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Let S(M) be the ring of (continuous) semialgebraic functions on a semialgebraic set M and S∗(M) its sub-
ring of bounded semialgebraic functions. In this work we compute the size of the fibers of the spectral maps
Spec(j)1 : Spec(S(N)) → Spec(S(M)) and Spec(j)2 : Spec(S∗(N)) → Spec(S∗(M)) induced by the inclu-
sion j : N ↪→ M of a semialgebraic subset N of M . The ring S(M) can be understood as the localization
of S∗(M) at the multiplicative subset WM of those bounded semialgebraic functions on M with empty
zero set. This provides a natural inclusion iM : Spec(S(M)) ↪→ Spec(S∗(M)) that reduces both problems
above to an analysis of the fibers of the spectral map Spec(j)2 : Spec(S∗(N)) → Spec(S∗(M)). If we de-
note Z := ClSpec(S∗( M)) (M \ N), it holds that the restriction map Spec(j)2| : Spec(S∗(N)) \ Spec(j)−1

2 (Z) →
Spec(S∗(M)) \ Z is a homeomorphism. Our problem concentrates on the computation of the size of the fibers
of Spec(j)2 at the points of Z . The size of the fibers of prime ideals “close” to the complement Y := M \ N
provides valuable information concerning how N is immersed inside M . If N is dense in M , the map Spec(j)2 is
surjective and the generic fiber of a prime ideal p ∈ Z contains infinitely many elements. However, finite fibers
may also appear and we provide a criterium to decide when the fiber Spec(j)−1

2 (p) is a finite set for p ∈ Z .
If such is the case, our procedure allows us to compute the size s of Spec(j)−1

2 (p). If in addition N is locally
compact and M is pure dimensional, s coincides with the number of minimal prime ideals contained in p.
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1 Introduction

This paper is part of a larger project of studying semialgebraic sets via their ring of continuous semialgebraic
functions. There is an extensive classical literature on the ring C(X) of continuous functions on a Hausdorff space
X and a large part of it is collected in the celebrated book [17]. The space X is canonically embedded into the
spectrum of that ring and much of its topology/geometry can be recovered from the structure of the full spectrum.
The tame behavior of semialgebraic functions adds some extra structure and finiteness properties. In particular,
much more can be said in the non-locally compact case by carefully reducing to the ring of bounded semialgebraic
functions, which is also one of the technical points in this paper.

1.1 Motivation and preliminary notations

A semialgebraic set M ⊂ Rm is a boolean combination of sets defined by polynomial equations and inequalities.
A continuous map f : M → Rn is semialgebraic if its graph is a semialgebraic subset of Rm+n . As usual f is
a semialgebraic function when n = 1 and Z( f ) denotes its zero set. The sum and product of functions defined
pointwise endow the setS(M) of semialgebraic functions on M with a structure of a unital commutative ring. In fact
S(M) is an R-algebra and the subsetS∗(M) of bounded semialgebraic functions on M is an R-subalgebra ofS(M).
In this article M denotes a semialgebraic subset of Rm and we write S�(M) when referring to both rings S(M)
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and S∗(M) indistinctly. To simplify notation we write Spec�
s (M) := Spec(S�(M)) and β�

s M := Specmax(S�(M))
to respectively denote the Zariski and the maximal spectra of S�(M). In addition, ∂ M := βs

∗ M \ M is the
remainder of M . Given a semialgebraic map h : M1 → M2, we denote the ring homomorphism induced by
h with h�,∗ : S�(M2) → S�(M1), f �→ f ◦ h. This ring homomorphism is injective if and only if h(M1) is
dense in M2. The spectral map induced by h is Spec�

s (h) : Spec�
s (M1) → Spec�

s (M2), p �→ (h�,∗)−1(p). As
it is continuous, it maps Spec�

s (M1) into ClSpec�
s (M2)(ClM2(h(M1))) ∼= Spec�

s (ClM2(h(M1))) (see 2.3.1(ii)), so
the fiber of each prime ideal belonging to Spec�

s (M2) \ ClSpec�
s (M2)(ClM2(h(M1))) is empty. In addition the map

Spec*
s (h) : Spec*

s (M1) → Spec*
s (M2) maps β*

sM1 into β*
sM2 and we write β*

s h := Spec*
s (h)|β*

s M1 : β*
sM1 → β*

sM2.
The rings S�(M) are particular cases of the so-called real closed rings introduced by Schwartz in the ’80s of

the last century [21]. The theory of real closed rings has been deeply developed until now in a fruitful attempt
to establish new foundations for semi-algebraic geometry with relevant interconnections to model theory, see the
results of Cherlin–Dickmann [5], [6], Schwartz [21], [22], [24], [25], Schwartz with Prestel, Madden and Tressl
[20], [27], [29] and Tressl [30]–[32]. We refer the reader to [22] for a ring theoretic analysis of the concept of real
closed ring. Moreover, this theory, which vastly generalizes the classical techniques concerning the semi-algebraic
spaces of Delfs–Knebusch [8], provides a powerful machinery to approach problems concerning rings of real
valued functions, like: (1) real closed fields; (2) rings of real-valued continuous functions on Tychonoff spaces;
(3) rings of semi-algebraic functions on semi-algebraic subsets of Rn; and more generally (4) rings of definable
continuous functions on definable sets in o-minimal expansions of real closed fields. In addition, the theory of
real closed rings contributes to achieve a better understanding of the algebraic properties of such rings and the
topological properties of their spectra.

It is natural to wonder whether the ring S(M) determines the semialgebraic set M . Given another semialgebraic
set N , the natural map

(·)∗ : S(M, N) −→ HomR-alg(S(N), S(M)), h �→ h∗

where h∗ : S(N) → S(M), f �→ f ◦ h is a bijection. Consequently, M and N are semialgebraically homeo-
morphic if and only if the rings S(M) and S(N) are isomorphic. This argument goes back to the pioneer work
of Schwartz [21], [22], [24]. Consequently, the category of semialgebraic sets is faithfully reflected in the full
subcategory of real closed rings consisting of all R-algebras of the form S(M). Next, one wonders whether the ring
S∗(M) determines the semialgebraic set M . A point p ∈ M is an endpoint of M if it has an open neighborhood
U ⊂ M equipped with a semialgebraic homeomorphism f : U → [0, 1) that maps p onto 0. We denote η(M)
the set of endpoints of M . In [31, §11] it is shown that for every real closed ring A there exists a largest real
closed ring B such that A is convex in B. In [25] it is shown how the spectrum of a real closed ring lies in the
spectrum of any convex subring. Schwartz proved in [26, §5] that S(M \ η(M)) is the convex closure of the
real closed ring S∗(M) = S∗(M \ η(M)). If S∗(N) and S∗(M) are isomorphic as R-algebras, then their convex
closures S(N \ η(N)) and S(M \ η(M)) are also isomorphic as R-algebras. Consequently, the semialgebraic sets
M \ η(M) and N \ η(N) are semialgebraically homeomorphic.

The study of the fibers of the spectral map ϕ∗ : Spec B → Spec A associated with a ring homomorphism
ϕ : A → B is a recurrent topic in algebraic and analytic geometry. A morphism between schemes is quasi-finite
if it is of finite type and its fibers are finite. The cardinal of the fibers of ϕ∗ is upperly bounded by the rank of B as
A-module. Chevalley’s theorem states the semicontinuity of the dimension of the fibers of morphisms of schemes
that are locally of finite type [19, 13.1.3]. This result is true for the spectral morphisms induced by rational maps
between complex algebraic varieties.

In the analytic setting recall Grauert–Remmert’s theorem [18]: an analytic map between analytic spaces
f : X → Y is open if its fibers have pure dimension equal to dim(X) − dim(Y ). A deeper study of the fibers of
analytic mappings of real or complex spaces is presented in [1].

Our point of view concerning the cardinality of fibers of spectral maps is closer to the latter case. The first
steps in this direction are due to Brumfiel [3], Bochnak–Coste–Roy [2, §7] and has a further precedent devised
by Schwartz [23]. In addition [7, Appendix A] explains the relationship between morphisms of semialgebraic
spaces and their abstractions, which have the spectra of rings of semialgebraic functions as basic building blocks.
Both latter articles show that the behavior of the fibers of the induced spectral mappings provides also geometric
information. This appears also in [10] where it is shown: a continuous semialgebraic map h : N → M is open,
proper and surjective if and only if the induced spectral map is open, proper and surjective and β*

s h(∂ N) = ∂ M .
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Roughly speaking our goal is the study of the spectral map associated to a suitable inclusion of semialgebraic
sets N ↪→ M and to characterize when the fibers of this spectral map are finite. Even though the fibers of the
inclusion N ↪→ M are either empty or singletons, this is not longer true in general for the associated spectral map
and the size of its fibers provides geometric information about the embedding of N in M . If M is a simplicial
complex and N ⊂ M is obtained from M by deleting some of its faces, the size of the fibers of the spectral map
associated to the inclusion N ↪→ M provides information concerning the “nature of the deleted faces”. As all
semialgebraic sets are triangulable, the previous fact will allow us to understand the semialgebraic case.

Although the rings S�(M) are neither noetherian nor enjoy primary decomposition properties, they are closer
to polynomial rings than to classical rings of continuous functions. For example, the Lebesgue dimension of R is 1
(see Problem 16F in [17]) while the Krull dimension of the ring C(R) of real valued continuous functions on R is
infinite, see Problem 14I in [17]. Carral and Coste proved the equality dim(S(M)) = dim(M) for a locally closed
semialgebraic set M in [4] (see also [15], [24], [26]) by proving that the real spectrum of S(M) is homeomorphic
to the constructible subset M̃ of the real spectrum of the ring of polynomial functions on Rm associated with M
(see [2, Chapter 7] for the technicalities concerning the real spectrum). Gamboa–Ruiz extended this equality to an
arbitrary semialgebraic set in [16] using strong properties of the real spectrum of excellent rings and some crucial
results of the theory of real closed rings [24].

In [14] we provide an elementary geometric proof of the fact that the Krull’s dimension of the ring S�(M)
coincides with the dimension of M but without involving the sophisticated machinery of real spectra. We compute
the Krull dimension of the ring S�(M) by comparing it with the Krull dimensions of the rings S(X) = S∗(X) for
suitable semialgebraic compactifications X of M ; recall that a pair (X, j) is a semialgebraic compactification of
M if j : M ↪→ X is a semialgebraic embedding such that X is a compact semialgebraic set and Cl(j(M)) = X .
In addition, the ring S∗(M) is the direct limit of the family constituted by the rings S(X) where (X, j) runs on
the semialgebraic compactifications of M .

We prove in [9] that semialgebraic compactifications provide further information to study chains of prime
ideals in rings of semialgebraic functions by comparing the spectra Specs(M) and Specs(X) where X is a suitable
semialgebraic compactification of M . The main purpose of [9] is to understand the structure of non refinable chains
of prime ideals of the ring S∗(M) for an arbitrary semialgebraic set M (not necessarily locally closed). The article
[9] somehow completes the work already began in [12], in which we studied some algebraic, topological and
functorial properties of the Zariski and maximal spectra of the rings S�(M) for an arbitrary semialgebraic set M .
Moreover, our results generalize some similar already known ones for the o-minimal context in the exponentially
bounded and polynomially bounded cases that are developed under the assumption of local closedness [30]. Recall
that S∗(M) can be understood as the ring of holomorphy of the real closed ring S(M) in the sense of [31, p. 40].
This provides some valuable information in relation with the chains of prime ideals containing a given ideal of
S∗(M). To that end, one can use Gelfand–Kolgomorov’s Theorem for rings with normal spectrum and the related
results concerning rings of holomorphy [31, §10] applied to the pair of rings S∗(M) ⊂ S(M).

Locally compact semialgebraic spaces (and in particular the compact ones) have an advantageous geometrical
behavior [2], [4], [8]. The reason is that a locally compact semialgebraic set M is an open subset of each Hausdorff
compactification of M . Apart from semialgebraic compactifications, another important source of valuable infor-
mation to understand Specs(M) when M is non-locally compact arises from the spectrum Spec(S�(Mlc)) where
Mlc denotes the (semialgebraic) subset of those points of M that have a compact neighborhood in M (see 2.2).
This provides a new evidence of the importance of locally compact semialgebraic sets in semialgebraic geometry.
Both types of embeddings M ↪→ X , where X is a semialgebraic compactification of M , and Mlc ↪→ M share
many properties and a general study of the induced spectral maps appears in [12]. In this framework the study of
the fibers of spectral maps induced by general semialgebraic embeddings plays also an important role and this is
the main goal of this work.

1.1.1 Let us fix a semialgebraic set N contained in M . If N is dense in M , the inclusion induces a surjective map
from the Zariski spectrum of S∗(N) to the Zariski spectrum of S∗(M). This map is almost everywhere one-to-one
except for what happens ‘close’ to the complement Y := M \ N . The size of the fibers of prime ideals ‘close’
to the complement Y := M \ N provides valuable information concerning how N is immersed inside M . The
existence of infinite fibers is in some sense related to the existence of infinitely many semialgebraic ways to tend
to Y inside N and one understands that this always occurs if Y has local codimension ≥ 2 in M . The preceding
presentation is of course very vague and, as quoted before, one main purpose of this paper is to determine the cases
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when the fibers are finite. More precisely, we are interested in determining the size of the fibers of the spectral
maps

Specs(j) : Specs(N) −→ Specs(M) and Spec*
s (j) : Spec*

s (N) −→ Spec*
s (M)

induced by an inclusion j : N ↪→ M of semialgebraic sets such that N is dense in M . To systematize notations a
5-tuple (M, N , Y, j, i) where

(i) N ⊂ M is a dense semialgebraic subset of M ,
(ii) Y := M \ N and j : N ↪→ M and i : Y ↪→ M are the inclusion maps

is called a semialgebraic tuple or a sa-tuple. Of course, the pair (M, N) determines the full tuple. As N is dense
in M , the ring homomorphism j�,∗ : S�(M) → S�(N) is injective and we understand S�(M) as a subring of
S�(N).

Observe that Y = ClM(N) \ N is a semialgebraic subset of M whose dimension is by [2, 2.8.13] strictly smaller
than dim(N) = dim(M). A special relevant type of sa-tuple (M, N , Y, j, i) arises when N is locally closed; we
call it suitably arranged sa-tuple [12, §5]. Notice that if such is the case, N is open in M , so Y = M \ N is closed
in M .

1.2 Main results

To ease the presentation and the ulterior proofs of our main results we collect them in a lemma and three theorems
that we state here in the Introduction. We denote the local dimension of M at a point p ∈ Rm with dimp(M),
see [2, 2.8.11] for further details. Fix a sa-tuple (M, N , Y, j, i) and denote Z := ClSpec*

s (M)(Y ). Let WN be the
multiplicative subset of all bounded semialgebraic functions on N with empty zero set.

Lemma 1.1 (Reduction to the ring of bounded semialgebraic functions) We have:

(i) The image of Specs(j) : Specs(N) → Specs(M) is {p ∈ Specs(M) : p ∩ WN = ∅}.
(ii) If p ∩ WN = ∅, then q ∩ WN = ∅ for all q ∈ Spec*

s (j)
−1(p ∩ S∗(M)) and Specs(j)−1(p) ={

qS(N) : q ∈ Spec*
s (j)

−1(p ∩ S∗(M))
}
. In particular, the fibers Specs(j)−1(p) and Spec*

s (j)
−1(p ∩

S∗(M)) have the same size.
(iii) Let h ∈ S(ClRm (M)) be such that Z(h) = ClRm (ClRm (M) \ N) and denote S := {p ∈ Specs(M) : h ∈ p}.

Then the restriction map

Specs(j)| : Specs(N) \ Specs(j)−1(S) −→ Spec*
s (M) \ S

is a homeomorphism.

Theorem 1.2 We have:

(i) The map Spec*
s (j) : Spec*

s (N) → Spec*
s (M) is surjective.

(ii) For each closed semialgebraic subset C of N, it holds

Spec*
s (j)

(
ClSpec*

s (N)(C)
) = ClSpec*

s (M)(C),

Spec*
s (j)

−1
(
ClSpec*

s (M)(C) \ Z
) = ClSpec*

s (N)(C) \ Spec*
s (j)

−1(Z).

(iii) The restriction map Spec*
s (j)| : Spec*

s (N) \ Spec*
s (j)

−1(Z) → Spec*
s (M) \ Z is a homeomorphism.

(iv) Analogous statements hold for β*
s j if we substitute Spec*

s by β*
s .

Theorem 1.3 We have:

(i) If the local dimension dimp(M) ≥ 2 for all p ∈ Y , then Z is the smallest closed subset T of Spec*
s (M)

such that the restriction map

Spec*
s (j)| : Spec*

s (N) \ Spec*
s (j)

−1(T ) −→ Spec*
s (M) \ T

is a homeomorphism.
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(ii) If the local dimension dimp(Y ) ≤ dimp(M) − 2 for all p ∈ Y , then Z is the smallest subset T of
Spec*

s (M) such that the restriction map

Spec*
s (j)| : Spec*

s (N) \ Spec*
s (j)

−1(T ) −→ Spec*
s (M) \ T

is a homeomorphism. If such is the case, given p ∈ Spec*
s (M), the fiber

Spec*
s (j)

−1(p) is

{
a singleton if p ∈ Spec*

s (M) \ Z,

an infinite set if p ∈ Z.

(iii) If dim(M) = 1, both ClSpec*
s (M)(Y ) = Y and Spec*

s (j)
−1(Y ) ⊂ β*

sN \ N are finite sets.
(iv) Analogous statements hold for β*

s j if we substitute Spec*
s by β*

s .

As Mlc is dense in M , the tuple (M, Mlc, ρ1(M) := M \ Mlc, j, i) is a suitably arranged sa-tuple. It holds by
Corollary 2.2 that dimp(ρ1(M)) ≤ dimp(M) − 2 for all p ∈ ρ1(M). Thus, Theorem 1.3 applies and provides the
size of all fibers of Spec*

s (j) : Spec*
s (Mlc) → Spec*

s (M).
Our next purpose is to compute the size of the fibers of the spectral map induced by a general sa-tuple. As

we will see in Section 4, we initially reduce this problem to compute the size of the fibers of the spectral map
Spec*

s (j) : Spec*
s (N) → Spec*

s (M) induced by a suitably arranged sa-tuple (M, N , Y, j, i) where M is pure
dimensional.

1.2.1 Finite fibers and threshold of a prime ideal

Let (M, N , Y, j, i) be a suitably arranged sa-tuple such that M is pure dimensional of dimension d. Observe
that N ⊂ Mlc because N is locally compact and dense in M ; in particular, ρ1(M) := M \ Mlc ⊂ Y . Consider the
auxiliary suitably arranged sa-tuples (M, Mlc, ρ1(M), j1, i1) and (Mlc, N , Y2 := Mlc \ N , j2, i2). By Theorem
1.3(ii) we know that if p ∈ ClSpec*

s (M)(ρ1(M)), the fiber Spec*
s (j1)−1(p) is an infinite set. As j = j1 ◦ j2, also the

fiber Spec*
s (j)

−1(p) = Spec*
s (j2)−1

(
Spec*

s (j1)−1(p)
)

is an infinite set. Thus, it only remains to determine what
happens for a prime ideal p ∈ ClSpec*

s (M)(Y ) \ ClSpec*
s (M)(ρ1(M)).

Let WM be the multiplicative set of those f ∈ S∗(M) such that Z( f ) = ∅ and define EM as the multiplicative
set of those f ∈ S(M) such that Z( f ) = M \ Mlc. Let p �∈ ClSpec*

s (M)(ρ1(M)) be a prime ideal of S∗(M). As we
will see in 2.3.4 there exists a unique maximal ideal m∗ of S∗(M) that contains p. Let m be the unique maximal
ideal of S(M) such that m ∩ S∗(M) ⊂ m∗, see 2.3.4. On the other hand, let p be any prime ideal of S∗(M)
contained in p such that p ∩ EM = ∅ but q ∩ EM �= ∅ for each prime ideal q of S∗(M) that strictly contains p.
Notice that such a prime ideal p exists because by Theorem 2.6 no minimal prime ideal of S∗(M) intersects EM .
Consider the prime ideal

p̂ :=
{
p if p ∩ WM = ∅,

m ∩ S∗(M) if p ∩ WM �= ∅.
(1.1)

By 2.3.5 it holds p̂ ⊂ p, so p̂ �∈ ClSpec*
s (M)(ρ1(M)). As we see in Lemma 5.1, p̂ is univocally determined by p and

if C is a closed subset of M such that p ∈ ClSpec*
s (M)(C), then p̂ ∈ ClSpec*

s (M)(C). In addition every non-refinable
chain of prime ideals of S∗(M) through p contains also p̂. In particular, the minimal prime ideals of S∗(M)
contained in p̂ are the same as those contained in p. We call p̂ the threshold of p in S∗(M).

Theorem 1.4 (Finite fibers) The fiber Spec*
s (j)

−1(p) is finite if and only if

dM (̂pS(M)) := min
{
dim(Z( f )) : f ∈ p̂S(M)

} = d − 1.

Moreover, if such is the case, the size of Spec*
s (j)

−1(p) coincides with the (finite) number of minimal prime ideals
of S∗(M) contained in p̂ (or equivalently in p).

Remark 1.5 Notice that if dim(M) = 1, the previous result can be translated as: Assume p ∈ Y . Then the
(finite) size of the fiber Spec*

s (j)
−1(m∗

p) equals the number of semialgebraic half-branches of the germ Mp (use
[9, 7.3]).

The proof of Theorem 1.4 relies on the following two lemmas that we prove in Section 5.
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Lemma 1.6 Let m ∈ ClSpecs(M)(Y ) be a maximal ideal of S(M) such that dM(m) = d − 1. Let p1 := m ∩
S∗(M) � · · · � pr = m∗ be the collection of all prime ideals of S∗(M) that contain p1. Let q1 be a prime ideal
of S∗(N) such that Spec*

s (j)(q1) = p1 and let q1 � · · · � qs be the collection of all prime ideals of S∗(N) that
contain q1. Then s = r .

Lemma 1.7 Let p ∈ ClSpec*
s (M)(Y ) be a prime ideal of S∗(M) that contains only one minimal prime ideal a of

S∗(M) and satisfies p ∩ WM = ∅ and dM(pS(M)) = d − 1. Then the fiber Spec*
s (j)

−1(p) is a singleton.

1.3 Structure of the article

In Section 2 we present the preliminary results used in Section 4 to prove Lemma 1.1 and Theorems 1.2 and 1.3.
The reading can be started directly in Section 3 and referred to the Preliminaries only when needed. In Section
3 we provide some Examples 4.3 to illustrate some of the results stated in the Introduction. Next, we reduce the
computation of the size of the fibers of spectral maps induced by semialgebraic embeddings to the case of a pure
dimensional suitably arranged sa-tuple in Section 4. The specific computation of the size of those fibers is the
aim of Theorem 1.4. The proof of this result and those of Lemmas 1.6 and 1.7 are conducted in Section 5.

2 Preliminaries on semialgebraic sets and functions

In the following M ⊂ Rm denotes a semialgebraic set. For each function f ∈ S�(M) and each semialgebraic
subset S ⊂ M we denote ZS( f ) := {x ∈ S : f (x) = 0} and DS( f ) := S \ ZS( f ). If S = M , we say that Z( f ) :=
Z M( f ) is the zero set of f and we write D( f ) := DM( f ). Sometimes it will be useful to assume that the
semialgebraic set M we are working with is bounded. Such assumption can be done without loss of generality
because the semialgebraic homeomorphism

h : {x ∈ Rm : ‖x‖ < 1} −→ Rm, x �−→ x√
1 − ‖x‖2

induces a ring isomorphism S(M) → S (
h−1(M)

)
, f �→ f ◦ h that maps S�(M) onto S� (

h−1(M)
)
.

A crucial fact when dealing with S�(M) is that every closed semialgebraic subset Z of M is the zero-set Z(h)
of the (bounded) semialgebraic function h := min{1, dist(·, Z)} on M . We will use that the difference ClRm (S) \ S
has by [2, 2.8.13] dimension strictly smaller than S for each semialgebraic set S ⊂ Rm .

2.1 Bricks of a semialgebraic set

Recall the following decomposition of M as an irredundant finite union of closed pure dimensional semialge-
braic subsets of M as well as some of its main properties. There exists a unique finite family {M1, . . . , Mr } of
semialgebraic subsets of M satisfying the following properties:

(i) Each Mi is the closure in M of the set of points of M whose local dimension is equal to some fixed value.
In particular, Mi is pure dimensional and closed in M .

(ii) M = ⋃r
i=1 Mi .

(iii) Mi \ ⋃
j �=i M j is dense in Mi .

(iv) dim(Mi ) > dim(Mi+1) for i = 1, . . . , r − 1. In particular, dim(M1) = dim(M).

We call the sets Mi the bricks of M and denote the family of bricks of M with BM := {Bi (M) := Mi }r
i=1.

Moreover, if N ⊂ M is a dense semialgebraic subset of M , the families BN and BM of bricks of N and M satisfy
the following relations:

(1) BM := {Bi (M) = ClM(Bi (N))}i ,
(2) BN := {Bi (N) = Bi (M) ∩ N }i .
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2.2 Locally closed semialgebraic sets

Local closedness has been revealed as an important property for the validity of results that are in the core of
semialgebraic geometry. This property is the key assumption to guarantee a Hilbert’s Nullstellensatz for the ring
S(M) and consequently to assure that the radical ideals ofS(M) coincide with the zero ideals ofS(M) (commonly
named as z-ideals). The presence of non units with empty zero set in S∗(M) requires a more sophisticated
Nullstellensatz for this ring [13]. Locally closed semialgebraic subsets of Rn coincide with locally compact ones
because the sets ClRm (M) and U := Rm \ (ClRm (M) \ M) are semialgebraic. If M is locally compact, U is open
in Rm and M is the intersection of a closed and an open semialgebraic subset of Rm . Let us recall some of the
main properties of the largest locally compact and dense subset Mlc of a semialgebraic set M . Its construction is
the main goal of [8, 9.14–9.21].

Proposition 2.1 Define ρ0(M) := ClRm (M) \ M and

ρ1(M) := ρ0(ρ0(M)) = ClRm (ρ0(M)) ∩ M.

Then the semialgebraic set Mlc := M \ ρ1(M) = ClRm (M) \ ClRm (ρ0(M)) is the largest locally compact and
dense subset of M and coincides with the set of points of M that have a compact neighborhood in M.

Corollary 2.2 Suppose that ρ1(M) �= ∅. Then the local dimension dimp(M) ≥ 2 and dimp(ρ1(M)) ≤
dimp(M) − 2 for each point p ∈ ρ1(M).

P r o o f . Let p ∈ ρ1(M) and suppose by contradiction that dimp(M) ≤ 1. Let U be an open neighborhood of
p in Rm such that d := dim(M ∩ U) = dimp(M) ≤ 1. As ρ0(M ∩ U) = ClRm (M ∩ U) \ (M ∩ U) has dimension
≤ d − 1 ≤ 0, it is either empty or a finite set. Hence, ρ0(M ∩ U) is a closed set in Rm . Therefore

p ∈ ρ1(M) ∩ U = ρ1(M ∩ U) = ClRm (ρ0(M ∩ U)) \ ρ0(M ∩ U) = ∅,

which is a contradiction. Thus, dimp(M) ≥ 2. Let V be an open neighborhood of p in Rm such that dim(M ∩ V ) =
dimp(M) and dim(ρ1(M) ∩ V ) = dimp(ρ1(M)). Then

dimp(ρ1(M)) = dim(ρ1(M) ∩ V ) = dim(ρ1(M ∩ V ))

= dim(ρ0(ρ0(M ∩ V ))) ≤ dim(M ∩ V ) − 2 = dimp(M) − 2,

as wanted. �

2.3 Zariski and maximal spectra of rings of semialgebraic functions

We summarize some results concerning the Zariski and maximal spectra of rings of semialgebraic and bounded
semialgebraic functions on a semialgebraic set [12, §3–§6].

The Zariski spectrum Spec�
s (M) := Spec(S�(M)) of S�(M) is the collection of all prime ideals of S�(M)

endowed with the Zariski topology, which has the family of sets DSpec�
s (M)( f ) := {p ∈ Spec�

s (M) : f �∈ p} as a
basis of open sets and where f ∈ S�(M). We write ZSpec�

s (M)( f ) := Spec�
s (M) \ DSpec�

s (M)( f ).
We denote the maximal ideal of all functions in S�(M) vanishing at a point p ∈ M with m�

p. If M is endowed
with the Euclidean topology, the map φ : M → Spec�

s (M), p �→ m�
p is an embedding, so we identify M with

φ(M). Those maximal ideals of S�(M), which are not of the form m�
p, are called free and ∂ M := β*

sM \ M is the
set of all free maximal ideals of S∗(M).

2.3.1 Each semialgebraic map h : M1 → M2 induces a homomorphism

h�,∗ : S�(M2) −→ S�(M1), f �−→ f ◦ h.

The map Spec�
s (h) : Spec�

s (M1) → Spec�
s (M2), p → (h�,∗)−1(p) is the unique continuous extension of h to

Spec�
s (M1). The operator Spec�

s behaves in the expected functorial way. Let us recall some of its immediate
properties [12, 4.3–6]. Let C, C1, C2, N ⊂ M be semialgebraic sets such that C, C1, C2 are closed in M . Then
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(i) A prime ideal p ∈ Spec�
s (M) belongs to ClSpec�

s (M)(N) if and only if it contains the kernel of the restriction
homomorphism φ : S�(M) → S�(N), f → f |N . If p is in addition a z-ideal, it is enough to determine if
there exists g ∈ p such that Z(g) = Y .

(ii) Spec�
s (C) ∼= ClSpec�

s (M)(C) via Spec�
s (j) where j : C ↪→ M is the inclusion map.

(iii) ClSpec�
s (M)(C1 ∩ C2) = ClSpec�

s (M)(C1) ∩ ClSpec�
s (M)(C2).

(iv) If M1, . . . , Mk are the connected components of M , their closures ClSpec�
s (M)(Mi ) ∼= Spec�

s (Mi ) are the
connected components of Spec�

s (M).

Next we summarize some results obtained in [12, §4-5] that will be crucial for our purposes. Let us denote the
set of minimal prime ideals of S�(M) with Min(S�(M)).

Theorem 2.3 Let (M, N , Y, j, i) be a suitably arranged sa-tuple and let LY := {p ∈ Specs(M) : ∃ f ∈ p,

Z( f ) = Y }. Then the map Specs(j) : Specs(N) → Specs(M) \ LY is a homeomorphism whose inverse map is
Specs(j)−1 : Specs(M) \ LY → Specs(N), p �→ pS(N).

Remark 2.4 Let h ∈ S(ClRm (M)) be such that Z(h) = ClRm (M) \ N . Then LY = ZSpecs(M)(h).
Indeed, the inclusion ZSpecs(M)(h) ⊂ LY is clear, so we only prove the converse one. Let p ∈ LY and f ∈ p

be such that Z( f ) = Y . By [2, 2.6.4] there exist an integer k ≥ 1 and g ∈ S(ClRm (M)) such that g|N = hk

f and

g|ClRm (M)\N = 0. Thus, hk = g f ∈ p, so h ∈ p. Therefore p ∈ ZSpecs(M)(h), as required.

Theorem 2.5 Let (M, N , Y, j, i) be a suitably arranged sa-tuple. Let p be a prime ideal of S∗(M) and denote
Z := ClSpec*

s (M)(Y ). We have

(i) If p is a minimal prime ideal of S∗(M), then p �∈ Z and Spec*
s (j)

−1(p) = {q} where q := pS(N) ∩ S∗(N)
is a minimal prime ideal of S∗(N).

(ii) If p �∈ Z and p0 ⊂ p is a minimal prime ideal of S∗(M), the fiber Spec*
s (j)

−1(p) is a singleton and its
unique element is

√
pS∗(N) + p0S(N) ∩ S∗(N).

(iii) Spec*
s (j) : Spec*

s (N) → Spec*
s (M) is surjective and the restriction map

Spec*
s (j)| : Spec*

s (N) \ Spec*
s (j)

−1(Z) −→ Spec*
s (M) \ Z

is a homeomorphism. In particular, the restriction map

Spec*
s (j)| : Min(S∗(N)) −→ Min(S∗(M))

is also a homeomorphism.
(iv) The homomorphism S∗(M) ↪→ S∗(N), f �→ f |N enjoys the going up property.

2.3.2 It is well-known thatS(M) = S∗(M)WM whereWM is the multiplicative set of those functions f ∈ S∗(M)

such that Z( f ) = ∅ because each f ∈ S(M) can be written as f =
f

1+| f |
1

1+| f |
. Denote the set of prime ideals of

S∗(M) that do not intersect WM with S(M). The Zariski spectrum of S(M) is homeomorphic to S(M) via the
homeomorphisms iM : Specs(M) → S(M), p �→ p ∩ S∗(M) and i−1

M : S(M) → Specs(M), q �→ qS(M). The
previous homeomorphism iM maps Min(S(M)) (bijectively) onto Min(S∗(M)) (see [9, 4.3]).

2.3.3 An ideal a of S(M) is a z-ideal if every g ∈ S(M) satisfying Z( f ) ⊂ Z(g) for some f ∈ a belongs to a.
Each z-ideal is a radical ideal because Z( f ) = Z

(
f k

)
for each f ∈ S(M) and each k ≥ 1. The operator Specs

preserves prime z-ideals: if h : M1 → M2 is a semialgebraic map, Specs(h)(p) is a prime z-ideal of S(M2) for
each prime z-ideal p of S(M1).

Two relevant examples of z-ideals of S(M) are maximal and minimal prime ideals [[9], 4.7, 4.14]. Minimal
prime ideals have been characterized geometrically in [9, 4.1] as follows.

Theorem 2.6 (Minimal prime ideals) Let p be a prime ideal of S�(M). Then p is a minimal prime ideal of
S�(M) if and only if the zero set of each f ∈ p has a non-empty interior in M.
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2.3.4 Maximal spectra. Denote the collection of all maximal ideals of S�(M) with β�
s M and consider in β�

s M
the topology induced by the Zariski topology of Spec�

s (M). Given f ∈ S�(M), we denote

Dβ�
s M( f ) := DSpec�

s (M)( f ) ∩ β�
s M and Zβ�

s M( f ) := β�
s M \ Dβ�

s M( f ) = ZSpec�
s (M)( f ) ∩ β�

s M.

As for rings of continuous functions [17, §7], the maximal spectra βs M and β*
sM of S(M) and S∗(M) are

homeomorphic ([31, §10], [11, 3.5]). The map 	 : βs M → β*
sM,m �→ m∗, which maps each maximal ideal m of

S(M) to the unique maximal ideal m∗ of S∗(M) that contains m ∩ S∗(M), is a homeomorphism. In particular,
	(mp) = m∗

p for all p ∈ M . We denote the maximal ideals of S∗(M) with m∗ and the unique maximal ideal n of
S(M) such that n ∩ S∗(M) ⊂ m∗ with m.

If h : M1 → M2 is a semialgebraic map, Spec*
s (h) : Spec*

s (M1) → Spec*
s (M2) maps β*

sM1 into β*
sM2 by [12,

5.9]. We denote the restriction of Spec*
s (h) to β*

sM1 with β*
sh : β*

sM1 → β*
sM2.

2.3.5 It is well-known that the set of prime ideals of S�(M) containing a prime ideal p form a chain. In [9,
2.11 & 5.1–2] we study the behavior of those chains of prime ideals in S∗(M) that do not admit a refinement. Let
p0 � · · · � pr = m∗ be a non-refinable chain of prime ideals in the ring S∗(M). We have:

(i) There exists 0 ≤ k ≤ r such that pk = m ∩ S∗(M) where m is the unique maximal ideal of S(M) such
that m ∩ S∗(M) ⊂ m∗. In particular, p
 ∩ WM = ∅ if and only if 
 ≤ k.

(ii) The subchain pk = m ∩ S∗(M) � · · · � pr = m∗ is the same for every non-refinable chain of prime ideals
in S∗(M) ending at m∗.

(iii) If C is a closed semialgebraic subset of M and p j ∈ ClSpec*
s (M)(C) for j = 0, . . . , r , then the maximal

ideal m ∈ ClSpecs(M)(C) and pk = m ∩ S∗(M) ∈ ClSpec*
s (M)(C).

2.3.6 Semialgebraic depth. The semialgebraic depth of a prime ideal p of S(M) is

dM(p) := min{dim(Z( f )) : f ∈ p}.
Some remarkable properties of this invariant collected in [14] and [9, §4] are the following:

(i) Let p be a prime ideal of S(M). Then there exists a unique prime z-ideal pz of S(M) such that p ⊂ pz and
dM(p) = dM(pz).

(ii) Let p, q be two prime z-ideals of S(M) such that q � p. Then dM(p) < dM(q). If additionally dM(p) =
dM(q) + 1, there exists no prime ideal between p and q.

(iii) If p is a prime z-ideal, then dM(p) = tr deg
R
(qf(S(M)/p)).

2.4 Semialgebraic compactifications of a semialgebraic set

A semialgebraic compactification of a semialgebraic set M ⊂ Rm is a pair (X, k) constituted of a compact
semialgebraic set X ⊂ Rn and a semialgebraic embedding k : M ↪→ X whose image is dense in X . Of course, it
holds S(X) = S∗(X). The following properties shown in [14, §1] are decisive.

2.4.1 For each finite family F := { f1, . . . , fr } ⊂ S∗(M) there exist a semialgebraic compactification (X, kF)
of M and semialgebraic functions F1, . . . , Fr ∈ S(X) such that fi = Fi ◦ kF.

Indeed, we may assume that M is bounded. Now consider X := Cl(graph( f1, . . . , fr )), kF : M ↪→ X, x �→
(x, f1(x), . . . , fr (x)) and Fi := πm+i |X where πm+i : Rm+r → R, x := (x1, . . . , xm+r ) �→ xm+i for i = 1, . . . , r .

2.4.2 Given a chain of prime ideals p0 � · · · � pr of S∗(M), there exists a semialgebraic compactification
(X, k) of M such that the prime ideals qi := pi ∩ S(X) constitute a chain q0 � · · · � qr in S(X).

Indeed, it is enough to pick fi ∈ pi \ pi−1 for 1 ≤ i ≤ r and to consider the semialgebraic compactification of
M provided for the family F := { f1, . . . , fr } by 2.4.1.

2.4.3 Let FM be the collection of all semialgebraic compactifications of M . Given two of them (X1, k1) and
(X2, k2), we say that (X1, k1) � (X2, j2) if there exists a (unique) continuous (surjective) map ρ := ρX1,X2 :
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X2 → X1 such that ρ ◦ k2 = k1; the uniqueness of ρ follows because ρ|k2(M) = k1 ◦ (k2|M)−1 and k2(M) is
dense in X2. It holds: ρ−1(X1 \ k1(M)) = X2 \ k2(M) and ρ(X2 \ k2(M)) = X1 \ k1(M).

P r o o f . Let us see X2 \ k2(M) ⊂ ρ−1(X1 \ k1(M)) first. Let x2 ∈ X2 \ k2(M). Since k2(M) is dense
in X2, by the curve selection lemma [2, 2.5.5] there exists a semialgebraic path α : [0, 1] → Rm such that
α((0, 1]) ⊂ M and k2(α(0)) = x2. Note that ρ(x2) = ρ(k2(α(0))) = limt→0+ k1(α(t)). If this point occurs in
k1(M), then α(0) ∈ M , so x2 = k2(α(0)) ∈ k2(M), which is a contradiction. Conversely, suppose there exists
x2 ∈ ρ−1(X1 \ k1(M)) ∩ k2(M). Then ρ(x2) �∈ k1(M), but x2 = k2(y) for some y ∈ M . This implies ρ(x2) =
ρ(k2(y)) = k1(y) ∈ k1(M), which is a contradiction. Finally, since ρ is surjective and ρ−1(X1 \ k1(M)) =
X2 \ k2(M), we conclude ρ(X2 \ k2(M)) = X1 \ k1(M). �

2.4.4 (FM ,�) is an up-directed set and we have a collection of rings {S(X)}(X,k)∈FM and R-monomorphisms
ρ∗

X1,X2
: S(X1) → S(X2), f �→ f ◦ ρX1,X2 for (X1, k1) � (X2, k2) such that

� ρ∗
X1,X1

= id and
� ρ∗

X1,X3
= ρ∗

X2,X3
◦ ρ∗

X1,X2
if (X1, k1) � (X2, k2) � (X3, k3).

We conclude: The ring S∗(M) is the direct limit of the up-directed system 〈S(X), ρ∗
X1,X2

〉 together with the
homomorphisms k∗ : S(X) ↪→ S∗(M) where (X, k) ∈ FM .

2.4.5 Let p be a prime ideal of S�(M). Then there exists by [14, §2] a semialgebraic compactification (X, k) of
M such that

qf(S(X)/(p ∩ S(X))) = qf(S�(M)/p).

We refer to (X, k) as a brimming semialgebraic compactification of M for p. Of course, if p1, . . . , pr are finitely
many prime ideals of S�(M), there exists by 2.4.4 a (common) brimming semialgebraic compactification (X, k)
of M for p1, . . . , pr , that is, qf(S�(M)/pi ) = qf(S(X)/(pi ∩ S(X))) for i = 1, . . . , r .

2.5 Separation of prime z-ideals

We finish this section showing how the prime z-ideals of S(M) admit a nice behavior with respect to ‘separation’.

Lemma 2.7 Let p1, p2 be prime z-ideals of S(M) such that pi �⊂ p j if i �= j and let g ∈ p1 ∩ p2. Then there
exist fi ∈ pi \ p j for i �= j such that

(i) Z( fi ) is pure dimensional, Z( fi ) ⊂ Z(g) and dim(Z( fi )) = dM(pi ).
(ii) dim

(
Z

(
f 2
1 + f 2

2

))
< min{dM(p1), dM(p2)}.

P r o o f . Let gi ∈ pi \ p j for i �= j . We may assume dim(Z(gi )) = dM(pi ) and Z(gi ) ⊂ Z(g) by substituting
gi with g2

i + a2
i + g2 where ai ∈ pi and dim(Z(ai )) = dM(pi ).

Let fi ∈ S(M) be such that Z( fi ) = ClM(Z(gi ) \ Z(g j )) if i �= j . As Z(gi ) ⊂ Z( fi g j ) and pi is a prime
z-ideal, fi g j ∈ pi and since g j ∈ p j \ pi , we deduce fi ∈ pi . Notice

Z( f1) ∩ Z( f2) ⊂ Z( f1) ∩ Z(g2) = ClM(Z(g1) \ Z(g2)) ∩ Z(g2)

= (ClM(Z(g1) \ Z(g2)) \ (Z(g1) \ Z(g2))) ∩ Z(g2);

hence,

dim(Z( f1) ∩ Z( f2)) ≤ dim(ClM(Z(g1) \ Z(g2)) \ (Z(g1) \ Z(g2)))

< dim(Z(g1) \ Z(g2)) ≤ dim(Z(g1)) = dM(p1).

Analogously, dim(Z( f1) ∩ Z( f2)) < dM(p2), so

dim
(
Z

(
f 2
1 + f 2

2

))
< min{dM(p1), dM(p2)}.
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Notice in addition that as Z( fi ) ⊂ Z(gi ),

dM(pi ) ≤ dim(Z( fi )) ≤ dim(Z(gi )) = dM(pi ).

To finish we may assume that Z( fi ) is pure dimensional. To that end use the decomposition of Z( fi ) as a union
of (closed) bricks, the fact that each brick is the zero set of a semialgebraic function on M and that pi is a prime
z-ideal. �

Lemma 2.8 Let p1, p2, q be prime z-ideals of S(M) such that pi ⊂ q and pi �⊂ p j if i �= j . Assume dM(pi ) =
dM(q) + 1 and let g ∈ q be such that dim(Z(g)) = dM(q). Then there exist fi ∈ pi \ p j if i �= j such that
Z

(
f 2
1 + f 2

2

) ⊂ Z(g) and Z( fi ) is pure dimensional.

P r o o f . The pure dimensionality of Z( fi ) will be reached once the other requirements are fulfilled. To
achieve it one proceeds similarly to the final part of the proof of the previous lemma. By Lemma 2.7 there exist
hi ∈ pi \ p j for i �= j such that dim(Z(hi )) = dM(pi ) and

dim
(
Z

(
h2

1 + h2
2

))
< min{dM(p1), dM(p2)} = dM(q) + 1.

Thus, if Zi := Z(hi ), we have dM(q) ≤ dim(Z1 ∩ Z2) ≤ dM(q) = dim(Z(g)). After substituting g with g2 +
h2

1 + h2
2, we may assume Z(g) ⊂ Z1 ∩ Z2.

If Z1 ∩ Z2 ⊂ Z(g), it is enough to choose fi := hi . Assume next Z1 ∩ Z2 �⊂ Z(g) and let C1 := Z(g)
and C2 := ClM((Z1 ∩ Z2) \ C1). Let b ∈ S(M \ (C1 ∩ C2)) be such that b−1({−1}) = C1 \ (C1 ∩ C2) and
b−1({1}) = C2 \ (C1 ∩ C2). Consider the closed semialgebraic subsets of M

T1 := ClM
(
b−1((−∞, 0]) =)

and T2 := b−1([0,+∞)) ∪ (C1 ∩ C2).

Let bi ∈ S(M) be such that Z(bi ) = Ti . Note that

C1 ∩ C2 = C1 ∩ ClM((Z1 ∩ Z2) \ C1)

= C1 ∩ (ClM((Z1 ∩ Z2) \ C1) \ ((Z1 ∩ Z2) \ C1)).

Therefore

dim(C1 ∩ C2) ≤ dim(ClM((Z1 ∩ Z2) \ C1) \ ((Z1 ∩ Z2) \ C1))

< dim((Z1 ∩ Z2) \ C1) ≤ dim(Z1 ∩ Z2) = dM(q). (2.1)

Moreover, as

b−1([0,+∞)) ∩ Z(g) ⊂ b−1([0,+∞)) ∩ (
b−1({−1}) ∪ (C1 ∩ C2)

) ⊂ C1 ∩ C2,

we conclude

Z
(
b2

2 + g2
) = T2 ∩ Z(g) = (

b−1([0,+∞)) ∪ (C1 ∩ C2)
) ∩ Z(g) ⊂ C1 ∩ C2.

Thus, b2
2 + g2 �∈ q because by (2.1) dim

(
Z

(
b2

2 + g2
))

< dM(q). Since g ∈ q, we get b2 �∈ q. As b1b2 = 0 and
pi ⊂ q, we deduce b1 ∈ pi . Therefore, fi := h2

i + b2
1 ∈ pi and since b1 ∈ pi and hi ∈ pi \ p j if i �= j , we have

fi ∈ pi \ p j if i �= j . To finish we show Z
(

f 2
1 + f 2

2

) ⊂ Z(g).
Indeed, notice that

(Z1 ∩ Z2) \ (C1 ∩ C2) ⊂ (C1 ∪ C2) \ (C1 ∩ C2) ⊂ b−1({−1}) ∪ b−1({1});
hence,

((Z1 ∩ Z2) \ (C1 ∩ C2)) ∩ (
b−1((−∞, 0])

) ⊂ b−1({−1}) = C1 \ (C1 ∩ C2).

Therefore

Z
(

f 2
1 + f 2

2

) = Z(h1) ∩ Z(h2) ∩ Z(b1) = Z1 ∩ Z2 ∩ ClM(b−1((−∞, 0]))

⊂ Z1 ∩ Z2 ∩ (b−1((−∞, 0]) ∪ (C1 ∩ C2)) ⊂ C1 = Z(g),

as required. �
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Remark 2.9 The previous lemma applies for instance if p1, p2 are minimal prime ideals contained in a prime
z-ideal q.

3 Examples

Before providing in the next section the rather technical proofs of Theorem 1.4 and Lemmas 1.6 and 1.7 we
present here some enlightening examples to illustrate them. We develop them in full detail for the sake of the
reader and we explain the irregularities that present the size of the fibers of the spectral maps associated to some
apparently innocuous geometric embeddings. Fix a positive integer m and denote Xm := [0, 1]m .

Example 3.1 (i) Let m0 be the maximal ideal constituted by all semialgebraic functions on Xm vanishing at
the origin. We construct: a prime ideal p ⊂ m0 of S(Xm) such that dXm (q) = m.

Define q as the set of all semialgebraic functions f ∈ S(Xm) satisfying: for each semialgebraic triangulation
(K ,	) of Xm compatible with Z( f ) it holds 	(σ ) ⊂ Z( f ) where:

3.1 σ ∈ K is an m-dimensional simplex such that for each d = 0, . . . , m there exists a d-dimensional face τd

of σ such that 	(τd) ⊂ {xd+1 = 0, . . . , xm = 0}.

Using recursively the straightforward property 3.2 stated below, one shows that σ is uniquely determined by
3.1. We call σ the indicator simplex for (K ,	).

3.2 Let τ ⊂ Rd be a simplex of dimension d and η1, η2 two simplices contained in Rd × [0,∞) that have τ as
a common face. Then η0

1 ∩ η0
2 �= ∅.

3.3 It holds: q is a prime ideal of S(Xm) and, as dim(σ ) = m, it is clear that dXm (q) = m.

Only the primality of q requires a comment. Indeed, let f1, f2 ∈ S(Xm) be such that f1 f2 ∈ q and let (K ,	)
be a semialgebraic triangulation of Xm compatible with Z( f1) and Z( f2). Let σ be an indicator simplex for
(K ,	). Since 	(σ ) ⊂ Z( f1 f2) and (K ,	) is compatible with Z( fi ), we may assume 	(σ 0) ⊂ Z( f1); hence,
	(σ ) ⊂ Z( f1). Thus, f1 ∈ q and we conclude that q is a prime ideal.

(ii) We claim: There is a chain of prime ideals q0 � · · · � qm := m0 in S(Xm) such that dXm (qk) = m − k for
k = 0, . . . , m.

For each k = 1, . . . , m define Xk := [0, 1]k × {0} ⊂ Rm . Clearly, {0} � X1 � · · · � Xm is a chain of closed
subsets of Xm . The restriction homomorphism ϕk : S(Xm) → S(Xk), f �→ f |Xk is by [7] surjective, so the ideal
qk constructed in (i) for Xk provides a prime ideal qm−k := ϕ−1

k (qk) such that dXm (qm−k) = dXk (qk) = k. Now,
by the definition of the ideals qk , it is clear that q0 � · · · � qm := m0.

(iii) We present next an inclusion of semialgebraic sets j : N ↪→ M and a non-definable chain of prime
ideals p0 � · · · � pm in S(M) such that each prime ideal pk ∈ ClSpec*

s (M)(Y ) where Y := M \ N and each fiber
Spec*

s (j)
−1(pk) is a singleton (see Theorem 1.4).

Let M := Xm \ {xm−1 = 0, xm = 0} and consider the inclusion k : M ↪→ Xm . The map Spec*
s (k) :

Spec*
s (M) → Spec*

s (Xm) is surjective and by Theorem 2.5(iv) there exists a chain of prime ideals p0 � · · · � pm

in Spec*
s (M) such that Spec*

s (k)(pk) = qk for k = 0, . . . , m. By [14, Thm. 1] we know that dim(S(M)) =
dim(S∗(M)) = dim(M) = m. Thus, the chain of prime ideals p0 � · · · � pm has maximal length and does not
admit any refinement; hence, pm = m∗ is a maximal ideal. Notice that for each k ≥ 2 there exists fk ∈ pk such
that Z( fk) ∩ M = ∅. In addition the zero set of each f ∈ p1 intersects M . Thus, pk ∩ WM = ∅ if and only if
k = 0, 1.

By 2.3.5 we conclude p1 = m ∩ S∗(M) where m is the unique maximal ideal of S(M) such that m ∩ S∗(M) ⊂
m∗. Notice dM(m) = m − 1 and that q0 is by Theorem 2.6 and property 3.2 the unique minimal prime ideal of
S(Xm) contained in q1. By Theorem 2.5(iii) p0 is the unique minimal prime ideal contained in p1.

3.4 Let N := M \ {xm = 0} and Y := M \ N = M ∩ {xm = 0}. Denote the inclusion with j : N ↪→ M and
observe p1 = m ∩ S∗(M) ∈ ClSpec*

s (M)(Y ), so also pk ∈ ClSpec*
s (M)(Y ) for k = 2, . . . , m. Moreover, following the
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h5,4

h5,3

h5,2

h5,1

h5,0

X2 X2

m

m5,0 m5,1 m5,2 m5,3 m5,4

Fig. 1 Construction of the maximal ideals mk,
 for m = 2 (and k = 5).
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ψ1

•

•• • • •

•

FIXED POINTS

ψ1(a) ψ1(p) ψ1(b) ψ1(q) ψ1(c)

x3 = λ

Fig. 2 Restriction of the map ψ1 to the plane x3 = λ for m = 3.

notation of (1.1), it holds p̂k = p1 for k = 1, . . . , m, p1S(M) = m and dM(m) = m − 1. By Theorem 1.4 the fiber
Spec*

s (j)
−1(pk) is a singleton {p′

k} for k = 1, . . . , m.
(iv) If m ≥ 2, one can find infinitely maximal ideals with singleton fibers with respect to Spec*

s (j) contained in
ClSpec*

s (M)(Y ).
To that end, fix k ≥ 1 and 0 ≤ 
 < k. Consider the inclusions

hk,
 : Xm −→ Xm, x := (x1, . . . , xm) �−→ 1

k
(x1, . . . , xm) +

(



k
, 0, . . . , 0

)
.

Denote Z
,k := im(hk,
), which is a closed semialgebraic subset of Xm of dimension m. One can check readily that
for each 0 ≤ 
 < k the prime ideal m∗

k,
 := Spec*
s (hk,
)(m∗) has a singleton fiber with respect to Spec*

s (j) and that
mk,
 �= mk,
′ if 
 �= 
′. Thus, there exist infinitely maximal ideals with singleton fibers contained in ClSpec*

s (M)(Y ).
(v) Fix 1 ≤ 
 ≤ m − 2. We construct next an inclusion j′ : N ↪→ Xm and a non-refinable chain or prime ideals

q′
1 � · · · � qm−
 in S(Xm) such that the fiber Spec*

s (j
′)−1(q′

1) is a singleton while Spec*
s (j

′)−1(q′
k) is an infinite

set for k ≥ 2 (see Theorem 1.4 and Lemmas 1.6 and 1.7).
Write y(
) := (x1, . . . , x
−1) and z(
) := (x
+1, . . . , xm) for 1 ≤ 
 ≤ m − 2. Consider the semialgebraic map

ψ
 : Xm → Xm given by

(x1, . . . , xm) �−→
⎧⎨⎩

(y(
), x
(xm−1 + xm), z(
)) if 0 ≤ x
 < 1
2 , xm−1 + xm ≤ 1,

(y(
), (1 − x
)(xm−1 + xm − 2) + 1, z(
)) if 1
2 ≤ x
 ≤ 1, xm−1 + xm ≤ 1,

(x1, . . . , xm) if xm−1 + xm ≥ 1.
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Note that ψ
|M : M → M is a semialgebraic homeomorphism. Thus, the same happens to the restriction of
the composition ψ(
) = ψ
 ◦ · · · ◦ ψ1 : Xm → Xm to M . Observe

ψ(
)

({
0 ≤ x1 ≤ 1

2
, . . . , 0 ≤ x
 ≤ 1

2
, xm−1 = 0, xm = 0

})
= {0} (3.1)

and consider the semialgebraic map k′ := ψ(
) ◦ k : M → Xm where k : M ↪→ Xm is the inclusion.
Denote q′

k := Spec*
s

(
ψ(
)

)
(qk) for k = 1, . . . , m − 
. Observe q′

0 � · · · � q′
m−
 but for k = m − 
 + 1, . . . , m

it holds by (3.1) that Spec*
s

(
ψ(
)

)
(qk) = q′

m−
, which is the maximal ideal of S(Xm) of all semialgebraic functions
on Xm vanishing at the origin. In addition by (3.1) we have

dXm (q′
k) =

{
dXm(qk) = m − k if 0 ≤ k ≤ m − 
 − 1,

0 if k = m − 
.
(3.2)

As the chain q0 � · · · � qm is non-refinable, the same happens by Theorem 2.5 to the chain q′
0 � · · · � q′

m−
. As
Spec*

s (k)(pk) = qk , it follows that Spec*
s (k

′) maps the non-refinable chain p0 � · · · � pm onto q′
0 � · · · � q′

m−
,
so Spec*

s (k
′)(pk) = q′

m−
 for k = m − 
, . . . , m.
Define j′ := k′ ◦ j : N ↪→ M ′ := Xm and recall Spec*

s (j)
−1(pk) = {p′

k} for k = 0, . . . , m. Consequently,

Spec*
s (j

′)(p′
k) =

{
q′

k if 0 ≤ k ≤ m − 
 − 1,

q′
m−
 if m − 
 ≤ k ≤ m.

As WM ′ = EM ′ = ∅, we conclude q̂′
i = q′

i . Thus, by (3.2) and Theorem 1.4 (or Lemma 1.7) the fiber
Spec*

s (j
′)−1(q′

1) is a singleton while Spec*
s (j

′)−1(q′
k) is an infinite set for k ≥ 2. In particular, the fiber of

q′
m−
 contains the subchain p′

m−
 � · · · � p′
m . Compare this fact with Lemma 1.6. �

4 Proofs of Lemma 1.1, Theorems 1.2 and 1.3 and some consequences

The main purpose of this section is to prove Lemma 1.1 and Theorems 1.2 and 1.3. We also show how to reduce
the computation of the size of the fibers of spectral maps induced by (dense) semialgebraic embeddings to the
case of pure dimensional suitably arranged sa-tuples.

4.1 Proof of Lemma 1.1

Let us see how we can reduce the computation of the size of the fibers of Specs(j) : Specs(N) → Specs(M) to
analyze the fibers of Spec*

s (j) : Spec*
s (N) → Spec*

s (M).
P r o o f o f L e m m a 1 . 1 (i) First, let q ∈ Specs(N) and p = Specs(j)(q) = q ∩ S(M). As WN is con-

tained in the units of S(N), it is clear that q ∩ WN = ∅, so p ∩ WN = ∅. Conversely, let p be a prime ideal of
S(M) such that p ∩ WN = ∅. Consider the diagram

Specs(N)
Specs (j)

iN

Specs(M)

iM

Spec*
s (N)

Spec*
s (j)

Spec*
s (M)

and let p′ := p ∩ S∗(M). By Theorem 1.2(i), whose proof does not use Lemma 1.1(i), the map Spec*
s (j) :

Spec*
s (N) → Spec*

s (M) is surjective. We claim:

4.1.1 If q′ ∈ Spec*
s (N) satisfies Spec*

s (q
′) = p′, then q′ ∩ WN = ∅.

Suppose by contradiction that q′ ∩ WN �= ∅ and let f ∈ q′ ∩ WN . Assume that M is bounded and
let X2 := ClRm+1(graph( f )) and X1 := ClRm (N) = ClRm (M). Let ρ : X2 → X1, (x, y) �→ x and k2 : N ↪→
X2, x �→ (x, f (x)). By 2.4.3 we know that ρ−1(X1 \ N) = X2 \ k2(N) and ρ(X2 \ k2(N)) = X1 \ N . Let
f̂ : X2 → R, (x, y) �→ y. Observe that f̂ ◦ k2 = f and let T := Z

(
f̂
)
. As f does not vanish in N , we have

T ∩ k2(N) = ∅. Then ρ(T ) ⊂ X1 \ N , so ρ−1(ρ(T )) ⊂ X2 \ k2(N). Let g ∈ S(X1) be such that Z(g) = ρ(T ).
Observe Z

(
f̂

) = T ⊂ Z(g ◦ ρ) and, as q′ ∩ S(X2) is a z-ideal and f̂ ∈ q′ ∩ S(X2), we deduce g ◦ ρ ∈
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q′ ∩ S(X2). Thus, g ∈ q′, so g ∈ p′ = q′ ∩ S∗(M). On the other hand, Z(g) = ρ(T ) ⊂ X1 \ N , so g ∈ p′ ∩ WN ,
which is a contradiction. We conclude q′ ∩ WN = ∅.

By 2.3.2 the image of iN is the collection of all prime ideals of S∗(N) that do not intersect WN , so p =
Spec(j)(q′S(N)) belongs to the image of Specs(j).

(ii) The first part of the statement has been already proved in 4.1.1. Once this is proved, the rest of the statement
follows straightforwardly from 2.3.2.

(iii) We have to show that the restriction map

Specs(j)| : Specs(N) \ Specs(j)−1(ZSpecs(M)(h)) −→ Spec*
s (M) \ ZSpecs(M)(h) (4.1)

is a homeomorphism where Z(h) = ClRm (ClRm (M) \ N). Consider the locally compact semialgebraic set
Nlc := ClRm (M) \ Z(h). By Proposition 2.1 we know that Nlc is dense in N , so it is also dense in M . Consider
the inclusions j1 : Nlc ↪→ N and j2 : Nlc ↪→ M . It holds j2 = j ◦ j1. By Theorem 2.3 we know that the maps

Specs(j1) : Specs(Nlc) → Specs(N) \ ZSpecs(N)(h) and

Specs(j2) : Specs(Nlc) → Specs(M) \ ZSpecs(M)(h)

are homeomorphisms. Notice that Specs(j)−1(ZSpecs(M)(h)) = ZSpecs(N)(h). As the following diagrams are com-
mutative,

N
j

M

Nlc

j1
j2

Specs(N) \ ZSpecs (N )(h)
Specs (j)| Specs(M) \ ZSpecs (M )(h)

Specs(Nlc)

Specs (j1 ) ∼=
Specs (j2 )

∼=

we conclude that also the map Specs(j)| in (4.1) is a homeomorphism, as required. �

4.2 Proof of Theorem 1.2

The proof of this result follows mainly from Theorem 2.5 where it is partially approached for a suitably arranged
sa-tuple.

P r o o f o f T h e o r e m 1 . 2 (i) Consider the auxiliary suitably arrangedsa-tuple (M, Nlc, M \ Nlc, j1, i1)
and the inclusion j2 : Nlc ↪→ N . Observe j1 = j ◦ j2. Thus, Spec*

s (j1) = Spec*
s (j) ◦ Spec*

s (j2) and since
Spec*

s (j1) is by Theorem 2.5(iii) surjective, also Spec*
s (j) is surjective, as required.

(ii) To prove the first equality observe first that by 2.3.1 (ii) Spec*
s (C) ∼= ClSpec*

s (N)(C) and

Spec*
s (ClM(C)) ∼= ClSpec*

s (M)(ClM(C)) = ClSpec*
s (M)(C).

The spectral map Spec*
s (j0) : Spec*

s (C) → Spec*
s (ClM(C)) induced by the inclusion j0 : C ↪→ ClM(C) is by (i)

surjective, so Spec*
s (j)

(
ClSpec*

s (N)(C)
) = ClSpec*

s (M)(C).
To prove the second equality, note first that the inclusion

ClSpec*
s (N)(C) ⊂ Spec*

s (j)
−1

(
ClSpec*

s (M)(C)
)

is clear, so

ClSpec*
s (N)(C) \ Spec*

s (j)
−1(Z) ⊂ Spec*

s (j)
−1

(
ClSpec*

s (M)(C) \ Z
)
.

To prove the converse, we show

Spec*
s (j)

(
Spec*

s (N) \ (
ClSpec*

s (N)(C) ∪ Spec*
s (j)

−1(Z)
)) ⊂ Spec*

s (M) \ (
ClSpec*

s (M)(C) ∪ Z
)
.

Let q ∈ Spec*
s (N) \ (

ClSpec*
s (N)(C) ∪ Spec*

s (j)
−1(Z)

)
. Then there exist h ∈ S∗(N) and g ∈ S∗(M) such that

C ⊂ Z N (h), h �∈ q, Y ⊂ Z M(g) and g �∈ q ∩ S∗(M). As h is bounded and g|M\N = 0, we deduce that hg defines
an element of S∗(M) such that C ∪ Y ⊂ Z M(hg). As hg �∈ q ∩ S∗(M) = Spec*

s (j)(q), we deduce by 2.3.1

Spec*
s (j)(q) �∈ ClSpec*

s (M)(C ∪ Y ) = ClSpec*
s (M)(C) ∪ Z ,

as required.
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(iii) Let us check first:

4.2.1 The restriction map Spec*
s (j)| : Spec*

s (N) \ Spec*
s (j)

−1(Z) → Spec*
s (M) \ Z is bijective.

We proceed by induction on the dimension of M . By Theorem 2.5(iii) the result is true if N is locally compact.
In particular this holds if dim(M) = dim(N) ≤ 1. Assume the result true if dim(M) ≤ d − 1 and let us show that
it is also true if dim(M) = d.

Consider the auxiliary suitably arranged sa-tuples (Mi , Ni , Yi , ji , ii ) for i = 1, 2 where{
M1 := M, N1 := Nlc, Y1 := M \ Nlc,

M2 := N , N2 := Nlc, Y2 := N \ Nlc.

As j1 = j ◦ j2, we infer Spec*
s (j1) = Spec*

s (j) ◦ Spec*
s (j2). Write Zi := ClSpec*

s (Mi )(Yi ). As Ni is locally com-
pact, the restriction map

Spec*
s (ji )| : Spec*

s (Ni ) \ Spec*
s (ji )−1(Zi ) −→ Spec*

s (Mi ) \ Zi (4.2)

is a homeomorphism. Observe Y2 = N \ Nlc ⊂ M \ Nlc = Y1; hence,

ClSpec*
s (M)(Y2) ⊂ ClSpec*

s (M)(Y1) = Z1.

By (ii) we get Spec*
s (j)

(
ClSpec*

s (N)(Y2)
) = ClSpec*

s (M)(Y2), so Spec*
s (j)(Z2) ⊂ Z1. As Spec*

s (j) is surjective,
Z2 ⊂ Spec*

s (j)
−1(Z1) and

Spec*
s (j2)−1(Z2) ⊂ Spec*

s (j2)−1
(

Spec*
s (j)

−1(Z1)
) = Spec*

s (j1)−1(Z1).

Consequently, the restriction map

Spec*
s (j)| = Spec*

s (j1)| ◦ (
Spec*

s (j2)|
)−1

: Spec*
s (N) \ Spec*

s (j)
−1(Z1) −→ Spec*

s (M) \ Z1

is by Equation (4.2) a homeomorphism. As Y1 = M \ Nlc = (M \ N) ∪ (N \ Nlc) = Y ∪ Y2,

Z1 = ClSpec*
s (M)(Y1) = ClSpec*

s (M)(Y ) ∪ ClSpec*
s (M)(Y2) = Z ∪ ClSpec*

s (M)(Y2).

By (ii) we know

Spec*
s (j)

−1
(

ClSpec*
s (M)(Y2) \ Z

) = ClSpec*
s (N)(Y2) \ Spec*

s (j)
−1(Z) = Z2 \ Spec*

s (j)
−1(Z)

and to finish this part we must show:

4.2.2 The restriction map Spec*
s (j)| : ClSpec*

s (N)(Y2) \ Spec*
s (j)

−1(Z) → ClSpec*
s (M)(Y2) \ Z is bijective.

Indeed, by 2.3.1(iii)

ClSpec*
s (M)(Y2) ∩ Z = ClSpec*

s (M)
(
ClM(Y2)) ∩ ClSpec*

s (M)(ClM(Y )
)

= ClSpec*
s (M)(ClM(Y2) ∩ ClM(Y )). (4.3)

As Y2 = N \ Nlc is closed in N , we have ClM(Y2) ∩ Nlc = ∅, so

ClM(Y2) \ Y2 = ClM(Y2) ∩ (M \ (N \ Nlc))

= ClM(Y2) ∩ ((M \ N) ∪ Nlc))

= (ClM(Y2) ∩ Y ) ∪ (ClM(Y2) ∩ Nlc)

= (ClM(Y2) ∩ Y ) ⊂ ClM(Y2) ∩ ClM(Y ). (4.4)

Let k : ClM(Y2) ↪→ M be the inclusion map. By 2.3.1(ii) the maps

Spec*
s (k) : Spec*

s (ClM(Y2)) −→ ClSpec*
s (M)(ClM(Y2)),

Spec*
s (i2) : Spec*

s (Y2) −→ ClSpec*
s (N)(Y2)
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are homeomorphisms. Consider the sa-tuple (M3, N3, Y3, j3, i3) where M3 := ClM(Y2) and N3 := Y2. Write
Z3 := ClSpec*

s (M3)(Y3). By (4.3) and (4.4) we get

Spec*
s (k)(Z3) = ClSpec*

s (M)(Y3) = ClSpec*
s (M)(ClM(Y2) \ Y2)

⊂ ClSpec*
s (M)(ClM(Y2) ∩ ClM(Y )) = ClSpec*

s (M)(Y2) ∩ Z . (4.5)

Consider the commutative diagrams

Y2
j3

i2

ClM (Y2)

k

N
j

M

Spec*
s (N3)

Spec*
s (j3 )

Spec*
s (i2 ) ∼=

Spec*
s (M3)

Spec*
s (k)∼=

ClSpec*
s (N )(Y2)

Spec*
s (j)|

ClSpec*
s (M )(Y2).

Thus, by (4.5) it is enough to prove:

4.2.3 The restriction map Spec*
s (j3)| : Spec*

s (N3) \ Spec*
s (j)

−1(Z3) → Spec*
s (M3) \ Z3 is bijective.

As dim(M3) = dim(N3) < dim(N) = dim(M), statement 4.2.3 follows by induction, so 4.2.2 and conse-
quently 4.2.1 also hold.

Since Spec*
s (j)| is continuous and bijective, to finish the proof of (iii) we show:

4.2.4 The restriction map Spec*
s (j)| : Spec*

s (N) \ Spec*
s (j)

−1(Z) → Spec*
s (M) \ Z is open.

It is sufficient to show that given g ∈ S∗(N), the following straightforward equality holds:

Spec*
s (j)

(
DSpec*

s (N)(g) ∩ (
Spec*

s (N) \ Spec*
s (j)

−1(Z)
))

=
⋃

a∈ker φ

DSpec*
s (M)(ag) ∩ (

Spec*
s (M) \ Z

)
where φ : S∗(M) → S∗(Y ), f → f |Y is the restriction homomorphism.

(iv) This follows from the previous statements using Spec*
s (h)(β

*
sN) = β*

sM . �

4.3 Proof of Theorem 1.3

The proof of this result requires some preparation. In the following (M, N , Y, j, i) denotes an sa-tuple. Let us
find first sufficient conditions to guarantee that the fibers of certain points of ClSpec*

s (M)(Y ) under Spec*
s (j) contain

infinitely many points.

Lemma 4.1 (Fibers of infinite size) Assume M is pure dimensional of dimension d. Let C ⊂ Y be a semialge-
braic subset of Y whose codimension in M is ≥ 2 and let p ∈ ClSpec*

s (M)(C). Then

(i) For each r ≥ 1 there exists a subset {qi }r
i=1 ⊂ Spec*

s (j)
−1(p) such that qi �⊂ q j and q j �⊂ qi if i �= j . In

particular, the fiber Spec*
s (j)

−1(p) is an infinite set.
(ii) If p = m∗ is a maximal ideal, the fiber Spec*

s (j)
−1(m∗) contains infinitely many maximal ideals of S∗(N).

Before proving this lemma, we need a preliminary result concerning triangulations.

Lemma 4.2 Let (K ,	) be a triangulation of a closed and bounded semialgebraic set X compatible with a
finite family F = {T1, . . . , Tr } of semialgebraic subsets of X. Let (L , �) be the first barycentric subdivision of K
and let σ ∈ L. Suppose σ 0 ∩ �−1(Tk) = ∅. Then either σ ∩ �−1(Tk) = ∅ or there exists a proper face τk of σ

such that τ 0
k ⊂ σ ∩ �−1(Tk) ⊂ τk .

P r o o f . Write σ := [bε0 , . . . , bεd ] where bεi is the barycenter of the simplex εi of K and εi+1 is a proper face
of εi (see [29, p.123]). Notice that [bε0 , . . . , bεd ] \ ε0

0 = [bε1 , . . . , bεd ] and so on. Assume σ ∩ �−1(Tk) �= ∅. As
�−1(Tk) is a finite union of open simplices of K and the vertices of σ are barycenters of simplices of K , there
exists a first index 0 ≤ i ≤ d such that bεi ∈ �−1(Tk). Observe that i �= 0 because otherwise σ ⊂ ε0 ⊂ �−1(Tk),
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against the hypothesis σ 0 ∩ �−1(Tk) = ∅. Thus, τk := [bεi , . . . , bεd ] is a proper face of σ . We claim: τk satisfies
τ 0

k ⊂ σ ∩ �−1(Tk) ⊂ τk .
Indeed, as bε j �∈ Tk for j = 0, . . . , i − 1, we deduce ε0

j ∩ �−1(Tk) = ∅, so

σ ∩ �−1(Tk) ⊂ [bε0 , . . . , bεd ] \
i−1⋃
j=0

ε0
j = [bεi , . . . , bεd ] = τk .

On the other hand, as bεi ∈ Tk , we have τ 0
k ⊂ ε0

i ⊂ Tk , so τ 0
k ⊂ σ ∩ �−1(Tk), as required. �

P r o o f o f L e m m a 4 . 1 The proof is conducted in several steps. We begin by proving the following:

4.3.1 For each r ≥ 1 there exist pure dimensional closed semialgebraic subsets M1, . . . , Mr of M of dimension
d and a semialgebraic subset C ′ of C such that:

(1) Mi ∩ Y = C ′ for each i and Mi ∩ M j = C ′ if i �= j .
(2) Mi \ Y = Mi \ C ′ is connected and dense in Mi .
(3) p ∈ ClSpec*

s (M)(C ′).

Indeed, as commented above, Y is a semialgebraic subset of M of dimension ≤ d − 1. Assume M bounded and
let X := ClRm (M). By Theorem [2, 9.2.1] applied to X and the family of semialgebraic sets F = {T1 := M, T2 :=
Y, T3 := C} there exists a semialgebraic triangulation (K ,	) of X compatible with F . After a barycentric
subdivision, we may assume by Lemma 4.2 that for each d-dimensional simplex σ of K either σ ∩ Tk = ∅ or
there exists a proper face τ of σ satisfying τ 0 ⊂ σ ∩ 	−1(Tk) ⊂ τ for k = 2, 3. We identify |K | with X and
	−1(Tk) with Tk .

Let σ1, . . . , σk be the d-dimensional simplices of K . Write S
 := σ
 ∩ M , which is a closed subset of M . As
M is pure dimensional, M = ⋃k


=1 S
. Moreover, for each 
 = 1, . . . , k either C
 := σ
 ∩ C = S
 ∩ C ⊂ S
 is
empty or there exists a proper face τ
 of σ
 such that τ 0


 ⊂ C
 ⊂ τ
. In this latter case, C
 = τ
 ∩ M is a closed
subset of M . On the other hand

Spec*
s (M) =

k⋃

=1

ClSpec*
s (M)(S
) and ClSpec*

s (M)(C) =
k⋃


=1

ClSpec*
s (M)(C
).

Assume p ∈ ClSpec*
s (M)(C1) ⊂ ClSpec*

s (M)(S1). Observe

dim(C1) ≤ dim(C) ≤ d − 2 = dim(S1) − 2.

Note that σ 0
1 ∩ Y = ∅ because Y ∈ F has dimension ≤ d − 1 and (K ,	) is compatible with F . Let υ1 be the

proper face of σ1 satisfying υ0
1 ⊂ σ1 ∩ Y ⊂ υ1; clearly, τ1 ⊂ υ1. Let us construct r simplices ε1, . . . , εr ⊂ σ 0

1 ∪ τ1

of dimension d such that τ1 is a face of εi , εi ∩ ε j = τ1 if i �= j and εi ∩ Y = εi ∩ C1 = τ1 ∩ C1.
Indeed, let η be the face of σ1 generated by the vertices of σ1 not contained in its face τ1. As dim(τ1) ≤

dim(σ1) − 2, we have e := dim(η) ≥ 1. We claim: Y ∩ η0 = ∅.
Otherwise, η0 ⊂ Y ∩ σ ⊂ υ1 and as τ 0

1 ⊂ C1 ⊂ Y ∩ σ ⊂ υ1 and υ1 is convex, we deduce υ1 ∩ σ 0 �= ∅, so
σ 0 ⊂ υ0

1 ⊂ Y . This is a contradiction because dim(Y ) ≤ d − 1 and dim(σ ) = d.
Consider any collection {η1, . . . , ηr } of pairwise disjoint simplices of dimension e contained in η0. A straight-

forward computation shows that the d-dimensional simplices εi generated by the vertices of τ1 and ηi satisfy the
desired conditions.

Now one proves readily that the semialgebraic sets C ′ := C1 and Mi := εi ∩ M ⊂ S1 for i = 1, . . . , r satisfy
the required conditions in 4.3.1.

4.3.2 Write Ni := N ∩ Mi = Mi \ Y = Mi \ C ′ and ji : Ni ↪→ Mi . It holds: Ni is dense in Mi and Ni ∩ N j =
∅ if i �= j . Moreover, Ni is closed in N because Mi is closed in M . By 2.3.1 Spec*

s (Ni ) ∼= ClSpec*
s (N)(Ni ),

Spec*
s (Mi ) ∼= ClSpec*

s (M)(Mi ) for i = 1, . . . , r and

Spec*
s

(
r⊔

i=1

Ni

)
∼= ClSpec*

s (N)

(
r⊔

i=1

Ni

)
.
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•

M

M1

M2

Mr S1

C

Y

N

N1

N2

Nr S1 \ Y

Fig. 3 Construction of the semialgebraic sets Mi and Ni .

As the semialgebraic sets Ni are pairwise disjoint closed connected subsets of N , the connected components of⊔r
i=1 Ni are N1, . . . , Nr . By 2.3.1 the sets ClSpec*

s (N)(Ni ) are the connected components of

ClSpec*
s (N)

(
r⊔

i=1

Ni

)
and in particular they are disjoint.

4.3.3 After the previous preparation we are ready to prove the statement:
(i) By Theorem 1.2(i) each map Spec*

s (ji ) : Spec*
s (Ni ) → Spec*

s (Mi ) is surjective. Thus, the same happens to

Spec*
s (j)|ClSpec*

s ( N) (Ni ) : ClSpec*
s (N)(Ni ) −→ ClSpec*

s (M)(Mi ) ⊂ Spec*
s (M).

Since p ∈ ClSpec*
s (M)(C ′) ⊂ ⋂r

i=1 ClSpec*
s (M)(Mi ), there exists a prime ideal qi ∈ ClSpec*

s (N)(Ni ) such that
Spec*

s (j)(qi ) = p for each i = 1, . . . , r . Since the sets ClSpec*
s (M)(Ni ) are pairwise disjoint, qi �⊂ q j and q j �⊂ qi

for i �= j . As this holds for each r ≥ 1, the fiber Spec*
s (j)

−1(p) has infinitely many elements.
(ii) If p := m∗ is a maximal ideal, let n∗

i be the unique maximal ideal of S∗(N) containing the prime
ideal qi constructed in (i) for m∗. Note that n∗

i ∈ ClSpec*
s (M)({qi }) ⊂ ClSpec*

s (M)(Ni ) and since ClSpec*
s (M)(Ni ) ∩

ClSpec*
s (M)(N j ) = ∅ if i �= j , we conclude n∗

i �= n∗
j if i �= j . As m∗ is maximal and Spec*

s (j)(qi ) = m∗, we deduce
Spec*

s (j)(n
∗
i ) = m∗. Thus, the fiber Spec*

s (j)
−1(m∗) contains infinitely many maximal ideals. �

Corollary 4.3 Let (M, N , Y, j, i) be a sa-tuple such that M is pure dimensional of dimension d and let P be a
prime z-ideal of S(M) such that dM(P) ≤ d − 2. Let q be a prime ideal of S∗(M) that contains p := P ∩ S∗(M).
Then the fiber Spec*

s (j)
−1(q) is an infinite set.

P r o o f . Let f ∈ P be such that dim(Z( f )) = dM(P) and let C := Z( f ). Since P is a prime z-ideal, we
deduce by 2.3.1(i) that P ∈ ClSpecs(M)(C); hence, p ∈ ClSpec*

s (M)(C) by 2.3.2. Thus, also q ∈ ClSpec*
s (M)(C) and

one can apply Lemma 4.1. �
P r o o f o f T h e o r e m 1 . 3 (i) By Theorem 1.2(iii) the proof of this statement (and its counterpart in (iv))

is reduced to prove the following:

4.3.4 Let p ∈ Y be such that dimp(M) ≥ 2. Then the fiber Spec*
s (j)

−1(m∗
p) contains infinitely many maximal

ideals of S∗(N).
Fix s ≥ 1. Since dimp(M) ≥ 2, there exist by the curve selection lemma [2, 2.5.5] semialgebraic paths

αi : [0, 1] → Rn for i = 1, . . . , s such that αi (0) = p, αi ((0, 1]) ⊂ N and αi ((0, 1]) ∩ α j ((0, 1]) = ∅ if i �= j .
Thus, the maximal ideals of S∗(N) given by n∗

i := { f ∈ S∗(N) : limt→0( f ◦ αi )(t) = 0} are different.
Note that n∗

i ∩ S∗(M) = m∗
p because f (p) = limt→0( f ◦ αi )(t) = 0 for every f ∈ n∗

i ∩ S∗(M), so n∗
i ∈

Spec*
s (j)

−1(m∗
p) for i = 1, . . . , s. As this holds for each s ≥ 1, the fiber Spec*

s (j)
−1(m∗

p) contains infinitely many
maximal ideals.
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(ii) The proof of this statement (and its counterpart in (iv)) is reduced to prove the following:

4.3.5 Suppose that dimp(Y ) ≤ dimp(M) − 2 for all p ∈ Y and let p ∈ ClSpec*
s (M)(Y ). Then the fiber

Spec*
s (j)

−1(p) is an infinite set. Moreover, if p = m∗ is a maximal ideal of S∗(M), then its fiber Spec*
s (j)

−1(m∗)
contains infinitely many maximal ideals of S∗(N).

Let BM := {Bi (M)}r
i=1 be the family of bricks of M , see 2.1. Denote Yi := Bi (M) ∩ Y . As Y = ⋃r

i=1 Yi , it
holds

ClSpec*
s (M)(Y ) =

r⋃
i=1

ClSpec*
s (M)(Yi ).

Define I := {1, . . . , r} and J := {
j ∈ I : p ∈ ClSpec*

s (M)(B j (M))
}
. For every i ∈ I \ J there exists by 2.3.1(i)

fi ∈ S∗(M) \ p such that Z( fi ) = Bi (M). Let f := ∏
i∈I\J fi ∈ S∗(M) \ p. Then

p ∈ DSpec*
s (M)( f ) ∩

⋂
j∈J

ClSpec*
s (M)(Y j ) = DSpec*

s (M)( f ) ∩
⋂
j∈J

ClSpec*
s (M)(ClM(D( f ) ∩ Y j )).

Denote j0 := min(J ) and C := ClM(D( f ) ∩ Y j0). We claim: dim(C) ≤ dim(B j0(M)) − 2.

Indeed, observe D( f ) = D( f ) ∩ ⋃
j∈J B j (M). Since dimp(Y ) ≤ dimp(M) − 2 for all p ∈ Y and

dim(B j0(M)) ≥ dim(B j (M)) for all j ∈ J , we deduce for all p ∈ D( f ) ∩ Y

dimp(Y j0) ≤ dimp(Y ) ≤ dimp(M) − 2

= dimp

⎛⎝⋃
j∈J

B j (M)

⎞⎠ − 2 = dimp(B j0(M)) − 2.

We conclude dim(C) = dim(D( f ) ∩ Y j0) ≤ dim(B j0(M)) − 2.
Now, since p ∈ ClSpec*

s (M)(C) ⊂ ClSpec*
s (M)(B j0(M)) ∼= Spec*

s (B j0(M)), we deduce that Spec*
s (j)

−1(p) is by
Lemma 4.1 an infinite set. Moreover, if p = m∗ is in addition a maximal ideal of S∗(M), its fiber contains by
Lemma 4.1 infinitely many maximal ideals, as required.

(iii) (and the remaining part of (iv)) Since N is dense in M , we have

dim(Y ) = dim(ClM(N) \ N) < dim(M) = 1.

Thus, Y is a finite set and ClSpec*
s (M)(Y ) = Y . Moreover, ∂ N is by [11, 5.17] also a finite set. To finish we must

show Spec*
s (j)

−1(Y ) ⊂ ∂ N .
Let p ∈ Y and q ∈ Spec*

s (j)
−1(m∗

p). Notice that q is not a minimal prime ideal of S∗(N) because otherwise m∗
p

would be by Theorem 2.5(i) a minimal prime ideal of S∗(M), against Theorem 2.6. Since N is one dimensional,
each prime ideal of S∗(N) is either minimal or maximal (but not both, see [9, 7.3]). Thus, q is a maximal
ideal of S∗(N) and it only remains to check that it is free. Otherwise q = m∗

q for some point q ∈ N , so m∗
p =

Spec*
s (j)(q) = Spec*

s (j)(m
∗
q) = m∗

j(q) = m∗
q , which is wrong because p ∈ Y = M \ N . �

4.4 Size of the fibers of a sa-tuple

Let (M, N , Y, j, i) be a sa-tuple and p a prime ideal of S∗(M). To compute the size of the fiber Spec*
s (j)

−1(p)
we proceed as follows.

4.4.1 Reduction to the case in which M is pure dimensional

Let BN and BM be the families of bricks of N and M . By 2.1 we know

(i) BM := {Bi (M) = ClM(Bi (N))}i ,
(ii) BN := {Bi (N) = Bi (M) ∩ N }i .

Thus, Ni := Bi (N) is dense in Mi := Bi (M), so (Ni , Mi , Yi , ji , ii ) is a sa-tuple.
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Moreover, since Spec*
s (j) is continuous,

Spec*
s (j)(ClSpec*

s (N)(Ni )) ⊂ ClSpec*
s (M)(j(Ni ))

= ClSpec*
s (M)(ClM(Ni )) = ClSpec*

s (M)(Mi ).

Moreover, Spec*
s (N) = ⋃r

i=1 ClSpec*
s (N)(Ni ) and Spec*

s (M) = ⋃r
i=1 ClSpec*

s (M)(Mi ). In addition, by 2.3.1(ii)
ClSpec*

s (N)(Ni ) ∼= Spec*
s (Ni ) (because Ni is closed in N ) and ClSpec*

s (M)(Mi ) ∼= Spec*
s (Mi ) (because Mi is

closed in M). Thus, for our purposes it is enough to compute the size of the fibers of the spectral maps
Spec*

s (ji ) : Spec*
s (Ni ) → Spec*

s (Mi ) corresponding to the suitably arranged sa-tuples (Ni , Mi , Yi , ji , ii ).
So we assume in the following that M is pure dimensional.

4.4.2 Reduction to the case in which N is locally compact

By Corollary 2.2 it holds that ClM(ρ1(N)) is a semialgebraic subset of M of (local) codimension ≥ 2; hence,
C := ClM(ρ1(N)) ∩ ClM(Y ) is a closed semialgebraic subset of ClM(Y ) that has (local) codimension ≥ 2 in M .
Denote Z1 := ClSpec*

s (M)(Y ) and T := ClSpec*
s (M)(ρ1(N)). By 2.3.1

ClSpec*
s (M)(C) = ClSpec*

s (M)(ClM(ρ1(N))) ∩ ClSpec*
s (M)(ClM(Y )) = T ∩ Z1.

By Theorem 1.2(ii) it holds

Spec*
s (j)

−1(T \ Z1) = ClSpec*
s (N)(ρ1(N)) \ Spec*

s (j)
−1(Z1).

If p ∈ ClSpec*
s (M)(C), we know by Lemma 4.1 that Spec(j)−1(p) is an infinite set. Thus, by Theorem 1.3(ii) we

conclude that if p ∈ T , the fiber

Spec*
s (j)

−1(p) is

{
a singleton if p ∈ T \ Z1,

an infinite set if p ∈ T ∩ Z1.
(4.6)

So it remains to determine the size of the fiber of a prime ideal p ∈ Spec*
s (M) \ T . Consider the sa-tuple

(N , Nlc, ρ1(N), j2, i2) and denote Z2 := ClSpec*
s (N)(ρ1(N)). By Theorem 1.2(iii) the restriction map

Spec*
s (j2)| : Spec*

s (Nlc) \ Spec*
s (j2)−1(Z2) −→ Spec*

s (N) \ Z2

is a homeomorphism. By Theorem 1.2(ii) Spec*
s (j)(Z2) = T , so Z2 ⊂ Spec*

s (j)
−1(T ) and consequently

Spec*
s (j2)−1(Z2) ⊂ Spec*

s (j ◦ j2)−1(T ). Thus, the restriction map

Spec*
s (j2)| : Spec*

s (Nlc) \ Spec*
s (j ◦ j2)−1(T ) −→ Spec*

s (N) \ Spec*
s (j)

−1(T ) (4.7)

is also a homeomorphism. We have the following commutative diagrams

N
j

M

Nlc

j2
j◦j2

Spec*
s (N) \ Spec*

s (j)
−1(T )

Spec*
s (j)|

Spec*
s (M) \ T

Spec*
s (Nlc) \ Spec*

s (j ◦ j2)−1(T )

Spec*
s (j2 )| ∼=

Spec*
s (j◦j2 )|

(4.8)

Therefore, for our purposes it is enough to determine the size of the fibers of the spectral map induced by the
suitably arranged sa-tuple (M, Nlc, Y ′ := M \ Nlc, j3 := j ◦ j2, i3). Indeed, for the prime ideals p ∈ T we have
already computed the size of the fiber Spec*

s (j)
−1(p) in (4.6) and if p ∈ Spec*

s (M) \ T , we know, as the restriction
map in (4.7) is a homeomorphism, that the fiber Spec*

s (j)
−1(p) is homeomorphic to the fiber Spec*

s (j3)−1(p) (see
diagram (4.8)).

So we assume that N is locally compact and we are reduced to study the case of a suitably arranged sa-tuple
(M, N , Y, j, i) such that M is pure dimensional. This case is fully studied in Theorem 1.4 that we prove in the
next section.
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5 Proof of Theorem 1.4

In this section we prove Theorem 1.4. Its proof is quite involved and requires some preliminary results. In the
following (M, N , Y, j, i) denotes a suitably arranged sa-tuple such that M is pure dimensional of dimension d.
In particular, in the following Y is a closed subset of M .

5.1 Preliminary results

Recall that WM is the multiplicative set of those functions f ∈ S∗(M) such that Z( f ) = ∅ and EM is the
multiplicative set of those f ∈ S(M) such that Z( f ) = M \ Mlc. Denote Z1 := ClSpec*

s (M)(ρ1(M)).

Lemma 5.1 Let p ∈ ClSpec*
s (M)(C) \ Z1 where C is a closed semialgebraic subset of M. Then

(i) The threshold p̂ of p in S∗(M) defined in (1.1) is univocally determined by p. In addition, if p ∩ WM = ∅

but p ∩ EM �= ∅, there exists a maximal ideal m1 of S(Mlc) such that p̂ = m1 ∩ S∗(M).
(ii) p̂ ∈ ClSpec*

s (M)(C) and p̂S(M) ∈ ClSpecs(M)(C).
(iii) Every non-refinable chain of prime ideals of S∗(M) through p contains also p̂.
(iv) p̂S(M) is a z-ideal.
(v) If dM (̂pS(M)) ≤ d − 2, the fiber Spec*

s (j)
−1(p) is an infinite set.

P r o o f . Consider the auxiliary suitably arranged sa-tuples

(M, Mlc, ρ1(M), j1, i1) and (Mlc, N , Y2 := Mlc \ N , j2, i2).

Note that N ⊂ Mlc because N is locally compact and dense in M , ρ1(M) ⊂ Y and j = j1 ◦ j2. By Theorem
1.2(iii) the restriction map

Spec*
s (j1)| : Spec*

s (Mlc) \ Spec*
s (j)

−1(Z1) −→ Spec*
s (M) \ Z1

is a homeomorphism. Write Spec*
s (j1)−1(p) = {p1}. The size of the fiber Spec*

s (j)
−1(p) coincides with the one

of Spec*
s (j2)−1(p1) because they are homeomorphic sets. Thus, to prove statement (v) we are reduced to prove

that Spec*
s (j2)−1(p1) is an infinite set.

We prove all statements simultaneously by distinguishing two cases:
Case 1. If p ∩ WM �= ∅, it is clear that p̂ := m ∩ S∗(M) is univocally determined by p. By 2.3.5(iii) m ∈

ClSpecs(M)(C) and m ∩ S∗(M) ∈ ClSpec*
s (M)(C) and by 2.3.5(ii) every non-refinable chain of prime ideals of

S∗(M) containing p contains also p̂. Moreover, p̂S(M) = m is a prime z-ideal because it is maximal. It only
remains to prove (v).

5.1.1 We claim: mS(Mlc) is a prime ideal of S(Mlc) that satisfies mS(Mlc) ∩ S(M) = m.
Let us prove first that m ∩ EM = ∅. Indeed, as p �∈ Z1, we deduce m ∩ S∗(M) �∈ Z1; hence, by 2.3.1(i)

m �∈ ClSpecs(M)(ρ1(M)). As m is a prime z-ideal (because it is maximal), m ∩ EM = ∅. Now our claim follows
from Theorem 2.3.

5.1.2 As p̂ �∈ Z1, the fiber Spec*
s (j1)−1(̂p) is a singleton {̂p1}. As p̂ ⊂ p, we deduce by Theorem 2.5(iv) that

p̂1 ⊂ p1. We claim p̂1 = mS(Mlc) ∩ S∗(Mlc).
Indeed,

mS(Mlc) ∩ S∗(Mlc) ∩ S∗(M) = mS(Mlc) ∩ S(M) ∩ S∗(M) = m ∩ S∗(M) = p̂.

As dMlc(mS(Mlc)) ≤ dM(m) ≤ d − 2, we conclude by Corollary 4.3 that Spec*
s (j2)−1(p1) is an infinite set, as

wanted.
Case 2. If p ∩ WM = ∅ and p ∩ EM = ∅, we have p̂ = p, so it is univocally determined by p (and it also holds

(iii)). By Theorem 2.3 and 2.3.2 pS(Mlc) is a prime ideal of S(Mlc) that satisfies pS(Mlc) ∩ S(M) = pS(M).
As Mlc is locally compact, pS(Mlc) is a prime z-ideal, so by 2.3.3 pS(M) is also a prime z-ideal. Finally, if
dM(pS(M)) = dM (̂pS(M)) ≤ d − 2, the fiber Spec*

s (j)
−1(p) is by Corollary 4.3 an infinite set, so this situation

is completely approached.

www.mn-journal.com C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



1782 J. F. Fernando: On the size of the fibers of spectral maps

Assume next p ∩ WM = ∅ and p ∩ EM �= ∅. As EM ⊂ WMlc and p1 ∩ S∗(M) = p, we have p1 ∩ WMlc �= ∅.
Let m1

∗ be the unique maximal ideal of S∗(Mlc) that contains p1 and let m1 be the unique maximal ideal of S(Mlc)
such that m1 ∩ S∗(Mlc) ⊂ m1

∗. By 2.3.5(ii) we know

m1 ∩ S∗(Mlc) ⊂ p1 ⊂ m∗
1. (5.1)

5.1.3 We claim: p̂ = m1 ∩ S∗(M). Assume this proved for a while. As m1 is univocally determined by p1, we
conclude that p̂ is univocally determined by p (and this proves (i)).

Indeed, let q be a prime ideal of S∗(M) contained in p. As p �∈ Z1, we have q �∈ Z1, so Spec*
s (j1)−1(q) is a

singleton {q1}. By Theorem 2.5(iv) it holds q1 ⊂ p1. Let us check: q ∩ EM �= ∅ if and only if q1 ∩ WMlc �= ∅.
If q1 ∩ WMlc �= ∅, pick g ∈ q1 ∩ WMlc and h ∈ S∗(M) such that Z(h) = ρ1(M). Observe gh ∈ q ∩ EM . The

converse follows because EM ⊂ WMlc .
By 2.3.5(i) we have q1 ⊂ m1 ∩ S∗(Mlc) if q ∩ EM = ∅ and m1 ∩ S∗(Mlc) ⊂ q1 if q ∩ EM �= ∅. By The-

orem 2.5(iv), the definition of p̂ and the equality Spec*
s (j1)−1(m1 ∩ S∗(M)) = {m1 ∩ S∗(Mlc)} we deduce

m1 ∩ S∗(M) = p̂.
The fact that Spec*

s (j1)−1(q) is a singleton for each prime ideal q ⊂ p together with m1 ∩ S∗(M) = p̂ and
equation (5.1) imply by 2.3.5(ii) that statement (iii) holds.

5.1.4 Next we claim: p1 ∈ ClSpec*
s (Mlc)(ClM(C \ ρ1(M))) = ClSpec*

s (Mlc)(C \ ρ1(M)).
Indeed, by 2.3.1(i) we have to show that if Z(g) = ClM(C \ ρ1(M)), then g ∈ p1. As p �∈ Z1, there exists

h ∈ S∗(M) \ p such that Z(h) = ρ1(M). As C ⊂ Z(gh) and p ∈ ClSpec*
s (M)(C), we have hg ∈ p ⊂ p1. As h �∈ p

and p = p1 ∩ S∗(M), we conclude h �∈ p1, so g ∈ p1. Consequently, p1 ∈ ClSpec*
s (Mlc)(C \ ρ1(M)).

5.1.5 By 2.3.5(iii) and equation (5.1) m1 ∈ ClSpecs(Mlc)(C \ ρ1(M)) and m1 ∩ S∗(Mlc) ∈ ClSpec*
s (Mlc)(C \

ρ1(M)). By the continuity of Spec*
s (j1)

{̂p} = Spec*
s (j1)({m1 ∩ S∗(Mlc)})

⊂ Spec*
s (j1)(ClSpec*

s (Mlc)(C \ ρ1(M))) ⊂ ClSpec*
s (M)(C),

so p̂S(M) ∈ ClSpecs(M)(C) (and this proves (ii)).
Notice that p̂S(M) = m1 ∩ S(M), so dMlc(m1) ≤ dM (̂pS(M)) ≤ d − 2 and by 2.3.3 p̂S(M) is a prime z-ideal,

so statement (iv) holds. By Corollary 4.3 and Equation (5.1) we deduce that Spec*
s (j2)−1(p1) is an infinite set,

which proves (v), as required. �

Remark 5.2 We have proved that if dM (̂pS(M)) ≤ d − 2, the fiber Spec*
s (j)

−1(p) is an infinite set. In §5.3
we will prove the converse of this fact, namely: If dM (̂pS(M)) = d − 1, the fiber Spec*

s (j)
−1(p) is a finite

set.

We are ready to prove Lemmas 1.6 and 1.7.

P r o o f o f L e m m a 1 . 6 The proof is conducted in several steps.

Step 1. Assume that M is bounded. Let fi ∈ pi \ pi−1 for i = 2, . . . , r and f1 ∈ p1 be such that dim(Z( f1)) =
dM(m) and Z( f1) = Y . After substituting M with graph( f1, . . . , fr ), we may assume that each fi can be extended
continuously to X1 := ClRm (M) = ClRm (N). Consider the inclusion k1 : M ↪→ X1 and denote Pi := pi ∩ S(X1).
Observe fi ∈ Pi \ Pi−1.

5.1.6 Let g j ∈ q j \ q j−1 for j = 2, . . . , s and consider the semialgebraic compactification of N

k2 : N ↪→ X2 := ClRm+s−1(graph(g2, . . . , gs)), x �→ (x, g2(x), . . . , gs(x)).

Denote Q j := q j ∩ S(X2) and observe g j ∈ Q j \ Q j−1. Consider the (surjective) projection π : X2 →
X1, (x, y) �→ x . Let us prove : dX1(P1) = dX2(Q1) = d − 1.

Indeed, observe first

d − 1 = dM(p1) ≤ dX1(P1) ≤ max{dim(Z( f1)), dim(X1 \ M)} ≤ d − 1;
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hence, dX1(P1) = d − 1. On the other hand,

Q1 ∩ S(X1) = q1 ∩ S(X2) ∩ S(X1) = q1 ∩ S∗(M) ∩ S(X1) = p1 ∩ S(X1) = P1. (5.2)

Consequently, we have the following commutative diagram

S(X1)/P1 S(X2)/Q1

qf(S(X1)/P1) qf(S(X2)/Q1).

As f1 ◦ π ∈ Q1 and Z( f1) = Y , we deduce by 2.3.6(iii)

d − 1 = dX1(P1) = tr deg
R
(qf(S(X1)/P1)) ≤ tr deg

R
(qf(S(X2)/Q1))

= dX2(Q1) ≤ dim(Z X2( f1 ◦ π)) ≤ dim(X2 \ N) = d − 1.

Thus, dX1(P1) = dX2(Q1) = d − 1.
Step 2. As k2(N) and N are respectively dense in the d-dimensional semialgebraic sets X2 and X1 and

dim(Y ) = d − 1, the dimension of π−1(Y ) is d − 1. Consider the restriction map π |π−1(Y ) : π−1(Y ) → Y , which
is surjective. By [2, 9.3.3] there exists a closed semialgebraic subset V of Y of dimension dim(V ) < dim(Y )
such that π |π−1(Y ) has a semialgebraic trivialization over each connected component of Y \ V . We may further
assume that Y \ V is pure dimensional and locally compact. In our case, the trivialization property means that for
each connected component Y
 of Y \ V there exists a finite set F
 and a semialgebraic homeomorphism θ
 : Y
 ×
F
 → (

π |π−1(Y )
)−1(Y
) =: T
 such that π |T


◦ θ
 is the projection map Y
 × F
 → Y
. Note that the connected
components of T
 are θ
(Y
 × {p}) for p ∈ F
 and that each connected component of T
 is homeomorphic to Y
.
Define Y \ V := ClX1(Y \ V ), T := π−1(Y \ V ) and T := ClX2(T ). Notice that T is locally compact. Indeed, as
Y \ V is locally compact and dense in Y \ V , it is an open subset, so T is an open subset of T . As T is compact,
T is locally compact.

Step 3. Write p := pi for i = 1, . . . , r and let us prove: p �∈ ClSpec*
s (M)(V ) and consequently p ∈ ClSpec*

s (M)(Y \
V ).

Suppose first by contradiction that p ∈ ClSpec*
s (M)(V ). By 2.3.1 we have a homeomorphism Spec*

s (V ) ∼=
ClSpec*

s (M)(V ) induced by the inclusion j′ : V ↪→ M . Let a be a minimal prime ideal of S(V ) such that a′ :=
Spec*

s (j
′)(a ∩ S∗(V )) ⊂ p. Note

dM(Specs(j′)(a)) = dV (a) ≤ dim(V ) ≤ d − 2.

The subchain p1 = m ∩ S∗(M) � · · · � pr = m∗ is by 2.3.5 the same for every non-refinable chain of prime
ideals in S∗(M) ending at m∗. As p j ∩ WM �= ∅ for j ≥ 2, we deduce a′ ⊂ p1 because a is a minimal prime ideal
of S(V ), so a′ ∩ WM = ∅. Thus, Specs(j′)(a) = a′S(M) satisfies

d − 1 > dM(Specs(j′)(a)) = dM(a′S(M)) ≥ dM(p1S(M)) = d − 1,

which is a contradiction. Therefore p �∈ ClSpec*
s (M)(V ).

As Y = (Y \ V ) ∪ V , we now have

ClSpec*
s (M)(Y ) = ClSpec*

s (M)(Y \ V ) ∪ ClSpec*
s (M)(V );

hence, p ∈ ClSpec*
s (M)(Y \ V ).

Step 4. We claim: P1 ∈ ClSpec*
s (X1)(Y \ V ) and Q1 ∈ ClSpec*

s (X2)(T ). Consequently,

Pi ∈ ClSpec*
s (X1)(Y \ V ) for i = 1, . . . , r and Q j ∈ ClSpec*

s (X2)(T ) for j = 1, . . . , s.

First, as p1 ∈ ClSpec*
s (M)(Y \ V ), we deduce by Theorem 1.2(ii)

P1 = Spec*
s (k1)(p1) ∈ Spec*

s (k1)(ClSpec*
s (M)(Y \ V )) = ClSpec*

s (X1)(Y \ V ).

5.1.7 Let f ∈ P1 be such that Z X1( f ) = Y \ V and define g := f ◦ π ∈ Q1, which satisfies Z X2(g) =
π−1(Y \ V ).
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As Q1 is a prime z-ideal, we deduce by 2.3.1(i) that Q1 ∈ ClSpec*
s (X2)

(
π−1

(
Y \ V

))
. On the other hand, let

C := Y \ V \ (Y \ V ), which is a closed subset of X1 because Y \ V is locally compact. As π−1
(
Y \ V

) =
π−1(Y \ V ) ∪ π−1(C) = T ∪ π−1(C),

ClSpec*
s (X2)

(
π−1(Y \ V )

) = ClSpec*
s (X2)(T ) ∪ ClSpec*

s (X2)
(
π−1(C)

)
.

Suppose Q1 ∈ ClSpec*
s (X2)

(
π−1(C)

)
. As Spec*

s (π) : Spec*
s (X2) → Spec*

s (X1) is continuous,

P1 = Spec*
s (π)(Q1) ∈ Spec*

s (π)
(
ClSpec*

s (X2)
(
π−1(C)

)) ⊂ ClSpec*
s (X2)(C).

But this contradicts 2.3.1(i) because dim(C) < dim(Y \ V ) = d − 1 and dX1(P1) = d − 1. Thus, Q1 ∈
ClSpec*

s (X2)(T ).
Step 5. Consider the commutative diagram

T
j2

π |T

T
j1

π |T

X2

π

Y \ V
i3

(Y \ V ) ∩ M
i2

i0

Y \ V
i1

X1

Y
i

M

k1

that induces the following commutative one

Spec*
s (T ) Spec*

s (T )
∼= ClSp ec*

s (X 2 ) (T ) Spec*
s (X2 )

Spec*
s (Y \ V ) Spec*

s ((Y \ V ) ∩ M )

∼=

Spec*
s (Y \ V )

∼= ClSp ec*
s (X 1 ) (Y \ V ) Spec*

s (X1 )

ClSp ec*
s (M ) ((Y \ V ) ∩ M ) ClSp ec*

s (M ) (Y ) Spec*
s (M )

5.1.8 As pi ∈ ClSpec*
s (M)(Y \ V ) ⊂ ClSpec*

s (M)((Y \ V ) ∩ M) (see Step 3), there exists a unique prime ideal
p′

i ∈ Spec*
s ((Y \ V ) ∩ M) such that Spec*

s (i ◦ i0)(p′
i ) = pi . As the chain p1 � · · · � pr is non-refinable, the

same happens to the chain p′
1 � · · · � p′

r . As pi �∈ ClSpec*
s (M)(V ) and Spec*

s (i ◦ i0) is continuous, p′
i �∈

ClSpec*
s (Y\V ∩M)(Y \ V ∩ V ).

5.1.9 It holds: Z := ClSpec*
s (Y\V ∩M)(Y \ V ∩ M) \ (Y \ V ) = ClSpec*

s (Y\V ∩M)(Y \ V ∩ V ). To prove this, we

show (Y \ V ∩ M) \ (Y \ V ) = Y \ V ∩ V .
Indeed,

(Y \ V ∩ M) \ (Y \ V ) = ClM(Y \ V ) \ (Y \ V )

= (ClM(Y \ V ) ∩ (M \ Y )) ∪ (ClM(Y \ V ) ∩ V )

= (ClY (Y \ V ) \ Y ) ∪ (Y \ V ∩ V ) = Y \ V ∩ V .

5.1.10 By Theorem 2.5(iv) there exists a chain of prime ideals p′′
1 � · · · � p′′

r in Spec*
s (Y \ V ) such that

Spec*
s (i3)(p

′′
i ) = p′

i . By Theorem 1.2(iii) the restriction

Spec*
s (i3)| : Spec*

s (Y \ V ) \ Spec*
s (i3)−1(Z) −→ Spec*

s (Y \ V ∩ M) \ Z
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is a homeomorphism. As the chain p′
1 � · · · � p′

r is non-refinable and each p′
i �∈ Z , the chain p′′

1 � · · · � p′′
r is

non-refinable.

5.1.11 Let P′
i be the (unique) prime ideal of Spec*

s (Y \ V ) that satisfies

Spec*
s (i1)(P′

i ) = Pi ∈ ClSpec*
s (X1)(Y \ V ).

We claim: Spec*
s (i2)(p′

i ) = P′
i .

Indeed, as i1 ◦ i2 = k1 ◦ i ◦ i0, we have

Spec*
s (i1)(Spec*

s (i2)(p′
i )) = Spec*

s (k1)(Spec*
s (i ◦ i0)(p′

i )) = Spec*
s (k1)(pi ) = Pi .

Consequently, Spec*
s (i2)(p′

i ) = P′
i .

5.1.12 Let us check now: Spec*
s (i2 ◦ i3)−1(P′

1) = {p′′
1}. To that end, we show first: P′

1 is a minimal prime
ideal of S(Y \ V ). Once this is proved, its fiber under Spec*

s (i2 ◦ i3) is by Theorem 2.5(i) a singleton; hence,
Spec*

s (i2 ◦ i3)−1(P′
1) = {p′′

1} because Spec*
s (i2 ◦ i3)(p′′

1) = Spec*
s (i2)(p′

1) = P′
1.

Indeed, as Y \ V is pure dimensional, it is enough to show by Theorem 2.6 that dY\V (P′
1) = d − 1.

Since the homomorphism S(X) → S(Y \ V ) is surjective, f ∈ P1 satisfies Z X1( f ) = Y \ V (see 5.1.7) and
Spec*

s (i1)(P′
1) = P1, it holds dY\V (P′

1) = dX1(P1) = d − 1.

5.1.13 As Spec*
s (j) maps the chain q1 � · · · � qs onto the chain p1 � · · · � pr , Spec*

s (π)(Q1) = P1 (by (5.2))
and the following diagrams are commutative

N X2

M X1

Spec*
s (N) Spec*

s (X2)

Spec*
s (M) Spec*

s (X1),

we conclude that Spec*
s (π) maps the chain Q1 � · · · � Qs onto the chain P1 � · · · � Pr . Let Q′

j be the unique

prime ideal of Spec*
s (T ) such that Spec*

s (j1)(Q′
j ) = Q j ∈ ClSpec*

s (X2)(T ). Notice that Spec*
s (π |T ) maps the chain

Q′
1 � · · · � Q′

s onto the chain P′
1 � · · · � P′

r .

5.1.14 By Theorem 2.5(iv) there exists a chain of prime ideals q′′
1 � · · · � q′′

s in Spec*
s (T ) such that

Spec*
s (j2)(q

′′
j ) = Q′

j . We claim: Spec*
s (π |T ) maps the chain q′′

1 � · · · � q′′
s onto the chain p′′

1 � · · · � p′′
r . As

the chain p′′
1 � · · · � p′′

r is non-refinable, it is enough to show by Theorem 2.5(iv) that Spec*
s (π |T )(q′′

1) = p′′
1.

Since the subdiagram

Spec*
s (T )

Spec*
s (j2 )

Spec*
s (π |T )

Spec*
s (T )

Spec*
s (π |T )

Spec*
s (Y \ V )

Spec*
s (i2 ◦i3 )

Spec*
s (Y \ V )

is commutative, we have

Spec*
s (i2 ◦ i3)(Spec*

s (π |T )(q′′
1)) = Spec*

s (π |T )(Spec*
s (j2)(q′′

1)) = Spec*
s (π |T )(Q′

1) = P′
1

and by 5.1.12 Spec*
s (π |T )(q′′

1) = p′′
1, as required.
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5.1.15 For the sake of clearness let us summarize all the previous information:

S p e c *
s (T ) S p e c *

s (T ) S p e c *
s (X 2 )

S p e c *
s (Y \ V ) S p e c *

s ( (Y \ V ) ∩ M ) S p e c *
s (Y \ V ) S p e c *

s (X 1 )

S p e c *
s (M )

qj Qj
Qj

pi pi Pi
Pi

pi

Step 6. Let S1, . . . , S
 be the connected components of T . By 2.3.1(iv) the connected components of Spec*
s (T )

are ClSpec*
s (T )(Sk) ∼= Spec*

s (Sk) for k = 1, . . . , 
. We may assume q′′
1 ∈ ClSpec*

s (T )(S1) ∼= Spec*
s (S1) and π(S1) =

Y1; hence, as Spec*
s (π |T )(q′′

1) = p′′
1 (see 5.1.14) and Spec*

s (π |T ) is continuous, it holds p′′
1 ∈ ClSpec*

s (Y\V )(Y1) ∼=
Spec*

s (Y1). As we have proved in Step 2, the map π |S1 : S1 → Y1 is a semialgebraic homeomorphism; hence,

Spec*
s (π |S1) : Spec*

s (S1) −→ Spec*
s (Y1)

is a homeomorphism. Thus, the restriction map

Spec*
s (π |T )|ClSpec*

s ( T ) (S1) : ClSpec*
s (T )(S1) −→ ClSpec*

s (Y\V )(Y1)

is also a homeomorphism. In particular, Spec*
s (π |T )|ClSpec*

s ( T ) (S1) maps the chain q′′
1 � · · · � q′′

s bijectively onto the

chain p′′
1 � · · · � p′′

r , so r = s, as required. �
P r o o f o f L e m m a 1 . 7 Note first that p is not a minimal prime ideal of S∗(M). Otherwise, since

p ∩ WM = ∅, P := pS(M) would be a minimal prime ideal of S(M). As M is pure dimensional of dimension
d, it follows from Theorem 2.6 that dM(P) = d, against the hypotheses.

5.1.16 Now we prove: P := pS(M) is a z-ideal.
Indeed, by 2.3.6 (i) there exists a (unique) prime z-ideal Pz ofS(M) such that P ⊂ Pz anddM(Pz) = dM(P) =

d − 1. By assumption p contains only one minimal prime ideal a of S∗(M) properly. Since p ∩ WM = ∅, also
P contains by 2.3.2 a unique minimal prime ideal A of S(M) properly. By 2.3.3 A is a z-ideal, so by Theorem
2.6 dM(A) = d. As dM(Pz) = d − 1, by 2.3.6 (ii) there does not exist any prime ideal between A and Pz ; hence,
P = Pz is a prime z-ideal.

5.1.17 As S(M) = S∗(M)WM , the quotient fields qf(S(M)/P) and qf(S∗(M)/p) are equal. Thus, by 2.3.6 (iii)

tr deg
R
(qf(S∗(M)/p)) = tr deg

R
(qf(S(M)/P)) = dM(P) = d − 1.

On the other hand, if q is a prime ideal of S∗(N) such that p = q ∩ S∗(M) = Spec*
s (j)(q), it holds:

tr deg
R
(qf(S∗(N)/q)) = d − 1.

Indeed, we have the inclusions

S∗(M)/p ↪→ S∗(N)/q � qf(S∗(M)/p) ↪→ qf(S∗(N)/q).

Thus, by 2.3.6 (iii)

d − 1 = tr deg
R
(qf(S∗(M)/p)) ≤ tr deg

R
(qf(S∗(N)/q)) ≤ dim(N) = d.

Suppose by contradiction that tr deg
R
(qf(S∗(N)/q)) = d. Then q is a minimal prime ideal of S∗(N) and

by Theorem 2.5(iii) p = Spec*
s (j)(q) is a minimal prime ideal of S∗(M), which is a contradiction. Thus,

tr deg
R
(qf(S∗(N)/q)) = d − 1.

5.1.18 Finally we prove: Spec*
s (j)

−1(p) is a singleton.
Suppose by contradiction that Spec*

s (j)
−1(p) is not a singleton. Then there exist two distinct prime ideals

q1, q2 ∈ Spec*
s (N) such that Spec*

s (j)(qi ) = p. In particular tr deg
R
(qf(S∗(N)/qi )) = d − 1. Let bi ⊂ qi be a

minimal prime ideal of S∗(N). By Theorem 2.5(iii) Spec*
s (j)(bi ) is a minimal prime ideal of S∗(M) contained
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in p; hence, Spec*
s (j)(bi ) = a. By Theorem 2.5(i) the fiber Spec*

s (j)
−1(a) is a singleton, so b1 = b2. Thus, we

may assume by 2.3.5 that b1 ⊂ q1 � q2.
By 2.4.2 and 2.4.5 there exists a brimming semialgebraic compactification (X, k) of N such that q1 ∩ S(X) �

q2 ∩ S(X) and

qf(S(X)/(qi ∩ S(X))) = qf(S∗(N)/qi )

for i = 1, 2. By 2.3.6 (ii) we deduce, as X is locally compact, that

d − 1 = tr deg
R
(qf(S∗(N)/q1)) = dX (q1 ∩ S(X))

> dX (q2 ∩ S(X)) = tr deg
R
(qf(S∗(N)/q2)) = d − 1,

which is a contradiction, as required. �

5.2 Proof of the quantitative part of Theorem 1.4 for singleton fibers

Our purpose here is to prove the following: Let p ∈ ClSpec*
s (M)(Y ) \ ClSpec*

s (M)(ρ1(M)) be a prime ideal such that
dM (̂pS(M)) = d − 1. Then the fiber Spec*

s (j)
−1(p) is a singleton if and only if p̂ contains exactly one minimal

prime ideal of S∗(M).

Proof of the quantitative part of Theorem 1.4 for singleton fibers Assume first that the threshold p̂ contains only
one minimal prime ideal. As p̂ ∩ EM = ∅, also p̂ ∩ WM = ∅. By Lemma 5.1 p̂ ∈ ClSpec*

s (M)(Y ), so by Lemma
1.7 Spec*

s (j)
−1(̂p) is a singleton. Let us check that also Spec*

s (j)
−1(p) is a singleton. If p ∩ EM = ∅, it holds

p̂ = p and we are done, so we assume p ∩ EM �= ∅.

5.2.1 We may assume p ∩ WM �= ∅ and p̂ = m ∩ S∗(M) for some maximal ideal m of S(M).
Indeed, if p ∩ WM �= ∅, there is nothing to prove, so we assume p ∩ WM = ∅. Consider the suitably arranged

sa-tuples (M, Mlc, ρ1(M), j1, i1) and (Mlc, N , Mlc \ N , j2, i2). Denote Z := ClSpec*
s (M)(ρ1(M)) and recall that

by Theorem 1.2(iii) the restriction map

Spec*
s (j1)| : Spec*

s (Mlc) \ Spec*
s (j1)−1(Z) −→ Spec*

s (M) \ Z (5.3)

is a homeomorphism. As p �∈ Z (by hypothesis), the fiber Spec*
s (j1)−1(p) is a singleton whose unique element is

denoted by p1 ∈ Spec*
s (Mlc) \ Spec*

s (j1)−1(Z). As j = j1 ◦ j2, the sizes of Spec*
s (j)

−1(p) and Spec*
s (j2)−1(p1)

coincide. As p̂ ⊂ p and p �∈ Z , we deduce p̂ �∈ Z , so Spec*
s (j

′)−1(̂p) is a singleton whose unique element q ∈
Spec*

s (Mlc) \ Spec*
s (j1)−1(Z). On the other hand, as EM ⊂ WMlc and p1 ∩ S∗(M) = p, we have p1 ∩ WMlc �= ∅.

By Lemma 5.1(i) there exists a maximal ideal m1 of S(Mlc) such that m1 ∩ S∗(Mlc) ⊂ p1 ⊂ m∗
1 and p̂ = m1 ∩

S∗(M); hence, q = m1 ∩ S(Mlc) = p̂1. Notice that p̂1 contains only one minimal prime ideal of S∗(Mlc) because
(5.3) is a homeomorphism, p̂ �∈ Z and p̂ contains only one minimal prime ideal of S∗(M). In addition, it
holds dMlc (̂p1S(Mlc)) = dMlc(m1) = dM (̂pS(M)) = d − 1 because p̂S(M) = m1 ∩ S(M), p̂1S(Mlc) = m1 and
dim(ρ1(M)) ≤ d − 2 (see Corollary 2.2).

Thus, substituting M by Mlc and p by p1, we are under the hypotheses of 5.2.1 (together with those in the
statement) and the sizes of Spec*

s (j)
−1(p) and Spec*

s (j2)−1(p1) coincide.

5.2.2 Assume in the following p ∩ WM �= ∅ and p̂ = m ∩ S∗(M) for some maximal ideal m of S(M). As p̂
contains only one minimal prime ideal, also m contains only one minimal prime ideal that we denote with a0. In
particular, as M is pure dimensional, it holds by Theorem 2.6 that dM(a0) = d. As dM(m) = d − 1, we deduce
by 2.3.6 (ii) that there does not exist any prime ideal between a0 and m. By 2.3.2 p0 := a0 ∩ S∗(M) is the unique
minimal ideal of S∗(M) contained in p̂. By 2.3.5(ii) we conclude that the collection of all prime ideals of S∗(M)
containing p0 is

p0 � p1 := p̂ = m ∩ S∗(M) � · · · � p
 := p � · · · � pr := m∗. (5.4)

It follows from Theorem 2.5(i) that there exists only one minimal prime ideal q0 of S∗(N) such that

Spec*
s (j)(q0) = p0.
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Let q0 � q1 � · · · � qs be the collection of all prime ideals of S∗(N) that contain q0. Observe Spec*
s (j)(q1) = p1

and by Lemma 1.6 we conclude r = s. Summarizing, we conclude by Theorem 2.5 that the fibers of all prime
ideals in the chain (5.4) are singletons; hence, in particular, Spec*

s (j)
−1(p) = {q
} is a singleton.

5.2.3 Assume next that the fiber Spec*
s (j)

−1(p) is a singleton. Let us prove that p̂ contains a unique minimal
prime ideal of S∗(M). As p̂ ∩ WM = ∅, by 2.3.2 it is enough to check that the prime ideal P̂ = p̂S(M) of
S(M) contains only one minimal prime ideal of S(M). Suppose by contradiction that P̂ contains two different
minimal prime ideals Q1 and Q2 of S(M). Fix g ∈ S(M) such that Z(g) = Y . As P̂ ∈ ClSpecs(M)(Y ), we have
g ∈ P̂ and by Lemma 2.8 there exist fi ∈ Qi \ Q j if i �= j such that Z( f 2

1 + f 2
2 ) ⊂ Z(g). Define Zi := Z( fi )

and Ni := Zi ∩ N . As N is locally compact, so are N1 and N2. Moreover, N1 and N2 are disjoint because
Z1 ∩ Z2 ∩ N ⊂ Y ∩ N = ∅. By 2.3.1(ii) ClSpec*

s (N)(N1) ∩ ClSpec*
s (N)(N2) = ∅.

Let ji : Ni ↪→ Zi be the inclusion map. By Theorem 2.5(iii) Spec*
s (ji ) : Spec*

s (Ni ) → Spec*
s (Zi ) is surjec-

tive. Thus, after identifying Spec*
s (Ni ) ≡ ClSpec*

s (N)(Ni ) and Spec*
s (Zi ) ≡ ClSpec*

s (M)(Zi ), the map Spec*
s (j)| :

ClSpec*
s (N)(Ni ) → ClSpec*

s (M)(Zi ) is surjective.
Observe that qi := Qi ∩ S∗(M) ∈ ClSpec*

s (M)(Zi ) because Qi ∈ ClSpecs(M)(Zi ). As

p ∈ ClSpec*
s (M)({̂p}) ⊂ ClSpec*

s (M)({q1}) ∩ ClSpec*
s (M)({q2}),

we conclude p ∈ ClSpec*
s (M)(Z1) ∩ ClSpec*

s (M)(Z2). Thus, there exists bi ∈ ClSpec*
s (N)(Ni ) such that

Spec*
s (j)(bi ) = p

and b1 �= b2 because ClSpec*
s (N)(N1) ∩ ClSpec*

s (N)(N2) = ∅. Consequently, Spec*
s j−1(p) is not a singleton, which

is a contradiction. Thus, P̂ contains only one minimal prime ideal of S(M), as required. �

5.3 Proof of the remaining part of Theorem 1.4

Our purpose here is to prove: If p ∈ ClSpec*
s (M)(Y ) \ ClSpec*

s (M)(ρ1(M)) and dM (̂pS(M)) = d − 1, then the fiber
of p is a finite set and whose size equals the number of minimal prime ideals of S∗(M) contained in p̂.

Proof of the remaining part of Theorem 1.4. We may assume that M is bounded and denote X := ClRm (M). By
Theorem [2, 9.2.1] applied to X and the family of semialgebraic sets F := {M, N , Y } there exists a semialgebraic
triangulation (K ,	) of X compatible with F . For simplicity we identify all involved objects with their images
under 	−1 and denote P̂ := p̂S(M), which is a proper prime ideal of S(M) because p̂ ∩ WM = ∅.

5.3.1 Let τ 0
1 , . . . , τ 0

r be all simplices of K contained in Y . We know by the compatibility property of the
semialgebraic triangulation (K ,	) that Y = ⋃r

i=1 τ 0
i . Let Ti := ClM

(
τ 0

i

) = τi ∩ Y and hi ∈ S∗(M) be such that
Z(hi ) = Ti . As the zero set of h := ∏r

i=1 hi equals Y and p̂ ∈ ClSpec*
s (M)(Y ), we may assume h1 ∈ p̂ and write

T := T1 and τ := τ1. Note in particular that P̂ ∈ ClSpecs(M)(T ) as P̂ is a prime z-ideal; hence, p̂ ∈ ClSpec*
s (M)(T ).

As dM
(
P̂

) = d − 1, we deduce dim(T ) = dim(Z(g1)) = d − 1. Let σ1, . . . , σs ∈ K be the collection of all
simplices of dimension d that contains the (d − 1)-dimensional simplex τ ; clearly, σi ∩ σ j = τ if i �= j . Denote
Mi := σi ∩ M and observe Mi ∩ M j = T = τ ∩ Y if i �= j and p̂ ∈ ClSpec*

s (M)(Mi ).
The semialgebraic set U := ⋃s

i=1 σ 0
i ∪ τ 0 is an open neighborhood of τ 0 in M (as it is the star of τ 0). Thus,

M0 := M \ U is a closed semialgebraic subset of M that satisfies

M0 ∩ T = (M \ U) ∩ T ⊂ T \ τ 0 ⊂ τ \ τ 0,

which has dimension < dim(T ) = d − 1. As P̂ ∈ ClSpecs(M)(T ) and dM(P̂) = d − 1, we deduce P̂ �∈
ClSpecs(M)(M0) because otherwise by 2.3.1(iii)

P̂ ∈ ClSpecs(M)(M0) ∩ ClSpecs(M)(T ) = ClSpecs(M)(M0 ∩ T ),
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so d − 1 = dM
(
P̂

) ≤ dim(M0 ∩ T ) ≤ d − 2, which is a contradiction. Thus, p̂ �∈ ClSpec*
s (M)(M0) and by Lemma

5.1(ii) we deduce p �∈ ClSpec*
s (M)(M0).

5.3.2 Write Ni := Mi \ Y for i = 1, . . . , s and notice that Ni is dense in Mi and Ni ∩ N j = ∅ if i �= j . As
Ni is closed in N , each Ni is locally compact. If we denote the inclusions with ji : Ni ↪→ Mi and ii : Yi :=
Mi \ Ni ↪→ Mi , we get a suitably arranged sa-tuple (Ni , Mi , Yi , ji , ii ).

By Theorem 1.2(ii) it holds Spec*
s (j)

(
ClSpec*

s (N)(Ni )
) = ClSpec*

s (M)(Mi ). By 2.3.1(ii)

Spec�
s (Ni ) ∼= ClSpec�

s (N)(Ni ) and Spec�
s (Mi ) ∼= ClSpec�

s (M)(Mi )

via the inclusions ki : Ni ↪→ N and li : Mi ↪→ M . Denote the unique prime ideal of S∗(Mi ) whose image under
Spec*

s (li ) is p with pi for i = 1, . . . , s.
As the semialgebraic sets Ni are pairwise disjoint closed connected subsets of N , the connected components

of
⊔s

i=1 Ni are N1, . . . , Ns . By 2.3.1 the sets ClSpec*
s (N)(Ni ) are the connected components of

ClSpec*
s (N)

(
s⊔

i=1

Ni

)

and in particular they are disjoint.
As Spec*

s (M) = ⋃s
i=0 ClSpec*

s (M)(Mi ) and p �∈ ClSpec*
s (M)(M0), it holds

p ∈
s⋃

i=1

ClSpec*
s (M)(Mi ) and so Spec*

s (j)
−1(p) ⊂

s⊔
i=1

ClSpec*
s (N)(Ni ).

Consequently, the size of the fiber Spec*
s (j)

−1(p) coincides with the sum of the sizes of the fibers

Spec*
s (ji )−1(pi )

for i = 1, . . . , s. Denote the unique prime ideal of S(Mi ) whose image under Spec*
s (li ) is p̂ with p̂i for i =

1, . . . , s. As p̂ ∩ WM = ∅ and p̂ ∈ ClSpec*
s (M)(Mi ), one can check that p̂i ∩ WMi = ∅. By Lemma 1.1(ii)

{
P̂i :=

p̂iS(Mi )
} = Specs(li )−1(P̂) and, as P̂ ∈ ClSpecs(M)(Mi ), it holds dMi

(
P̂i ) = dM(P̂

) = d − 1. In addition, as
P̂ ∈ ClSpec*

s (M)(T ) and T ⊂ Mi , we deduce P̂i ∈ ClSpec*
s (Mi )(T ).

5.3.3 We claim: p̂i contains exactly one minimal prime ideal of S∗(Mi ).
Indeed, fix i = 1, . . . , s and suppose that there are two minimal prime ideals a1, a2 of S∗(Mi ) contained in

p̂i . By Theorem 2.6 dMi (a jS(Mi )) = d for j = 1, 2. Let g ∈ p̂i be such that Z Mi (g) = T . By Lemma 2.8 there
exists f j ∈ a j \ ak if j �= k such that Z Mi

(
f 2
1 + f 2

2

) ⊂ Z Mi (g) and Z Mi ( f j ) is pure dimensional for j = 1, 2.
Substituting g with g2 + f 2

1 + f 2
2 , we may assume Z Mi

(
f 2
1 + f 2

2

) = Z Mi (g) ⊂ T . Note that dim(Z Mi (g)) =
d − 1 because dMi

(
P̂i

) = d − 1.
Let (Ki ,	i ) be a semialgebraic triangulation of σi compatible with all its faces, Z Mi ( f1) and Z Mi ( f2). Let C

be the image under 	i of the union of all simplices of Ki of dimension d − 1 contained in σi \ T and all simplices
of dimension ≤ d − 2. As Z Mi ( f j ) is pure dimensional of dimension d, we conclude Z Mi ( f j ) \ C = ⋃m


=1 S


where S
 is either

(1) the image under 	i of an open simplex of dimension d or
(2) the image under 	i of the union of an open simplex υ of dimension d and an open simplex ε of dimension

d − 1 adherent to υ and contained in 	−1
i

(
τ 0

)
.

Thus, Z Mi ( f j ) \ C is an open subset of σi . In particular,

Z Mi (g) \ C = Z Mi

(
f 2
1 + f 2

2

) \ C = (Z Mi ( f1) \ C) ∩ (Z Mi ( f2) \ C)
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is an open subset of σi . As dim(Z Mi (g)) = d − 1 and dim(σi ) = d, we deduce Z Mi (g) \ C = ∅, so Z Mi (g) ⊂
T ∩ C . But this is impossible because T ∩ C has dimension ≤ d − 2 and Z Mi (g) has dimension d − 1. We
conclude that p̂i contains only one minimal prime ideal, as required.

5.3.4 There exist exactly s minimal prime ideals of S(M) contained in p̂.
Let ai be the unique minimal prime of S∗(Mi ) such that ai ⊂ p̂i . It holds qi := Spec*

s (li )(ai ) � p̂, so ai ∩
WM = ∅. As aiS(Mi ) is a minimal prime ideal of S(Mi ), it is a z-ideal, so Qi := qiS(M) is by 2.3.3 also a
z-ideal. Consequently, by 2.3.6 (ii) d ≥ dM(Qi ) > dM

(
P̂

) = d − 1, so Qi is a minimal prime ideal of S(M) by
Theorem 2.6. Thus, qi is a minimal prime ideal of S∗(M). Of course, qi �= q j if i �= j because otherwise

pi ∈ ClSpec*
s (M)(Mi ) ∩ ClSpec*

s (M)(M j ) = ClSpec*
s (M)(Mi ∩ M j ) = ClSpec*

s (M)(T )

and this is impossible because dim(T ) = d − 1 and dim(Z( f )) = d for each f ∈ pi .
Conversely, let q be a minimal prime ideal of S(M) contained in p̂. Then q �∈ ClSpec*

s (M)(M0), so q ∈
ClSpec*

s (M)(Mi ) for some i = 1, . . . , s. Since ClSpec*
s (M)(Mi ) ∼= Spec*

s (Mi ) and p̂i contains exactly one min-
imal prime of S(Mi ), we deduce q = qi , so there are exactly s minimal prime ideals of S(M) contained
in p̂.

5.3.5 Finally, as p̂i contains exactly one minimal prime ideal of S(Mi ) and dMi

(
P̂i

) = d − 1, we deduce by 5.2
that Spec*

s (ji )−1(pi ) is a singleton. Thus, the size of Spec*
s (j)

−1(p) is equal to s, so it coincides with the number
of minimal prime ideals of S(M) contained in p̂, as required. �
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[26] N. Schwartz, Epimorphic extensions and Prüüfer extensions of partially ordered rings, Manuscripta Math. 102, 347–381

(2000).
[27] N. Schwartz and J. J. Madden, Semi-algebraic Function Rings and Reflectors of Partially Ordered Rings, Lecture Notes

in Mathematics, 1712 (Springer-Verlag, Berlin, 1999).
[28] N. Schwartz and M. Tressl, Elementary properties of minimal and maximal points in Zariski spectra, J. Algebra 323(3),

698–728 (2010).
[29] E. H. Spanier, Algebraic Topology (McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966).
[30] M. Tressl, The real spectrum of continuous definable functions in o-minimal structures, Séminaire de Structures
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