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ABSTRACT. In this paper we prove that the best constant in the
Sobolev trace embedding H*(Q) < L7(dN) in a bounded smooth
domain can be obtained as the limit as € — 0 of the best constant
of the usual Sobolev embedding H'(Q) — L4(w.,dz/e) where
we = {z € Q : dist(z,00) < €} is a small neighborhood of the
boundary. We also analyze symmetry properties of extremals of
this last embedding when 2 is a ball.

1. INTRODUCTION.

The main goal of this article is to obtain the best Sobolev trace
constant for a given domain as the limit of the usual Sobolev constant
in small strips near the boundary of the domain when the width of the
strip goes to zero.

Sobolev inequalities have been studied by many authors and is by
now a classical subject. It at least goes back to [2], for more references
see [5]. Relevant for the study of boundary value problems for differen-
tial operators is the Sobolev trace inequality that has been intensively
studied, see for example, [3], [7], [8], [9], [10].

In this paper we consider the best Sobolev trace constant. Given a
bounded smooth domain Q C RY, we deal with the best constant of
the Sobolev trace embedding H'(Q) — L4(99). For every critical or
subcritical exponent, 1 < ¢ < 2, = 2(N — 1)/(N — 2), we have the
Sobolev trace inequality: there exists a constant C' such that

2/q
C’(/ qus) < /(|Vv|2+1)2) dz,
o0 Q
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for all v € H'(Q2). The best Sobolev trace constant is the largest C'
such that the above inequality holds, that is,

/ Vol + v* dz
(1.1) T, = inf X

veHY(Q\H1 (Q) 2/q”
’ < / |v|? dS)
o0

For subcritical exponents, 1 < g < 2,, the embedding is compact,
so we have existence of extremals, i.e. functions where the infimum
is attained. These extremals can be taken strictly positive in £ and
smooth up to the boundary. If we normalize the extremals with

(1.2) / u|7dS = 1,
o0

it follows that they are weak solutions of the following problem

—Au+u=0 in ,
(1.3) ou _
Y T, lu|"u on 052,

where v is the unit outward normal vector. In the special case ¢ = 2
(1.3) is a linear eigenvalue problem of Steklov type, see [17]. In the
rest of this article we will assume that the extremals are normalized
according to (1.2).

As we have mentioned, we want to see how the best trace constant,
Ty, can be obtained as the limit of the usual Sobolev constant for some
subdomains. To this end, let us consider the subset of {2

we ={z € Q : dist(z,00) < e}.

Notice that this set has measure |w.| ~ |0 for small values of . For
sufficiently small ¢ > 0 we can define the “parallel” interior boundary
I'y = {y —ov(y), y € 00}, where v(y) denotes the outward unitary
normal at y € 0€2. Note that I'y = 0€). Then, we can also look at the
set w. as the neighborhood of I'y defined by

WE:{ZL':?J_UV(y)a ye@Q 06[076)}: U FU
0<o<e

for sufficiently small ¢, say 0 < € < 5. We also denote by Qs = {z €
Q : dist(z,0Q) > d} and for ¢ small we have that 0Qs = I's.

Let us consider the usual Sobolev embedding associated to the set

we, that is,
HY(Q) — L° (wE, d—x) .
€
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We have normalized the size of w. by taking dx/e as measure in w..
In this case the embedding is continuous for exponents ¢ such that
1<qg<2"=2N/(N —2). Note that 2* = 2N/(N — 2) is larger than
2, =2(N—1)/(N—2). The best constant associated to this embedding
is given by

/\Vv\2+02dx
(1.4) S,(e) = inf =%

veH() 1/ oftd 2/q°
— v|Tdz
€ Ju.

For g < 2*, by compactness, the infimum is attained. The extremals,
normalized by

1
(1.5) g/ lu|?de =1,

are weak solutions of

16) —Au+u= S(e) Yoo () 0|20 in
1.6 €
Ou _, on A,
v

where x,. denotes the characteristic function.

Our main result is the following:

Theorem 1. Let T, and S,(g) be the best Sobolev constants given by
(1.1) and (1.4).

(1) For critical or subcritical ¢, 1 < q < 2, =2(N —1)/(N —2), we
have

(1.7) lir% Sq(e) =15,

Moreover, for subcritical g, 1 < ¢ < 2, = 2(N — 1)/(N — 2), the ex-
tremals of S,(¢) normalized according to (1.5) converge strongly (along
subsequences) in H(2) and in CP(Q), for some 3 > 0, to an extremal

of (L1),
lim u. = uy, strongly in H'(Q) and in CP ().

e—0
In the critical case, ¢ = 2, = 2(N —1)/(N — 2), the extremals of Sy(¢)
converge weakly (along subsequences) in H'(Q) to a limit, ug, that is
a weak solution of (1.3). This convergence is strong in H*(Q) if and
only if the limit verifies faQ ud =1 and in this case ug is an extremal
for Ty, .
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(2) For supercritical q, 2, = 2(N —1)/(N —2) < ¢ < 2* =2N/(N —2),
we have
(1.8) lin% Sy(e) = 0.

A reference closely related to this work is [1] where the authors con-
sider concentrated reactions near the boundary in an elliptic problem.
They prove that the solutions converge to a solution of a problem with
a nonhomogeneous flux condition at the boundary. Our results can be
viewed as a complement of the results of [1] since here we deal with

(nonlinear) eigenvalue problems when the reactions are concentrated
near the boundary (see the right hand side in (1.6)).

Next, we look at the symmetry for extremals of (1.4) in the special
case when (2 is a ball, Q = B(0, R). In this case we prove the following
result.

Theorem 2. Let S,(¢) the best Sobolev constant given by (1.4) with
Q = B(0, R).

(1) For 1 < q <2 and for every R,e > 0, the extremals of (1.4) in a
ball are radial functions that do not change sign. In particular, there
exists a unique non negative extremal of (1.4) satisfying (1.5).

(2) For2 < q<2,=2(N—1)/(N —2), there exist 0 < Ry < Ry < 00
such that:

(2.1) for 0 < R < Rg and £ small (possibly depending on R) the
extremals of (1.4) are radial.

(2.2) for R > Ry and ¢ small (possibly depending on R) the
extremals of (1.4) are not radial.

2. PROOF OF THEOREM 1

This section is devoted to the proof of Theorem 1. First, we prove
that the Sobolev trace constant is continuous as a function of the do-
main. We believe that this result has independent interest by itself.

Lemma 2.1. Let Q5 = {z € Q : dist(x,00) > §}. Then the function
6 — Ty(8s),

18 continuous at 0 = 0.

Proof. Consider a fixed ¢g > 0 small enough. For all 0 < § < g,
let us consider a smooth increasing function 15 such that 15(0) = ¢,
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s(s) = s for all s > g and ¥s(s) — s as & — 0 in C'([0,00)). Now
we take the diffeomorphism

A(;ZQ—>Q(;,

As(z) = y—s(s)v(y) forz=y—sv(y) €w., se(0,¢),
x for x € Q\ w;.

which is also a diffeomorphism when restricted to the boundary,

A5 (00 — an
This diffeomorphism has bounded derivatives and moreover
(2.1) (lsin% |DAs(x) — I]| =0,

uniformly in Q. Here I € M,y is the identity matrix.

Therefore, we can change variables with,
u(@) = v(As(a)),
for z € Q or x € 092. This induces a map, that we denote the same
As - HY(Q) — H'(Qs)

which is a diffeomorphism. Moreover, we have that the following dia-
gram is commutative

HY(Q) — L(0Q)
(2.2) As | L As
Hl(Qg) — Lq(aQ(g)

Therefore, from (2.1), we obtain

01(5)/ IVl + o dx < |Vv|2+1)2dx§02(6)/ IVl + o dx,
Q Q

Qs
where C;(0) — 1 as 6 — 0.

In a similar way, we get
(2.3) 01(5)/ lu|?dS < / lv|?7dS < 02(5)/ |u|?dS,
o9 095 19)

with C;(6) - 1 as 0 — 0.

From the previous inequalities we obtain that there exist two con-
stants K7, K3 such that K;(§) — 1 as 6 — 0 and

K\(6) T,(Q) < T,(Q%) < Ka(6) T,(Q).
The desired continuity is proved. 0
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The next result shows that the traces on 9€)s; also behave contin-
uously as 6 — 0. In order to do this, we first figure out a device
that allows to compare traces taken on different surfaces close to the
boundary of §2. For this observe that, for any ¢ < 2, we can define the

mapping
vs : HY Q) — LY(0Qs) « L1(09).

Here the first arrow denotes traces and the second one denotes the
diffeomorphism induced by A;' as in (2.2).

Then, we have the following result, which in particular complements
some results in [1].

Lemma 2.2. Denoting by v the trace operator on 052, we have
(lsir% vs =7 in LI(0N)
on compact sets of H () if ¢ = 2, orin LIH* (), LI(ON)) if ¢ < 2.

In particular, for q < 2., if u. is a bounded sequence in H*(Q), then
%fws lue|? is also bounded.

Moreover, if u. — ug strongly in H' () and q¢ < 2,, then

(2.4) / lu|?dS — / |up|? dS
0s5e) onN
as §(e) — 0 and

1
(2.5) —/ \ua\qu—>/ uo” S
€ Juw. o0

as e — 0.

Proof. If ¢ < 2, and wu. is a bounded sequence in H'(), we write

1 1 [
—/ |ue|? dox = —/ / lue|?dS do <
€ We €Jo 0Ng

1

! / Ty(98) H el )88 < sp [T(2) 4]
€ Jo 6€[0,¢]

which is bounded using Lemma 2.1 and the fact that the sequence u,
is bounded in H'(Q).

Note that if ¢ < 2, there exists some 0 < s < 1, such that
vs 1 HY(Q) — H5(Q) — LY(0Qs) « LI1(09).

In a similar fashion, if ¢ = 2,, we take s = 1.
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For any fixed v € H*(2), from (2.3), we have that these operators
converge to the usual trace on 0f2, that is

lim 55(u) = 7(u).

Moreover, we have
Vsl ez (), La00)) < C,

uniformly on §. Hence, from the Banach—Alouglu—Bourbaki lemma, we
get
lim s = vy
on compact sets of H*(£2).
In addition, if u. — ug strongly in H*(Q)
im [ |y.(ul)?dS = / ugl? dS
Q o0

e—0

which combined with (2.3) gives (2 4)

On the other hand, to obtain (2.5) we write

/|u5|qu— // |7 dS do.
00Ns

Since for every & < e, [ |uc|? and [y |uo|? are uniformly close, we
get (2.5). O

Remark 2.3. The only property that we have actually used in the proof
of the previous results is (2.1). Therefore both lemmas above remain
true for any family of domains Qs such that there exists a diffeomor-
phism As : Q — Qs with As : 0Q — 0Qs such that (2.1) holds. Also
note that in Lemma 2.2 the conclusions remain true for q < 2, under
the weaker assumption of convergence in H*(Q) for s < 1 but close
enough to 1.

Proof of Theorem 1. We first prove (1.7) for critical or subcritical ex-
ponents, i.e. 1 <q¢<2,=2(N—-1)/(N—2). Given k > 0, let us take
a regular function wu; such that

/ |Vug|? + ui do

+ ]{j - 1 2/q "
(—/ ude)
€ Jo.
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By the regularity of ug, from Lemma 2.2 (see also [1]), we have, for a

fixed k,
1
lim — ui doe = hm u% dr ds = ui dz.
e—0 ¢ e—=0¢ a0

Therefore, using u,, as test in (1 4) and taking limits we get

1
limsup S,(e) < T, + T
e—0

Letting £ — oo we obtain

(2.6) limsup S,(¢) < T,

e—0
Now let us prove that for ¢ < 2, we have

(2.7) lim inf 5, (c) > 7.

For this, note that for u € H'(Q) we get, using the restriction to Qs,

2 1 2 1 2
ul?dS < u|| < w510 -
([ 1uras) " < gsluling, < gl

Integrating for 6 € (0,¢) we obtain

e =2 ) L= ) ) e

Thus, we have obtained

) ([ ) <0

This fact, together with the continuity of the map
0 — Ty(S2s),
proved in Lemma 2.1, gives (2.7).
From (2.6) and (2.7) we obtain
lim S,(e) = T4,

e—0

as we wanted to prove.

Now we turn our attention to the convergence of extremals in the
subcritical case ¢ < 2,. To prove this fact, let us consider u. an ex-
tremal of S, (&) normalized by

1
(2.9) g/ ]t da = 1.
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Hence we have, for ¢ small, using (2.6),
el oy = Sa(6) < Ty +1

Therefore the sequence u. is bounded in H'(€) and we can extract a
subsequence (that we still denote u.) such that

u. —~wug  weakly in H'(Q),
Us — U strongly in L?(),

(2.10) Ue — Ug strongly in H*((2), Vs < 1,
Ue — U strongly in L9(052),
Uz — Up a.e. in €.

Now we claim that,

(2.11) / g7 dS = 1.
o0

To prove this, note that as we have

1 1 [®
1:-/ |u5|qu:—/ / uc|? dS d6,
€ We €Jo 00s

from the integral mean value theorem, there exists 0 < §(¢) < e such

that
/ 7 dS = 1.
00

Now, from the convergence of u. to ug in H*(f2), valid for 0 < s < 1,

we conclude that
/ luo|7 dS = 1
a0

see the Remark after Lemma 2.2. This finishes the proof of the claim.
With this in mind, we have

|Vug|? + uf dx
T, <=t g = Juol|F1 () < hlgl_}glfHuaH%{l(Q)

()

< lim sup ||u5||§{1(9) = hms(l]lp Sy(e) =1,

e—0

Therefore
i il = ol

In particular, the convergence of the norms implies that the extremals
of S,(¢) normalized according to (2.9) converge strongly in H*(Q) to
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an extremal of (1.1),

lim u. = uy, strongly in H'(Q)

e—0

which satisfies (2.11).

Now, let us prove that we have convergence in C#(£2), for some 3 > 0.
To this end we will use some results from [1] that describe the behavior
of solutions of linear elliptic equations with concentrated potentials.

Denote by V.(z) = S,(¢)ud™? so that u. is a solution of the problem

1

—Aue + U = =X, Voue in €,
€

Ou,

01:/ =0 on 0f).

First, remark that as ¢ is subcritical we can choose » > N — 1 such
that

1 T
L[ e = @/ e 42" dz < C,

with C' independent of €. Indeed, as u. is uniformly bounded in H'(Q)
we have from Lemma 2.2, that for any § < 2(N —1)/(N — 2),

1
—/ lu|® dz < C.
e Jo.

Now, just write § = (¢—2)r and use the fact that ¢ < 2(N—1)/(N—2)
(this implies (¢ —2) < 2/(N — 2)) to obtain that for some r > N — 1
we have (¢ —2)r <2(N —1)/(N — 2).

Moreover, since S,(g) — Ty, ue — ug in H'(2) and ¢ is subcritical,

we have that .
- / V.odr — Voo dS
€ We o0

for any smooth function ¢, where Vy(z) = Tqu8_2(x). Hence, u satisfies

—AUO + ug = 0 in Q,
% = Vhug on 0f).
ov

With all this at hand, we can apply Theorem 3.1 and Corollary 3.2
from [1], that guarantee the convergence in the Holder norm C?(Q),
for some [ > 0.

In the critical case ¢ = 2, we also obtain a uniform bound in H'(Q)
for the extremals u. of S,(¢). Therefore we can extract a subsequence
such that (2.10) holds. Passing to the limit in the weak form of (1.6)
we get that the limit wug is a weak solution of (1.3). However, due to
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the lack of compactness, we cannot ensure that ug verifies |, 00 [0l =1
in this case.

To finish the proof of the theorem it remains to show (1.8) in the
supercritical case 2, =2(N —1)/(N —2) < ¢ <2*=2N/(N —2). To
see this fact assume that 0 € 9Q and consider

u(w) = |27

Where we choose A such that u € H'(Q), i.e. A < (N —2)/2. Now we
choose A = A(q) such that

/ |u|?dS = 400,
o)

that is, A > (N —1)/q, which is possible since ¢ > 2,. We observe that
with this choice, we have

lim — / |u|? dz = 4o00.

e—0 ¢
The proof is finished. U

Remark 2.4. Observe that in the critical case, using a sequence of

minimizers and subsequences if necessary we have u. — ug weakly in
HY(Q) and S:(q) — T,. Also, we have

||UOH§{1(Q) < lirarl_églf ||us||%11(n) < limsélp ||us||%11(n) = lim S(;lp Se(e) =T,
E—> E—>

and

/ Vol + 3de
T <

2/q°
( / |u0|qu)
o0

Hence if ug is a minimizer, then [y, |uo|?dS < 1. Conversely, if
Joo |10|?9dS > 1 then the argument above shows that this integral is ac-
tually equal to 1 and ug is a minimizer. Moreover in such a case, we get
the convergence of the H*(2) norms and hence the strong convergence
in this space.

Thus, ug is a minimizer if and only if [, |uo|'dS = 1 which in turn
is equivalent to the strong convergence.

Also, in the critical case it may happen then that one has (1.5) and
faﬂ ‘UO|qu < 1.
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3. PROOF OF THEOREM 2

We divide the proof of Theorem 2 in several lemmas. Along this
section we take 0 = B(0, R), except in the next result.

Lemma 3.1. Let Q be arbitrary. Then for any 1 < q < 2 and any
e > 0 every extremal is of constant sign. Moreover, there exists a
unique positive extremal of (1.4), normalized according to (1.5).

Proof. Note that non negative extremals of (1.4) are indeed positive
solutions of (1.6), i.e. they satisfy, when normalized as in (1.5),

—Au = f(z,u) = a(z)u” —u in €,
(3.1) ou

— =0 on 0f),

ov

where a(x) = SqT(a)X% (x) > 0and p = ¢—1. Also, note that from (1.4),
non negative extremals exists, since the absolute value of an extremal
is an extremal.

Now, we use an argument from [18]; see also [15] and [16]. Note that
if ¢ < 2 then p < 1. Hence, if x € Q\ w; we have f(z,u) = —u <
C(z)u + D(x) if we take C'(z) = —1 and D(z) = 0.

On the other hand, if z € w. Young’s inequality yields for sufficiently
small 9,

Su(e)]
<(5=1 a7/
fl,u) < ( )u+5{ S ]
for some constant 5 > 0 and we can take C'(z) = 6 — 1 and

Sq(5> =e
dPe ’

D(x):ﬁ[

In summary

S—”] @)

OPe

O(2) = bxu (@) — 1, D(z)=J [

and we have, for v > 0 and x € (,
f(z,u) < C(x)u+ D(z).

Note that for sufficiently small §, the semigroup generated by A +
C(z) in Q with Neumann boundary conditions decays exponentially.
Then since D € L*>(2), we get from [18] and [15], that there exist a
solution of (3.1), which is maximal in the sense of pointwise ordering.
In particular it is nonzero since it bounds above in a pointwise sense
any normalized positive extremal.
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Now, the proof concludes by showing that in fact (3.1) has a unique
solution, which follows from the fact that

fx,u) _ alz)

U ul=r

1

is nonicreasing for u > 0 and strictly decreasing on a set of positive
measure. Indeed, let ¢ be the maximal positive solution of (3.1) and
0 < 9 < p any other solution. Then, multiplying the equation satisfied
by ¢ by 1 and the one for i by ¢, substracting and integrating by parts
in 2, we have

OZ/QWW_/QWW:/Q(f(flff;so)_f(fp,w))w.

Now, since 9 < ¢ we have that @ — % < 0 and is non zero in a

set of positive measure. Therefore, we must have ¢ = 0.

When g = 2 the conclusion of the lemma follows easily since the first
eigenvalue of the elliptic problem (1.6) is simple, [14]. Therefore there
exists a unique positive eigenfunction such that (1.5) holds. U

With this, if Q = B(0, R), we get the following result, which actually
proves the first part of Theorem 2.

Corollary 3.2. For every 1 < q < 2 and every R, > 0 every extremal
of (1.4) is radial and does not change sign in €.

Proof. Note that in any case ¢ < 2 or ¢ = 2, the absolute value of an
extremal is also an extremal. Therefore, the absolute value is a non-
negative extremal and must be then coincide with the unique positive
extremal. This one, in turn, must be radial, since, by uniqueness, it
must coincide with any rotation of it. O

The following lemma proves (2.1) in Theorem 2.

Lemma 3.3. For2 < q<2,=2(N—1)/(N —2) there exists Ry such
that for every R > Ry there exists €g such that the extremals (1.4) are
not radial for e < €.

Proof. The results of [6] imply that in this case the extremals of the best
Sobolev trace constant T,(B(0, R)) are not radial (since they develop
a concentration phenomena). Since the extremals for S,(g) converge
to the extremals of T,(B(0,R)) as ¢ — 0 they cannot be radial for ¢
small enough (possibly depending on R). O

Now we finish the proof of Theorem 2.
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Lemma 3.4. For2 < q<2,=2(N —1)/(N —2) there exists Ry such
that for every R < Ry there exists €y such that there exists a radial
extremal of (1.4) for e < eo.

Proof. First, let us choose R in such a way that for any R < Ry the
problem

—Au+ R*u =0 in B(0,1),
(3.2) du  ,Ty(R)
_ p2-49 q—1
e R —pp U on 0B(0,1),

has a unique positive solution close to ug = 1 normalized with the usual
constraint [,y u? =1, see [8]. Here

_gN —2N +2
. .

B

Observe that the above problem is just (1.3) (together with (1.2))
rescaled from the ball of radius R to the ball of radius one. Also note
that, from the results of [9], we have

CTR) B0
AR 0B, P

Moreover, we can assume (taking R, smaller if necessary) that for
R < Ry the linearized of (3.2) is invertible. This can be obtained since
for small R there is a unique solution to (3.2) with faB(O,l) u? =1 and
the linearized problem is invertible at R = 0, u = W and then
invertible at (R, ug) for small R (see [8] for the details).

Now we want to use the implicit function theorem in (1.4). To this
end, let us rescale (1.6) to the unit ball defining v(z) = R*u(Rx) where
u is the solution of (1.6) satisfying (1.5). If « = (N — 1)/¢, we have
that v satisfies

1
3.3 Idr =1
(33 e,
where A, p = B(0,1)\ B(0,1 —eR™') and also
Sy(e) IR
—Av + R*v = R? Rﬁqg(R_IXE,R(-T) it in B(0,1),

Ov
£ =0 on 0B(0,1),
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where . r(z) is the characteristic function of A, z. Let

S = {v e H'(B(0, 1));/a v|7dS = 1} .

B(0,1)

If we multiply v by an adequate constant p in order to have w =
1
pv € S, we have p = (fé)B(O D v?)”"« and we are left with a solution of

A(e N
5.4 —Aw + R*w = R? 5R—(lj)gﬁX€’R(x>wq ' in B(0,1),
' ow
% =0 on 8B(O,1)
Here

A(e) = S,(e) < /a b v dS) o

where the integral term also depends on e through v. From (1.7) and
the convergence of the extremals in Theorem 1, we get, using (3.3) and
Lemma 2.2, that

Ale) = T,
ase — 0.
Let us consider the functional
F:Sx[0,e — (H'(B(0,1)))",
given by

F(w,e)(¢) = / VwVedr + R / wao dx
B(0,1) B(0,1)
R2A(¢) /
eR™'RP B(0,1)\B(0,1—eR~1)
This functional is C'* with respect to w € S (since ¢ > 2).

wi ¢ de.

Remark that we are looking for pairs (w,e) that are solutions of
F(w,e) =0 (these are weak solutions of (3.4)).

To apply the implicit function theorem we need to compute

oOF

First, let us compute the derivative
oF

— = VxVédr + R? d
G = [ Ve R [ ods
R2A(¢)

) (¢ — Dw? ¢y du.
eRT'RP /3(0,1)\3(0,1—51%1)
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Taking the limit as ¢ — 0 and evaluating at w = u we obtain (by [1]
or by the results of the previous section)

OF
— = dz + R? d
50 (1 0(9)(0) /B o VXV dr + / X¢dz

B(0,1)
T,
—R?L / (q — Du??px dx.
RP Jap0.1)

This problem corresponds exactly with the linearized of (3.2) that is
invertible by our choice R < Rj.

Therefore, by the implicit function theorem, we get that there exists
go such that for any ¢ < gy there exists a unique solution w, € S of

F(w.,e)=0
close to u, that is, a unique weak solution of (3.4), with

limw, = u.
e—0

Since we have proved that every extremal of (1.4) goes to u as € — 0
and we have uniqueness of solutions of (3.4) in a neighborhood of u,
then the extremals must be radial. O
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