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Ángela Jiménez-Casas2
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Abstract

We analyze the limit of the solutions of an elliptic problem when some reac-
tion and potential terms are concentrated in a neighborhood of a portion Γ of the
boundary and this neighborhood shrinks to Γ as a parameter goes to zero.

We prove that this family of solutions converges in certain Sobolev spaces and
also in the sup norm, to the solution of an elliptic problem where the reaction term
and the concentrating potential are transformed into a flux condition and a potential
at Γ.

1 Introduction

Let Ω be an open bounded smooth set in IRN with a C2 boundary ∂Ω. Let Γ ⊂ ∂Ω
be a smooth subset of the boundary, isolated from the rest of the boundary, that is,
dist(Γ, ∂Ω \ Γ) > 0. Define the strip of width ε and base Γ as

ωε = {x− σ~n(x), x ∈ Γ, σ ∈ [0, ε)} (1.1)

for sufficiently small ε, say 0 < ε < ε0, where ~n(x) denotes the outward normal vector.
We note that for small ε, the set ωε is a neighborhood of Γ in Ω̄, that collapses to the
boundary when the parameter ε goes to zero.

We are interested in the behavior, for small ε, of the solutions of an elliptic problem
when either some reaction terms and some potentials are “concentrated” in ωε.

Hence, we consider two family of functions fε and Vε with the property that

∗Partially supported by Project BFM2003-03810
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Figure 1: The set ωε

1

ε

∫

ωε

|fε|
r ≤ C,

1

ε

∫

ωε

|Vε|
ρ ≤ C (1.2)

for some 1 ≤ r, ρ ≤ ∞, where we understand that r or ρ = ∞ means that ‖fε‖L∞(ωε), ‖Vε‖L∞(ωε)

are bounded uniformly in ε. Moreover, we assume that there exist functions f0 ∈ Lr(Γ)
and V0 ∈ Lρ(Γ) (or bounded Radon measures on Γ, f0, V0 ∈ M(Γ) if r = 1 = ρ) such that
for any smooth function ϕ, we have

lim
ε→0

1

ε

∫

ωε

fεϕ =
∫

Γ
f0ϕ, lim

ε→0

1

ε

∫

ωε

Vεϕ =
∫

Γ
V0ϕ. (1.3)

For instance, if fε ≡ f ∈ W 1,p(Ω) where W 1,p(Ω) has a well defined trace in Lr(Γ),
then (1.2) and (1.3) hold for f and the function f0 is given by the trace of f in Γ.

Notice also that from condition (1.2) we get that the functions 1
ε
Xωεfε,

1
ε
XωεVε are

uniformly bounded in L1(Ω), where Xωε denote the characteristic function of the set ωε.
We refer to 1

ε
Xωεfε,

1
ε
XωεVε as the concentrating functions in ωε.

Hence,we will consider general elliptic problems in divergence form of the type,










−div(a(x)∇uε) + c(x)uε + λuε + 1
ε
X ωεVε(x)u

ε = 1
ε
Xωεfε + gε in Ω,

a(x)∂uε

∂n
+ b(x)uε = jε on Γ,
uε = 0 on ΓD,

(1.4)

where ΓD = ∂Ω \ Γ and λ ∈ IR. We will show that, for sufficiently large λ, independent
of ε, under appropriate values of r, ρ and assuming that the terms gε and jε converge
in certain weak sense to functions g0 and j0, then the solutions of (1.4) converge to the
unique solution of











−div(a(x)∇u) + c(x)u+ λu = g0 in Ω,
a(x)∂u

∂n
+ (b(x) + V0(x))u = f0 + j0 on Γ,

u = 0 on ΓD.
(1.5)
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We will consider two different cases, according to the smoothness properties of the
coefficients of the underlying elliptic operator. If a, b and c are C1 functions, we can
use the scale of interpolation-extrapolation spaces associated to the elliptic operator,
[2]. This scale is given basically by the scale of Bessel potentials Hs,p(Ω), incorporating
the boundary conditions accordingly. This scale provides us with a powerful tool to treat
perturbations, like the one given by the potentials 1

ε
XωεVε and to consider the concentrated

reactions 1
ε
Xωεfε as convergent sequences in H−s,p(Ω) for some appropriate s, p. This will

allow us to prove that the solutions of (1.4) converge to the unique solution of (1.5) in
some Bessel potential spaces Hs,p(Ω) and even in spaces of Hölder functions in Ω̄.

In case the coefficients are not smooth enough, we will rely in the Hilbert space the-
ory and will be able to prove the convergence in H1(Ω) and, via the De Giorgi-Moser
procedure, we will also show the convergence of the solutions in L∞(Ω).

Observe that earlier versions of this work, containing weaker results can be found in
[5, 6]. Also, [7], contains some related results for some nonlinear eigenvalue problems.

We describe now the contents of the paper. In Section 2 we will prove several technical
results on the behavior of concentrating reactions and potentials as ε → 0. In Section 3
we deal with the case where the coefficients a, b and c are C1. In Section 4 we deal with
the case where the coefficients a, b and c are non-smooth. Finally in Section 5 we present
several extensions and important applications of the results of this paper.

2 Concentrating integrals

In this section we prove several results that describe how different concentrated integrals
converge to surface integrals.

Consider a bounded smooth domain Ω ⊂ IRN with smooth boundary ∂Ω. Let Γ ⊂ ∂Ω
be a subset of the boundary isolated from the rest of the boundary, that is, dist(Γ, ∂Ω\Γ) >
0. Then for sufficiently small σ ≥ 0 we can define the “parallel” interior boundary

Γσ = {x− σ~n(x), x ∈ Γ}

where ~n(x) denotes the outward normal unit at x ∈ Γ. Note that Γ0 = Γ. Define also the
strip of width ε and base Γ as

ωε = {x− σ~n(x), x ∈ Γ, σ ∈ [0, ε)} = ∪0≤σ<εΓσ

for sufficiently small ε, say 0 < ε < ε0.
Note that if we take a continuous function, v, in a neighborhood of Γ, then it is clear

that we have
lim
ε→0

sup
ωε

|v| = lim
ε→0

sup
Γε

|v| = sup
Γ

|v|. (2.1)

In what follows we will be interested in such type of convergence but when certain weighted
integral norms are considered.

We will extensively use the scale of Bessel Potential spaces Hs,p(Ω), which are obtained
via complex interpolation procedure of the usual Sobolev spaces W k,p(Ω) with k = 0, 1, ...,
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see for instance [1, 14, 2]. This scale of spaces are suitable to study elliptic and parabolic
problems, see [2] for a nice survey on this topic.

Note that the regularity of Ω and standard trace theory, see [1] implies that for any
function v ∈ Hs,p(Ω), with s > 1

p
, and for any σ ≥ 0 small enough, the trace of v is well

defined and in Lq(Γσ), provided s−N/p ≥ −(N − 1)/q, that is, with q ≤ p(N−1)
N−sp

. Also in

case s = 1 = p the trace is well defined in L1(Γσ).
The value ε0 above will be chosen small enough so that, for all 0 < ε < ε0, the strip

ωε can be parameterized in a C2 way by Γ × [0, ε), that is, the map

Tε : Γ × [0, ε) −→ ωε

(x, σ) −→ x− σ~n(x)

is a C2 diffeomorphism. Notice that if we define Ωδ = Ω \ ω̄δ, for 0 < δ < ε0, then we can
construct the following C2 diffeomorphism τδ : Ω −→ Ωδ defined by

τδ(x) =

{

x if dist(x,Γ) ≥ ε0

z − ψδ(σ)~n(z) if x = z − σ~n(z), σ ∈ [0, ε0)

where the function ψδ : [0, ε0] → [δ, ε0] is such that ψδ(ε0) = ε0, ψδ(0) = δ, it is strictly
increasing and |ψδ(σ) − σ| + |ψ′

δ(σ)| + |ψ′′
δ (σ)| → 0 uniformly in σ ∈ [0, ε0] as δ → 0.

Observe that τδ is a C2 diffeomorphism between Ω and Ωδ which satisfies ‖τδ −
I‖C2(Ω) → 0 as δ → 0. Note also that τδ is C2 diffeomorphism between Γ and Γδ

This diffeomorphisms induce isomorphisms τ ∗δ : Hs,p(Ωδ) −→ Hs,p(Ω) for all 0 ≤ s ≤ 2
and 1 ≤ p ≤ +∞, which are defined by τ ∗δ (u) = u ◦ τδ. The fact that ‖τδ − I‖C2(Ω) → 0 as
δ → 0 implies that for u ∈ Hs,p(Ωδ), we have ‖τ ∗δ (u) − u‖Hs,p(Ωδ) → 0. They also induce
the isomorphism τ̂δ : Lq(Γδ) → Lq(Γ), defined by τ̂δ(v) = v ◦ τδ. It is not difficult to prove
now that if we denote by γδ the trace operator from Hs,p(Ω) to Lq(Γδ) and γ the trace
operator from Hs,p(Ω) to Lq(Γ) then

τ̂δ ◦ γδ → γ, as δ → 0

and this convergence is pointwise from Hs,p(Ω) to Lq(Γ) if s > 1/p, s − N
p
≥ −N−1

q
and

in the operator norm if s > 1/p, s− N
p
> −N−1

q
.

We refer to [7] for more details in the case of s = 1 and p = 2.
Having this in mind, the following lemma can be easily proved,

Lemma 2.1 Assume that v ∈ Hs,p(Ω) with s > 1
p

and s− N
p
≥ − (N−1)

q
, or v ∈ H1,1(Ω),

i.e, s = 1 = p and q = 1 below.
Then for sufficiently small ε0, we have

i) The map

[0, ε0] ∋ σ 7→
∫

Γσ

|v|q (2.2)

is continuous.
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ii) There exist a positive constant C independent of ε and v such that for any ε ≤ ε0, we
have

supσ∈[0,ε)‖v‖Lq(Γσ) ≤ C‖v‖Hs,p(Ω). (2.3)

iii)
∫

ωε

|v|q =
∫ ε

0

(

∫

Γσ

|v|q
)

dσ. (2.4)

with the same equality, without the absolute value, if q = 1.
In particular

1

ε

∫

ωε

|v|q ≤ C‖v‖q
Hs,p(Ω) (2.5)

and

lim
ε→0

1

ε

∫

ωε

|v|q =
∫

Γ
|v|q. (2.6)

Using this result, we can now analyze how concentrating integrals converge for certain
families of functions which vary with ε and have weak regularity properties. More precisely
we have the following.

Lemma 2.2 Assume that a given family fε defined on ωε satisfy (1.2), that is, for some
1 ≤ r <∞ and a constant C independent of ε,

1

ε

∫

ωε

|fε|
r ≤ C

or
sup
x∈ωε

|fε(x)| ≤ C

for the case r = ∞.
Then, for every sequence converging to zero (that we still denote ε → 0) there exist

a subsequence (that we still denote the same) and a function f0 ∈ Lr(Γ) (or a bounded
Radon measure on Γ, f0 ∈ M(Γ) if r = 1) such that
i) For any smooth function ϕ, defined in Ω, we have

lim
ε→0

1

ε

∫

ωε

fεϕ =
∫

Γ
f0ϕ. (2.7)

ii) If uε → u0 weakly in Hs,p(Ω) with s > 1/p and

s−
N

p
> −

N − 1

r′
, (2.8)

or strongly in case of equal sign in (2.8), then

lim
ε→0

1

ε

∫

ωε

fεu
ε =

∫

Γ
f0u

0. (2.9)
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Proof Define, for s0 >
1
p0

and s0 −
N
p0

≥ −N−1
r′

, the linear forms

Lε(ϕ) =
1

ε

∫

ωε

fεϕ

on Hs0,p0(Ω). Note that Lemma 2.1 and the assumption on fε imply that Lε are well
defined and indeed

|Lε(ϕ)| ≤
(1

ε

∫

ωε

|fε|
r
)1/r(1

ε

∫

ωε

|ϕ|r
′
)1/r′

≤ C‖ϕ‖Hs0,p0 (Ω) (2.10)

(with obvious modifications for the case r = ∞). Hence {Lε} is bounded in the dual
space of Hs0,p0(Ω).

Hence, by the Banach–Alaouglu–Bourbaki theorem and taking subsequences if nece-
sary, we have that there exists L0 ∈ (Hs0,p0(Ω))

′

:= H−s0,p′0(Ω) such that

Lε(ϕ) → L0(ϕ), for all ϕ ∈ Hs0,p0(Ω)

as ε → 0 and the limit is uniform for ϕ in compact sets of Hs0,p0(Ω).
In particular, from (2.10) and Lemma 2.1, we get

|L0(ϕ)| ≤ C
(

∫

Γ
|ϕ|r

′
)1/r′

and since traces of Hs0,p0(Ω) are dense in Lr′(Γ) we get that there exist f0 ∈ Lr(Γ) such
that

L0(ϕ) =
∫

Γ
f0ϕ

which proves i). Note that if r = 1 then we obtain f0 ∈ M(Γ) = (C(Γ))
′

.
Now if uε is as in ii) note that, in the case of weak convergence, there exist s0 and p0

as above such that Hs,p(Ω) →֒ Hs0,p0(Ω) with compact embedding, which proves ii). In
the case of strong convergence, the conclusion follows from the argument leading to L0.

Remark 2.3 Observe that the Lemma above implies that Fε = 1
ε
X ωεfε is a bounded

family in H−s,p(Ω) = (Hs,p′(Ω))
′

for s > 1
p′

and s + N
p
≥ 1 + N−1

r
.

In the following example we characterize the limiting boundary integral in two different
situations.

Example 2.4 Assume that f ∈ C(Ω).
i) Define fε = X ωεf . Then Lemma 2.2 applies with 1 ≤ r ≤ ∞ and f0 = f|Γ.
ii) Define fε = X θεf , where θε ⊂ ωε is defined as θε = {x− σ~n(x), x ∈ Γ, εk1(x) < σ <
εk2(x)} for some continuous and nonnegative functions 0 ≤ k1(x) < k2(x) ≤ 1 defined on
Γ. Then, Lemma 2.2 applies with 1 ≤ r ≤ ∞ and f0(x) = (k2(x) − k1(x))f(x) .

We can also prove,
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Lemma 2.5 Assume we have a family of functions Vε, 0 ≤ ε ≤ ε0, verifying the hypothe-
ses of Lemma 2.2. Moreover, assume that (taking subsequences if necessary) there exits a
function V0 ∈ Lr(Γ) (or a bounded Radon measure on Γ, V0 ∈ M(Γ) if r = 1) such that
for any smooth function ϕ, we have

lim
ε→0

1

ε

∫

ωε

Vεϕ =
∫

Γ
V0ϕ.

Then, for s > 1
p
, σ > 1

q
and s + σ − N

p
− N

q
> −N−1

r′
, if we define the operators,

Pε : Hs,p(Ω) → H−σ,q(Ω) for 0 ≤ ε ≤ ε0 by

< Pε(u), ϕ >=
1

ε

∫

ωε

Vεu
εϕε

< P0(u), ϕ >=
∫

Γ
V0uϕ,

then Pε → P0 in L(Hs,p(Ω), H−σ,q(Ω)).

Proof Note that for every u ∈ Hs0,p0(Ω) and ϕ ∈ Hσ0,q0(Ω) using Lemma 2.1, we have

|
1

ε

∫

ωε

fεuϕ| ≤ (
1

ε

∫

ωε

|fε|
r)

1
r (

1

ε

∫

ωε

|u|m)
1
m (

1

ε

∫

ωε

|ϕ|n)
1
n ≤ C‖u‖Hs0,p0 (Ω)‖ϕ‖Hσ0,q0 (Ω)

where 1
r

+ 1
m

+ 1
n

= 1 and r,m, n are such that s0 − N
p0

≥ −N−1
m

, with s0 >
1
p0

, and

σ0 −
N
q0

≥ −N−1
n

, with σ0 >
1
q0

.

Then the operator Pε from Hs0,p0(Ω) into H−σ0,q′0(Ω) := (Hσ0,q0(Ω))
′

is uniformly
bounded.

Hence, fixed u ∈ Hs0,p0(Ω) we have by Lemma 2.2 that

< Pε(u), ϕ >=
1

ε

∫

ωε

Vεuϕ→
∫

Γ
V0uϕ =< P0(u), ϕ >

uniformly for ϕ in compact sets of Hσ0,q0(Ω). Hence if q ≥ q0 with σ > 1
q

and σ > σ0 then

Hσ,q(Ω) ⊂ Hσ0,q0(Ω) with compact embedding, and then, in particular

Pε(u) → P0(u) in H−σ,q′(Ω).

Again this implies uniform convergence for u in compact sets of Hs0,p0(Ω). Hence if
p ≥ p0 with s > 1

p
and s > s0 then Hs,p(Ω) ⊂ Hs0,p0(Ω) with compact embedding, and

then, in particular, we have

Pε → P0 in L(Hs,p(Ω), H−σ,q′(Ω)) (2.11)

which gives the result.
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3 Elliptic problems with smooth coefficients

In this section we analyze the behavior, as ε → 0, of the solutions of the elliptic problem
(1.4) with smooth coefficients a, c ∈ C1(Ω), b ∈ C1(Γ), with suitable nonhomogeneous
given terms gε, jε and concentrating potentials Vε and concentrating nonhomogeneous
terms fε.

Throughout this section we will assume, as in (1.2) and (1.3), that

1

ε

∫

ωε

|fε|
r ≤ C,

1

ε

∫

ωε

|Vε|
ρ ≤ C (3.1)

and that there exist functions f0 ∈ Lr(Γ) and V0 ∈ Lρ(Γ) (or bounded Radon measures
on Γ, f0, V0 ∈ M(Γ) if r = 1 = ρ) such that for any smooth function ϕ, we have

lim
ε→0

1

ε

∫

ωε

fεϕ =
∫

Γ
f0ϕ, lim

ε→0

1

ε

∫

ωε

Vεϕ =
∫

Γ
V0ϕ, (3.2)

where ωε is defined by (1.1), see Lemma 2.2 and Lemma 2.5. Also, we will assume that

gε → g0 weakly in Lz(Ω)

jε → j0 weakly in Lt(Γ)
(3.3)

for some z, t ≥ 1.
Now we consider an adequate setting for the elliptic problems (1.4) and (1.5). For

this define the elliptic operator A0 by A0(u) = −div(a(x)∇u) + c(x)u, regarded as an
unbounded operator in X0,p := Lp(Ω), for 1 < p <∞, with domain given by X1,p := {u ∈
W 2,p(Ω) : u = 0 in ΓD, a(x)∂u

∂n
+ b(x)u = 0 in Γ}. Using the interpolation–extrapolation

techniques in [2], for which the reader is referred for further details, the operator A0 has
also an associated scale of interpolated Banach spaces Xα,p, 0 < α < 1 with the property
that Xα,p →֒ H2α,p(Ω) where we denote by Hs,p(Ω) the Bessel Potential spaces. We also
have that the scale can be extended to the negative exponents with X−α,p = (X−α,p′)′,
for 0 < α < 1. Moreover, we have H−2α,p(Ω) = (H2α,p′(Ω))′ →֒ X−α,p.

Now using the different realization of A0 in the extrapolated spaces, see [2], problems
(1.4) and (1.5) can be written as a perturbation of a fixed elliptic operator, i.e.

A0u
ε + λuε + Pεu

ε = kε,

for 0 ≤ ε ≤ ε0. Note that we identify (1.5) with the case ε = 0 and Pε and P0 are
defined as in Lemma 2.5, that is, < Pεu, ϕ >= 1

ε

∫

ωε
Vεuϕ and < P0u, ϕ >=

∫

Γ V0uϕ.
Also, note that kε accounts for nonhomogeneous terms and from Lemmas 2.2 and 2.5 we
have Pε → P0 and kε → k in some sense.

In fact this convergence will be used to prove that solutions of (1.4) actually converge
to solutions of (1.5).

With regards to the behavior of the operators A0 + λI + Pε we have the following
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Theorem 3.1 Assume the conditions above and also that Vε satisfy (3.1) with ρ > N−1.
Then, there exists some λ0 independent of ε, such that for λ > λ0 the elliptic operator
A0 + λI + Pε in (1.4) is invertible and for σ ∈ ( 1

p′
, 2 − 1

p
), 0 ≤ ε ≤ ε0 we have

‖(A0 + λI + Pε)
−1‖L(H−σ,p(Ω),H2−σ,p(Ω)) ≤ C,

where C is independent of ε and λ.

Proof With the notations of Lemma 2.5, taking q = p′, we have that

< Pε(u), ϕ >=
1

ε

∫

ωε

Vεuϕ, for all u ∈ Hs,p(Ω), ϕ ∈ Hσ,p′(Ω)

< P0(u), ϕ >=
∫

Γ
V0uϕ, for all u ∈ Hs,p(Ω), ϕ ∈ Hσ,p′(Ω)

is uniformly bounded, for s > 1/p, σ > 1/p′ and

s+ σ > 1 +
N − 1

ρ
.

Moreover
Pε → P0 in L(Hs,p(Ω), H−σ,p(Ω)).

Since ρ > N − 1 we can take s + σ < 2 and then A0 + λI + Pε is well defined from
H2−σ,p(Ω) into H−σ,p(Ω) for any σ ∈ ( 1

p′
, 2 − 1

p
), 0 ≤ ε ≤ ε0. In particular for given

g ∈ H−σ,p(Ω) the equation A0u+ λu+ Pεu = g can be written as

u = (A0 + λI)−1(g − Pεu) = (A0 + λI)−1g − (A0 + λI)−1Pεu = T ε
λ(u).

If g ∈ H−σ,p(Ω), (A0+λI)
−1g ∈ H2−σ,p(Ω) and ‖(A0+λI)

−1g‖H2−σ,p(Ω) ≤ C‖g‖H−σ,p(Ω).
Moreover, from Lemma 2.5, Pε → P0 in L(H2−σ,p(Ω), H−σ̃,p(Ω)) for some σ̃ < σ and

close to σ. Using now the resolvent estimates for A0, see [3],

‖(A0 + λ)−1‖L(H−σ̃,p(Ω),H2−σ,p(Ω)) ≤
C

|λ|(σ−σ̃)/2
,

and we get that the Lipschitz constant of T ε
λ : H2−σ,p(Ω) → H2−σ,p(Ω) is bounded by

C
|λ|(σ−σ̃)/2 . Therefore it is a contraction, with Lipschitz constant θ < 1 uniform for large

enough λ and 0 ≤ ε ≤ ε0. This implies that the unique fixed point of T ε
λ satisfies

‖u‖H2−σ,p(Ω) ≤
1

1−θ
‖(A0 + λ)−1g‖H2−σ,p(Ω) ≤

C
1−θ

‖g‖H−σ,p(Ω), which proves the result.

We can prove now,

Corollary 3.2 Assume we are in the conditions of Theorem 3.1 and also that (3.1), (3.2)
and (3.3) holds with ρ > N − 1, z ≥ Nr/(N − 1 + r) and t ≥ r. Assume also that λ > λ0

is fixed. Then, uε, the solution of (1.4), satisfies

uε → u in Hs,r(Ω)
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for any s < 1 + 1
r

where u is the unique solution of the limiting problem (1.5).
In particular, if r > N − 1, z > N/2 and t > N − 1, then

uε → u in Cβ(Ω),

for some β > 0.

Proof First note that from Remark 2.3, Fε = 1
ε
X ωεfε is bounded in H−σ,r(Ω) for σ > 1

r′
.

Also, f0 belongs to H−σ,r(Ω) for σ > 1
r′

. Moreover, for the choice of z and t, gε ∈ Lz(Ω)
and jε ∈ Lt(Γ) are also bounded in H−σ,r(Ω) for σ > 1

r′
and 0 ≤ ε ≤ ε0.

Hence, from Theorem 3.1, the solutions of (1.4) and (1.5) are unique and they are
bounded in H2−σ,r(Ω), provided we can take σ < 2− 1

r
. These two conditions are satisfied

since we can always choose 1
r′
< σ < 2 − 1

r
= 1 + 1

r′
.

Notice that choosing σ > 1/r′ but arbitrarily close to 1/r′, we have that 2−σ < 1+1/r
but it is arbitrarily close to 1+1/r. Hence, by Theorem 3.1 the sequence uε is bounded in
Hs,r(Ω) for all s < 1 + 1

r
and therefore it is a relatively compact sequence in these spaces.

Hence, under a subsequence we have that uε → u ∈ Hs,r(Ω).
Next, we prove u satisfies the elliptic problem (1.5). In effect, multiplying the equation

(1.4) by ϕ ∈ C∞
ΓD

(Ω), the space of C∞ functions in Ω̄ which are identically zero in a
neighborhood of ΓD, we obtain

∫

Ω
(a(x)∇uε∇ϕ+ (c(x) + λ)uε)ϕ+

∫

Γ
b(x)uεϕ+

1

ε

∫

wε

Vε(x)u
εϕ =

1

ε

∫

ωε

fεϕ+
∫

Ω
gεϕ+

∫

Γ
jε
εϕ.

(3.4)

Now we assume first ϕ ∈ C∞
c (Ω) and taking the limit as ε goes to zero, using (1.3), we

get
∫

Ω
a(x)∇u∇ϕ+

∫

Ω
(c(x) + λ)uϕ =

∫

Ω
g0uϕ.

Therefore the limit function satisfies

−div(a(x)∇u) + (c(x) + λ)u = g0, in Ω. (3.5)

In particular u ∈ C∞
loc(Ω).

Now, we consider ϕ ∈ C∞
ΓD

(Ω) in (3.4) and using (1.3) and the convergence of the
traces above, we get

∫

Ω
a(x)∇u∇ϕ +

∫

Ω
(c(x) + λ)uϕ+

∫

Γ
(b(x) + V0)uϕ =

∫

Ω
g0uϕ+

∫

Γ
(f0 + j0)ϕ.

Now, since λ > λ0, from the uniqueness of solutions for the limit problem (1.5) ob-
tained above, we have that all the family uε converges to u.

If r > N − 1, z > N/2 and t > N − 1, we get that, maybe choosing a smaller r
but still r > N − 1 we have z ≥ Nr/(N − 1 + r) and t ≥ r and therefore uε → u0 in
Hs,r(Ω) for all s < 1+ 1

r
. Hence, the Hölder convergence is obtained using the embedding

Hs,r(Ω) →֒ Cβ(Ω̄) for s < 1 + 1
r

but arbitrarily close to it and r > N − 1.

We will be able to include a non homogeneous Dirichlet boundary conditions in ΓD.
More precisely we have,

10



Corollary 3.3 Assume we are in the conditions of Theorem 3.1. Let h be a function
defined in ΓD such that h ∈ H1/2(ΓD) ∩ Cβ(ΓD). Then if in problems (1.4) and (1.5)
we substitute the condition u = 0 on ΓD by u = h on ΓD, then the same conclusions of
Corollary 3.2 hold.

Proof Let us denote by H the unique solution of the following problem


















−div(a(x)∇H) = 0 in Ω,

a(x)
∂H

∂n
= 0 on Γ,

H = h on ΓD,

(3.6)

which, by standard elliptic theory, it is known to exists and H ∈ H1(Ω) ∩ Cβ(Ω̄).
Rewriting both equations (1.4) and (1.5) in terms of the new variables vε = uε − H

and v = u−H , we obtain,











−div(a(x)∇vε) + c(x)vε + λvε + 1
ε
X ωεVε(x)v

ε = 1
ε
Xωε f̃ε + g̃ε in Ω

a(x)∂vε

∂n
+ b(x)vε = j̃ε on Γ
vε = 0 on ΓD

(3.7)

and










−div(a(x)∇v) + c(x)v + λv = g̃0 in Ω,

a(x) ∂v
∂n

+ b(x)v + V0(x)v = f̃0 + j̃0 on Γ,
v = 0 on ΓD,

(3.8)

where f̃ε = fε − Vε(x)H , g̃ε = gε − (c(x) + λ)H , j̃ε = jε − b(x)h, and similarly f̃0 =
f0 − V0(x)h, g̃0 = g0 − (c(x) + λ)H , j̃0 = j0 − b(x)h.

Applying Corollary 3.2 to problems (3.7) and (3.8) we obtain that vε → v in Cβ(Ω̄).
This implies that uε → u in Cβ(Ω̄).

4 Elliptic problems with nonsmooth coefficients

In the arguments of the previous section we have used in an essential way that the
coefficients in the elliptic operator are smooth so we can use the associated scale of
interpolation-extrapolation spaces which are well characterized in terms of the Bessel
potential spaces. In case the coefficients are not that smooth, still some analysis can be
carried out in a Hilbert space setting. More precisely, we consider the elliptic problem
(1.4) with 0 < a0 ≤ a ∈ L∞(Ω) and

c ∈ Lp(Ω), p >
N

2
, b ∈ Ls(Γ), s > N − 1. (4.1)

Assume, as before, that

1

ε

∫

ωε

|fε|
r ≤ C,

1

ε

∫

ωε

|Vε|
ρ ≤ C (4.2)
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and there exist functions f0 ∈ Lr(Γ) and V0 ∈ Lρ(Γ) (or bounded Radon measures on Γ,
f0, V0 ∈ M(Γ) if r = 1 = ρ) such that for any smooth function ϕ, we have

lim
ε→0

1

ε

∫

ωε

fεϕ =
∫

Γ
f0ϕ, lim

ε→0

1

ε

∫

ωε

Vεϕ =
∫

Γ
V0ϕ. (4.3)

Moreover, we assume
gε → g0 weakly in Lz(Ω)
jε → j0 weakly in Lt(Ω)

(4.4)

for some z, t ≥ 1 and consider the formal limit problem (1.5).
We have the following,

Theorem 4.1 Assume the above notations and assumptions. Moreover, assume r >
2(N −1)/N , ρ > N −1, z > 2N/(N +2) and t > 2(N −1)/N . Then there exists some λ0

such that for λ > λ0 the family of solutions of (1.4), uε, converges in H1(Ω), as ε → 0,
to the unique solution of (1.5). Even more λ0 = 0 if b, c, Vε ≥ 0.

Proof We split the proof in several steps.
Step 1 We prove that there exists λ0 such that for λ > λ0 the bilinear forms in H1(Ω)

aε(φ, ξ) =
∫

Ω
a(x)∇φ∇ξ +

∫

Ω
(c(x) + λ)φξ +

∫

Γ
b(x)φξ +

1

ε

∫

ωε

Vεφξ

and
a0(φ, ξ) =

∫

Ω
a(x)∇φ∇ξ +

∫

Ω
(c(x) + λ)φξ +

∫

Γ
(b(x) + V0(x))φξ

are uniformly coercive. In particular there exist a unique solution of (1.4) and (1.5).
For this note that for every φ ∈ H1(Ω) we have that, for the negative parts we have

the bound
1

ε

∫

ωε

(Vε)−|φ|
2 ≤ (

1

ε

∫

ωε

|(Vε)−|
ρ)

1
ρ [

1

ε

∫

ωε

|φ|2ρ′]
1
ρ′ .

Now, since ρ > N − 1, from Lemma 2.5, with p = 2 = q, r = ρ, we have, for some
s = σ < 1 and s ≥ N−1

2ρ
+ 1

2

1

ε

∫

ωε

(Vε)−|φ|
2 ≤ C‖φ‖2

Hs(Ω) ≤ C‖φ‖2s
H1(Ω)‖φ‖

2(1−s)
L2(Ω) .

Finally using Young’s inequality, we get for any δ > 0

1

ε

∫

ωε

(Vε)−|φ|
2 ≤ δ‖φ‖2

H1(Ω) + Cδ‖φ‖
2
L2(Ω).

On the other hand, from Holder’s inequality we have

∫

Ω
c−(x)|φ|2 ≤

∫

Ω
c−(x)|φ|2 ≤ ‖c−‖Lp(Ω)‖φ‖

2
L2p′ (Ω). (4.5)
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Since p > N
2

we have that H1(Ω) ⊂ L2p′(Ω), and there exist 0 < s < 1 such that

Hs(Ω) ⊂ L2p′(Ω), and then we have

∫

Ω
c−(x)|φ|2 ≤ δ‖φ‖2

H1(Ω) + Cδ‖φ‖
2
L2(Ω)

with δ << 1 and Cδ independent of ε.
Finally, since s > N − 1, we have H1(Ω) ⊂ L2s′(Γ) and there exits 0 < s < 1 such

that Hs(Ω) ⊂ L2s′(Γ) and then we have that

∫

Γ
b−(x)|φ|2 ≤ ‖b−‖Ls(Γ)‖φ

2‖Ls′(Γ) = ‖b−‖Ls(Γ)‖φ‖
2
L2s′(Γ) ≤ δ‖φ‖2

H1(Ω) + Cδ‖φ‖
2
L2(Ω). (4.6)

Hence, we can take δ small enough and λ large enough such that

aε(φ, φ) =
∫

Ω
a(x)|∇φ|2 +

∫

Ω
(c(x) +λ)|φ|2 +

∫

Γ
b(x)|φ|2 +

1

ε

∫

ωε

Vε|φ|
2 ≥ C‖φ‖2

H1(Ω) (4.7)

with C = C(λ) > 0 independent of ε.
A similar argument using that V0 ∈ Lρ(Γ) and ρ > N − 1 gives the result for the

bilinear form a0.
Step 2 For λ > λ0, the family uε is uniformly bounded with respect to ε in H1(Ω).

In fact from (1.4) we have

aε(u
ε, uε) =

1

ε

∫

ωε

fεu
ε +

∫

Ω
gεu

ε +
∫

Γ
jεu

ε. (4.8)

From Remark 2.3, with s = 1, p = 2, or (2.10), we get that, for sufficiently small
δ > 0,

|
1

ε

∫

ωε

fεu
ε| ≤ c‖uε‖H1(Ω) ≤ δ‖uε‖2

H1(Ω) + Cδ (4.9)

since r ≥ 2(N−1)
N

. On the other hand, from the assumptions on z and t, we have

|
∫

Ω
gεu

ε| ≤ ‖gε‖Lz(Ω)‖u
ε‖Lz′(Ω) ≤ δ‖uε‖2

H1(Ω) + Cδ‖gε‖
2
Lz(Ω) (4.10)

and
|
∫

Γ
jεu

ε| ≤ ‖jε‖Lt(Γ)‖u
ε‖Lt′(Γ) ≤ δ‖uε‖2

H1(Ω) + Cδ‖jε‖
2
Lt(Γ). (4.11)

From this, using the boundedness of ‖gε‖Lz(Ω) and ‖jε‖Lt(Γ) and (4.7) we obtain

‖uε‖2
H1(Ω) ≤ C (4.12)

for some C independent of ε.
From this, there exists a subsequence that we still denote uε which converges weakly

to u in H1(Ω). Moreover, from Sobolev’s embedding, we can assume the subsequence
converges also strongly in Hs(Ω), with s < 1, and in Lp(Ω) with p < 2N

N−2
and almost
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everywhere. Even more, we can assume the traces converge in Lq(Γ) for q < 2(N−1)
N−2

and
almost everywhere on Γ.
Step 3 The limit function satisfies (1.5). From this and the uniqueness of solutions of
(1.5), we get that the whole family uε converges to u.

Note that from (1.5), for any smooth test function ϕ ∈ C∞(Ω̄) we obtain

∫

Ω
a(x)∇uε∇ϕ+

∫

Ω
(c(x)+λ)uεϕ+

∫

Γ
b(x)uεϕ+

1

ε

∫

ωε

Vε(x)u
εϕ =

1

ε

∫

ωε

fεϕ+
∫

Ω
gεϕ+

∫

Γ
jεϕ.

Now note that since ρ > N − 1, from Lemma 2.5, with p = 2 = q, r = ρ and for some
s = σ < 1 we can pass to the limit in the first term of the right hand side. This and the
convergence of uε in Step 2, allows us to pass to the limit above, to get

∫

Ω
a(x)∇u∇ϕ+

∫

Ω
(c(x) + λ)uϕ+

∫

Γ
(b(x) + V0(x))uϕ =

∫

Ω
g0ϕ+

∫

Γ
(j0 + f0)ϕ.

Hence, u is a weak solution of the limit problem (1.5).
Step 4 Now we prove that uε converges to u strongly in H1(Ω). Note that for this it is
enough to prove convergence of the norms.

For this, note that in (4.8), using the convergence from Step 2 and Lemma 2.2 with

s = 1, p = 2 and r > 2(N−1)
N

, we have

lim
ε→0

(1

ε

∫

ωε

fεu
ε +

∫

Ω
gεu

ε +
∫

Γ
jεu

ε
)

=
∫

Γ
f0u+

∫

Ω
g0u+

∫

Γ
j0u (4.13)

and also

lim
ε→0

∫

Ω
(c(x) + λ)|uε|2 =

∫

Ω
(c(x) + λ)|u|2, lim

ε→0

∫

Γ
b(x)|uε|2 =

∫

Γ
b(x)|u|2. (4.14)

On the other hand, using again ρ > N − 1, from Lemma 2.5, with p = 2 = q, r = ρ and
for some s = σ < 1, we get

lim
ε→0

1

ε

∫

ωε

Vε(x)|u
ε|2 =

∫

Γ
V0(x)|u|

2.

With this, passing to the limit in (4.8), we get
∫

Ω
a(x)|∇u|2 ≤ lim inf

ε

∫

Ω
a(x)|∇uε|2 ≤ lim sup

ε

∫

Ω
a(x)|∇uε|2 ≤

−
∫

Ω
(c(x) + λ)|u|2 −

∫

Γ
V0(x)|u|

2 +
∫

Γ
(j + f0)u+

∫

Ω
g0u.

Finally from the variational formulation of the limit problem we have
∫

Ω
a(x)|∇u|2 = −

∫

Ω
(c(x) + λ)|u|2 −

∫

Γ
V0(x)|u|

2 +
∫

Γ
(j + f0)u+

∫

Ω
g0u

and we conclude.

In particular, from this we can obtain
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Corollary 4.2 Under the assumptions and hypotheses of Theorem 4.1, we denote by Aε

and A, respectively, the linear unbounded selfadjoint operators in L2(Ω) induced by the
bilinear forms aε(·, ·) and a0(·, ·) above.

Then, a point in the resolvent set ξ ∈ ρ(A) also satisfies ξ ∈ ρ(Aε) for small ε, and

‖(Aε − ξI)−1 − (A− ξI)−1‖L(L2(Ω),H1(Ω)) → 0, ε→ 0. (4.15)

Even more, if γ denotes a simple closed curve contained in ρ(A), then the corresponding
projection

Pγ(Aε) =
1

2πi

∫

γ
(Aε − µI)−1dµ (4.16)

converges to Pγ(A) as ε → 0 in L(L2(Ω), H1(Ω)). Moreover, if µ0 is an isolated eigenvalue
of A with finite multiplicity m, then any curve γ enclosing µ0 but not other point of σ(A)
encloses, for sufficiently small ε, eigenvalues of Aε with total multiplicity m.

Proof: Using Theorem 4.1 we obtain that the resolvents converge in norm a some point
µ, i.e.

‖(Aε − µI)−1 − (A− µI)−1‖L(L2(Ω),H1(Ω)) → 0, ε→ 0. (4.17)

Therefore, from the theory developed in [10] or applying directly Theorem 9.10 in [13] we
conclude the spectral convergence of the corollary.

Remark 4.3

i) The convergence of the spectra given by Corollary 4.2 can be restated in the following
way: if {λε

n}
∞
n=1 is the set of eigenvalues of Aε, for 0 ≤ ε ≤ ε0, with λε

1 ≤ λε
2 ≤ . . . λε

n and
counting multiplicity then, for all n = 1, 2, . . .,

λε
n → λ0

n as ε→ 0.

Moreover, if we denote by {ϕε
n}

∞
n=1 a corresponding set of orthonormal eigenfunctions of

Aε, if λ0
n1
< λ0

n = . . . = λ0
m < λ0

m+1 and if we consider the finite dimensional spaces
Uε =span{ϕε

n, . . . , ϕ
ε
m} for 0 ≤ ε ≤ ε0, then Uε → U0 in the sense that the unit balls of Uε

converge in the symmetric Haussdorf distance to the unit ball of U0.
ii) From the Corollary above the following can also be obtained. Assume {λε

n}
∞
n=1 is the

set of eigenvalues of Aε, for 0 ≤ ε ≤ ε0, with λε
1 ≤ λε

2 ≤ . . . λε
n and counting multiplicity.

Also, assume for each ε and n an associated eigenfunction is chosen such that {ϕε
n(x)}∞n=1

is a Hilbert basis of L2(Ω). Then there exists a subsequence, that we still denote ε → 0
such that for every n ∈ IN ,

ϕε
n(x) → ϕn(x) in H1(Ω)

and {ϕn(x)}
∞
n=1 is a Hilbert basis of L2(Ω) of eigenfunctions of {λ0

n}
∞
n=1.

iii) Note that the spectral convergence above also apply in case the coefficients of the elliptic
operators are smooth, as in Section 3.
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Now we will show that under natural but more restrictive assumptions than in Theo-
rem 4.1, we can actually conclude the uniform convergence of solutions, that is

uε → u in C(Ω̄).

For this we will use the classical De Giorgi-Moser technique; see [11] and we follow closely
the approach in [4].

Our first result shows that under suitable conditions, the solutions uε are uniformly
bounded in L∞(Ω). Note that, even if V ε = 0 this result does not follow straight from
[11] nor [4], since in such cases one needs the right hand side to be uniformly bounded
in Lp(Ω) for p > N/2, which is not the case here, since we only have uniform bounds in
L1(Ω) .

Theorem 4.4 Under the above assumptions and notations and assuming r, ρ, t > N − 1
and z > N/2, we have uε ∈ L∞(Ω), and

‖uε‖L∞(Ω) ≤ C1

for some constant C1 > 0 independent of ε and depending on s, p, r, ρ, N , ‖b‖Ls, ‖c‖Lp,
‖gε‖Lz , ‖jε‖Lt(Γ1).

Proof We proceed in several steps.
Step 1 We will prove first that uε ∈ Ly(Ω) for all 1 ≤ y <∞ and that ‖uε‖Ly(Ω) ≤ C(y)
for some constant C(y) independent of ε.

For this, we will show that for any 2N
N+2

≤ d < N
2
, then uε ∈ L

dN
N−2d (Ω) and

‖uε‖
L

dN
N−2d (Ω)

≤ C(d) (4.18)

for some constant C independent of ε. Throughout the proof we will denote m = inf
Ω
a.

Note first that for 2N
N+2

≤ d < N
2
, we have that q = (N−2)d

N−2d
≥ 2. If we multiply the

equation by |uε|
q−2uε and integrate by parts we obtain

4(q−1)
q2

∫

Ω
a|∇|uε|

q
2 |2 +

∫

Ω
(c+ λ)(|uε|

q
2 )2 +

∫

Γ
b(|uε|

q
2 )2 +

1

ε

∫

ωε

Vε(|uε|
q
2 )2 =

1

ε

∫

ωε

fε|uε|
q−2uε +

∫

Γ
jε|uε|

q−2uε +
∫

Ω
gε|uε|

q−2uε.

Denoting by vε = |uε|
q
2 , we have

|
∫

Ω
gε|uε|

q−2uε| ≤ [
∫

Ω
|gε|

d]
1
d [

∫

Ω
|uε|

(q−1)d′ ]
1
d′ = ‖gε‖Ld[

∫

Ω
|vε|

2d′

q′ ]
1
d′ = ‖gε‖Ld(Ω)‖v

ε‖
2
q′

L
2d′

q′ (Ω)

.

Now, since 2d′

q′
= 2N

N−2
we have

|
∫

Ω
gε|uε|

q−2uε| ≤ C‖vε‖
2
q′

H1(Ω). (4.19)
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If we denote by n = (N−1)d
N−d

< N − 1, we have

|
1

ε

∫

ωε

fε|uε|
q−2uε| ≤ [

1

ε

∫

ωε

|fε|
n]

1
n [

1

ε

∫

ωε

|uε|
(q−1)n′

]
1
n′ ≤ C0[

1

ε

∫

ωε

|vε|
2n′

q′ ]
1
n′ .

Now, since 2n′

q′
= 2(N−1)

N−2
, we have, using Lemma 2.1, that

|
1

ε

∫

ωε

fε|uε|
q−2uε| ≤ C0

[

1

ε

∫

ωε

|vε|
2(N−1)

N−2

]

N−2
2(N−1)

· 2
q′

≤ C‖vε‖
2
q′

H1(Ω). (4.20)

In a similar way, we have

|
∫

Γ
jε|uε|

q−2uε| ≤ [
∫

Γ
|jε|

n]
1
n [

∫

Γ
|uε|

(q−1)n′

]
1
n′ = ‖jε‖Ln(Γ)[

1

ε

∫

Γ
|vε|

2n′

q′ ]
1
n′

and using again that 2n′

q′
= 2(N−1)

N−2
, we get

|
∫

Γ
jε|uε|

q−2uε| ≤ C‖vε‖
2
q′

H1(Ω). (4.21)

Putting all these estimates together, we have

4(q − 1)

q2

∫

Ω
a|∇vε|

2 +
∫

Ω
(c+ λ)v2

ε +
∫

Γ
bv2

ε +
1

ε

∫

ωε

Vε|vε|
2 ≤ C‖vε‖

2
q′

H1(Ω). (4.22)

We can add to both sides of the previous inequality a term of the type µ
∫

Ω v
2
ε , with

µ = µ(q), so that the left hand side is uniformly coercive, obtaining,

C(q)‖vε‖
2
H1(Ω) ≤ C‖vε‖

2
q′

H1(Ω) + C‖vε‖
2
L2(Ω).

Hence,

C(q)‖vε‖
2
H1(Ω) ≤ C‖vε‖

2
q′

H1(Ω) + C‖vε‖
2
L2(Ω) ≤ C‖vε‖

2
q′

H1(Ω) + C‖vε‖
2
q′

H1(Ω)‖vε‖
2
q

Lq(Ω).

From where we get

‖vε‖
2
q

L
2N

N−2 (Ω)
≤ C(q)(1 + ‖uε‖Lq(Ω)),

and since vε = |uε|
q
2 and q = (N−2)d

N−2d
, we get

‖uε‖
L

q+ 2d
N−2d (Ω)

≤ C(q)(1 + ‖uε‖Lq(Ω)).

and since 2d
N−2d

≥ 2
N−2

we get

‖uε‖
L

q+ 2
N−2 (Ω)

≤ C(q)(1 + ‖uε‖Lq(Ω)).
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Applying a bootstrap argument, starting at q = 2 we obtain that uε ∈ Lq(Ω) for all
q <∞ and that

‖uε‖Lq(Ω) ≤ C

where C may depend on q but it is independent of ε.
Step 2 We now prove that we have uε ∈ L∞(Ω) and

‖uε‖L∞(Ω) ≤ C

for some constant C independent of ε.
Let k > 0, φε = (uε − k)+ ≤ |uε| and Ak = {x ∈ Ω : uε(x) > k}, where we drop the

dependence of ε in these sets to simplify the notations. Notice first that, from Step 1, for
any q ≥ 2 the following inequality holds

‖φε‖Lq(Ω) ≤ ‖uε‖Lq(Ω) ≤ C, (4.23)

where C is independent of ε and k, but may depend on q. Now note that using interpo-
lation we have

‖φε‖
2
L2(Ω) ≤ ‖φε‖Lq(Ω)|Ak|

1
2
− 1

q ‖φε‖
L

2N
N−2 (Ω)

|Ak|
1
N ≤ C‖φε‖Lq(Ω)‖φε‖H1(Ω)|Ak|

1
2
+ 1

N
− 1

q .

From here, taking q = 2N and using (4.23), we obtain

‖φε‖
2
L2(Ω) ≤ C‖φε‖H1(Ω)|Ak|

1
2
+ 1

2N . (4.24)

Using φε as a test function in the equation we have, for λ > 0,
∫

Ω
a|∇φε|

2 +
∫

Ω
(c+ λ)φ2

ε +
∫

Γ
bφ2

ε +
1

ε

∫

ωε

Vε|φε|
2 =

1

ε

∫

ωε

fεφε +
∫

Γ
(jε − kb)φε+

∫

Ω
[gε − k(c+ λ)]φε −

1

ε

∫

ωε

kVεφε. (4.25)

Next we estimate each term on the right hand side of the above expression, for this,
we use extensively Holder’s inequality, Sobolev embeddings and trace theorems.

Now, denoting g∗ε = gε − k(c+ λ) and taking N/2 < p0 ≤ p, z, we have

|
∫

Ω
g∗εφε| ≤ ‖g∗ε‖Lp0 (Ω)‖φε‖L

p′
0 (Ω)

≤ C(1 + k)‖φε‖
L

2N
N−2 (Ak)

|Ak|
1
2
− 1

p0
+ 1

N ≤

C(1 + k)‖φε‖H1(Ω)|Ak|
1
2
− 1

p0
+ 1

N .

On the other hand, using Lemma 2.1

|
1

ε

∫

ωε

fεφε| ≤ [
1

ε

∫

ωε

|fε|
r]

1
r [

1

ε

∫

ωε

|φε|
r′]

1
r′ ≤ C0‖φε‖

H
1, Nr′

N+r′−1 (Ω)
= C0‖φε‖

H
1, Nr

Nr−N+1 (Ω)
.

Hence, using Nr
Nr−N+1

< 2 we get

|
1

ε

∫

ωε

fεφε| ≤ C‖φε‖H1(Ω)|Ak|
1
2
− 1

r
+ 1

Nr , (4.26)
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and in a similar way we get

|
1

ε

∫

ωε

Vεkφε| ≤ Ck‖φε‖H1(Ω)|Ak|
1
2
− 1

r
+ 1

Nr . (4.27)

For the terms on the boundary, if we note that j∗ε = jε − kb and we choose a N − 1 <
s0 < s, t, we have

|
∫

Γ
j∗εφε| ≤ [

∫

Γ
|j∗ε |

s0]
1

s0 [
∫

Γ
|φε|

s′0]
1

s′
0 ≤ C(1 + k)‖φε‖L

s′
0 (Γ)

≤ C(1 + k)‖φε‖
H

1,
Ns0

Ns0−N+1 (Ω)

and using again Ns0

Ns0−N+1
< 2 and proceeding as for (4.26), we get

|
∫

Γ
j∗εφε| ≤ C(1 + k)‖φ‖H1(Ω)|Ak|

1
2
−N−1

s0N . (4.28)

Now, using the estimates above and choosing δ enough small, we obtain

m
2
‖φε‖

2
H1(Ω) ≤

∫

Ω
a|∇φε|

2 + λ
∫

Ω
φ2

ε

≤ C(1 + k)‖φε‖H1(Ω)(|Ak|
1
2
− 1

r
+ 1

Nr + |Ak|
1
2
− 1

s0
+ 1

Ns0 + |Ak|
1
2
+ 1

N
− 1

p0 + |Ak|
1
2
+ 1

N )

(4.29)

while we also have

‖φε‖L1(Ak) ≤ ‖φε‖
L

2N
N−2 (Ak)

|Ak|
N+2
2N ≤ C‖φε‖H1(Ω)|Ak|

N+2
2N ,

where C = C(Ω, N). With these, we get that

‖φε‖L1(Ω) ≤ γ(1 + k)|Ak|
1+α

where α = min{ r−(N−1)
Nr

, s0−(N−1)
Ns0

, 2p0−N
Np0

, 2
N
} > 0. In particular, for k ≥ 1 we have

‖φε‖L1(Ω) ≤ 2γk|Ak|
1+α.

Now, using the Lemma 5.1 in [11] we have that

max{uε(x); x ∈ Ω} ≤ C.

With a similar argument for wε = −uε, we obtain the desired result.

Remark 4.5 Let us observe that to obtain the results of Theorem 4.4, that is, the uniform
boundedness of uε in L∞(Ω) we do not need the convergence hypotheses of (4.3) and (4.4),
but it will be sufficient to guarantee the boundedness hypothesis given by (4.2) and to
assume that the family gε and jε are bounded in Lz(Ω) and Lt(Γ) with the appropriate z
and t.

Now we can show the uniform convergence.
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Theorem 4.6 Under the conditions above, we have

uε → u in L∞(Ω).

Proof Note that vε = uε − u satisfies











−div(a(x)∇vε) + c(x)vε + λvε + 1
ε
XωεVε(vε + u) = 1

ε
Xωεfε + gε − g0 in Ω

a(x)∂vε

∂n
+ b(x)vε = −f0 − V0u on Γ

vε = 0, on ΓD.
(4.30)

As in Theorem 4.4, we obtain

‖(vε − k)+‖L1(Ω) ≤ γ(1 + k)|Ak|
1+α, for every k > 0. (4.31)

From (4.31) we get that there exists a constant K0 independent of ε such that ‖v+
ε ‖ ≤

K0 uniformly in ε. Hence, if 0 < k ≤ K0 we have

‖(vε − k)+‖L1(Ω) ≤ γ(1 +K0)|Ak|
1+α, for every 0 < k < K0

and if k > K0 we have (vε − k)+ ≡ 0. Hence we can assure that we always have for
γ̃ = γ(1 +K0) that

‖(vε − k)+‖L1(Ω) ≤ γ̃|Ak|
1+α, for every k > 0.

Since for every k > k0 > 0 we have |Ak| ≤ |Ak0|, then

‖(vε − k)+‖L1(Ω) ≤ γ̃|Ak0 |
α
2 |Ak|

1+ α
2 , for every k > k0

and using Lemma 5.1 from [11] we get

‖vε‖L∞(Ω) ≤ k0 + C|Ak0 |
α

α+2 .

where C is independent of k0, k and ε. Now, observe that the convergence in Theorem
4.1 implies that |Ak0| → 0 as ε→ 0. Since k0 is arbitrarily small we get the result.

As in the case of smooth coefficients, analyzed in the previous section, we can also
obtain the convergence in the case where we have a nonhomogeneous Dirichlet boundary
condition in ΓD. We have

Corollary 4.7 Assume we are in the conditions of Theorem 4.6. Let h be a function
defined in ΓD such that h ∈ H1/2(ΓD) ∩ L∞(ΓD). Then if in problems (1.4) and (1.5)
we substitute the condition u = 0 in ΓD by u = h in ΓD, then the convergence result of
Theorem 4.6 also holds.

Proof The proof follows the same ideas as the one from Corollary 3.3.
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5 Final remarks

We present in this section some important remarks related to the results obtained in the
preceding sections.

First note that the convergence results in Sections 3 and 4 for (1.4) and (1.5) can be
seen as a tool for transfering information from the interior to the boundary. In particular,
the results above, allow to approximate the solution of the particular case of (1.5)

{

−div(a(x)∇u) + c(x)u+ λu = g in Ω
a(x)∂u

∂n
+ V0(x)u = f0 on Γ = ∂Ω

(5.1)

by the solutions of the concentrated problem
{

−div(a(x)∇uε) + c(x)uε + λuε + 1
ε
XωεVε(x)u

ε = g + 1
ε
Xωεfε in Ω

∂u
∂n

= 0 on Γ = ∂Ω .
(5.2)

In other words, nonhomogeneous Robin problems can be approximated by homogeneous
Neumann problems efficiently. Note that this leads to some applications for numerical
approximations, since Neumann conditions are easier to implement; see [8].

Also, observe that in case the domain is not smooth, it may be difficult to give a
meaning to the boundary condition in (5.1), although (5.2) has a natural and simple
variational formulation not involving surface integrals or traces. Hence the limit functions
of (5.2) can be taken as proper way of defining solutions of (5.1).

Also, note that all the previous results can be carried out with minor changes to the
case in which ωε collapses to a regular hyper–surface Γ ⊂ Ω, not necessarily the boundary
of the domain. In such a case, for the problem











−div(a(x)∇uε) + c(x)uε + λuε + 1
ε
XωεVεu

ε = 1
ε
Xωεfε + g in Ω

a(x)∂uε

∂n
+ b(x)uε = j on ∂ΩR

uε = 0 on ∂ΩD

(5.3)

the limit problem reads










−div(a(x)∇u) + c(x)u+ λu+ V0δΓu = f0δΓ + g in Ω
a(x)∂u

∂n
+ b(x)u = j on ∂ΩR

u = 0 on ∂ΩD

(5.4)

where we denote by f0δΓ and V0δΓu the functionals < f0δΓ, ϕ >=
∫

Γ
f0ϕ and < V0u, ϕ >=

∫

Γ
V0uϕ. Note that by taking test functions with support near points on Γ it is easy to

see that the limit problem is in fact a transmission problem across Γ, where the jump
condition reads

[u]Γ = 0, [a(x)
∂u

∂n
+ V0(x)u]Γ = f0.

Hence, in particular, the solution of the transmission problem






−div(a(x)∇u) + c(x)u+ λu = g in Ω
[u]Γ = 0, [a(x)∂u

∂n
+ V0(x)u]Γ = f0 on Γ

u = 0 on ∂Ω
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can be approximated by the solutions of the concentrated problems

{

−div(a(x)∇uε) + c(x)uε + λuε + 1
ε
XωεVεu

ε = g + 1
ε
Xωεfε in Ω

uε = 0 on ∂Ω .

This approach may lead to significant applications to numerical schemes for such problems.
In this direction observe that (1.4) and (5.3) can be understood as approximate regu-

larized problems for (1.5) and (5.4) respectively.
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