0 and we are going to prove that ∥T ∗∗ψ− φ̃∥ <
3
2η . Choose 0 < η′ < η such that ∥ψ � H − φ∥ < 1

2η
′ in the supremum norm of

ℓ∞(H). Thus ψ � H ∈ Bη′

1b(H) because φ ∈ B0
1b(H) and ∥ψ � H − φ∥ < 1

2η
′.
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Claim 1. T ∗∗ψ and T ∗∗ψ − φ̃ belong to Bη′

1b((P(H), w∗)).

Indeed, observe that T ∗(P(H)) = H because H is a convex w∗-compact

subset. Let A ⊂ P(H) be a subset and ϵ > η′. Since ψ � H ∈ Bη′

1b(H), there
exists an open set V ofX∗ such that V ∩T ∗(A) ̸= ∅ and diam(ψ(V ∩T ∗(A))) ≤ ϵ.
So, if W := T ∗−1(V )∩P(H), then W is an open subset of (P(H), w∗) such that

W ∩A ̸= ∅ and diam⟨T ∗∗ψ,W ∩A⟩ = diam⟨ψ, V ∩ T ∗(A)⟩ ≤ ϵ.

Thus T ∗∗ψ ∈ Bη′

1b((P(H), w∗)) and so T ∗∗ψ−φ̃ ∈ Bη′

1b((P(H), w∗)) because−φ̃ ∈
B0
1b((P(H), w∗)) and Bη′

1b((P(H), w∗)) + B0
1b((P(H), w∗)) = Bη′

1b((P(H), w∗)).

Claim 2. Let Pa(H) denote the family of purely atomic elements of P(H).
Then for every µ ∈ Pa(H) we have |⟨T ∗∗ψ − φ̃, µ⟩| < 1

2η
′.

Indeed, if µ ∈ Pa(H), then µ =
∑

n≥1 λnδpn , where pn ∈ H, λn ≥ 0,∑
n≥1 λn = 1, and δpn is the Dirac probability with mass 1 on pn. Since |ψ(pn)−

φ(pn)| < 1
2η

′, ∀n ≥ 1, we have:

|⟨T ∗∗ψ − φ̃, µ⟩| = |
∑
n≥1

λn(ψ(pn)− φ(pn))| ≤
∑
n≥1

λn|ψ(pn)− φ(pn)| <

<
∑
n≥1

λn
1
2η

′ = 1
2η

′.

Assume that ∥T ∗∗ψ − φ̃∥ ≥ 3
2η. Since , ∀z ∈ C(H)∗∗, ∥z∥ = sup{|⟨z, µ⟩| :

µ ∈ P(H)} (this is an easy exercise), there exists ν ∈ P(H) and d > 0 such that
|⟨T ∗∗ψ − φ̃, ν⟩| > 3

2η
′ + d. Without loss of generality, suppose that ⟨T ∗∗ψ −

φ̃, ν⟩ > 3
2η

′ + d. In the sequel we use an argument due to Odell and Rosenthal
(see [16, p. 380]). By the Radon-Nikodým theorem we can identify L1(ν) with
the subspace {ρ ∈M(H) : ρ << ν} ofM(H) (ρ << ν means that ρ is absolutely
continuous with respect to ν). Thus T ∗∗ψ − φ̃ ∈ L1(ν)

∗ = L∞(ν) and so there
exists a Borel bounded function ϕ : H → R such that for every Radon measure
ρ << ν we have

⟨T ∗∗ψ − φ̃, ρ⟩ =
∫
H

ϕ
dρ

dν
dν =

∫
H

ϕdρ, (2.1)

whence
3

2
η′ + d < ⟨T ∗∗ψ − φ̃, ν⟩ =

∫
H

ϕdν ≤
∫
H

ϕ+dν.

Let E := {k ∈ H : ϕ+(k) ≥ 3
2η

′ + d}. Then ν(E) > 0. Define µ ∈ P(H) such

that µ(B) := ν(B∩E)
ν(E) for every Borel subset B of H. Clearly µ << ν. Let S be

the support of µ, which is a compact subset of H such that P(S) is a convex
compact subset of P(H). We have the following facts:

(i) Let Pµ := {τ ∈ P(H) : τ << µ}. Then Pµ ⊂ P(S) and, moreover, Pµ is
w∗-dense in P(S) (this is an easy exercise).
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(ii) If ρ ∈ Pµ, then ρ << µ << ν and ρ(cE) = 0. Thus by (2.1)

⟨T ∗∗ψ − φ̃, ρ⟩ =
∫
H

ϕdρ =

∫
E

ϕdρ ≥ 3

2
η′ + d.

(iii) Pa(S) is clearly w
∗-dense in P(S) and ⟨T ∗∗ψ− φ̃, ρ⟩ < 1

2η
′, ∀ρ ∈ Pa(S),

by Claim 2.

Thus for every open subset V of P(H) with V ∩P(S) ̸= ∅ we have V ∩Pµ ̸=
∅ ̸= V ∩ Pa(S) and this implies

diam(⟨T ∗∗ψ − φ̃, V ∩ P(S)⟩) > 3

2
η′ + d− 1

2
η′ = η′ + d.

Therefore T ∗∗ψ−φ̃ does not belong to Bη′

1b((P(H), w∗)), a contradiction to Claim
1. Thus ∥T ∗∗ψ − φ̃∥ < 3

2η. Finally, we get dist(T ∗∗ψ,Seq(C(H)∗∗)) < 3
2η,

because φ̃ ∈ Seq(C(H)∗∗).

(B) follows immediately from (A).

Lemma 2.2. Let X be a Banach space, H ⊂ X∗ a w∗-compact convex subset,
T : X → C(H) such that Tx := x � H, ∀x ∈ X, B a boundary of H, w0 ∈ H,
ψ ∈ X∗∗ and d > 0 be such that

⟨ψ,w0⟩ > sup⟨ψ, co(B)⟩+ d. (2.2)

Then dist(T ∗∗ψ,Seq(C(H)∗∗)) ≥ 1
2d.

Proof. (A) First, we suppose that ∥ψ∥ = 1. Assume that

dist(T ∗∗ψ,Seq(C(H)∗∗)) < 1
2d.

Then, there exist φ ∈ B1b(H), a number d′ with 0 < d′ < d and a vector

e ∈ B(C(H)∗∗) such that T ∗∗ψ = φ̃ + d′

2 e in C(H)∗∗. Let r0 := sup⟨ψ, co(B)⟩
and define

U := {z ∈ B(X∗∗) : ⟨z, w0⟩ ≥ r0 + d} and V := {x ∈ B(X) : ⟨w0, x⟩ ≥ r0 + d}.

Clearly, U = V
w∗

and ψ ∈ U . Let T : X → C(H) be the restriction operator

such that Tx := x � H, ∀x ∈ X. Then T ∗∗ψ ∈ T ∗∗U = TV
w∗

and

φ̃ = T ∗∗ψ − d′

2 e ∈ TV
w∗

+ d′

2 B(C(H)∗∗) = TV + d′

2 B(C(H))
w∗

.

Since φ̃ ∈ Seq(C(H)∗∗), by [16, REMARK, p. 379] there exist sequences {xn :
n ≥ 1} ⊂ V and {fn : n ≥ 1} ⊂ B(C(H)) such that

T ∗∗xn + d′

2 fn → φ̃ in (C(H)∗∗, w∗). (2.3)
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By the Simons equality [18, SUP-LIMSUP THEOREM] we have

sup
p∈B

lim sup
n→∞

⟨p, xn⟩ = sup
h∈H

lim sup
n→∞

⟨h, xn⟩.

On the one hand, if p ∈ B and δp is the Dirac probability with mass 1 on p, we
have

⟨T ∗∗xn + d′

2 fn, δp⟩ →
n→∞

⟨φ̃, δp⟩ = φ(p) by (2.3),

whence we get

lim sup
n→∞

⟨p, xn⟩ = lim sup
n→∞

⟨T ∗∗xn, δp⟩ = lim sup
n→∞

[
⟨T ∗∗xn + d′

2 fn, δp⟩ − ⟨d
′

2 fn, δp⟩
]
=

= φ(p) + lim sup
n→∞

[
− ⟨d

′

2 fn, δp⟩
]
≤ φ(p) + d′

2 = ψ(p)− d′

2 ⟨e, δp⟩+
d′

2 ≤ r0 + d′.

On the other hand, taking into account that w0 ∈ H and that xn ∈ V , we
have:

sup
h∈H

lim sup
n→∞

⟨h, xn⟩ ≥ lim sup
n→∞

⟨w0, xn⟩ ≥ r0 + d.

So, we conclude that r0 + d′ ≥ r0 + d, that is, d′ ≥ d, a contradiction, that
completes the proof in this case (A).

(B) Let ψ ∈ X∗∗ be arbitrary (but ψ ̸= 0). From the inequality (2.2) we get
⟨ψ/∥ψ∥, w0⟩ > sup⟨ψ/∥ψ∥, co(B)⟩+ d/∥ψ∥. Thus by (A) we obtain

dist(T ∗∗(ψ/∥ψ∥),Seq(C(H)∗∗)) ≥ d

2∥ψ∥
,

and finally dist(T ∗∗ψ,Seq(C(H)∗∗)) ≥ 1
2d.

Definition 2.3. If X is a Banach space and K a w∗-compact subset of X∗, the
B-index of K (in short, Bindex(K)), is defined as

Bindex(K) :=

= sup{dist(cow
∗
(W ), co(B)) :W ⊂ K w∗-compact and B a boundary of W}.

Theorem 2.4. Let X be a Banach space and H ⊂ X∗ a w∗-compact convex
subset, B a boundary of H, w0 ∈ H, ψ ∈ X∗∗ and d > 0 be such that ⟨ψ,w0⟩ >
sup⟨ψ, co(B)⟩+ d. We have

(1) dist(ψ � H,B1b(H)) ≥ 1
6d in ℓ∞(H) and so dist(S(X∗∗) � H,B1b(H)) ≥

1
6Bindex(H) in ℓ∞(H).

(2) If H ⊂ B(X∗) then dist(ψ, Seq(X∗∗)) ≥ dist(ψ, Seq(X∗∗,H)) ≥ d
2 .

Proof. (1) This follows from Lemma 2.1 and Lemma 2.2.
(2) Let T : X → C(H) be the restriction operator such that Tx = x �

H, ∀x ∈ X. Observe that ∥T∥ ≤ 1 because H ⊂ B(X∗).

Claim. T ∗∗(Seq(X∗∗,H)) ⊂ Seq(C(H)∗∗).
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Indeed, let z ∈ Seq(X∗∗,H). Then z � H ∈ B1b(H) and from Lemma 2.1 we
get

dist(T ∗∗z,Seq(C(H)∗∗)) ≤ 3dist(z � H,B1b(H)) = 0.

As Seq(C(H)∗∗) is a closed subspace of C(H)∗∗ (by [15]), we conclude that
T ∗∗z ∈ Seq(C(H)∗∗).

So, as ∥T∥ ≤ 1, we get

dist(ψ, Seq(X∗∗,H)) ≥ dist(T ∗∗ψ,Seq(C(H)∗∗)).

Now an application of Lemma 2.2 gives that dist(ψ, Seq(X∗∗,H)) ≥ d
2 . Finally,

the inequality dist(ψ, Seq(X∗∗)) ≥ dist(ψ, Seq(X∗∗,H)) is obvious because
Seq(X∗∗) is a subspace of Seq(X∗∗,H).

Corollary 2.5. Let X be a Banach space, H ⊂ X∗ a w∗-compact convex

subset, ψ ∈ X∗∗ and C ⊂ X a convex subset with ψ ∈ C
w∗

. The following
are equivalent:

(1) ψ � H ∈ B1b(H).
(2) There exists a sequence {xn : n ≥ 1} ⊂ C such that xn(h) → ψ(h) for

every h ∈ H.

Proof. As (2) ⇒ (1) is obvious, we prove (1) ⇒ (2). Let T : X → C(H) be the
restriction operator T (x) = x � H. Since ψ � H ∈ B1b(H), from Lemma 2.1 we
get

dist(T ∗∗ψ,Seq(C(H)∗∗)) ≤ 3dist(ψ � H,B1b(H)) = 0.

As Seq(C(H)∗∗) is a closed subspace of C(H)∗∗ (by [15]), we conclude that
T ∗∗ψ ∈ Seq(C(H)∗∗). Finally, the implication (1) ⇒ (2) follows from [16,

REMARK, p. 379] because T ∗∗ψ ∈ T (C)
w∗

.

Corollary 2.6. Let X be a Banach space, H a convex w∗-compact subset of
X∗ and ψ ∈ X∗∗. Then:

(a) If ψ ∈ Seq(X∗∗, H), there exists a sequence (xn)n≥1 ⊂ X with ∥xn∥ ≤
∥ψ∥ such that xn → ψ on H.

(b) ψ � H ∈ B1b(H) if and only if ψ ∈ Seq(X∗∗,H).

Proof. (a) By hypothesis ψ � H ∈ B1b(H) and ψ ∈ ∥ψ∥B(X)
w∗

. Now it is
enough to apply Corollary 2.5.

(b) This follows from Corollary 2.5 and the fact ψ ∈ ∥ψ∥B(X)
w∗

.

3. Localization of w∗-N-families and copies of the basis of ℓ1(c)

In this Section we deal with a very useful tool introduced in [10]: the w∗-N-
families. Let us define this notion, that will have a very important role in order
to localize copies of the basis of ℓ1(c)(see [10, Definition 3.3] and [11, Definition
2.1]).

8



Definition 3.1. Let X be a Banach space. A bounded subset F of X∗ is said
to be a w∗-N-family of width(F) ≥ d > 0 if F has the form

F = {ηM,N :M,N disjoint subsets of N},

and there are two sequences {rm : m ≥ 1} ⊂ R and {xm : m ≥ 1} ⊂ B(X) such
that for every pair of disjoint subsets M,N of N we have

ηM,N (xm) ≥ rm + d, ∀m ∈M, and ηM,N (xn) ≤ rn, ∀n ∈ N.

The index Width(Y ) of a subset Y ⊂ X∗ is defined as follows ((sup{∅} = 0)):

Width(Y ) :=

= sup{d > 0 : exists a w∗-N-family A ⊂ Y such that width(A) ≥ d}.

Among the properties of the w∗-N-families (see [10, Remark 3.4] and [11,
Remark 2.2]), we highlight the following facts: (i) a w∗-N-family A always
contains a copy of the basis of ℓ1(c); (ii) the family {xm : m ≥ 1} ⊂ B(X)
associated with a w∗-N-family A is equivalent to the basis of ℓ1.

If K is a w∗-compact subset of a dual Banach space X∗, the inequality
co(K) ̸= cow

∗
(K) always implies that K contains a w∗-N-family and a copy of

the basis of ℓ1(c) (see [10, Lemma 3.2],[11, Proposition 2.5]). However, from the
fact co(B) ̸= cow

∗
(K), B being a mere boundary of K, we cannot localize, in

general, inside K neither a w∗-N-family nor a copy of the basis of ℓ1(c). Let us
see some counterexamples.

Counterexample 1. The following counterexample shows that, if K is
not w∗-metrizable, the fact co(B) ̸= cow

∗
(K), B being a mere boundary of K,

does not imply, in general, the localization inside K of a w∗-N-family. Let I
be an uncountable set, X := c0(I) and B := {ei : i ∈ I} be the canonical
basis of X∗ = ℓ1(I). Clearly, B is a boundary of the w∗-compact subset K :=

{ei : i ∈ I}
w∗

= {ei : i ∈ I} ∪ {0}. As 0 /∈ co(B) then co(B) ̸= cow
∗
(K).

However, K fails to have a w∗-N-family because X does not have a copy of ℓ1.
Observe that B itself is a copy of the basis of ℓ1(I). �

Counterexample 2. In the following counterexample we show a Banach
space X such that X∗ has neither a w∗-N-family nor a copy of ℓ1, but there
exist a w∗-compact subset K of X∗ and a boundary B of K such that co(B) ̸=
cow

∗
(K). Let X be the long James space J(ω1) and Y be its isometric predual

(see [3, 7.7.4 Proposition, p. 348]). Then:
(i) Y and all its successive dual spaces are Asplund. So, X∗ = Y ∗∗ = J(ω1)

∗

has neither a copy of ℓ1(c) nor a w
∗-N-family.

(ii) Let K := B(X∗) and B0 := Yc ∩ K, where Yc := ∪{[A]
w∗

: A ⊂
Y countable}. It is easy to see thatB0 is a boundary ofK such that co(B0) ⊂ Yc.

(iii) With the notation of [3, p. 346], the vector eω1 satisfies eω1 ∈ B(X∗)
but eω1 /∈ Yc and so eω1 /∈ co(B0). In fact, if A ⊂ Y is a countable family,
there exists α0 < ω1 such that A ⊂ [{eα : α ≤ α0, α a non limit ordinal}]. So,
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if α0 < β < ω1, the basic vector hβ := 1(β,ω1] of Y
∗ = J(ω1) satisfies ⟨a, hβ⟩ =

0, ∀a ∈ A, but ⟨eω1 , hβ⟩ = 1. �

In spite of these counterexamples, in many cases the fact co(B) ̸= cow
∗
(K)

implies that K -and sometimes the boundary B itself- has a w∗-N-family and a
copy of the basis of ℓ1(c). Our approach to this problem consists of two steps:

Step 1. We suppose thatK is w∗-metrizable. In this caseK always contains
a w∗-N-family and a copy of the basis of ℓ1(c), if co(B) ̸= cow

∗
(K) .

Step 2. The general case. We obtain a characterization that actually
reduces this case to the metrizable one.

The metrizables case.

In this case we suppose that K is a w∗-compact metrizable subset of a dual
Banach space X∗, B a boundary of K such that co(B) ̸= cow

∗
(K) and prove

that K has a w∗-N-family and a copy of the basis of ℓ1(c). Moreover we estimate
the index Width(K) in terms of the index Bindex(K). Observe that K is w∗-
metrizable iff cow

∗
(K) is (an easy exercise).

Theorem 3.2. Let X be a Banach space, H ⊂ X∗ a convex w∗-compact subset
and B a boundary of H such that dist(H, co(B)) > d > 0. If H is w∗-metrizable,
H has a w∗-N-family A of width(A) ≥ d

3 and a copy of the basis of ℓ1(c). Thus
Width(H) ≥ 1

3dist(H, co(B)).

Proof. Since dist(H, co(B)) > d > 0, there exist w0 ∈ H and ψ ∈ S(X∗∗) such
that

⟨ψ,w0⟩ > sup ⟨ψ, co(B)⟩+ d.

Thus, dist(ψ � H,B1b(H)) > 1
6d by Theorem 2.4. Since H is w∗-metrizable,

dist(ψ � H,B1b(H)) = 1
2Frag(ψ � H,H) by [9, Proposition 6.4], where Frag(ψ �

H,H) is the fragmentation index of ψ � H in H. Recall (see [9, p. 231]) that
for a function f : H → R the fragmentation index Frag(f,H) is the infimum
of the family of numbers ϵ ≥ 0 such that for every η > ϵ and every non-empty
subset F ⊂ H, there exists an open subset V ⊂ H such that V ∩ F ̸= ∅
and diam(f(V ∩ F )) ≤ η. It is clear that, ∀ϵ ≥ 0, Bϵ

1b(H) = {f ∈ ℓ∞(H) :
Frag(f,H) ≤ ϵ}.

So, Frag(ψ � H,H) > d/3 > 0, whence we get ψ � H /∈ Bd/3
1b (H). By [9,

Proposition 6.1] there exist a non-empty w∗-compact subset F ⊂ H and two real

numbers s < t with t−s > d/3 such that F ∩ {ψ ≤ s}
w∗

= F = F ∩ {ψ ≥ t}
w∗

.
Thus there exist two real numbers s′, t′ with s < s′ < t′ < t and t′ − s′ > d/3
such that every w∗-open subset V ⊂ X∗ with V ∩ F ̸= ∅ satisfies

inf⟨ψ, V ∩ F ⟩ ≤ s < s′ < t′ < t ≤ sup⟨ψ, V ∩ F ⟩.

This fact implies that F (and soH) contains a w∗-N-familyA such that width(A)
≥ d/3 (see [10, proof of LEMMA 3.2] or [11, Proof of 2 ⇒ 3]) and a copy of
the basis of ℓ1(c). Finally, the inequality Width(H) ≥ 1

3dist(H, co(B)) follows
from the above results and the definition of Width(H) (see Definition 3.1)
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Let us see the quantitative connection between Width(H) and Bindex(H).

Corollary 3.3. Let X be a Banach space and H a w∗-compact subset of X∗.
Then

(1) Width(H) ≤ Bindex(H).
(2) If H is w∗-metrizable, Width(H) = 0 if and only if Bindex(H) = 0.
(3) If H is convex and w∗-metrizable then Width(H) ≤ Bindex(H) ≤

3Width(H)

Proof. (1) This follows from [11, Lemma 2.4].
(2) First, Width(H) = 0 whenever Bindex(H) = 0 by (1). Now we suppose

that Bindex(H) > 0 and prove that Width(H) > 0. The fact Bindex(H) > 0
means that there exist a w∗-compact subset W ⊂ H and a boundary B of W
such that dist(cow

∗
(W ), co(B)) > 0. Thus Width(cow

∗
(W )) > 0 by Theorem

3.2. From [11, Proposition 2.5, Proposition 3.8] we get Width(W ) > 0 and so
Width(H) > 0, and this completes the proof of (2).

(3) follows from (1) and Theorem 3.2.

The general case.

The general case can be reduced to the metrizable case as follows.

Definition 3.4. If X is a Banach space and K a w∗-compact subset of X∗, we
define the index Bindexc(K) of K as the supremum of Bindex(i∗(K)), where
i∗ is the adjoint operator of the canonical inclusion mapping i : Y → X and Y
is a separable subspace of X.

Remark. Let K be a w∗-compact subset of the dual Banach space X∗.
If X is separable (or if K is w∗-metrizable), it is clear that Bindex(K) ≤
Bindexc(K). But if X is non-separable we can have Bindex(K) > 0 and
Bindexc(K) = 0. This happens in the above Counterexamples.

Proposition 3.5. Let X be a Banach space and H a w∗-compact subset of X∗.
Then

(A) Width(H) ≤ Bindexc(H).

(B) If H is convex then Width(H) ≤ Bindexc(H) ≤ 3Width(H).

Proof. (A) Let F ⊂ H be a w∗-N-family of width(F) > d > 0 associated with
the sequences {rm : m ≥ 1} ⊂ R and {xm : m ≥ 1} ⊂ B(X). Let Y :=
[{xm : m ≥ 1}] and i : Y → X be the canonical inclusion mapping. Obviously,
i∗(F) is a w∗-N-family of i∗(H) such that width(i∗(F)) > d > 0 associated with
the sequences {rm : m ≥ 1} ⊂ R and {xm : m ≥ 1} ⊂ B(Y ). Thus by Corollary
3.3

d ≤Width(i∗(H)) ≤ Bindex(i∗(H)) ≤ Bindexc(H).

Therefore, Width(H) ≤ Bindexc(H).

(B) Suppose that H is convex. First,Width(H) ≤ Bindexc(H) by (A). Now
we assume that Bindexc(H) > d > 0 and prove that d/3 < Width(H). The
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fact Bindexc(H) > d > 0 implies that there exists a separable closed subspace
Y ⊂ X such that Bindex(i∗(H)) > d, i : Y → X being the canonical inclusion
mapping. Then Width(i∗(H)) > d/3 by Corollary 3.3 and so there exists in
i∗(H) a w∗-N-family A′ of width(A′) > d/3 associated with certain sequences
{yn : n ≥ 1} ⊂ B(Y ) and {rn : n ≥ 1} ⊂ R. For each a ∈ A′ choose ka ∈ H such
that i∗(ka) = a. Then A := {ka : a ∈ A′} is a w∗-N-family of width(A) > d/3
associated with the sequences {i(yn) : n ≥ 1} ⊂ B(X) and {rn : n ≥ 1} ⊂ R.
Thus Width(H) > d/3 and so 3Width(H) ≥ Bindexc(H).

Corollary 3.6. Let X be a Banach space and K a w∗-compact subset of X∗.
The following are equivalent:

(1) Width(cow
∗
(K)) = 0; (1’) Bindexc(co

w∗
(K)) = 0.

(2) Width(K) = 0; (2’) Bindexc(K) = 0.

Proof. (1) ⇔ (1′) and (2′) ⇒ (2) follow from Proposition 3.5. (1) ⇔ (2) is
proved in [11, Prop. 2.5, Prop. 3.8]. Finally, (1′) ⇒ (2′) is obvious.

The γ topology of a dual Banach space X∗ is the topology of X∗ of the
convergence on countable bounded subsets of X. The topology γ has been used
by Cascales, Muñoz, Orihuela, etc., in several papers (see [4],[5]). It is easy to
see that (X∗, γ)∗ = Xc.

Proposition 3.7. Let K be a w∗-compact subset of the dual Banach space X∗.
The following are equivalent:

(1) Bindexc(K) = 0.

(2) coγ(B) = cow
∗
(H) for every w∗-compact subset H of K and every

boundary B of H.

Proof. (1) ⇒ (2). Suppose that coγ(B) ̸= cow
∗
(H) for some w∗-compact subset

H of K and some boundary B of H. This means that there exists a point
w0 ∈ cow

∗
(H) that can be strictly separated from co(B) using elements of Xc.

Precisely, there exist a separable closed subspace Y ⊂ X, a vector ψ ∈ S(Y ∗∗) =

S(Y
w∗

) and a positive number d > 0 such that

⟨ψ,w0⟩ > sup ⟨ψ, co(B)⟩+ d.

So, if i : Y → X is the canonical inclusion mapping, then

⟨ψ, i∗(w0)⟩ > sup ⟨ψ, co(i∗(B))⟩+ d. (3.1)

As i∗(w0) ∈ cow
∗
(i∗(H)), from (3.1) we get dist(cow

∗
(i∗(H)), co(i∗(B))) > d >

0. Hence Bindex(i∗(H)) > d because i∗(B) is a boundary of i∗(H). Thus
Bindexc(K) > d, a contradiction which proves the implication (1) ⇒ (2).

(2) ⇒ (1). Suppose thatBindexc(K) > 0. Then, by definition ofBindexc(K),
there exists a closed separable subspace Y ⊂ X such that Bindex(i∗(K)) > 0,
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where i : Y → X is the canonical inclusion mapping. From Corollary 3.3
we get that Width(i∗(K)) > 0. Hence, by [11, Lemma 2.4] there exists a
w∗-compact subset L ⊂ i∗(K) such that co(L) ̸= cow

∗
(L). So there exist

ψ ∈ S(Y ∗∗) = S(Y
w∗

), d > 0 and v0 ∈ cow
∗
(L) such that

⟨ψ, v0⟩ > sup ⟨ψ, co(L)⟩+ d. (3.2)

Let W := i∗−1(L) ∩K.

Claim. coγ(W ) ̸= cow
∗
(W ).

Indeed, let w0 ∈ cow
∗
(W ) be such that i∗(w0) = v0. Then, taking into

account that co(L) = i∗(co(W )), ψ = i∗∗ψ and (3.2), we get

⟨ψ,w0⟩ = ⟨i∗∗ψ,w0⟩ = ⟨ψ, i∗(w0)⟩ = ⟨ψ, v0⟩ > sup ⟨ψ, i∗(co(W ))⟩+ d =

= sup ⟨ψ, co(W )⟩+ d.

As ψ ∈ Xc, we conclude that w0 ∈ cow
∗
(W ) \ coγ(W ), and this contradicts the

hypothesis and completes the proof.

Remark. In [5, Theorem 5.4] it is proved that X fails to have a copy of ℓ1 iff
coγ(B) = cow

∗
(K), for every w∗-compact subset K of X∗ and every boundary

B of K. The above Proposition 3.7 implies [5, Theorem 5.4]. Indeed,

coγ(B) = cow
∗
(H) ∀H ⊂ X∗ w∗-compact subset and every boundary B of H

Prop. 3.7⇔ Bindexc(K) = 0 ∀K ⊂ X∗ w∗-compact subset

Cor. 3.6⇔ Width(K) = 0 ∀K ⊂ X∗ w∗-compact subset

Def. 3.1⇔ X does not have a copy of ℓ1.

4. w∗-countably determined boundaries

In [4] it is proved that a Banach space X fails to have a copy of ℓ1 if and
only if co(B) = cow

∗
(K) for every w∗-compact subset of X∗ and every w∗-K

analytic boundary B of K. In this Section we give a “localized ” version of this
result and show that it also holds with “w∗-CD” instead of “w∗KA ” .

Let us recall that, if (T, τ) is a topological space, Σ′ ⊂ Σ := NN and Φ :
Σ′ → 2T is a set valued mapping, Φ is said to be usco if , ∀σ ∈ Σ′, Φ(σ) is
a compact non-empty subset of T and Φ is upper-semicontinuous, that is, for
each σ ∈ Σ′ and for an open subset U of T such that Φ(σ) ⊂ U there exists a
neighborhood G of σ with Φ(G) ⊂ U . A subset Y ⊂ T is said to be countably
determined (in short, CD) in (T, τ) if there exists a subset Σ′ ⊂ Σ := NN and
a set-valued usco mapping Φ : Σ′ → 2T such that Y =

∪
σ∈Σ′ Φ(σ) (see [17, p.

11]). When Σ′ = Σ, Y is said to be K-analytic (in short, KA) in (T, τ).
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Lemma 4.1. Let X be a Banach space, ∅ ̸= Σ′ ⊂ Σ := NN and Φ : Σ′ → 2X
∗

a set-valued usco mapping. Define

C :=
∪

{cow
∗
(Φ(F )) : F finite subset of Σ′}.

Then C is a convex subset such that C = C
γ
.

Proof. The proof can be done as in [4, Proposition 5.5]. Actually, Proposition
5.5 of [4] holds for any w∗-usco mapping B : Σ′ → 2X

∗
and any subset Σ′ ⊂

NN.

Proposition 4.2. Let X be a Banach space, H a w∗-compact subset of X∗ and
B a w∗CD boundary of H fulfilling dist(cow

∗
(H), co(B)) > d > 0 and coγ(B) =

cow
∗
(H). Then there exists in B a w∗-N-family A of width(A) > d > 0 and a

copy of the basis of ℓ1(c). Therefore, Width(B) ≥ dist(cow
∗
(H), co(B)) in this

case.

Proof. As dist(cow
∗
(H), co(B)) > d > 0, there exists w0 ∈ cow

∗
(H) such that

dist(w0, co(B)) > d > 0. Since B is w∗CD by hypothesis, there exist a subset
Σ′ ⊂ Σ := NN and an usco mapping Φ : Σ′ → 2X

∗
such that B =

∪
σ∈Σ′ Φ(σ).

By Lemma 4.1, if

C :=
∪

{cow
∗
(Φ(F )) : F a finite subset of Σ′},

then C is convex and C = C
γ
. Hence C = cow

∗
(H), because coγ(B) = cow

∗
(H)

and B ⊂ C. Thus, given 0 < ϵ < dist(w0, co(B))−d, there exists a finite subset
F ⊂ Σ′ such that dist(w0, co

w∗
(Φ(F ))) < ϵ. Let v0 ∈ cow

∗
(Φ(F )) be such that

∥w0 − v0∥ < ϵ. Then, if K is the w∗-compact subset K := Φ(F ), we have

dist(v0, co(K)) ≥
≥ dist(w0, co(K))− ∥w0 − v0∥ ≥ dist(w0, co(B))− ∥w0 − v0∥ > d > 0.

As v0 ∈ cow
∗
(K), by [10, Lemma 3.2] there exist in K, and so in B, a w∗-

N-family A of width ≥ d and a copy of the basis of ℓ1(c). As d can be
taken arbitrarily close to dist(cow

∗
(H), co(B)), we finally get Width(B) ≥

dist(cow
∗
(H), co(B)).

Let us say that a subset Y of a dual Banach space X∗ is a Pettis set or Y has
the property (P ) (in short, Y ∈ (P )) if co(K) = cow

∗
(K) for every w∗-compact

subset K of Y (see [11],[20, p. 79]). Recall that: (i) by [12] X∗ has the property
(P ) iff X fails to have a copy of ℓ1; (ii) by [11, Proposition 2.5] a w∗-compact
subset K ⊂ X∗ satisfies K ∈ (P ) iffWidth(K) = 0, that is, K does not contains
a w∗-N-family. The notion of w∗-compact Pettis set was also considered in [5],
under the name of P (B(D))-set with D = B(X), but viewed from a perspective
different from ours; this paper does not deal with “localization” problems inside
K.

14



Theorem 4.3. Let X be a Banach space and Y a subset of X∗. The following
are equivalent:

(A) Y ∈ (P ).
(B) For every w∗-compact subset K of Y and every boundary B of K we

have coγ(B) = cow
∗
(K).

(C) For every w∗-compact subset K of Y and every w∗CD boundary B of K
we have co(B) = cow

∗
(K).

(D) For every w∗-compact subset K of Y and every w∗KA boundary B of
K we have co(B) = cow

∗
(K).

Proof. (A)⇔(B) follows from Corollary 3.6 and Proposition 3.7.
(A)+(B) ⇒ (C) follows from Proposition 4.2.
(C) ⇒ (D) is clear because every w∗KA subset is w∗CD.
(D) ⇒ (A). It is enough to observe that every w∗-compact subset K of X∗

is a w∗KA subset and also a boundary of K.

Remarks. (1) The equivalence of points (A), (B) and (D) of Proposition
4.3, when Y = X∗, is the result obtained in [5, Theorem 5.4] and [4, Theorem
5.6].

(2) The above Counterexample 1 shows that, if K is a w∗-compact subset
of a dual Banach space X∗ with K ∈ (P ) and B is a non-w∗-CD boundary
of K, it can be co(B) ̸= cow

∗
(K). Note that the boundary B = {ei : i ∈ I}

of Counterexample 1 is a non-w∗CD set, because B is an uncountable discrete
space (so, it is not Lindelof) and every CD space is Lindelof.

(3) When the w∗-compact subset K ⊂ X∗ is w∗-metrizable, every subset of
K is w∗-CD and Theorem 4.3 asserts, in this case, that K ∈ (P ) iff co(B) =
cow

∗
(W ) for every w∗-compact subset W ⊂ K and every boundary B of W .

Note that this statement coincides with that obtained in Corollary 3.3.

5. Applications to some special boundaries

When K is a w∗-compact subset of X∗ and B is either a w∗KA boundary
of K or B := Ext(K), we obtain better results than in the general case. First,
we see a series of lemmas.

Lemma 5.1. (Talagrand [19]) Let τ be a cardinal with cofinality cf(τ) > ℵ0, X
a Banach space and A a subset of X. The following are equivalent

(1) A has a copy of the basis of ℓ1(τ).
(2) co(A) has a copy of the basis of ℓ1(τ).
(3) [A] has a copy of ℓ1(τ).

Proof. The implications (1) ⇒ (2) ⇒ (3) are obvious.
(3) ⇒ (1). Let E := [A] and T : ℓ1(τ) → E be an isomorphism between

ℓ1(τ) and T (ℓ1(τ)). The adjoint operator T ∗ : E∗ → ℓ∞(τ) is a quotient
mapping w∗-w∗-continuous. Let 0 < η be such that ηB(ℓ∞(τ)) ⊂ T ∗(B(E∗))
and W := T ∗−1(B(ℓ∞(τ))) ∩ 1

ηB(E∗). Clearly, we can suppose that W is the
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unit closed ball of E∗ for certain dual norm |||·||| equivalent to the given norm.
It is obvious that T ∗(B((E∗, |||·|||))) = T ∗(W ) = B(ℓ∞(τ)) = [−1, 1]τ . By [19,
Theorem 4] we conclude that A has a copy of the basis of ℓ1(τ).

Recall that a regular Hausdorff space T is angelic if: (i) every relatively
countably compact subset W ⊂ T is relatively compact; (ii) the closure of a
relatively compact subset W ⊂ T is precisely the set of limits of its sequences.

Lemma 5.2. Let X be a separable Banach space and E be a norm-closed w∗KA
subspace of X∗ such that E ∈ (P ). If w∗

1 = σ(E∗, E) then (B(E∗), w∗
1) is

angelic.

Proof. First, observe that (B(E), w∗) is analytic because it is metrizable and a
w∗KA set (it is w∗-closed in (E,w∗)) (see [17, Theorem 5.5.1]). Since E ∈ (P ),
then E and so the unit closed ball B(E) fail to have a w∗-N-family by [11, Prop.
3.8]. Let i : E → X∗ be the inclusion mapping and A := i∗(B(X)) ⊂ B(E∗).
Then:

(i) Clearly, A
w∗

1 = B(E∗), where w∗
1 := σ(E∗, E).

(ii) (B(E∗), w∗
1) is a compact subset of RB(E).

(iii) The space of 1-Baire functions (B1(B(E), w∗), τp), τp being the topology
on B1(B(E), w∗) of pointwise convergence on B(E), is a topological subspace
os RB(E) such that A ⊂ B1(B(E), w∗).

Since B(E) fails to have a w∗-N-family, if α < β and (xn)n≥1 is a sequence
in B(X), there is a subset I ⊂ N such that

{t ∈ B(E) : ⟨xn, t⟩ ≤ α,∀n ∈ I, ⟨xm, t⟩ ≥ β,∀m ∈ N \ I} = ∅.

So, by [2, 4G. Corollary] we obtain that A is relatively compact in the space of 1-

Baire functions (B1(B(E), w∗), τp). Thus (A
τp
, τp) = (A

w∗
1 , w∗

1) = (B(E∗), w∗
1)

is a compact subset of (B1(B(E), w∗), τp). Since (B(E), w∗) is analytic,
(B1(B(E), w∗), τp) is angelic by [2, 3G. Corollary]. Thus (B(E∗), w∗

1) is angelic.

Lemma 5.3. Let X be a separable Banach space, K be a w∗-compact subset of
X∗ containing a w∗-N-family and B a w∗KA boundary of K. Then B contains
a w∗-N-family.

Proof. Suppose that B fails to contain a w∗-N-family and let E := [B]. Clearly,
E is a w∗KA subspace of X∗ such that E ∈ (P ) and so E fails to contain a
w∗-N-family (see [11, Lemma 3.7, Proposition 3.8]). Then (B(E∗), σ(E∗, E)) is
angelic by Lemma 5.2. Thus co(B) = cow

∗
(K) by [7, Theorem I.2] and so E

contains a w∗-N-family, a contradiction that proves the statement.

Lemma 5.4. Let K be a w∗-compact subset of a dual Banach space X∗ and
B a boundary of K such that, for every continuous operator T : ℓ1 → X,
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T ∗(B) contains a w∗KA boundary of T ∗(K). Then the following statements
are equivalent:

(1) K contains a w∗-N-family; (2) B contains a w∗-N-family.

Proof. As (2) ⇒ (1) is obvious, we prove (1) ⇒ (2). Let F be a w∗-N-family
inside K of width(F) ≥ d > 0 associated with the sequences {rm : m ≥ 1} ⊂ R
and {xn : n ≥ 1} ⊂ B(X). Let T : ℓ1 → X be the continuous operator such that
T (en) = xn, ∀n ≥ 1, where {en : n ≥ 1} is the canonical basis of ℓ1. Clearly,
T is an isomorphism between ℓ1 and T (ℓ1) such that T ∗(F) is a w∗-N-family
inside the w∗-compact subset T ∗(K) of width(T ∗(F)) ≥ d > 0 associated with
the sequences {rm : m ≥ 1} ⊂ R and {en : n ≥ 1} ⊂ B(ℓ1). By hypothesis
T ∗(B) contains a w∗KA boundary B0 of T ∗(K). By Lemma 5.3 the boundary
B0 contains a w∗-N-family A of width(A) ≥ δ > 0 associated with certain
sequences {sm : m ≥ 1} ⊂ R and {un : n ≥ 1} ⊂ B(ℓ1). For each a ∈ A we
find va ∈ B such that T ∗(va) = a. Now it is easy to see that H := {va : a ∈ A}
is a w∗-N-family inside B of width(H) ≥ δ > 0, associated with the sequences
{sm : m ≥ 1} ⊂ R and {T (un) : n ≥ 1} ⊂ B(X).

Now we can give a version of the above Talagrand Theorem, for τ = c, the
w∗-topology of X∗ and either B = Ext(K) or B a w∗KA boundary.

Theorem 5.5. Let X be a Banach space and K a w∗-compact subset of X∗.
Let B ⊂ K be either a w∗KA boundary of K or B = Ext(K). Then

(A) K contains a w∗-N-family if and only if B contains a w∗-N-family.
(B) K contains a copy of the basis of ℓ1(c) if and only if B does.

Proof. (A) It is enough to see that B satisfies the requirements of Lemma 5.4.
So, let T : ℓ1 → X be a continuous operator. If B is a w∗KA boundary of
K, then it is easy to see that T ∗(B) is a w∗KA boundary of T ∗(K) and so
we are done in this case. Suppose that B = Ext(K). Then Ext(T ∗(K)) ⊂
T ∗(Ext(K)). As (T ∗(K), w∗) is a metrizable compact set (because (B(ℓ∞), w∗)
is), Ext(T ∗(K)) is a Gδ subset of T ∗(K) ([6, 27.3 Corollary]) and so a w∗-
analytic subset. Thus we can apply Lemma 5.4 in this case.

(B) We prove that B contains a copy of the basis of ℓ1(c) when K does. We
consider two cases, namely:

Case 1. co(B) = cow
∗
(K). The cardinal c satisfies cf(c) > ℵ0 because

cf(2α) > α for every infinite cardinal α (see [13, p. 78]) and because c = 2ℵ0 .
Thus, we can apply Lemma 5.1 and so there exists a copy of the basis of ℓ1(c)
inside B.

Case 2. co(B) ̸= cow
∗
(K). First, assume that B is a w∗KA boundary of K.

By Proposition 4.3 and [11, Proposition 2.5] there exists a w∗-N-family inside
K and so inside B by part (A). Thus B contains a copy of the basis of ℓ1(c)
because every w∗-N-family does.

Now assume that B = Ext(K). By the proof of [12, 3.1.Proposition] there
exist φ ∈ S(X∗∗), a non-empty subset S ⊂ Ext(K) and two real numbers r, δ
with δ > 0 such that, if V is a w∗-open subset of X∗ with V ∩ S ̸= ∅, then we
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can find two vectors ξ, η ∈ cow
∗
(V ∩ S) such that φ(ξ) > r + δ and φ(η) < r.

So, K contains a w∗-N-family (see the proof of [10, LEMMA 3.2]). Thus, B
contains a w∗-N-family by part (A). Finally, B contains a copy of the basis of
ℓ1(c) because every w∗-N-family does.

Corollary 5.6. Let K be a w∗-compact subset of the dual Banach space X∗.
The following are equivalent:

(1) K fails to have a w∗-N-family, that is, K ∈ (P ).
(2) co(Ext(W )) = cow

∗
(W ) for every w∗-compact subset W of K.

(3) Ext(K) fails to have a w∗-N-family.

Proof. (1) ⇒ (2). Let W ⊂ K a w∗-compact subset. Then W ∈ (P ) because
k ∈ (P ). Thus coγ(Ext(W )) = cow

∗
(W ) by Theorem 4.3. Finally co

In [8] Godefroy and Talagrand study and characterize the representable
and universally representable Banach spaces. A Banach space X is said to be
representable if X is isomorphic to a w∗KA subspace of ℓ∞. A Banach space X
is said to be universally representable if X is representable and every subspace
Y of ℓ∞ isomorphic to X is a w∗KA subset of ℓ∞. The Lemma 5.2 allows us to
extend [8, Théorème 6] in the following way.

Theorem 5.7. Let Y be a separable Banach space and X a w∗KA closed
subspace of the dual Y ∗. The following statements are equivalent:

(a) X is universally representable.

(b) X fails to have a copy of ℓ1(c).

(c) (B(X∗), σ(X∗, X)) is an angelic space.

(d) X is universally (P ), that is, if Z is a subspace of the dual Banach space
V ∗ and Z is isomorphic to X, then Z fulfills the property (P ) inside V ∗.

(e) X ∈ (P ) inside Y ∗.

Proof. The equivalences (a) ⇔ (b) ⇔ (c) is the Théorème 6 of [8].

(b) ⇒ (d). Suppose that X fails to have a copy of ℓ1(c). Then, if Z is
isomorphic to X and also a subspace of certain dual Banach space V ∗, Z ∈ (P )
inside V ∗ because Z does not have a w∗-N-family in V ∗.

(d) ⇒ (e) is obvious and (e) ⇒ (c) follows from Lemma 5.2.

For a Banach space X, let NA(X) denote the subset of elements of the
dual X∗ which attain their norm on B(X). The following Proposition 5.8 and
Proposition 5.9 generalize Lemma 2.10 and Proposition 2.14 of [1], respectively.

Proposition 5.8. Let X be a Banach space, J : X → X∗∗ the canonical
inclusion, M a closed subspace of X∗ and i :M → X∗ be the canonical inclusion
mapping such that i∗ ◦ J(B(X)) contains
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(i) either a w∗KA boundary B of B(M∗); (ii) or Ext(B(M∗)).
Then:
(A) If X does not have a copy of ℓ1(c), i

∗ ◦ J : X → M∗ is a canonical
quotient.

(B) If M is infinite dimensional, there is an infinite dimensional quotient
space of X which is isomorphic to a dual space.

Proof. (A) Let B ⊂ i∗ ◦ J(B(X)) be either a w∗KA boundary of B(M∗) or
B = Ext(B(M∗)). Clearly B does not to have a copy of the basis of ℓ1(c)
because X does not.

Claim. co(B) = B(M∗).
Indeed, suppose that co(B) ̸= B(M∗). Then:
(i) Assume that B is a w∗KA boundary of B(M∗). By Proposition 4.3 and

[11, Proposition 2.5] there exists a w∗-N-family inside B(M∗) and so inside B
by Proposition 5.5. Thus, B contains a basis of ℓ1(c), a contradiction.

(ii) Assume that B = Ext(B(M∗)).
Por la Proposición 4.3 existe una w∗-N-familia dentro de B(M∗). Por la

Proposición 5.5 también existe una w∗-N-familia dentro de B. En consecuencia,
B posee una copia de la base de ℓ1(c).

(b) Sea B = Ext(B(M∗)). Por la Proposición 5.6 el conjunto B posee una
w∗-N-familia y, por tanto, una copia de la base de ℓ1(c).

Hemos llegado a una contradicción que prueba el Aserto.

Finalmente, observemos que el hecho co(B) = B(M∗) implica que i∗ ◦ J :
X → M∗ es un 1-cociente. Let B ⊂ i∗ ◦ J(B(X)) be a w∗KA boundary of
B(M∗). Clearly, B does not have a basis of ℓ1(c), because X fails to have a
copy of ℓ1(c).

Claim. co(B) = B(M∗).

Indeed, assume that co(B) ̸= B(M∗). By Proposition 4.3 and [11, Proposition
2.5] there exists a w∗-N-family inside B(M∗) and so inside B by Proposition
5.5. Thus, B contains a basis of ℓ1(c), a contradiction which proves the Claim.

Finally, observe that the fact co(B) = B(M∗) implies that i∗ ◦ J : X →M∗

is a canonical quotient.

Proposition 5.9. Let X be a Banach space, J : X → X∗∗ the canonical
inclusion and M an infinite dimensional closed subspace of NA(X) such that
i∗ ◦ J(B(X)) contains a w∗KA boundary of B(M∗), i : M → X∗ being the
canonical inclusion mapping. Then there is an infinite dimensional quotient
space of X which is isomorphic to a dual space.

Proof. If X does not have a copy of ℓ1(c), we apply Proposition 5.8. If X
contains a copy of ℓ1(c), then ℓ∞ is a quotient of X.
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