

Corrigendum

Corrigendum to "Approximation on Nash sets with monomial singularities" [Adv. Math. 262 (2014) 59–114]

E. Baro^{a,*,1}, José F. Fernando^{a,1}, Jesús M. Ruiz^{b,1}

 ^a Departamento de Álgebra, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, 28040 Madrid, Spain
^b Departamento de Geometría y Topología, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, 28040 Madrid, Spain

A R T I C L E I N F O

Article history: Available online 2 December 2015 Communicated by Ravi Vakil

MSC: primary 14P20 secondary 58A07, 32C05

Even thought the statement of [1, Lemma 6.1] is correct, there is an imprecision in the proof that we fix in this short note. In any case, the results of the paper [1] are correct as originally stated. We keep the notations introduced in [1] and we only recall a few notations and concepts here. A S^{ν} function on a semialgebraic set X is a C^{ν} semialgebraic functions on X for $\nu \geq 1$. The ring of S^{ν} functions on X is denoted with $S^{\nu}(X)$. In addition, we denote with ${}^{\circ}S^{\nu}(X)$ the ring of ${}^{\circ}S^{\nu}$ functions on X, that

* Corresponding author.

DOI of original article: http://dx.doi.org/10.1016/j.aim.2014.05.006.

E-mail addresses: eliasbaro@pdi.ucm.es (E. Baro), josefer@mat.ucm.es (J.F. Fernando), jesusr@mat.ucm.es (J.M. Ruiz).

¹ Authors supported by Spanish GAAR MTM2011-22435 and MTM2014-55565-P.

is, those functions on X whose restrictions to each irreducible component of X are S^{ν} functions.

The error in the original proof of [1, Lemma 6.1] concerns the way we use Łojasiewicz's inequality. Łojasiewicz's inequality as stated in [2, 2.6.2] holds in \mathbb{R}^n , but is not true for an arbitrary open semialgebraic set. Thus, that proof of [1, Lemma 6.1] must be replaced by the following one.

Lemma 6.1. Let $X = L_1 \cup \cdots \cup L_s$ be a union of coordinate linear varieties in \mathbb{R}^m . Then there is a continuous extension linear map ${}^{\circ}\theta : {}^{\circ}S^{\nu}(X) \to S^{\nu}(\mathbb{R}^m)$.

Proof. Fix a non-empty set of indices $I = \{i_1, \ldots, i_r\} \subset \{1, \ldots, s\}$ and set $L_I = \bigcap_{i \in I} L_i$ and $X^I = \bigcup_{i \in I} L_i$. By [1, Prop. 4.C.1] every ${}^{\circ}S^{\nu}$ function $h: X^I \to \mathbb{R}$ has the following S^{ν} extension to \mathbb{R}^m

$$H_I = \sum_{\varnothing \neq J \subset I} (-1)^{\#(I)+1} h \circ \pi_J.$$

Now consider the open semialgebraic set

$$\Omega_I = \{ x \in \mathbb{R}^m : \operatorname{dist}(x, L_I) < 1 \} \setminus \bigcup_{j \notin I} L_j,$$

which satisfies $X^I \cap \Omega_I = X \cap \Omega_I$. Consider a semialgebraic \mathcal{S}^{ν} partition of unity $\{\phi, \phi_I : I\}$ subordinated to $\{\mathbb{R}^m \setminus X, \Omega_I : I\}$, which is an open semialgebraic covering of \mathbb{R}^m . Define

$${}^{c}\theta_{I}: {}^{c}\mathbb{S}^{\nu}(X^{I}) \to \mathbb{S}^{\nu}(\mathbb{R}^{m}): h \mapsto \phi_{I} \cdot H_{I}|_{\Omega_{I}},$$
$${}^{c}\theta: {}^{c}\mathbb{S}^{\nu}(X) \to \mathbb{S}^{\nu}(\mathbb{R}^{m}): h \mapsto \sum_{I} {}^{c}\theta_{I}(h|_{X^{I}})$$

where each $\phi_I \cdot H_I$ extends by zero off Ω_I . Since ϕ vanishes on X, $\sum_I \phi_I \equiv 1$ on X; hence, ${}^{\circ}\theta(h)$ is a semialgebraic S^{ν} extension of h. To prove that ${}^{\circ}\theta$ is continuous it is enough to show that each ${}^{\circ}\theta_I$ is continuous. And for the latter it suffices to prove that the map

$${}^{\mathsf{c}}\mathbb{S}^{\nu}(X^{I}) \to \mathbb{S}^{\nu}(\mathbb{R}^{m}) : h \mapsto \phi_{I} \cdot (h \circ \pi_{J})|_{\Omega_{I}}$$

is continuous for each $\emptyset \neq J \subset I$. Recall that we consider the topology defined in ${}^{\circ}S^{\nu}(X^{I})$ as subset of $S^{\nu}(L_{i_1}) \times \cdots \times S^{\nu}(L_{i_r})$ (this is the reason to keep referring to semialgebraic ${}^{\circ}S^{\nu}$ functions, although we already know they are all S^{ν} functions [1, Prop. 4.C.1]).

Clearly, it is enough to see that if all restrictions $h|_{L_i}$, $i \in I$, are close enough to zero, then $\phi_I \cdot (h \circ \pi_J)|_{\Omega_I}$ is arbitrarily close to zero. Thus, pick any positive continuous semialgebraic function $\varepsilon : \mathbb{R}^m \to \mathbb{R}$. We know from Łojasiewicz's inequality [2, 2.6.2] that there are a constant C > 0 and an integer p large enough so that

$$\left|\frac{\partial^{|\gamma|}\phi_I}{\partial x^{\gamma}}(x)\right| < (C + \|x\|^2)^p \quad \text{and} \quad \frac{1}{(C + \|x\|^2)^p} < \varepsilon(x) \quad \text{for every } x \in \mathbb{R}^m \text{ and } |\gamma| \le \nu.$$

Recall that $|\gamma| = \gamma_1 + \cdots + \gamma_m$. In addition, $\frac{\partial^{|\gamma|}\phi_I}{\partial x^{\gamma}}$ is identically zero outside Ω_I for $|\gamma| \leq \nu$.

Let $x \in \Omega_I$ and $J \subset I$; in particular, $L_I \subset L_J$. Then for the orthogonal projection $\pi_J : \mathbb{R}^m \to L_J$ we have

$$||x||^{2} = \operatorname{dist}(x, L_{J})^{2} + ||\pi_{J}(x)||^{2} \le \operatorname{dist}(x, L_{I})^{2} + ||\pi_{J}(x)||^{2} < 1 + ||\pi_{J}(x)||^{2}$$

and so

$$\frac{1}{(C+1+\|\pi_J(x)\|^2)^p} < \frac{1}{(C+\|x\|^2)^p} < \varepsilon(x).$$

Denote $\delta(x) = \frac{1}{(\nu+1)^m (C+1+||x||^2)^{2p}}$ and suppose that all restrictions $h|_{L_i}$, $i \in I$, are δ close to zero in the \mathcal{S}^{ν} topology. Let us check that $\phi_I \cdot (h \circ \pi_J)$ is ε close to zero. Look at any partial derivative

$$\frac{\partial^{|\alpha|}(h \circ \pi_J)}{\partial x^{\alpha}}(x) = \frac{\partial^{|\alpha|}(h \circ \pi_J)}{\partial x_1^{\alpha_1} \cdots \partial x_m^{\alpha_m}}(x), \quad \text{where } |\alpha| = \alpha_1 + \cdots + \alpha_m \le \nu,$$

at a point $x \in \Omega_I$. Since composition with π_J is substituting zero for the coordinates in L_J , we see that $h \circ \pi_J$ does not depend on those coordinates, which implies that the above partial derivative is zero whenever such a coordinate appears in the derivative. Thus we look at derivatives that do not include them. But for those, we have

$$\left|\frac{\partial^{|\alpha|}(h\circ\pi_J)}{\partial x^{\alpha}}(x)\right| = \left|\frac{\partial^{|\alpha|}h}{\partial x^{\alpha}}(\pi_J(x))\right| < \delta(\pi_J(x))$$

because $\pi_J(x) \in L_J \subset L_i$ for some $i \in I$. Consequently, if $x \in \Omega_I$,

$$\left|\frac{\partial^{|\alpha|}\phi_I(x)(h\circ\pi_J)(x)}{\partial x^{\alpha}}\right| \leq \sum_{\beta+\gamma=\alpha} \left|\frac{\partial^{|\beta|}\phi_I}{\partial x^{\beta}}(x)\right| \left|\frac{\partial^{|\gamma|}(h\circ\pi_J)}{\partial x^{\gamma}}(x)\right|$$
$$< (\nu+1)^m (C+\|x\|^2)^p \delta(\pi_J(x))$$
$$< (\nu+1)^m (C+1+\|\pi_J(x)\|^2)^p \delta(\pi_J(x))$$
$$= \frac{1}{(C+1+\|\pi_J(x)\|^2)^p} < \varepsilon(x).$$

As outside Ω_I each \mathcal{S}^{ν} function $\phi_I \cdot (h \circ \pi_J)$ is identically zero, we conclude that $\phi_I \cdot (h \circ \pi_J)$ is ε close to zero. Hence the map $h \mapsto \phi_I \cdot (h \circ \pi_J)|_{\Omega_I}$ is continuous for each $\emptyset \neq J \subset I$, as required. \Box

References

- E. Baro, J.F. Fernando, J.M. Ruiz, Approximation on Nash sets with monomial singularities, Adv. Math. 262 (2014) 59–114.
- [2] J. Bochnak, M. Coste, M.-F. Roy, Real Algebraic Geometry, Ergeb. Math., vol. 36, Springer-Verlag, Berlin, 1998.