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In 2003 it was proved that the open quadrant Q := {x > 0, y > 0}
of R2 is a polynomial image of R2. This result was the origin of an 
ulterior more systematic study of polynomial images of Euclidean 
spaces. In this article we provide a short proof of the previous fact 
that does not involve computer calculations, in contrast with the 
original one. The strategy here is to represent the open quadrant 
as the image of a polynomial map that can be expressed as the 
composition of three simple polynomial maps whose images can 
be easily understood.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In the 1990 Reelle Algebraische Geometrie Seminar held in Oberwolfach Gamboa (1990) proposed 
the following problem:

Characterize geometrically the images of polynomial maps between Euclidean spaces.

The effective representation of a subset S ⊂ R
m as a polynomial or regular image of Rn reduces 

the study of certain classical problems in Real Geometry to its study in Rn , with the advantage of 
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avoiding contour conditions. Examples of these problems arise in Optimization or in the search for 
Positivstellensätze certificates (Fernando and Gamboa, 2006; Fernando and Ueno, 2014a).

When facing the problem above, the fact of working over the field of real numbers introduces 
extra difficulties that are not present when working over the field of complex numbers. As a simple 
example, it is a basic result in the theory of one complex variable that the image of a non-constant 
polynomial map f : C →C is always equal to C. However, the equivalent statement in the real setting 
no longer holds. The reader can easily verify that: The image of a real, non-constant polynomial function 
is an unbounded closed interval.

If we broaden our interest to polynomial maps f : Rn → R
m between Euclidean spaces the 

characterization of their images becomes a tougher task. By Tarski–Seidenberg’s principle (Bochnak 
et al., 1998, 1.4) the image of an either polynomial or regular map is a semialgebraic set. A sub-
set S ⊂ R

n is semialgebraic when it has a description by a finite boolean combination of polynomial 
equations and inequalities. During the last decade we have approached the problem of character-
izing which (semialgebraic) subsets S ⊂ R

m are polynomial or regular images of Rn . On the one 
hand, we have obtained some necessary conditions that a semialgebraic set must satisfy in or-
der to be a polynomial or regular image of Rn (Fernando, 2014; Fernando and Gamboa, 2003;
Fernando and Gamboa, 2006; Fernando and Ueno, 2014c). On the other hand, we have described 
how to obtain constructively notable families of semialgebraic sets as images of polynomial or regu-
lar maps. In particular, we have focused our attention in convex polyhedra, their interiors and their 
complementaries (Fernando et al., 2011; Fernando and Ueno, 2014a; Fernando and Ueno, 2014b;
Ueno, 2012).

Even in low dimensions we have to deal with situations that at first sight look harmless, but when 
considered more carefully become unexpectedly hard to handle because of the lack of precise tools 
to determine the image of a polynomial map. A particular case is the positive answer to the famous 
‘quadrant problem’:

Theorem 1. The open quadrant Q := {x > 0, y > 0} of R2 is a polynomial image of R2.

This problem was stated in Gamboa (1990) and solved in Fernando and Gamboa (2003). The proof 
proposed in Fernando and Gamboa (2003) makes use of Sturm’s algorithm applied to a high degree 
polynomial and the complexity of the involved calculations required computer assistance. This fact 
makes the reading of the proof rather disappointing, for it becomes a tedious task to verify that all 
the performed computations are indeed correct.

We have always wondered whether a less technical and demanding approach was possible. In 
this work we present a very short and elementary proof for the quadrant problem, which completely 
avoids the use of computers. Our approach is different to the one chosen in Fernando and Gamboa
(2003). Our strategy here is to provide a map f : R2 → R

2 that can be expressed as the composition 
of three simple polynomial maps whose images are easily estimated and has the open quadrant as 
image. To be more precise, we will show that Q is the image of the polynomial map f := H ◦ G ◦ F :
R

2 → R
2 where

F : R2 →R
2, (x, y) �→ ((xy − 1)2 + x2, (xy − 1)2 + y2),

G : R2 →R
2, (x, y) �→ (x, y(xy − 2)2 + x(xy − 1)2), (1)

H : R2 →R
2, (x, y) �→ (x(xy − 2)2 + 1

2 xy2, y).

It is well known that expressing a polynomial as a composition of simpler polynomials has proved 
useful in attacking diverse computational problems such as evaluating them or finding their roots, 
providing faster algorithms and allowing proofs that otherwise become more tedious or even infeasi-
ble (Alonso et al., 1995; von zur Gathen et al., 2003; Kozen and Landau, 1989). Similar benefits can 
be expected from expressing polynomial maps as compositions of simpler polynomial maps. Notice 
here that the each of the polynomial coordinates appearing in (1) have at most total degree 5, and 
all of them have at most degree 2 with respect to one of the variables x, y. This is an improvement 
with respect to the previous example known (Fernando and Gamboa, 2003), where the composition 
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factors used in order to obtain the open quadrant as a polynomial image contain polynomials of total 
degree up to 10 and having degre of at least 4 in both variables. Even though in Section 3 we will see 
that, when completely expanded, our new polynomial map looks unhandier, from a computational 
perspective this ability of having a nicer expression in terms of composition factors helps to provide 
a shorter and more comprehensible proof of the open quadrant problem, and also improves some 
of the computational aspects involved. Moreover, we have other reasons to revisit the issue. One is 
related to its importance: The representation of the open quadrant as a polynomial image is a key step in 
order to construct polynomial or regular images of higher complexity, as is the case for the family of con-
vex polyhedra that we mentioned before. This is because in order to construct either polynomial or 
regular maps f : Rn → R

n producing polyhedral images a first step passes through the construction 
of a polynomial map whose image is the open orthant {x1 > 0, . . . , xn > 0}, and this heavily relies on 
using polynomial maps on the plane with the half-plane and the open quadrant as images, as shows 
for example Fernando et al. (2011, Lemma 4.1) or Fernando and Ueno (2014a, Lemma 5.2). We briefly 
describe the strategy for obtaining polynomial maps with (convex) polyhedral images (Fernando et 
al., 2011): Observe that the orthant is the simplest convex polyhedron containing at least one vertex. 
We show then that an open n-simplex is a regular image of the orthant, and we proceed to “sculpt” 
the desired convex polyhedron by means of an inductive process which adds a new vertex of the con-
vex polyhedron by composing with a suitable regular map, until obtaining the targeted polyhedron. 
Thus, any improvement in the complexity of the involved polynomial maps would lead to a better 
output, and this also applies to the first step of the process, directly connected to the open quadrant 
problem. A similar argument applies to prove that the complement in Rn of an n-dimensional convex 
polyhedron is a polynomial image of Rn (Fernando and Ueno, 2014a), which uses an inductive pro-
cess starting with the complement of the open orthant. In order to represent this complement of the 
orthant as a polynomial image we need first to obtain the complement of the (closed) quadrant in 
R

2 as a polynomial image, and this is achieved by applying to the open quadrant (considered in C) 
the polynomial map z �→ z3. Thus, the representation of the open quadrant as a polynomial image of 
R

2 is the seed in many inductive processes that allows us to determine the semialgebraic sets with 
piecewise linear boundary that are polynomial or regular images of Rn .

This brings us to another reason to return to this problem, the still pending question of finding an 
optimal polynomial map that achieves the goal. In other words:

Which is the simplest polynomial map f : R2 →R
2 whose image is the open quadrant?

Here the term ‘simplest’ is rather vague and ambiguous. In Section 3 we try to be more specific and 
provide questions that at present we are unable to answer.

2. The new proof

In order to prove Theorem 1 we need some preliminary work. As we have already announced, 
Q is the image of a composition of three simple polynomial maps. We present next three auxiliary 
lemmas that show some properties of the images of the polynomial maps F , G, H introduced in (1). 
These lemmas involve the semialgebraic sets shown in Fig. 1.

Lemma 2. Let A := {xy − 1 ≥ 0} ∩Q. Then the image of

F := (F1, F2) : R2 →R
2, (x, y) �→ ((xy − 1)2 + x2, (xy − 1)2 + y2)

satisfies A ⊂ F (R2) ⊂ Q.

Proof. It is clear that F1, F2 are strictly positive on R2. Consequently, F (R2) ⊂ Q. To prove the first 
inclusion we show that if a > 0, b > 0 satisfy ab − 1 ≥ 0, then the system of equations{

(xy − 1)2 + x2 = a,

(xy − 1)2 + y2 = b
(2)
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Fig. 1. The sets A := {xy − 1 ≥ 0} ∩Q and B :=A∪ {y ≥ x > 0}.

has a solution (x, y) ∈ R
2. Set z := xy − 1 and rewrite the system (2) in terms of the variables {x, z}. 

We have y = z+1
x and (2) becomes⎧⎨

⎩
z2 + x2 = a,

z2 + (z + 1)2

x2
= b.

We eliminate x and deduce that z must satisfy the polynomial equation

P (z) := z4 − (a + b + 1)z2 − 2z + (ab − 1) = 0.

Observe that P is a monic polynomial of even degree such that

P (0) = ab − 1 ≥ 0 and P (
√

a) = −2
√

a − a − 1 < 0.

Thus, P has a real root z0 such that 0 ≤ z0 <
√

a. Set x0 :=
√

a − z2
0 and y0 := z0+1

x0
. We have F (x0, y0) =

(a, b), so A ⊂ F (R2), as required. �

Lemma 3. Let B :=A ∪ {y ≥ x > 0}. Then the image of

G := (G1, G2) : R2 →R
2, (x, y) �→ (x, y(xy − 2)2 + x(xy − 1)2)

satisfies B ⊂ G(A) ⊂ G(Q) ⊂ Q.

Proof. The inclusion G(A) ⊂ G(Q) is obvious. Observe that G1 and G2 are strictly positive on Q. 
Consequently, G(Q) ⊂ Q.

Next, we prove the inclusion B ⊂ G(A). Notice first that we can express B as follows:

B=�
x>0

({x} × [yx,+∞[) :=�
x>0

({x} ×Bx) where yx := min{x, 1
x }.

For each x > 0 consider the polynomial function in the variable y

φx(y) := y(xy− 2)2 + x(xy− 1)2 = x2y3 + (x3 − 4x)y2 + (4 − 2x2)y+ x.

These polynomials have odd degree and positive leading coefficient because x > 0. Observe also that 
φx(

1
x ) = 1

x and φx(
2
x ) = x. Consequently

Bx = [yx,+∞[ ⊂ φx([ 1
x ,+∞[).

Therefore
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B=�
x>0

({x} ×Bx) ⊂�
x>0

{x} × φx([ 1
x ,+∞[)

=�
x>0

G({x} × [ 1
x ,+∞[) = G(A),

as required. �
Lemma 4. The polynomial map

H := (H1, H2) : R2 →R
2, (x, y) �→ (x(xy − 2)2 + 1

2 xy2, y)

satisfies H(B) = H(Q) = Q.

Proof. The inclusion H(B) ⊂ H(Q) is obvious. Observe that H1 and H2 are strictly positive on Q. 
Consequently, H(Q) ⊂ Q.

Next, we prove Q ⊂ H(B) and consequently we will have Q ⊂ H(B) ⊂ H(Q) ⊂ Q, so H(B) =
H(Q) = Q.

For each y > 0 consider the polynomial in the variable x

ψy(x) := x(xy − 2)2 + 1
2xy2 = y2x3 − 4yx2 + (4 + 1

2 y2)x.

Notice that the set B can be expressed as

B=�
y>0

(By × {y}) where By :=
{

]0,+∞[ if y ≥ 1,

]0, y] ∪ [ 1
y ,+∞[ if 0 < y < 1.

As ψy(x) has odd degree and positive leading coefficient, we have limx→∞ ψy(x) = +∞. Moreover, it 
holds

ψy(0) = 0, ψy(y) = y(y2 − 2)2 + 1
2 y3 and ψy(

2
y ) = y.

For 0 < y < 1 we have

ψy(y) = y(y2 − 2)2 + 1
2 y3 = y((y2 − 2)2 + 1

2 y2) > y

because (y2 − 2)2 + 1
2 y2 > 1 if 0 < y < 1. As ψy is strictly positive on ]0,+∞[, we deduce

ψy(By) =
{

ψ(]0,+∞[) = ]0,+∞[ if y ≥ 1

ψy(]0, y] ∪ [ 1
y ,+∞[) ⊃ ]0,ψy(y)] ∪ [ψy(

2
y ),+∞[ = ]0,+∞[ if 0 < y < 1.

Consequently,

Q =�
y>0

(]0,+∞[ × {y}) ⊂�
y>0

(ψy(By) × {y}) =�
y>0

H(By × {y}) = H(B),

as required. �
Finally, Theorem 1 follows straightforwardly from the previous three Lemmas.

Proof of Theorem 1. Applying Lemmas 2, 3 and 4 we deduce that

Q = H(B) ⊂ (H ◦ G)(A) ⊂ (H ◦ G ◦ F )(R2) ⊂ (H ◦ G)(Q) ⊂ H(Q) = Q,

that is, (H ◦ G ◦ F )(R2) = Q, as required. �
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Table 1
The old polynomial map.

g1(x, y) = (
x18 + 2x16 + x14

)
y10 + ( − 14x17 − 30x15 + 4x14 − 18x13 + 6x12 − 2x11 + 2x10

)
y9 +(

87x16 + 202x14 − 44x13 + 143x12 − 72x11 + 34x10 − 30x9 + 7x8 − 2x7 + x6
)
y8 + ( − 316x15 − 804x13 +

208x12 − 662x11 + 378x10 − 226x9 + 192x8 − 66x7 + 26x6 − 12x5 + 2x4
)
y7 + (

743x14 + 2094x12 −
552x11 + 1985x10 − 1134x9 + 828x8 − 688x7 + 269x6 − 128x5 + 58x4 − 12x3 + x2

)
y6 + ( − 1182x13 −

3726x11 + 900x10 − 4046x9 + 2124x8 − 1922x7 + 1522x6 − 622x5 + 340x4 − 146x3 + 28x2 − 2x
)
y5 +(

1289x12 + 4582x10 − 924x9 + 5702x8 − 2538x7 + 3022x6 − 2150x5 + 906x4 − 558x3 + 207x2 − 30x + 1
)
y4 +( − 952x11 − 3840x9 + 584x8 − 5504x7 + 1884x6 − 3286x5 + 1910x4 − 888x3 + 586x2 − 162x + 12

)
y3 + (

456x10 +
2096x8 − 208x7 + 3487x6 − 792x5 + 2408x4 − 978x3 + 621x2 − 372x + 55

)
y2 + ( − 128x9 − 672x7 + 32x6 − 1308x5 +

144x4 − 1080x3 + 220x2 − 308x + 112
)
y + (

16x8 + 96x6 + 220x4 + 224x2 + 85
)
,

g2(x, y) = x16y12 + ( − 14x15 − 2x13 + 2x12
)
y11 + (

89x14 + 26x12 − 22x11 + x10 − 2x9 + x8
)
y10 + ( − 338x13 − 152x11 +

108x10 − 12x9 + 20x8 − 8x7
)
y9 + (

849x12 + 524x10 − 308x9 + 64x8 − 88x7 + 28x6
)
y8 + ( − 1476x11 − 1176x9 + 558x8 −

198x7 + 220x6 − 54x5
)
y7 + (

1808x10 + 1792x8 − 662x7 + 391x6 − 340x5 + 61x4
)
y6 + ( − 1562x9 − 1878x7 + 514x6 −

512x5 + 332x4 − 40x3
)
y5 + (

944x8 + 1344x6 − 258x5 + 447x4 − 202x3 + 15x2
)
y4 + ( − 398x7 − 644x5 + 86x4 − 254x3 +

74x2 − 4x
)
y3 + (

121x6 + 206x4 − 22x3 + 90x2 − 18x + 1
)
y2 + ( − 28x5 − 48x3 + 4x2 − 20x + 4

)
y + (

4x4 + 8x2 + 4
)
.

3. Effectiveness of the new map

The problem of the open quadrant, together with its already known positive constructive answers, 
invites to search for alternative polynomial maps that also solve the problem and are optimal with 
respect to their algebraic complexity. This algebraic complexity can be understood in several ways. 
We briefly describe two possible approaches to this question.
(A) Optimal algebraic structure of the polynomial map. On a first look it is natural to wonder how our 
new obtained polynomial map looks like when completely expanded and how it compares to the 
previous known example in Fernando and Gamboa (2003). We care about the total degree of the in-
volved polynomial map (the sum of the degrees of its components) and its total number of (non-zero) 
monomials. We would like to find a polynomial map with the least possible total degree and the least 
possible number of monomials.

Table 1 shows the components of the map g(x, y) := (g1(x, y), g2(x, y)) proposed in Fernando 
and Gamboa (2003), while Table 2 shows those of our new map f (x, y) := ( f1(x, y), f2(x, y)). Ob-
serve that the total degree of g is 56 while the total degree of f is 72. In addition, the total number 
of monomials of g is 168 while the total number of monomials of f is 350. We wonder:

Question 5. (1) Which is the minimum total degree for the set of polynomial maps R2 → R
2 whose image is 

the open quadrant?
(2) Which is the sparsest polynomial map R2 →R

2 whose image is the open quadrant?

A possible roadmap to answer these questions would come from finding polynomial maps solving 
the open quadrant problem with polynomial components of much lower degree than those known at 
present, followed by checking the minimality of these new examples with respect to total degree or 
sparseness.
(B) Optimal (multiplicative) complexity. The so-called Straight-Line Programs (SLP’s) formalize step-by-
step computations that do not require branching and can be applied to the evaluation of polynomials 
(see Bürgisser et al., 1997, chap. 4 and Winograd, 1970). Here we are particularly interested in eval-
uating the polynomial coordinates of our map in an effective way. As multiplications have a higher 
cost to compute than additions/subtractions, non-scalar complexity seems a reasonable approach to 
consider in the first place. In our particular case, expressing our map f as a composition of three 
simpler maps helps to lower the complexity required to evaluate f at a point. More precisely, if we 
rewrite (1) as

F : R2 →R
2, (x, y) �→ ((xy − 1)2 + x2, (xy − 1)2 + y2),

G : R2 →R
2, (x, y) �→ (x, y((xy)2 − 4xy + 4) + x((xy)2 − 2xy + 1)), (3)
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Table 2
The new polynomial map.

f1(x, y) = (
4x26 + 20x24 + 41x22 + 44x20 + 26x18 + 8x16 + x14

)
y26 + ( − 104x25 − 480x23 − 902x21 − 880x19 −

468x17 − 128x15 − 14x13
)
y25 + (

32x26 + 1458x24 + 5839x22 + 9807x20 + 8554x18 + 4036x16 + 967x14 + 91x12
)
y24 +( − 768x25 − 13876x23 − 46860x21 − 69188x19 − 53264x17 − 22028x15 − 4564x13 − 364x11

)
y23 + (

113x26 + 9382x24 +
97367x22 + 274164x20 + 703621

2 x18 + 236532x16 + 84820x14 + 15018x12 + 2003
2 x10

)
y22 + ( − 2486x25 − 75768x23 −

525594x21 − 1229924x19 − 1360121x17 − 791240x15 − 243544x13 − 36436x11 − 2007x9
)
y21 + (

231x26 + 27209x24 +
446529x22 + 2240074x20 + 8710925

2 x18 + 8244713
2 x16 + 2057114x14 + 538091x12 + 134535

2 x10 + 6051
2 x8

)
y20 + (− 4620x25 −

193928x23 −2018472x21 −7667498x19 −12393340x17 −9976824x15 −4233956x13 −931594x11 −96204x9 −3492x7
)
y19 +(

301x26 +45304x24 + 1996081
2 x22 +7201629x20 +21316526x18 +28643722x16 + 38977381

2 x14 +6970385x12 +1276041x10 +
107514x8 + 3108x6

)
y18 + ( − 5418x25 − 285964x23 − 3907609x21 − 20635184x19 − 48472730x17 − 54092612x15 −

30891281x13 − 9219636x11 − 1387160x9 − 94004x7 − 2128x5
)
y17 + (

259x26 + 47243x24 + 2580609
2 x22 + 23978613

2 x20 +
47980885x18 + 90479081x16 + 167285973

2 x14 + 79543913
2 x12 + 9792158x10 + 1193474x8 + 63896x6 + 1106x4

)
y16 +(−4144x25 − 262276x23 − 4387372x21 − 29332620x19 − 91032136x17 − 138703760x15 − 105761608x13 − 41463220x11 −

8305148x9 − 805172x7 − 33232x5 − 424x3
)
y15 + (

147x26 + 31738x24 + 1029734x22 + 11578342x20 + 115563913
2 x18 +

141146980x16 + 174192331x14 + 108825883x12 + 69479137
2 x10 + 5560611x8 + 418307x6 + 12832x4 + 227

2 x2
)
y14 +(−2058x25 − 152936x23 − 3012828x21 − 24111820x19 − 92027457x17 − 178500672x15 − 178178038x13 − 90313924x11 −

23084717x9 −2880652x7 −162050x5 −3480x3 −19x
)
y13 + (

53x26 +13607x24 +514692x22 +6758603x20 + 79906193
2 x18 +

236896489
2 x16 + 183083134x14 + 146995602x12 + 119160879

2 x10 + 23809093
2 x8 + 1115393x6 + 44130x4 + 1187

2 x2 + 3
2

)
y12 +( − 636x25 − 55808x23 − 1273116x21 − 11799438x19 − 52781280x17 − 122608140x15 − 150791284x13 − 96320302x11 −

30530204x9 −4590824x7 −302620x5 −7466x3 −48x
)
y11 + (

11x26 +3544x24 + 314743
2 x22 +2376631x20 +16126054x18 +

55398078x16 + 202163613
2 x14 + 98174729x12 + 48935769x10 + 11683851x8 + 2465761

2 x6 + 49595x4 + 534x2
)
y10 +( − 110x25 − 12028x23 − 320343x21 − 3389132x19 − 17228062x17 − 45771560x15 − 65325089x13 − 49297772x11 −

18508228x9 − 3090272x7 − 192077x5 − 2508x3 + 26x
)
y9 + (

x26 + 499x24 + 54971
2 x22 + 963471

2 x20 + 3698783x18 +
14267155x16 + 58589293

2 x14 + 64546337
2 x12 + 18324283x10 + 4804470x8 + 907373

2 x6 + 7397
2 x4 − 553x2 − 3

)
y8 + ( − 8x25 −

1344x23 − 44228x21 − 539160x19 − 3067508x17 − 9009888x15 − 14152800x13 − 11695504x11 − 4652360x9 − 672008x7 +
7308x5 + 4412x3 + 72x

)
y7 + (

28x24 + 2366x22 + 50998x20 + 446884x18 + 1901034x16 + 4222671x14 + 4948005x12 +
5751153

2 x10 +639605x8 − 52037
2 x6 −16587x4 − 1249

2 x2 −1
)
y6 +(−56x23 −2828x21 −42092x19 −269596x17 −854940x15 −

1404926x13 − 1159452x11 − 389461x9 + 18128x7 + 30043x5 + 2488x3 + 9x
)
y5 + (

70x22 + 2310x20 + 24418x18 +
114536x16 + 265718x14 + 306840x12 + 302491

2 x10 − 3703
2 x8 − 49077

2 x6 − 9289
2 − 39x2

2 x4 + 3
2

)
y4 + ( − 56x21 − 1264x19 −

9568x17 −32360x15 −52408x13 −37034x11 −2472x9 +10104x7 +3718x5 +16x3 −20x
)
y3 +(

28x20 +439x18 +2350x16 +
10971

2 x14 +5505x12 +1064x10 −2161x8 −1411x6 −46x4 + 127
2 x2 +1

)
y2 + (−8x19 −86x17 −312x15 −451x13 −168x11 +

222x9 + 252x7 + 26x5 − 34x3 − 5x
)
y + x18 + 7x16 + 31

2 x
14 + 19

2 x
12 − 8x10 − 17x8 − 4x6 + 5x4 + 3

2x
2 + 3

2 ,

f2(x, y) = (
2x10 + 5x8 + 4x6 + x4

)
y10 + ( − 20x9 − 40x7 − 24x5 − 4x3

)
y9 + (

5x10 + 102x8 + 149x6 + 62x4 + 6x2
)
y8 +( − 40x9 − 312x7 − 316x5 − 84x3 − 4x

)
y7 + (

4x10 + 149x8 + 600x6 + 395x4 + 58x2 + 1
)
y6 + ( − 24x9 − 316x7 − 720x5 −

276x3 − 16x
)
y5 + (

x10 + 62x8 + 397x6 + 504x4 + 85x2
)
y4 + ( − 4x9 − 84x7 − 284x5 − 168x3

)
y3 + (

6x8 + 60x6 + 99x4 +
5x2 − 1

)
y2 + ( − 4x7 − 20x5 − 8x3 + 6x

)
y + x6 + 2x4 − 2x2 + 1.

H :R2 →R
2, (x, y) �→ (xy(x · (xy) − 4x + 4 + 1

2 y), y),

an ocular inspection gives us an upper bound for the non-scalar complexity (working with real coeffi-
cients3) of 4 + 4 + 3 = 11. It is not so clear whether this bound can be achieved with the polynomial 
map proposed in Fernando and Gamboa (2003). At this point, we wonder:

Question 6. Which is the minimum non-scalar complexity for the set of polynomial maps R2 → R
2 whose 

image is the open quadrant?

Of course, we can formulate diverse variants of this question if we consider other measures of 
complexity. In any case, regardless of the different approaches considered, the authors are convinced 
that more effective examples can be found for the open quadrant problem, and perhaps even shorter 
proofs.

3 If we consider coefficients in C, we can lower the non-scalar complexity bound of the map F by one.
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