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Abstract In this work we present the concept of C-semianalytic subset of a real
analytic manifold and more generally of a real analytic space. C-semianalytic sets
can be understood as the natural generalization to the semianalytic setting of global
analytic sets introduced by Cartan (C-analytic sets for short). More precisely S is
a C-semianalytic subset of a real analytic space (X,OX ) if each point of X has a
neighborhood U such that S ∩ U is a finite boolean combinations of global analytic
equalities and strict inequalities on X . By means of paracompactness C-semianalytic
sets are the locally finite unions of finite boolean combinations of global analytic
equalities and strict inequalities on X . The family of C-semianalytic sets is closed
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614 F. Acquistapace et al.

under the same operations as the family of semianalytic sets: locally finite unions and
intersections, complement, closure, interior, connected components, inverse images
under analytic maps, sets of points of dimension k, etc. although they are defined
involving only global analytic functions. In addition, we characterize subanalytic sets
as the images under proper analytic maps of C-semianalytic sets. We prove also that
the image of a C-semianalytic set S under a proper holomorphic map between Stein
spaces is again a C-semianalytic set. The previous result allows us to understand better
the structure of the set N (X) of points of non-coherence of a C-analytic subset X of
a real analytic manifold M . We provide a global geometric-topological description
of N (X) inspired by the corresponding local one for analytic sets due to Tancredi
and Tognoli (Riv Mat Univ Parma (4) 6:401–405, 1980), which requires complex
analytic normalization. As a consequence it holds that N (X) is a C-semianalytic set
of dimension ≤ dim(X) − 2.

Mathematics Subject Classification Primary 14P15 · 58A07 · 32C25;
Secondary 26E05 · 32C20

1 Introduction

Let M be a real analytic manifold. A subset X of M is (real) analytic if for each point
x ∈ M , there exists an open neighborhoodUx such that X ∩Ux = { f1 = 0, . . . , fr =
0} ⊂ Ux for some f1, . . . , fr ∈ O(Ux ). Already in the 1950s Cartan, Whitney and
Bruhat noticed that this class of sets, whose definition is a straight conversion to the real
case of the concept of complex analytic subset of a complex analytic manifold, does
not enjoy all the good properties of complex analytic sets (for instance: coherence,
irreducible components, etc.). The global behavior of these sets could be wild as it
is shown in the exotic examples presented in [9,10,45]. Concerning this fact Cartan
wrote in [11, pag. 49] the following:

“…la seule notion de sous-ensemble analytique réel (d’une variété analytique-
réelle V) qui ne conduise pas à des propriétés pathologiques doit se référer à l’espace
complexe ambiant: il faut considérer les sous-ensembles fermés E deV tels qu’il existe
une complexification X de V et un sous-ensemble analytique-complexe E ′ de W, de
manière que E = W ∩ E ′. On démontre que ce sont aussi les sous-ensembles de V
qui peuvent être définis globalement par un nombre fini d’équations analytiques. La
notion de sous-ensemble analytique-réel a ainsi un caractère essentiellement global,
contrairement à ce qui avait lieu pour les sous-ensembles analytiques-complexes.”

The special class of real analytic subsets of a real analytic manifold M introduced
by Cartan [10] is the family of analytic subsets of M that can be described by finitely
many global analytic equations. They are commonly known as C-analytic sets. Of
course, such class contains classical coherent analytic sets but also more general ones
asWhitney’s umbrella. Naturally, for each point x of a real analytic set S there exists a
small open neighborhoodU ⊂ M of x such that the intersection S∩U is a C-analytic
subset of U .

In Real Geometry also appear naturally sets described by inequalities. A subset
S of a real analytic manifold M is a semianalytic set if for each point x ∈ M there
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On globally defined semianalytic sets 615

exists an open neighborhood Ux such that S ∩Ux is a finite union of sets of the type
{ f = 0, g1 > 0, . . . , gr > 0} ⊂ Ux where f, gi ∈ O(Ux ) are analytic functions on
Ux .

Semianalytic sets (and more generally subanalytic sets) were introduced by
Łojasiewicz in [28,29] and were developed later by many authors: Bierstone–Milman
[7,8], Hironaka [22–25], Gabrielov [15], Hardt [20,21], Galbiati [16], Pawłucki [36],
Denkowska [12], Stasica [42], Kurdyka [27], Parusiński [35], Shiota [41] between
others. These sets have many and wide applications in complex and real analytic
geometry.

While the family of complex analytic sets is stable under proper holomorphic maps
between complex analytic spaces (Remmert’s Theorem [31, VII.§2.Thm.2]), an analo-
gous property does not hold in the real analytic setting. The image of a real analytic set
under a proper real analytic map is not even in general a semianalytic set. Indeed, this
fact promoted the introduction of subanalytic sets by Łojasiewicz [28] in the 1960s.

In [17] Galbiati proved that if f : X → Y is a proper analytic map between real
analytic spaces that admits a proper complexification ˜f : ˜X → ˜Y and Z is aC-analytic
subset of X , then f (X\Z) is a semianalytic set. In [25] Hironaka quoted this result
and remarked that f (X\Z) is ‘globally semianalytic in Y with respect to the given
complexification ˜Y of Y’. In [43, p.404] it is used without proof that the image of a
semianalytic set under a proper invariant holomorphic map between Stein spaces is
semianalytic. Although it seemed to be an assumed result in the 1970s, we have found
no precise reference with a proof to this fact.

At this point, it is natural to wonder whether it is possible to find, amalgamating
the concepts of C-analytic sets and semianalytic sets, a family of semianalytic sets
‘globally defined’ in the sense of Cartan and Hironaka that enjoy a good behavior
with respect to basic boolean, topological and algebraic operations and admit a kind
of direct image theorem for good enough proper analytic maps. In addition, assume
that the set of points of a C-analytic set satisfying a property P is semianalytic. We
would like to understand when P provides a globally defined semianalytic set.

A global approach to semianalytic sets was explored first by Andradas–Bröcker–
Ruiz [3,38–40] under compactness assumptions and by Andradas–Castilla [5] for low
dimension. They defined a global semianalytic subset S of a real analytic manifold M
as a finite union of global basic semianalytic sets, that is, a finite union of sets of the type
{ f = 0, g1 > 0, . . . , gr > 0}where f, g j ∈ O(M). As far as we know, it is not known
whether the family of global semianalytic sets is closed under taking closure, interior
or connected components except for dim(M) ≤ 2. There exist further information
concerning closure (and interior) of a global semianalytic set if dim(M) = 3 but
nothing conclusive for higher dimension if the involved global semianalytic set has
non-compact boundary.

In this work we refine the previous approach and consider the family of C-
semianalytic sets, which is constituted by those semianalytic sets that are locally
finite unions of global basic semianalytic sets (see Sect. 3). As M is paracompact, C-
semianalytic sets are those semianalytic sets of M that admit in a small neighborhood
of each point of M a local description involving only global analytic functions on M
(see Lemma3.1). Roughly speaking,we are considering the class of those semianalytic
sets that can be described using only elements of O(M).
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616 F. Acquistapace et al.

We see in this article that the family of C-semianalytic sets enjoys the desired
properties.However, it is still too large to have a consistent concept of irreducibility and
a reasonable theory of irreducible components and requires a refinement to approach
this problem. To that end in [14] it is introduced the subfamily of ‘amenable’ C-
semianalytic sets and it is developed a satisfactory theory of irreducible components.

1.1 Main results

We present next the main results of this work.

1.1.1 Main properties of C-semianalytic sets

The family ofC-semianalytic sets is closed under the same operations as semianalytic
sets: locally finite unions and intersections, complement, closure, interior, connected
components, sets of points of dimension k and inverse images of analytic maps. Anal-
ogously to the semianalytic and semialgebraic cases: open C-semianalytic sets and
closed C-semianalytic sets admits local homogeneous descriptions (see Lemma 3.4).
There exist many semianalytic sets that are not C-semianalytic sets, we refer the
reader to Examples 3.3. In addition C-semianalytic sets satisfy the following type of
complex-proper image theorem that we prove in Sect. 4.

1.1.2 Images of C-semianalytic sets under proper holomorphic maps

Let (X,OX ) and (Y,OY ) be reduced Stein spaces. Let σ : X → X and τ : Y → Y
be anti-involutions. Assume

Xσ := {x ∈ X : x = σ(x)} and Y τ := {y ∈ Y : y = τ(y)}

are non-empty sets. It holds that (Xσ ,OXσ ) and (Y τ ,OY τ ) are real analytic spaces.
Observe that (X,OX ) and (Y,OY ) are complexifications of (Xσ ,OXσ ) and (Y τ ,OY τ ).

We will say that a C-semianalytic set S ⊂ Xσ is A(Xσ )-definable if for each
x ∈ Xσ there exists an open neighborhood Ux such that S ∩ Ux is a finite union
of sets of the type {F |Xσ = 0,G1|Xσ > 0, . . . ,Gr |Xσ > 0} where F,Gi ∈ O(X)

are invariant holomorphic sections. We denote the set of σ -invariant holomorphic
functions of X restricted to Xσ with A(Xσ ).

Theorem 1.1 (Direct image theorem) Let F : (X,OX ) → (Y,OY ) be an invariant
proper holomorphic map, that is, τ ◦ F = F ◦σ . Let S ⊂ Xσ be anA(Xσ )-definable
C-semianalytic set. We have

(i) F(S) is a C-semianalytic subset of Y τ of the same dimension as S.
(ii) Let E := Cl(F−1(Y τ )\Xσ ). Then F(E ∩ S) is a C-semianalytic subset of Y τ .
(iii) If S is a C-analytic set and F−1(Y τ ) = Xσ , then F(S) is also a C-analytic set.

Remark 1.2 Let S be a semianalytic subset of Xσ . For each x ∈ Xσ there exists an
open neighborhood U ⊂ Xσ of x such that S ∩ U is a C-semianalytic subset of
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On globally defined semianalytic sets 617

U . Using this fact and Theorem 1.1 one shows straightforwardly that the image of a
semianalytic set under an invariant proper holomorphic map between reduced Stein
spaces is a semianalytic set.

The keys to prove Theorem 1.1 are [7, Thm.2.2] (whose statement is recalled in
Sect. 4.2) and the following result that analyzes the local structure of proper surjective
holomorphicmorphisms between Stein spaces. For each x ∈ X wedenote themaximal
ideal of O(X) associated to x with mx and for each y ∈ Y we denote the maximal
ideal ofO(Y ) associated to y with ny . Recall that compact analytic subsets of a Stein
space are finite sets, so the fibers of a proper holomorphic map between Stein spaces
are finite sets. Write F∗(O(Y )) := {G ◦ F : G ∈ O(Y )} ⊂ O(X) and

F∗(O(Y )ny ) =
{

G ◦ F

H ◦ F
: G, H ∈ O(Y ) and H /∈ ny

}

.

Theorem 1.3 (Local structure of finite holomorphic morphisms) Let F : (X,OX ) →
(Y,OY ) be a surjective proper holomorphic map between reduced Stein spaces and let
y0 ∈ Y . Denote the multiplicative subset of O(X) constituted by all the holomorphic
functions on X that do not vanish at the set F−1(y0) := {x1, . . . , x�} with S :=
O(X)\(mx1 ∪ · · · ∪ mx�

). Then S−1(O(X)) is a finitely generated O(Y )ny0
-module

and there exist invariant holomorphic functions H1, . . . , Hm ∈ O(X) such that

S−1(O(X)) = F∗(O(Y )ny0
)[H1, . . . , Hm].

1.1.3 C-properties

Let P be a property concerning either C-semianalytic or C-analytic sets. We say that
P is a C-property if the set of points of an either C-semianalytic or C-analytic set S
satisfying P is a C-semianalytic set. For example, as we have already commented,
the set of points where the dimension of the C-semianalytic set S is k is again a C-
semianalytic set. As a consequence of Theorem 1.1 we prove in Sect. 5 that the set of
points of non-coherence of a C-analytic set is C-semianalytic, that is, ‘to be a point
of non-coherence’ (or ‘to be a point of coherence’) are C-properties.

1.1.4 Set of points of non-coherence

The set of points N (X) where an analytic set X ⊂ M is not coherent was studied
first by Fensch in [13, I.§2] where he proved that it is contained in a semianalytic
set of dimension ≤ dim(X) − 2. This result was revisited by Galbiati in [16] and she
proved that it is in fact a semianalytic set. Thus, analytic curves are coherent and real
analytic surface have only isolated points where they fail to be coherent. As coherence
is an open condition, N (X) is a closed set. Later Tancredi–Tognoli provided in [43]
a simpler proof of Galbiati’s result. Their procedure has helped us to understand the
global structure of the set of points of non-coherence of a C-analytic set and we
describe it carefully in Theorem 5.1. As a consequence, we have:
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618 F. Acquistapace et al.

Corollary 1.4 The set N (X) of points of non-coherence of a C-analytic set X ⊂ M
is a C-semianalytic set of dimension ≤ dim(X) − 2.

1.1.5 Images of C-semianalytic sets under proper analytic maps and subanalytic sets

The family of semianalytic sets is not closed under the image of proper analytic maps.
The concept of subanalytic set was introduced to get rid of this problem. Recall that
S ⊂ M is subanalytic if each point x ∈ M admits a neighborhood Ux such that
S ∩ Ux is a projection of a relatively compact semianalytic set, that is, there exists a
real analytic manifold N and a relatively compact semianalytic subset A of M × N
such that S ∩Ux = π(A) where π : M × N → M is the projection.

It could sound reasonable to consider the family of C-subanalytic sets. However,
this is useless because each subanalytic set is the image of a C-semianalytic set under
a proper analytic map.

Theorem 1.5 Let S be a subset of a real analyticmanifold N. The following assertions
are equivalent:
(i) S is subanalytic.
(ii) There exists a basic C-semianalytic subset T of a real analytic manifold M and

an analytic map f : M → N such that f |Cl(T ) : Cl(T ) → N is proper and
S = f (T ).

(iii) There exists a C-semianalytic subset T of a real analytic manifold M and an
analytic map f : M → N such that f |Cl(T ) : Cl(T ) → N is proper and
S = f (T ).

The family of subanalytic sets is closed under the following operations: locally finite
unions and intersections, complement [15], closure, interior, connected components,
sets of points of dimension k, inverse images of analytic maps and direct images of
proper analytic maps. As before, this family is not closed under the image of general
analytic maps (see Example 6.3).

1.2 Structure of the article

The article is organized as follows. InSect. 2wepresent all basic concepts andnotations
used in this paper as well as some preliminary results concerning: complexification,
points of non-coherence, normalization, excellence of localizations of rings of holo-
morphic functions, etc. that will be useful in the subsequent sections. The reading
can be started directly in Sect. 3 and referred to the Preliminaries only when needed.
The aim of Sect. 3 is to study the main properties of C-semianalytic sets. In Sect. 4
we prove Theorems 1.1 and Theorem 1.3 while in Sect. 5 we study the structure
of the set of points of non-coherence of a C-analytic set and we conclude that it is
a C-semianalytic set (Corollary 1.4). Finally, in Sect. 6 we show Theorem 1.5 and
deduce that each subanalytic set is the image under a proper analytic map of a basic
C-semianalytic set.
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On globally defined semianalytic sets 619

2 Preliminaries on real and complex analytic spaces

In the following holomorphic refer to the complex case and analytic to the real case.
For a further reading about complex analytic spaces we refer to [19] while we remit
the reader to [18,44] for the theory of real analytic spaces. We denote the elements of
O(X) := H0(X,OX ) with capital letters if (X,OX ) is a Stein space and with small
letters if (X,OX ) is a real analytic space. All concepts that appear in the Introduction
involving a real analytic manifold M can be extended to a real analytic space (X,OX )

using the ring O(X) of global analytic sections on X instead of the ring O(M) of
global analytic functions on M .

2.1 General terminology

Denote the coordinates in C
n with z := (z1, . . . , zn) where zi := xi + √−1yi .

Consider the conjugation · : C
n → C

n, z �→ z := (z1, . . . , zn) of C
n , whose set of

fixed points is R
n . A subset A ⊂ C

n is invariant if A = A. Obviously, A ∩ A is the
biggest invariant subset of A. Let � ⊂ C

n be an invariant open set and F : � → C

a holomorphic function. We say that F is invariant if F(z) = F(z) for all z ∈ �.
This implies that F restricts to a real analytic function on � ∩ R

n . Conversely, if f
is analytic on R

n , it can be extended to an invariant holomorphic function F on some
invariant open neighborhood � of R

n . If F : � → C is a holomorphic function and
� is invariant,


(F) : � → C, z �→ F(z)+F(z)
2 and �(F) : � → C, z �→ F(z)−F(z)

2
√−1

are invariant holomorphic functions that satisfy F = 
(F) + √−1�(F).

2.2 Reduced analytic spaces [18, I.1]

Let K = R or C and let (X,OX ) be an either complex or real analytic space. Let FX

be the sheaf of K-valued functions on X and let ϑ : OX → FX be the morphism of
sheaves defined for each open set U ⊂ X by ϑU (s) : U → K, x �→ s(x) where
s(x) is the class of s module the maximal ideal mX,x of OX,x . Recall that (X,OX ) is
reduced if ϑ is injective. Denote the image ofOX under ϑ withOr

X . The pair (X,Or
X )

is called the reduction of (X,OX ) and (X,OX ) is reduced if and only if OX = Or
X .

The reduction is a covariant functor from the category of K-analytic spaces to that of
reduced K-analytic spaces.

2.3 Anti-involution and complexifications [18, II.4]

Let (X,OX )be a complex analytic space.Ananti-involutionon (X,OX ) is amorphism
σ : (X,OX ) → (X,OX ) such that σ 2 = id and it transforms the sheaf of holomorphic
sections OX into the sheaf of antiholomorphic sections OX .
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620 F. Acquistapace et al.

2.3.1 Fixed part space

Let (X,OX ) be a complex analytic space endowed with an anti-involution σ . Let
Xσ := {x ∈ X : σ(x) = x} and define a sheaf OXσ on Xσ in the following way:
for each open subset U ⊂ Xσ , we set H0(U,OXσ ) as the subset of H0(U,OX |Xσ )

of invariant sections. The R-ringed space (Xσ ,OXσ ) is called the fixed part space of
(X,OX ) with respect to σ . By [18, II.4.10] it holds that (Xσ ,OXσ ) is a real analytic
space if Xσ �= ∅.

2.3.2 Complexification and C-analytic spaces [18, III.3]

A real analytic space (X,OX ) is a C-analytic space if it satisfies one of the following
two equivalent conditions:

1. Each local model of (X,OX ) is defined by a coherent sheaf of ideals, which is not
necessarily associated to a well reduced structure (see Sect. 2.4).

2. There exist a complex analytic space (˜X ,O
˜X ) endowed with an anti-holomorphic

involution σ whose fixed part space is (X,OX ).

The complex analytic space (˜X ,O
˜X ) is called a complexification of X and it satisfies

the following properties:

(i) O
˜X ,x = OX,x ⊗ C for all x ∈ X .

(ii) The germ of (˜X ,O
˜X ) at X is unique up to an isomorphism.

(iii) X has a fundamental system of invariant open Stein neighborhoods in ˜X .
(iv) If X is reduced, then ˜X is also reduced.

For further details see [10,18,44,45].

2.4 C-analytic sets

The concept of C-analytic sets was introduced by Cartan in [10, §7,§10]. Recall that
a subset X ⊂ M is C-analytic if there exists a finite set S := { f1, . . . , fr } of real
analytic functions fi on M such that X is the common zero-set of S. This property is
equivalent to the following:

1. There exists a coherent sheaf of ideals I on M such that X is the zero set of I.
2. There exist an open neighborhood � of M in a complexification ˜M of M and a

complex analytic subset Z of � such that Z ∩ M = X .

A coherent analytic set is C-analytic, but the converse is not true in general. Consider
for example Whitney’s umbrella.

2.4.1 Well reduced structure

Given a C-analytic set X ⊂ M the largest coherent sheaf of ideals I having X as zero
set is I(X)OM by Cartan’s Theorem A, where I(X) is the set of all analytic functions
on M that are identically zero on X . The coherent sheaf OX := OM/I(X)OM is
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On globally defined semianalytic sets 621

called the well reduced structure of X. The C-analytic set X endowed with its well
reduced structure is a C-analytic space, so it has a well-defined complexification as
commented above.

2.4.2 Singular set of a C-analytic set

Let X ⊂ M be aC-analytic set and let ˜X be a complexification of X .We define the sin-
gular locus of X as Sing(X) := Sing(˜X)∩M . Its complement Reg(X) := X\ Sing(X)

is the set of regular points of X. Observe that Sing(X) is a C-analytic set of strictly
smaller dimension than X . We define inductively Sing�(X) = Sing(Sing�−1(X)) for
� ≥ 1 where Sing1(X) = Sing(X). In particular, Sing�(X) = ∅ if � ≥ dim(X) + 1.
We will write X := Sing0(X) for simplicity.

We say that x ∈ X is a smooth point of X if there exists a neighborhood U of x in
M such that X ∩U is analytically diffeomorphic to an open subset of R

n . We denote
by Smooth(X) the set of smooth points of X .

Remark 2.1 It holds that Sing(X) depends only on X and not in the chosen complexi-
fication. It is important to distinguish between regular and smooth points because they
are different concepts, although the inclusion Reg(X) ⊂ Smooth(X) always holds.

Example 2.2 Let X := {(x2 + y2)xz − y4 = 0} ⊂ R
3. One can check that the set

of regular points of X is Reg(X) = X\{x = 0, y = 0}. However, Smooth(X) =
X\{0}. To illustrate this fact pick a point x = (0, 0, a) with a �= 0 and consider the
parameterizations

ϕε : {t > 0} → X ∩ {εz > 0}, (s, t) �→ ε((s2 + t2)s2, (s2 + t2)st, t4),

for ε = ±1, whose images cover X\{0}.

2.4.3 Irreducible components of a C-analytic set

A C-analytic set is irreducible if it is not the union of two C-analytic sets different
from itself. In addition, X is irreducible if and only if it admits a fundamental system
of invariant irreducible complexifications. Given a C-analytic set X , there is a unique
irredundant (countable) locally finite family of irreducible C-analytic sets {Xi }i≥1
such that X = ⋃

i≥1 Xi . The C-analytic sets Xi are called the irreducible components
of X. For further details see [45].

2.4.4 Set of points of non-coherence of a C-analytic set

Let X ⊂ M be a C-analytic set. Recall that X is coherent if the sheaf JX of germs
of analytic functions vanishing identically on X is anOM -coherent sheaf of modules.
If M is a real analytic manifold (so OM is a coherent sheaf of rings), JX is coherent
at x ∈ M if and only if it is of finite type at x ∈ M , that is, there exists an open
neighborhood U of x in M and finitely many sections f1, . . . , fr ∈ H0(U,JX ) such
that for each y ∈ U the germs f1,y, . . . , fr,y generate the stalk JX,y as an OX,y-
module. Otherwise, we say that X is non-coherent at x ∈ X .
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622 F. Acquistapace et al.

Remark 2.3 The usual definition of coherence for a sheaf F ofOM -modules says that
F is coherent if and only ifF is of finite type and of finite presentation, that is, for every
open setU ⊂ M and every morphism ϕ : (OM |U )p → F|U theOM |U module ker(ϕ)

is of finite type. However as OM is a coherent sheaf of rings and JX is a subsheaf of
ideals of OM , then JX is coherent if and only if it is the finite type.

Recall the following two useful facts concerning coherence:

(i) Let ˜X be a complex analytic subset of an open subset of C
n . Let x ∈ X be such

that ˜Xx is the complexification of Xx . Then X is coherent at x if and only if there
exists an open neighborhood U of x in M such that for each y ∈ X ∩ U the
complexification of Xy is ˜Xy (see [18, III.2.8] or [31, V.§1.Prop.5, pag.94]). In
particular, irreducible coherent analytic set germs are pure dimensional.

(ii) X is coherent at a point x ∈ X if and only if the irreducible components of the
germ Xx are coherent (see [18, III.2.13] or [31, V.§1.Prop.6, pag.94]).

2.5 Normalization of complex analytic spaces

One defines the normalization of a complex analytic space in the following way [31,
VI.2]. A complex analytic space (X,OX ) is normal if for all x ∈ X the local analytic
ringOX,x is reduced and integrally closed. A normalization (Y, π) of a complex ana-
lytic space (X,OX ) is a normal complex analytic space (Y,OY ) together with a proper
surjective holomorphic map π : Y → X with finite fibers such that Y\π−1(Sing(X))

is dense in Y and π | : Y\π−1(Sing(X)) → X\ Sing(X) is an analytic isomorphism.
The normalization (Y, π) of a reduced complex analytic space X always exists and is
unique up to isomorphism [31, VI.2.Lem.2 & VI.3.Thm.4].

The following example is inspired in one already proposed in [44, Esempio, p. 211]
and it shows that the concepts of normality of the complexification and coherence are
independent.

Example 2.4 Consider the C-analytic set X := {w2 − z(x2 + y2) = 0} ⊂ R
4 and

its complexification ˜X = {w2 − z(x2 + y2) = 0} ⊂ C
4. The set of singular points

of ˜X is the complex analytic set Sing(˜X) = {x = 0, y = 0, w = 0} ∪ {x2 + y2 =
0, z = 0, w = 0} ⊂ C

4, which has codimension 2 in ˜X . As ˜X is a complex irreducible
analytic hypersurface,we deduce by [34] that ˜X is a normal complex analytic set. Thus,
X is a normalC-analytic set. As the points of X satisfy the equationw2 = z(x2 + y2),
the germs X p at the points p := (0, 0, z, 0) ∈ X with z < 0 have dimension 1.
Consequently, X is not pure dimensional and consequently non-coherent.

2.6 Localizations and excellent rings

Let (X,OX ) be a reduced Stein space endowed with an anti-involution σ such that
its fixed part space Xσ is non-empty. Let A(X) ⊂ H0(X,OX ) be the subring of all
invariant holomorphic sections of H0(X,OX ) and

A(Xσ ) := {F |Xσ : F ∈ A(X)} ⊂ O(Xσ ).
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Let x0 ∈ Xσ anddenote the respectivemaximal ideals ofO(Xσ ) andA(Xσ ) associated
to x0 with mx0 and nx0 . We refer the reader to [30] for the theory of excellent rings
and regular homomorphisms. We denote the completion of a local ring A with ̂A.

Lemma 2.5 Let x0 ∈ R
n. Then the ringsO(Rn)mx0

andA(Rn)nx0 are excellent rings,

̂O(Rn)mx0
∼= ÔRn ,x0

∼= ̂A(Rn)nx0

and the homomorphisms

O(Rn)mx0
→ ORn ,x0 , ξ �→ ξx0 and A(Rn)nx0 → ORn ,x0 , ζ �→ ζx0

are regular.

Proof In [4, VIII.4.4(a,b)] it is proved the statement for O(Rn)mx0
, so we focus on

A(Rn)nx0 . The restriction homomorphism

A(Cn) → A(Rn), F �→ F |Rn

is an isomorphism, sowe identify both rings and prove the results forA(Cn)nx0 .Denote
the maximal ideal of O(Cn) associated to x0 with gx0 . Proceeding as in the proof of
[4, VIII.4.4(a,b)] one shows that O(Cn)gx0 is a regular local ring of dimension n, the
homomorphismO(Cn)gx0 → OCn ,x0 is faithfully flat and it extends to an isomorphism
between completions.

2.6.1 We claim: A(Cn)nx0 is a regular local ring of dimension n and the homomor-
phismA(Cn)nx0 → ORn ,x0 is faithfully flat and it extends to an isomorphism between
completions.

Weprovefirst thatA(Cn)nx0 is noetherian. Pick an ideal a ofA(Cn)mx0
and consider

the extended ideal aO(Cn)gx0 . As O(Cn)gx0 is noetherian, there exists finitely many
ζ1, . . . , ζr ∈ a that generate aO(Cn)gx0 . Pick an element ζ ∈ a and write ζ =
ζ1α1 + · · · + ζrαr for some αi ∈ O(Cn)gx0 . Then

ζ = 
(ζ ) = ζ1
(α1) + · · · + ζr
(αr ) ∈ (ζ1, . . . , ζr )A(Cn)mx0
,

so a is finitely generated and A(Cn)mx0
is noetherian. Similarly one shows that the

homomorphism A(Cn)mx0
→ ORn ,x0 is faithfully flat and it extends to an isomor-

phism between completions (follow the proof of [4, VIII.4.4(a,b)] and use the previous
trick involving 
(·) where needed). Consequently, A(Cn)mx0

is a regular local ring
of dimension n.

Consider the partial derivatives ∂
∂xi

and the projections πi : C
n → C, (x1, . . . , xn)

�→ xi , which belong to A(Cn)mx0
. It holds ∂

∂xi
π j = δi j for 1 ≤ i, j ≤ n. By [30,

40.F, Th.102, p.291] we conclude that A(Cn)mx0
is an excellent ring.

2.6.2 Consider the composition of homomorphisms

A(Rn)mx0

φ
↪→ ORn ,x0

ψ
↪→ ÔRn ,x0

∼= ̂A(Rn)mx0
.
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As A(Rn)mx0
and ORn ,x0 are local excellent rings, the homomorphisms ψ ◦ φ and ψ

are regular. As all rings in the row are local, both homomorphisms are faithfully flat.
By [30, 33.B, Lemma 1, p.250] φ is also regular. ��
Corollary 2.6 Let u := (u1, . . . ,um) be a tuple of variables and fix x0 ∈ R

n and
u0 ∈ R

m. Denote the respective maximal ideals of O(Rn)mx0
[u] and A(Rn)nx0 [u]

associated to (x0, u0) withm(x0,u0) and n(x0,u0). Then the rings (O(Rn)mx0
[u])m(x0,u0)

and (A(Rn)nx0 [u])n(x0,u0)
are excellent,

̂(O(Rn)mx0
[u])m(x0,u0)

∼= ̂ORn×Rm ,(x0,u0)
∼= ̂(A(Rn)nx0 [u])n(x0,u0)

and the homomorphisms

(O(Rn)mx0
[u])m(x0,u0)

→ ORn×Rm ,(x0,u0), ξ �→ ξ(x0,u0)

(A(Rn)nx0 [u])n(x0,u0)
→ ORn×Rm ,(x0,u0), ζ �→ ζ(x0,u0)

are regular.

Proof The rings (O(Rn)mx0
[u])m(x0,u0)

and (A(Rn)nx0 [u])m(x0,u0)
are excellent by

Lemma 2.5 and [30, 33.G, Th.77, p.254 & 32.B, Th.73, p.246]. Consider the compo-
sitions of homomorphisms

(O(Rn)mx0
[u])m(x0,u0)

φ1
↪→ ORn×Rm ,(x0,u0)

ψ
↪→ ̂ORn×Rm ,(x0,u0)

∼= ̂(O(Rn)nx0
[u])m(x0,u0)

,

(A(Rn)nx0
[u])n(x0,u0)

φ2
↪→ ORn×Rm ,(x0,u0)

ψ
↪→ ̂ORn×Rm ,(x0,u0)

∼= ̂(A(Rn)nx0
[u])n(x0,u0)

.

As (O(Rn)mx0
[u])m(x0,u0)

, (A(Rn)nx0 [u])m(x0,u0)
and ORn×Rm ,(x0,u0) are local excel-

lent rings, the homomorphisms ψ ◦ φ1, ψ ◦ φ2 and ψ are regular. As all rings
in the rows are local, the previous homomorphisms are faithfully flat. By [30,
33.B, Lemma 1, p.250] φ1 and φ2 are also regular. ��

2.7 Transferring results from complex analytic sets to reduced Stein spaces

The following results allows us to reduce ‘local’ problems on a reduced Stein space
to the corresponding ‘local’ problems on a complex analytic subset of C

n .

Lemma 2.7 Let (X,OX ) be a reduced Stein space endowed with an anti-involution
σ such that its fixed part space Xσ is non-empty and let x0 ∈ Xσ . Then there exist
an invariant injective proper holomorphic map ϕ : X → C

n with image Z := ϕ(X)

satisfying:
(i) For each x ∈ Reg(X)∪{x0} there exists an open neighborhood U in X such that

ϕ|U : U → ϕ(U ) is an analytic diffeomorphism.
(ii) ϕ∗ : O(Z)m′

z0
→ O(X)mx0

, F
G �→ F◦ϕ

G◦ϕ
, where z0 := ϕ(x0), is an isomorphism.

(iii) ϕ∗(A(Z)n′
z0

) = A(X)nx0 .
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Proof By [18, V.3.7-8] there exists an invariant injective proper holomorphic map
ϕ : X → C

n where n is large enough satisfying:

• For each x ∈ Reg(X) ∪ {x0} there exists an open neighborhood U in X such that
ϕ|U : U → ϕ(U ) is an analytic diffeomorphism (recall that ϕ(U ) is a complex
analytic subset of an open neighborhood of ϕ(x) in C

n by Remmert’s Theorem).
• ϕ(σ(x)) = ϕ(x) for all x ∈ X .

By Remmert’s Theorem Z is a complex analytic subset of C
n . We have ϕ(Xσ ) = Z ·

is the fixed part space of Z under usual conjugation.
Let g′

z0 be either the zero ideal if Z is irreducible or the maximal ideal of M(Z)

associated to z0 otherwise. We define analogously gx0 inM(X). By [6, Lem.3.8] the
homomorphism

ϕ∗ : M(Z) → M(X), F
G �→ F◦ϕ

G◦ϕ

is an isomorphism. The previous isomorphism extends to an isomorphism

ϕ∗′ : M(Z)g′
z0

→ M(X)g′
x0

, F
G �→ F◦ϕ

G◦ϕ
.

Observe that

A(Z)n′
z0

⊂ O(Z)m′
z0

⊂ M(Z)g′
z0

,

A(X)nx0 ⊂ O(X)mx0
⊂ M(X)gx0 .

Now, one can check ϕ∗′(A(Z)n′
z0

) = A(X)nx0 and ϕ∗′(O(Z)m′
z0

) = O(X)mx0
. Con-

sequently, statements (ii) and (iii) holds, as required. ��
Corollary 2.8 Let (X,OX ) be a reduced Stein space endowed with an anti-involution
σ such that its fixed part space Xσ is non-empty and let x0 ∈ Xσ . Then the rings
O(Xσ )mx0

and A(Xσ )nx0 are excellent rings and the homomorphisms

O(Xσ )mx0
→ OXσ ,x0 , ξ �→ ξx0 and A(Xσ )nx0 → OXσ ,x0 , ζ �→ ζx0

are regular.

Proof By Lemma 2.7 we may assume X ⊂ C
n is a complex analytic set. As

O(Xσ ) = O(Rn)/I(Xσ ) and A(Xσ ) = A(Rn)/I ′(Xσ ) where I(Xσ ) and I ′(Xσ )

are the corresponding zero ideals of X , the statement follows from Lemma 2.5. ��
Lemma 2.9 Let X, Y be two topological spaces and let ϕ : X → Y be a continuous
map. Let {x1, . . . , x�} ⊂ X and denote yk := ϕ(xk). Assume that there exists a neigh-
borhood V of {y1, . . . , y�} such that ϕ|U : U := ϕ−1(V ) → V is a homeomorphism.
Let R(X) and R(Y ) be two rings of continuous real-valued functions. Denote

(i) the multiplicative set of the functions of R(X) that do not vanish at each xk with
S,
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(ii) the multiplicative set of the functions of R(Y ) that do not vanish at each yk with
T.

Assume that ϕ∗ : T−1R(Y ) → S−1R(X), ξ �→ ξ ◦ ϕ is an isomorphism. Let
fi j ∈ R(X) for 1 ≤ i ≤ r and 1 ≤ j ≤ s and define S := ⋃r

i=1
⋂s

j=1{ fi j ∗i j 0}
where ∗i j is either > or =. Assume S ⊂ U. Then there exists h, gi j ∈ R(Y ) such that
h(yk) �= 0 and

{(h ◦ ϕ)2 > 0} ∩ S = {(h ◦ ϕ)2 > 0} ∩
r

⋃

i=1

s
⋂

j=1

{(gi j ◦ ϕ) ∗i j 0}, (2.1)

ϕ({(h ◦ ϕ)2 > 0} ∩ S) = {h2 > 0} ∩
r

⋃

i=1

s
⋂

j=1

{gi j ∗i j 0}. (2.2)

Proof Let gi j ∈ R(Y ) and h ∈ T be such that

ϕ∗ (gi j
h2

)

= fi j � gi j ◦ ϕ = fi j · (h ◦ ϕ)2.

Note that

{ fi j ∗i j 0} ∩ {(h ◦ ϕ)2 > 0} = {(gi j ◦ ϕ) ∗i j 0} ∩ {(h ◦ ϕ)2 > 0}.

Consequently, equality (2.1) holds. In addition, as the restriction ϕ|U : U → V is a
homeomorphism, ϕ−1(ϕ(U )) = U and {(h ◦ ϕ)2 > 0} ∩ S ⊂ U , Eq. (2.2) also holds,
as required. ��

3 C-semianalytic sets

A subset S ⊂ M is a basic C-semianalytic if it admits a description of the type

S := {x ∈ M : f (x) = 0, g1(x) > 0, . . . , gr (x) > 0}

where the functions f, gi ∈ O(M). To uniform notations S is a global C-semianalytic
set if it is a finite union of basic C-semianalytic sets. We say that S ⊂ M is a C-
semianalytic set if it satisfies one of the following equivalent conditions:

1. S is the union of a countable locally finite family of basic C-semianalytic sets.
2. For each point x ∈ M there exists an open neighborhood Ux such that S ∩ Ux is

a global C-semianalytic set.

Recall that if {Xi }i≥1 is a locally finite family of C-semianalytic sets, then X :=
⋃

i≥1 Xi is a C-semianalytic set. To show the equivalence of conditions (1) and (2)
above we prove first the following result concerning countable locally finite analytic
refinements.
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Lemma 3.1 (Countable locally finite analytic refinement) Let U := {Ui }i∈I be an
open covering of a real analytic manifold M. Then there exists a countable locally
finite open refinement V := {Vj } j≥1 of U such that each Vj = {g j > 0} for some
analytic function g j ∈ O(M).

Proof As M is paracompact and it admits a countable exhaustion by compact sets,
there exist countable locally finite open refinements W := {Wj } j≥1 and W ′ :=
{W ′

j } j≥1 of U such that Cl(W ′
j ) ⊂ Wj for each j ≥ 1. As the closed sets Cl(W ′

j )

and M\Wj are disjoint, there exists a continuous function f j : M → R such that
f j |Cl(W ′

j )
≡ 1 and f j |M\Wj ≡ −1. Let g j be an analytic approximation of f j such

that |g j − f j | < 1
2 . Notice that

Cl(W ′
j ) ⊂ Vj := {g j > 0} ⊂ Wj

for each j ≥ 1. Thus, V := {Vj } j≥1 is a countable locally finite open refinement of
U . ��
Proof of the equivalence of conditions (1) and (2) above Assume first that S satisfies
condition (1) and let x ∈ M . Let g ∈ O(M) be such that x ∈ U := {g > 0} and U
intersects only finitely many Si , say S1, . . . , Sr . Thus, S ∩U = ⋃r

i=1 Si ∩ {g > 0} is
global C-semianalytic.

Conversely, assume S satisfies condition (2). For each x ∈ M let Wx ⊂ M be an
open neighborhood of x such that S∩Wx is a globalC-semianalytic set. ByLemma3.1
there exists a countable locally finite refinement V := {Vj } j≥1 of W := {Wx }x∈M
such that each Vj = {g j > 0} for some g j ∈ O(M). For each j ≥ 1 let x j ∈ M
be such that Vj ⊂ Wx j and let S′

j1, . . . , S
′
j,r j

be basic C-semianalytic sets such that

S ∩ Wx j = S′
j1 ∪ · · · ∪ S′

j,r j
. Therefore

S ∩ Vj = S j1 ∪ · · · ∪ S j,r j

where S jk := S′
jk ∩ Vj is a basic C-semianalytic set. Notice that

S = S ∩
⋃

j≥1

Vj =
⋃

j≥1

S ∩ Vj =
⋃

j≥1

(S j1 ∪ · · · ∪ S j,r j )

and that the family {S jk : 1 ≤ k ≤ r j } j≥1 is locally finite because V is so. After
reindexing the basic C-semianalytic sets S jk we are done. ��
Example 3.2 Let S := {x2 − (z2 − 1)y2 = 0, z > − 1

2 } ∪ {x = 0, y = 0} ⊂ R
3 be

the double umbrella suggested by Coste (see [37, §1]).
The smallest C-analytic set (Fig. 1) that contains the C-semianalytic set S is

X := {x2 − (z2 − 1)y2 = 0}.

For each x ∈ R
3 there exists an open neighborhood Ux such that the intersection

S ∩Ux = { f = 0} ∩Ux
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Fig. 1 Two dimensional parts of the double umbrella x2 − (z2 − 1)y2 = 0 and Cartan’s umbrella

for some f ∈ O(R3). However S is not a C-analytic set because S � X . Thus, if a
C-semianalytic set admits local descriptions as a C-analytic set, it is not guaranteed
that S is in addition a C-analytic set.

There exist many semianalytic sets that are not C-semianalytic sets. We present
next some examples (Figs. 1, 2).

Examples 3.3 (i) We recall first a classical example of Cartan [10, §11]. Consider the
continuous function f : R → R given by the following formula:

a(z) :=
{

exp
(

1
z2−1

)

if |z| < 1,

0 if |z| ≥ 1.

Clearly, a is analytic on R\{−1, 1}. Let Z be the closed set of equation z(x2 + y2) −
x3a(z) = 0 (Fig. 1). Observe that S := Z ∩U is aC-analytic subset ofU := R

3\{x =
0, y = 0, |z| ≥ 1}. On the other hand,

Z ∩
{

x2 + y2 < ε, |z| > 1
2

}

= {

x = 0, y = 0, |z| > 1
2

}

for ε > 0 small enough. Consequently, Z is a semianalytic set. However, it is not a
C-semianalytic subset of any of its open neighborhoods in R

3.
Fix an open neighborhood U of Z in R

3. By [10, Prop.18] every analytic function
f on U that vanishes at each point of Z is identically zero. Assume that Z is a C-
semianalytic set. Then there exists an open neighborhood V of the origin such that
Z ∩V is a finite union of basicC-semianalytic sets. One of these basicC-semianalytic
sets

S := { f = 0, g1 > 0, . . . , gr > 0}

contains a non-empty open subset of the connected real analytic manifold N :=
Z\{x = 0, y = 0}. As f vanishes identically on an open subset of N , it is identically
zero on N .

As Z0 is an irreducible germ and {x = 0, y = 0} is irreducible, f vanishes identi-
cally on the line {x = 0, y = 0}. Thus, f is identically zero on Z and consequently
on U , so
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Fig. 2 Several views of the two dimensional part S(2) of the semianalytic set S in Example 3.3(ii)

S = { f = 0, g1 > 0, . . . , gr > 0} = {g1 > 0, . . . , gr > 0}

is a non-empty open subset of U , a contradiction.
(ii) Consider the closed subset Z ⊂ R

3 defined by the equation

f := (1 − 4(x2 + y2 + z2))x2 − ((y − 1)2 + z2 − 1)2a(z) = 0

where a(z) is the same function as in the previous example. It is a semianalytic set
and it is compact. Observe that S is the union of the circle C1 := {x = 0, (y − 1)2 +
z2 − 1 = 0} with a two dimensional C-semianalytic set S(2) contained in the ball
{x2 + y2 + z2 ≤ 1

4 }. As before, one proves that it is not a C-semianalytic subset of
any of its open neighborhoods in R

3.

3.1 Basic properties of C-semianalytic sets

The family of C-semianalytic sets is closed under:

• locally finite unions,
• locally finite intersections,
• complement,
• inverse image under analytic maps between real analytic manifolds,
• taking closure and interior and
• considering connected components.

Proof The first three properties are clear. For the remaining ones we proceed as fol-
lows.

3.1.1 Inverse image

If f : N → M is an analytic map between real analytic manifolds N and M and
S := {g1 > 0, . . . , gr > 0, h = 0} ⊂ M is a basic C-semianalytic set where
gi , h ∈ O(M),

f −1(S) = {x ∈ M : f (x) ∈ N } = {g1 ◦ f > 0, . . . , gr ◦ f > 0, h ◦ f = 0} ⊂ N

is a basic C-semianalytic set where gi ◦ f, h ◦ f ∈ O(N ).
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3.1.2 Closure

To prove that the closure of a C-semianalytic set is a C-semianalytic set, we observe
first that if M = ⋃

j∈J U j is an open covering of M , then

Cl(S) =
⋃

j∈J

Cl(S) ∩Uj =
⋃

j∈J

Cl(S ∩Uj ) ∩Uj .

Thus, it is enough to check that for each x ∈ M there exists a neighborhood Ux of
x in M such that Cl(S ∩ Ux ) ∩ Ux is a global C-semianalytic set. Take an open C-
semianalytic neighborhood of x ∈ M such that Cl(Ux ) is a compact C-semianalytic
set and apply [4, VIII.7.2].

3.1.3 Interior

It is enough to use that the complement and the closure of a C-semianalytic set are
C-semianalytic sets.

3.1.4 Connected components

For each x ∈ M there exists by [4, VIII.7.5] an open basic C-semianalytic set Ux

such that S ∩ Ux is the union of m connected C-semianalytic sets and m coincides
with the number of connected components of the germ Sx . Let now C be a connected
component of S. For each x ∈ M pick a neighborhood Ux as above and observe that
C ∩U is a finite union of the family of the connected components of S ∩U , so it is a
global C-semianalytic set. Consequently, C is a C-semianalytic set, as required. ��

A classic result for semialgebraic sets states: each semialgebraic set S ⊂ R
n that

is in addition open admits a description of the type S = ⋃r
i=1{gi1 > 0, . . . , gir > 0}

where gi j ∈ R[x] := R[x1, . . . ,xn]. If S is in addition closed, it can be written as
S = ⋃r

i=1{hi1 ≥ 0, . . . , hir > 0} where hi j ∈ R[x]. By [1, 3.1] the previous results
extend to open and closed global C-semianalytic sets.

Lemma 3.4 (Homogeneity of open and closed C-semianalytic sets) Let S ⊂ M be a
C-semianalytic set. We have:
(i) If S is open, for each x ∈ M there exists an open neighborhood Ux ⊂ M of x and

analytic functions gi j ∈ O(M) such that S ∩Ux = ⋃r
i=1{gi1 > 0, . . . , gir > 0}.

(ii) If S is closed, for each x ∈ M there exists an open neighborhood Ux ⊂ M
of x and analytic functions gi j ∈ O(M) such that S ∩ Cl(Ux ) = ⋃r

i=1{gi1 ≥
0, . . . , gir ≥ 0}.

Proof Fix a point x ∈ M and let Ux ⊂ M be an open neighborhood of x such that
S∩Ux and S∩Cl(Ux ) are global C-semianalytic set. The statement follows from [1,
3.1] applied to S ∩Ux and S ∩ Cl(Ux ). ��
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3.2 Stronger results concerning closure and connected components

For later purposes we will need stronger results concerning the closure and the con-
nected components of C-semianalytic sets. Let (X,OX ) be a reduced Stein space
endowed with an anti-involution σ such that its fixed part space Xσ is non-empty and
let u := (u1, . . . ,um), wherem ≥ 0, be a tuple of variables. Denote eitherO(Xσ )[u]
orA(Xσ )[u] withA . A C-semianalytic set S ⊂ Xσ × R

m isA -definable if for each
x ∈ Xσ there exists an open neighborhoodUx such that S∩Ux is a finite union of sets
of the type { f = 0, g1 > 0, . . . , gr > 0} where f, gi ∈ A . We define analogously
A -definable global and basic C-semianalytic sets.

Proposition 3.5 Let S ⊂ Xσ × R
m be either a bounded global C-semianalytic set or

a C-semianalytic set. Assume S is A -definable. Then

(i) For each x ∈ Xσ there exists an open A -definable basic C-semianalytic set U x

such that S ∩ Ux is the union of m connected A -definable C-semianalytic sets
and m coincides with the number of connected components of the germ Sx .

(ii) The closure of S and its connected components are
(ii.1) A -definable global C-semianalytic sets in the first case.
(ii.2) A -definable C-semianalytic sets in the second case.

Proof We prove first (i). As S is bounded, its closure Cl(S) is compact, so we are
reduced to prove the result for a small enough open neighborhood of each point of
Cl(S). Notice that each point of Xσ has a basis of open A(Xσ )-definable basic C-
semianalytic neighborhoods in Xσ . This is clear if X is a complex analytic subset of
C
n and it follows from Lemmas 2.7 and 2.9 if (X,OX ) is a general reduced Stein

space.
Fix a point (x0, u0) ∈ Cl(S) and letW be an small enough openA -definable basic

C-semianalytic neighborhood of (x0, u0) in Xσ × R
m . Consider the bounded global

C-semianalytic set S ∩ W . By Lemmas 2.7 and 2.9, we may assume X is a complex
analytic subset of C

n , so S ∩ W is an A ′-definable global C-semianalytic subset of
R
n × R

m , where A ′ is either O(Rn)[u] or A(Rn)[u].
By Lemmas 2.5 and 2.6 one can reproduce ‘verbatim’ the proofs of [4, VIII.7.1-

2 & VIII.7.5-6] to prove (i) and (ii.1), substituting everywhere the local excellent ring
O(Rn)mx0

by the local excellent ring A ′
g(x0,u0)

where g(x0,u0) is the maximal ideal of

A ′ associated to (x0, u0).
To prove (ii.2) one proceeds as in the proof of Sects. 3.1.2 and 3.1.4 using (i) and

(ii.1) instead of [4, VIII.7.2 & VIII.7.5]. ��

3.3 Dimension of a C-semianalytic set

Let S ⊂ M be a C-semianalytic set. We define the dimension of S as dim(S) :=
supx∈M {dim(Sx )}. For the dimension of semianalytic germs see [4, VIII.2.11]. Given
a subset E ⊂ M , we denote the Zariski closure of E in M (that is, the smallest C-
analytic subset of M that contains E) with E

zar
. It is an easy exercise to check the

following.
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632 F. Acquistapace et al.

Lemma 3.6 Let S ⊂ M be a global C-semianalytic set. Then dim(S
zar

) = dim(S).

We prove next that the set of points of dimension k of a C-semianalytic set S is a
C-semianalytic set.

Proposition 3.7 Let S ⊂ M be a C-semianalytic set and let S(k) be the subset of S of
points of (local) dimension k. Then S(k) is a C-semianalytic set for all k ≥ 0.

Proof Let d ≤ dim(M) be the dimension of S and let us check that S(d) is C-
semianalytic.

Fix x ∈ Cl(S(d)) and let Ux ⊂ M be a neighborhood of x such that S ∩ Ux =
⋃r

i=1 Si where each Si is a basic C-semianalytic set. Assume that dim(Si,x ) = d
exactly for i = 1, . . . , �. Let Ti be the union of the connected components of
Si\Sing(Si zar) of dimension d. By Sect. 3.1.4 Ti is a C-semianalytic set. The set
of points of dimension d of Si is Cl(Ti ) ∩ Si . Thus,

S(d) ∩Ux =
�

⋃

i=1

Cl(Ti ) ∩ Si

is a C-semianalytic set, so S(d) is C-semianalytic.
Next, consider theC-semianalytic set S′ := S\S(d) and let d ′ < d be the dimension

of S′. Notice that S(d ′) = S′
(d ′), so S(d ′) is aC-semianalytic set. Proceeding recursively

we conclude that each S(k) is C-semianalytic for k ≥ 0, as required. ��
We end this section with a characterization ofC-semianalytic sets of dimension≤k

inspired by [7, 2.14] and [29, 17. Prop.7, pag. 60].

Proposition 3.8 Let S ⊂ M. Then S is C-semianalytic of dimension ≤k if and only if
for each x ∈ M there exist an open C-semianalytic neighborhood Ux of x in M and a
C-analytic set Z of dimension≤k that contains S∩Ux such thatCl(S∩Ux )\(S∩Ux )

and (S ∩Ux )\ IntZ (S ∩Ux ) are C-semianalytic sets of dimension ≤k − 1.

The proof of Proposition 3.8 requires a preliminary result inspired by [7, 2.15].

Lemma 3.9 Let S ⊂ T ⊂ M where T is C-semianalytic. Let S1 := Cl(S) ∩ T (be
the closure of S in T ) and let S2 := S\Cl(T \S) (be the interior of S in T ). Then S is
C-semianalytic if and only if S1\S and S\S2 are C-semianalytic.

Proof The ‘only if’ implication is clear. To prove the ‘if’, we proceed as follows:
T \S1 and S2 are disjoint open and closed subsets of their union T \(S1\S2), which is
C-semianalytic because S1\S2 = (S1\S)∪ (S\S2) is a C-semianalytic set. Therefore,
S2 is C-semianalytic because it is the union of some of the connected components of
T \(S1\S2), which are C-semianalytic sets. Then S = S2 ∪ (S\S2) is C-semianalytic.

��
Recall that if S is a semianalytic set, Cl(S)x = Cl(Sx ) and dim(Cl(Sx )\Sx ) <

dim(Sx ) for each x ∈ Cl(S) (see [4, VIII.2.11]).We are ready to prove Proposition 3.8.
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Proof of Proposition 3.8 We prove the ‘if’ implication first. We have to check that
S ∩ Ux is C-semianalytic of dimension ≤k for all x ∈ M . By Lemma 3.9 S ∩ Ux is
C-semianalytic. On the other hand, S ∩ Ux = IntZ (S ∩ Ux ) ∪ (S ∩ Ux\ IntZ (S ∩
Ux )) and it has dimension ≤k because IntZ (S ∩ Ux ) ⊂ Z has dimension ≤k and
S ∩Ux\ IntZ (S ∩Ux ) has dimension ≤k − 1.

We prove next the ‘only if’ implication. We show first that each point x ∈ M has
an open C-semianalytic neighborhood Ux ⊂ M such that dim(Sx ) = dim(S∩Ux ) =
dim(S ∩Ux zar) and Cl(S) ∩Ux is a global C-semianalytic set.

Let Ux be an open neighborhood of x in M such that S ∩ Ux is a finite union
of basic C-semianalytic sets S1, . . . , Sr . After shrinking Ux we may assume x ∈
Cl(Si ), Cl(S) ∩ Ux is a global C-semianalytic set and dim(Si ∩ Ux ) = dim(Si,x )
for i = 1, . . . , r . We may assume that Ux is in addition basic C-semianalytic, so by
Lemma 3.6 dim(Si ∩Ux zar) = dim(Si ∩Ux ). Consequently,

dim(Sx ) = max
i=1,...,r

{dim(Si,x )} = max
i=1,...,r

{dim(Si ∩Ux )}
= max

i=1,...,r
{Si ∩Ux zar} = dim(S ∩Ux zar),

so dim(Sx ) = dim(S ∩Ux ) = dim(S ∩Ux zar).
Denote Z := S ∩Ux zar and A := S ∩Ux . We have dim(Z) = dim(A) ≤ k and

dim(Cl(A)y\Ay) ≤ k − 1

for each y ∈ Cl(A). We claim: dim(Ay\ IntZ (A)y) ≤ k − 1 for each y ∈ Cl(A).
As IntZ (A) = Z\Cl(Z\A),

A\ IntZ (A) = A ∩ (Z\ IntZ (A)) = A ∩ Cl(Z\A) = Cl(Z\A)\(Z\A).

For each y ∈ Cl(A) we have

dim(Ay\ IntZ (A)y) = dim(Cl((Z\A)y)\(Z\A)y) < dim((Z\A)y) ≤ dim(Z) ≤ k.

Thus, Cl(A)\A and A\ IntZ (A) are C-semianalytic sets of dimension ≤k − 1, as
required. ��

4 Images of C-semianalytic sets under proper holomorphic maps

The main purpose of this section is to prove Theorems 1.1 and 1.3. Before that we
present two enlightening examples. The first one prove that a proper real analytic
map with finite fibers may not admit a proper complex holomorphic extension to
complexifications. The second one shows that Theorem 1.1(iii) can be false if Xσ

�

F−1(Y τ ).

Examples 4.1 (i)Consider themap f : R
2 → R

2, (x, y) �→ ((x2+y2)x, (x2+y2)y).
Observe that f is an analytic map, with continuous inverse map:
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f −1 : R
2 → R

2, (u, v) �→
{

( u
3√u2+v2

, v
3√u2+v2

) if (u, v) �= (0, 0),

(0, 0) if (u, v) = (0, 0).

Thus, f is a homeomorphism, so it is a proper analytic mapwith finite fibers. However,
f cannot be extended to a proper holomorphic map F : U → C

2 defined on an open
neighborhood U of R

2 in C
2.

(ii) Let Y := {x2 − zy2 = 0} ⊂ C
3 be the complex Whitney’s umbrella endowed

with the complex conjugation τ , so Y τ = {x2−zy2 = 0} ⊂ R
3. Let X = C

2 endowed
with the complex conjugation σ . Consider the finite holomorphic map

F : X := C
2 → Y, (s, t) �→ (st, t, s2).

and let Z = Xσ = R
2. Observe that Xσ

� F−1(Y τ ) and F(Z) = {x2 − zy2 =
0}\{z < 0} ⊂ R

3, which is not a C-analytic subset of Y τ .

4.1 Local approach

Let us prove Theorem 1.3.

Proof of Theorem 1.3 Consider the sheaf F∗(OX ) ofOY -modules. Recall that if V ⊂
Y is open, H0(V, F∗(OX )) = H0(F−1(V ),OX ). Fix y0 ∈ Y and write F−1(y0) :=
{x1, . . . , x�}. By [26, 6.1.18]

F∗(OX )y0 =
�

∏

i=1

OX,xi =
�

∏

i=1

O(Xxi )

and by [26, 6.3.5] F∗(OX ) is a coherent sheaf of OY -modules. By Cartan’s Theorem
A there exist H1, . . . , Hm ∈ H0(Y, F∗(OX )) = H0(X,OX ) = O(X) such that
F∗(OX )y0 is generated by H1, . . . , Hm as a OY,y0 -module. By [4, VIII.4.4] we have
the following diagram of faithfully flat homomorphisms between local excellent rings

O(X)mxi
O(Xxi )

Ô(X)mxi

∼= Ô(Xxi )

Consider the inclusion of F∗(O(Y )ny0
)-modules

M1 :=
m

∑

i=1

Hi · F∗(O(Y )ny0
) ⊂ M2 := F∗(O(Y )ny0

)[H1, . . . , Hm] ⊂ S−1(O(X)).

Recall that S := O(X)\(mx1 ∪ · · · ∪ mx�
).
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4.1.1We have to prove: M1 = M2 = B := S−1(O(X)).

In what follows, completions of rings are considered with respect to the Jacobson
ideal. In case the involved ring is local, its Jacobson ideal coincides with its unique
maximal ideal. The maximal ideals of the semi-local ring B are mx1B, . . . ,mx�

B.

By [30, 24.C, p. 174] the completion of B satisfies ̂B ∼= ∏�
i=1 B̂mxi B

. Observe that
Bmxi B

∼= O(X)mxi
, so

B ↪→
�

∏

i=1

Bmxi B
∼=

�
∏

i=1

O(X)mxi
↪→

�
∏

i=1

O(Xxi ) = F∗(OX )y0 ,

B̂mxi B
∼= Ô(X)mxi

∼= Ô(Xxi ).

By [30, 24.C, p. 174] the completion of the semi-local ring F∗(OX )y0 is

̂F∗(OX )y0
∼=

�
∏

i=1

Ô(Xxi )
∼=

r
∏

i=1

B̂mxi B
∼= ̂B.

As F∗(OX )y0 is a finitely generated OY,y0 -module, the completion of F∗(OX )y0
with respect to the maximal ideal of OY,y0 is by [30, 23.K-L, Thm.55, p.170]

̂F∗(OX )y0
∼= F∗(OX )y0 ⊗OY,y0

ÔY,y0 .

Recall that F∗(OX )y0 is generated by H1, . . . , Hm as aOY,y0 -module, so ̂F∗(OX )y0 is

generated by H1, . . . , Hm as a ÔY,y0 -module. Again by [30, 23.K-L, Thm.55, p.170]
the completion of M1 with respect to the maximal ideal of O(Y )ny0

is

̂M1 ∼= M1 ⊗O(Y )ny0
Ô(Y )ny0

.

As M1 is generated by H1, . . . , Hm as a Ô(Y )ny0
-module, ̂M1 is generated by

H1, . . . , Hm as a Ô(Y )ny0
-module. Consequently, since Ô(Y )ny0

∼= ÔY,y0 , we con-

clude ̂M1 ∼= ̂F∗(OX )y0 . As the inclusion O(Y )ny0
↪→ Ô(Y )ny0

is faithfully flat
because O(Y )ny0

is a local excellent ring, we have the following commutative dia-

gram of Ô(Y )ny0
-modules

M1 ⊗O(Y )ny0
Ô(Y )ny0

∼=

M2 ⊗O(Y )ny0
Ô(Y )ny0

B ⊗O(Y )ny0
Ô(Y )ny0

̂M1
∼=

̂F∗(OX )y0

∼=
F∗(OX )y0 ⊗OY,y0

ÔY,y0
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Thus, all the inclusion are in fact isomorphisms, so

M1 ⊗O(Y )ny0
Ô(Y )ny0

= M2 ⊗O(Y )ny0
Ô(Y )ny0

= B ⊗OY,y0
ÔY,y0 .

As the inclusion O(Y )ny0
↪→ Ô(Y )ny0

is faithfully flat, M1 = M2 = B, as required.
��

Remark 4.2 If F : (X,OX ) → (Y,OY ) is in addition invariant, we assume that each
Hi is invariant after taking 
(Hi ) and �(Hi ) instead of Hi .

4.2 Global approach

Akey result to proveTheorem1.1 is [7, Thm.2.2] thatwe translate next to our situation.
Let (X,OX ) be a reduced Stein space endowed with an anti-involution σ such that its
fixed part space Xσ is non-empty and let u := (u1, . . . ,um), where m ≥ 0, be a tuple
of variables. Denote either O(Xσ ) or A(Xσ ) with A .

Theorem 4.3 Let S ⊂ Xσ ×R
m be anA [u]-definable global C-semianalytic set and

consider the projection π : E × R
k → R

k, (x, u) �→ x onto the first factor. Then
π(S) is an A -definable global C-semianalytic set.

We also need the following application of M. Artin’s approximation theorem, that
we include in detail for the sake of completeness.

Lemma 4.4 Let X0 ⊂ C
n
0 and Y0 ⊂ C

m
0 be complex analytic set germs at the origin.

Let ϕ : O(X0) → O(Y0) be a local analytic homomorphism such that the extension
to the completions ϕ̂ : Ô(X0) → Ô(Y0) is an isomorphism. Then ϕ is also an
isomorphism.

Proof Denote the variables of C
n with (x1, . . . , xn) and the variables of C

m with
(y1, . . . , ym). Let Gi := ϕ(xi ) for i = 1, . . . , n. By the universal property of local
homomorphisms between power series rings, ϕ̂ is given by

ϕ̂ : Ô(X0) → Ô(Y0), ζ �→ ζ(G1, . . . ,Gn).

In particular, ϕ : O(X0) → O(Y0), F �→ F(G1, . . . ,Gn). Denote η j :=
(ϕ̂)−1(y j ) ∈ Ô(X0) for j = 1, . . . ,m. As before, (ϕ̂)−1 is given by

(ϕ̂)−1 : Ô(Y0) → Ô(X0), ξ �→ ξ(η1, . . . , ηn).

In particular, the tuple (η1, . . . , ηm) ∈ (Ô(X0))
m is a solution of the system

⎧

⎪

⎨

⎪

⎩

G1(y1, . . . ,ym) = x1,
...

Gn(y1, . . . ,ym) = xm .

(4.1)
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ByM. Artin’s approximation theorem, there exist a solution (F1, . . . , Fm) ∈ O(X0)
m

of (4.1). Consider the local homomorphism

ψ : Ô(Y0) → Ô(X0), ξ �→ ξ(F1, . . . , Fm),

that satisfies ψ ◦ ϕ̂(xi ) = ψ(Gi ) = xi . Thus, ψ ◦ ϕ̂ = idÔ(X0)
, so ψ = (ϕ̂)−1. It

follows that

ψ |O(Y0) : O(Y0) → O(X0), H �→ H(F1, . . . , Fm)

is the inverse of ϕ, so ϕ is an isomorphism, as required. ��
Next, we prove Theorem 1.1.

Proof of Theorem 1.1 Recall that F : (X,OX ) → (Y,OY ) is an invariant proper
holomorphic map and S ⊂ Xσ is an A(Xσ )-definable C-semianalytic set. As F is
proper, we may assume for the whole proof that X is irreducible and F is surjective
because if {Xα}α is the locally finite family of the irreducible components of X , it holds
that {Yα := F(Xα)}α is by Remmert’s Theorem a locally finite family of irreducible
complex analytic subsets of Y .

We prove together (i) and (ii). We have already denoted E := Cl(F−1(Y τ )\Xσ ).
Fix a point y0 ∈ Y τ . We have to show: There exists an open neighborhood A ⊂ Y τ of
y0 such that F(S) ∩ A and F(E ∩ S) ∩ A are global C-semianalytic sets.

The proof is conducted in several steps:

4.2.1 Write F−1(y0) := {x1, . . . , x�} and let S := O(X)\(mx1 ∪ · · · ∪ mx�
). By

Theorem 1.3 and Remark 4.2 there exist invariant H1, . . . , Hm ∈ O(X) such that

S−1(O(X)) = F∗(O(Y )ny0
)[H1, . . . , Hm].

Consider the evaluation epimorphism

θ : O(Y )ny0
[z1, . . . ,zm] → S−1(O(X)), Q(y,z1, . . . ,zm)

�→ Q(F(x), H1(x), . . . , Hm(x))

that maps y to F(x) and the variables z j to Hj (x).
As X is irreducible, S−1(O(X)) is an integral domain. By the first isomorphism

theorem there exist a prime ideal p of O(Y )ny0
[z1, . . . ,zm] and an isomorphism

θ : O(Y )ny0
[z1, . . . ,zm]/p → S−1(O(X)), Q(z1, . . . ,zm) + p

�→ Q(F(x), H1(x), . . . , Hm(x)).

As the ring O(Y )ny0
[z1, . . . ,zm] is noetherian because O(Y )ny0

is excellent, p is
finitely generated. Let P1, . . . , Pt ∈ O(Y )[z1, . . . ,zm] be a system of generators of
p. Let
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� := {(y, z) ∈ Y × C
m : P1(y, z) = 0, . . . , Pt (y, z) = 0} ⊂ Y × C

m

and consider

H : X → � ⊂ Y × C
m, x �→ (F(x), H1(x), . . . , Hm(x)),

which satisfies θ = H∗. We use implicitly the irreducibility of X here to assure that
H(X) ⊂ �. Denote ωi := H(xi ) and observe that the maximal ideals of the semi-
local ring A := O(Y )ny0

[z1, . . . ,zm]/p are the maximal ideals nωi of A associated to

the point ωi for i = 1, . . . , �. Denote B := S−1(O(X)) and observe that H∗ induces
a isomorphism between the local rings Anωi

and Bmxi B
∼= O(X)mxi

, wheremxi is the
maximal ideal of O(X) associated to the point xi for i = 1, . . . , �. Thus, H∗ induces
an isomorphism ̂H∗ : Ânωi

→ B̂mxi B
between the corresponding completions. As

(X,OX ) and (Y,OY ) are reduced Stein spaces, Ô(X)mxi
coincides with Ô(Xxi ) and

Ânωi
coincides with Ô(�ωi ). Thus, we have the following isomorphism

Ô(�ωi )
∼= Ânωi

̂H∗=̂θ

∼= B̂mxi B
∼= Ô(X)mxi

∼= Ô(Xxi )

for i = 1, . . . , �. By Lemma 4.4, the homomorphism O(�ωi ) → O(Xxi ), Gωi �→
Gωi ◦ Hxi is an isomorphism for i = 1, . . . , �. Consequently, there exist invariant
open neighborhoods U of {x1, . . . , x�} in X and V of {ω1, . . . , ω�} in � such that
H−1(V ) = U and H |U : U → V is an invariant complex analytic diffeomorphism.

4.2.2As each Hi is invariant, also H is invariant, so H(Xσ ) ⊂ �τ ′ := �∩(Y τ ×R
m),

where

τ ′ : Y × C
m → Y × C

m, (y, z) �→ (τ (y), z)

is an anti-involution. Consider the restriction maps f := F |Xσ : Xσ → Y τ and
h := H |Xσ : Xσ → �τ ′

. As S isA(Xσ )-definable, there exist an open neighborhood
W ⊂ U ∩ Xσ of the finite set f −1(y0) = F−1(y0) ∩ Xσ such that S ∩ W is an
A(Xσ )-definable global C-semianalytic set, that is, S ∩ W = ⋃r

i=1
⋂s

j=1 Si j where
Si j is either

{x ∈ Xσ : fi j (x) > 0} or {x ∈ Xσ : fi j (x) = 0}. (4.2)

and fi j := Fi j |Xσ . In addition h|W : W → h(W ) is a real analytic diffeomorphism,
h−1(h(W )) = W and h(W ) is an open neighborhood of h( f −1(y0)) in �τ ′

. As
θ = H∗ is an isomorphism, we may assume by Lemma 2.9

• fi j = qi j ◦ h for some qi j ∈ O(Y τ )[u1, . . . ,um],
• h(S ∩ W ) = T where T := ⋃r

i=1
⋂s

j=1 Ti j ⊂ �τ ′
and Ti j is either

{(y, u) ∈ �τ ′ : qi j (y, u) > 0} or {(y, u) ∈ �τ ′ : qi j (y, u) = 0}
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accordingly to the choices of signs done in (4.2).

Let π : Y τ × R
m → Y τ , (y, u) �→ y be the projection onto the first factor. As

f = π ◦ h, we conclude by Theorem 4.3 f (S ∩ W ) = π(h(S ∩ W )) = π(T ) is a
global C-semianalytic set.

4.2.3 Observe that

H(F−1(Y τ )\Xσ ) = {(y, u + √−1v) ∈ Y τ × C
m : P1(y, u + √−1v)

= 0, . . . , Pt (y, u + √−1v) = 0, v21 + · · · + v2m �= 0}.

Thus, we can understand H(F−1(Y τ )\Xσ ) as an O(Y τ )[u,v]-definable global C-
semianalytic subset of Y τ × R

m × R
m where u := (u1, . . . ,um) and v :=

(v1, . . . ,vm). Let V ′ ⊂ V ∩ (Y τ × R
m × R

m) be a bounded open O(Y τ )[u,v]-
definable global C-semianalytic neighborhood of {ω1, . . . , ω�}. By Proposition 3.5

Cl(H(F−1(Y τ )\Xσ ) ∩ V ′)

is an O(Y τ )[u,v]-definable global C-semianalytic subset of Y τ × R
m × R

m . Thus,
as h(S ∩ W ) ⊂ {v1 = 0, . . . ,vm = 0},

Cl(H(F−1(Y τ )\Xσ ) ∩ V ′) ∩ h(S ∩ W )

is anO(Y τ )[u]-definable global C-semianalytic subset of Y τ × R
m . We may assume

W ⊂ H−1(V ′). As h|W : W → h(W ) is a real analytic diffeomorphism,

h(E ∩ S ∩ W ) = h(Cl(F−1(Y τ )\Xσ ) ∩ S ∩ W )

= h(Cl(F−1(Y τ )\Xσ ) ∩ W ) ∩ h(S ∩ W ).

In addition, as H |U : U → V is an analytic diffeomorphism and H−1(V ) = U , it
holds

h(Cl(F−1(Y τ )\Xσ ) ∩ W ) = H(Cl(F−1(Y τ )\Xσ ) ∩ H−1(V ′) ∩ Xσ ∩ W )

= H(Cl((F−1(Y τ )\Xσ ) ∩ H−1(V ′)) ∩ H−1(V ′))
∩ H(Xσ ∩ W )

= Cl(H(F−1(Y τ )\Xσ ) ∩ V ′) ∩ V ′ ∩ H(Xσ ∩ W ).

Consequently,

h(E ∩ S ∩ W ) = Cl(H(F−1(Y τ )\Xσ ) ∩ V ′) ∩ h(S ∩ W )
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is anO(Y τ )[u]-definable globalC-semianalytic subset of Y τ ×R
m . As f = π ◦h, we

conclude by Theorem 4.3 f (E∩S∩W ) = π(h(E∩S∩W )) is a globalC-semianalytic
set.

4.2.4 To finish the proof of (i) and (ii) we find an open C-semianalytic neighborhood
A ⊂ Y τ of y0 such that f (S)∩A = f (S∩W )∩Aand f (E∩S)∩A = f (E∩S∩W )∩A.
Consequently, f(S) and f (E ∩ S) are C-semianalytic sets.

As W is an open neighborhood of f −1(y0) in Xσ , we have C := f (Xσ \W ) is a
closed subset of Y (recall that f is proper) that does not contain y0. Let A ⊂ Y τ be
an open basic C-semianalytic neighborhood of y0 that does not intersect C . As

f (S) = f (S ∩ W ) ∪ f (S ∩ (Xσ \W )) and

f (E ∩ S) = f (E ∩ S ∩ W ) ∪ f (E ∩ S ∩ (Xσ \W )),

we conclude f (S) ∩ A = f (S ∩ W ) ∩ A and f (E ∩ S) ∩ A = f (E ∩ S ∩ W ) ∩ A,
as required.

(iii) By hypothesis there exists a complexification ˜Z ⊂ X of Z that is closed in X ,
hence ˜Z is a complex analytic subset of X and ˜Z ∩ Xσ = Z . By Remmert’s Theorem
F(˜Z) is a complex analytic subset of Y , so F(˜Z) ∩ Y τ is a C-analytic subset of Y τ

that contains F(Z). Thus,

F(Z) ⊂ F(˜Z) ∩ Y τ = F(˜Z ∩ F−1(Y τ )) = F(˜Z ∩ Xσ ) = F(Z),

so F(Z) = F(˜Z) ∩ Y τ is a C-analytic subset of Y τ , as required. ��

4.3 Sufficient condition

We end this section with some sufficient conditions under which statement Theo-
rem 1.1(iii) applies.

Lemma 4.5 Assume that Y τ is coherent and let F : (X,OX ) → (Y,OY ) be an
invariant surjective proper holomorphic map. Let Z ⊂ Y be a complex analytic set
such that X\F−1(Z) is dense in X. Assume that F |X\F−1(Z) : X\F−1(Z) → Y\Z is
biholomorphic. Then F−1(Y τ ) = Xσ .

Proof We may assume X is irreducible and consequently also Y is irreducible. In
particular, both are pure dimensional of the same dimension d. We have to prove
F−1(Y τ ) ⊂ Xσ .

Suppose by contradiction that there exists z ∈ F−1(Y τ )\Xσ . As F is invariant,
F(σ (z)) = F(z) ∈ Y τ , so σ(z) ∈ F−1(Y τ )\Xσ .

By Remmert’s Theorem the germs F(Xz) and F(Xσ(z)) are unions of irreducible
components of YF(z). As X\F−1(Z) is dense in X and the restriction

F |X\F−1(Z) : X\F−1(Z) → Y\Z
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is biholomorphic, we conclude dimC(F(Xz) ∩ F(Xσ(z))) < d. As F is invariant,
F(Xz)∩Y τ = F(Xσ(z))∩Y τ , so dimR(F(Xz)∩Y τ ) < d. As Y is irreducible and Y τ

is coherent, Y τ is pure dimensional, so all the irreducible components of Y τ
F(z) have

dimension d. In addition, the irreducible components of Y τ
F(z) are the intersections

with Y τ
F(z) of the irreducible components of YF(z). But this is impossible because

F(Xz) is a union of irreducible components of YF(z), dimR(F(Xz) ∩ Y τ ) < d and all
the irreducible components of Y τ

F(z) have dimension d. ��

5 Set of points of non-coherence of a C-analytic set

In [43] it is proved that set N (X) of points where a d-dimensional analytic set X is non-
coherent is a semianalytic set. The authors sketch a smart semianalytic decomposition
of the set of points x ∈ X at which the germ Xx has an irreducible component of
dimension d that is non-coherent. Then they prove inductively that the set of points
x ∈ X atwhich the germ Xx has all its irreducible components of dimension d coherent
but one of dimension k < d non-coherent is also semianalytic. In this section we
improve their construction to prove that N (X) is a C-semianalytic set whenever X is
C-analytic.

5.1 Description of the set of points of non-coherence of a C-analytic set

Let M be a real analytic manifold and let X ⊂ M be a C-analytic set of dimension
d. For each 0 ≤ k ≤ d := dim(X) let Fk be the collection of all the irreducible
C-analytic sets Z ⊂ M of dimension k that are an irreducible component of Sing�(X)

for some � ≥ 0 (see Sect. 2.4.2). Define Zk := ⋃

Z∈Fk
Z and

Rk :=
d

⋃

j=k+1

Z j,( j) where Z j,( j) := {z ∈ Z j : dimR(Z j ) = j}=Cl(Z j\ Sing(Z j )).

Let˜Zk be a complexification of Zk and let (Yk, πk) be the normalization of˜Zk endowed
with the anti-involution σk : Yk → Yk that is induced by the usual conjugation on ˜Zk .
Let

Y σk
k := {y ∈ Yk : σk(y) = y}

be the fixed part space of Y , which is a C-analytic space. Define

Y σk
k,(k) := {y ∈ Y σk

k : dimR(Y σk
k,y) = k} = Cl(Y σk

k \ Sing(Y σk
k )),

Ck,1 := π−1
k (Zk)\Y σk

k , Ck,2 := Y σk
k \Y σk

k,(k),

Ak,i := Cl(Ck,i ) ∩ Cl(Y σk
k,(k)\π−1(Rk)) for i = 1, 2.

We state next our main result.
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Theorem 5.1 Let N (X) be the set of points of non-coherence of the C-analytic set X
of dimension d and let Nk(Zk, Rk) := πk(Ak,1) ∪ πk(Ak,2). Then

(i) Nk(Zk, Rk) is a C-semianalytic set of dimension ≤ k − 2.
(ii)

⋃d
k= j Nk(Zk, Rk) is the set of points of X such that the germ Xx has a non-

coherent irreducible component of dimension ≥ j .
(iii) N (X) = ⋃d

k=2 Nk(Zk, Rk).

Once we prove the previous result it holds in particular Corollary 1.4.

5.2 Initial preparation

By Grauert’s immersion theorem we assume that X is a C-analytic subset of R
n .

Let ˜X be a complexification of X that is an invariant complex analytic subset of a
Stein open neighborhood � ⊂ C

n of R
n . Denote the restriction to ˜X of the complex

conjugation on C
n with σ : ˜X → ˜X . It holds d := dimR(X) = dimC(˜X) and

X = {x ∈ ˜X : σ(x) = x}. Let π : Y → ˜X be the normalization of ˜X . As ˜X is Stein,
also Y is Stein [33]. The complex conjugation of ˜X extends to an anti-involution σ̂ on
Y that makes the following diagram commutative [18, IV.3.10]

Y σ̂

π |Y σ̂

Y
σ̂

π

Y

π

X ˜Xσ
˜X

σ
˜X

where Y σ̂ := {y ∈ Y : σ̂ (y) = y} is the set of fixed points of σ̂ .
The following results from [18] will help us to describe the set of points of non-

coherence of a C-analytic set. We keep all the notations introduced before.

Lemma 5.2 [18, IV.3.12] Let x ∈ X. We have:
(i) If Zx is an irreducible component of Xx of dimension d, its complexification ˜Zx

is an irreducible component of ˜Xx . If y ∈ Y satisfies π(Yy) = ˜Zx , then y ∈ Y σ̂

and dimR(Y σ̂
y ) = d.

(ii) Let y ∈ Y σ̂ be such thatπ(y) = x and dimR(π(Yy)∩Xx ) < d. Then dimR(Y σ̂
y ) <

d. In particular, if dimR(Xx ) < d, we have dimR(Y σ̂
y ) < d for all x ∈ π−1(x)∩

Y σ̂ .

Lemma 5.3 [18, IV.3.13] Let x ∈ X be a point such that all the irreducible compo-
nents of Xx have dimension d. The germ Xx is coherent if and only if there exists a
invariant open neighborhood V of x in ˜X such that

(i) π−1(X ∩ V ) = Y σ̂ ∩ π−1(V ).
(ii) dimR(Y σ̂

z ) = d for every z ∈ π−1(a) and a ∈ X ∩ V .
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5.3 Points of non-coherence for maximal dimension outside a prescribed set

Let R ⊂ X be a closed A(˜Xσ )-definable C-semianalytic set. Let Y ′ be the union of
the irreducible components of Y of dimension strictly smaller than d. Define:

Y σ̂
(d) := {y ∈ Y σ̂ : dimR(Y σ̂ ) = d} = Cl(Y σ̂ \(Sing(Y σ̂ ) ∪ Y ′)),

C1 := π−1(X)\Y σ̂ , C2 := Y σ̂ \Y σ̂
(d),

Ai := Cl(Ci ) ∩ Cl(Y σ̂
(d)\π−1(R)) ⊂ Y σ̂ for i = 1, 2.

We claim: π(Ai ) ⊂ X is a C-semianalytic set.

Proof The C-semianalytic set Y σ̂ \(Sing(Y σ̂ )∪Y ′) isA(Y σ̂ )-definable, so by Propo-
sition 3.5 Y σ̂

(d) = Cl(Y σ̂ \(Sing(Y σ̂ )∪Y ′)) isA(Y σ̂ )-definable. By Proposition 3.5 the

same happens with Cl(C2). As R is an A(˜Xσ )-definable C-semianalytic set, then
π−1(R) ∩ Y σ̂ is an A(Y σ̂ )-definable C-semianalytic set. By Proposition 3.5 the
same happens with Cl(Y σ̂

(d)\π−1(R)). By Theorem 1.1(i) and (ii) π(Ai ) ⊂ X is a
C-semianalytic set for i = 1, 2, as required. ��

Define

Nd(X, R) := π(A1) ∪ π(A2) ⊂ X, (5.1)

which is a C-semianalytic set. We keep all previous notations in the following results.

Lemma 5.4 We have:

(i) dimR(C1) ≤ d − 1 and dimR(C2) ≤ d − 2.
(ii) dimR(π(A1)) ≤ d − 2 and dimR(π(A2)) ≤ d − 3.

Proof We claim: If y ∈ C1, it holds dimR(C1,y) ≤ d −1. Consequently, dimR(C1) ≤
d − 1

If y ∈ C1, we have σ̂ (y) �= y and σ̂ (Yy) = Yσ̂ (y). Observe that x := π(y) =
π(σ(y)), so π(Yy)∪π(Yσ(y)) ⊂ ˜Xx and π(Yy), π(Yσ(y)) are two different irreducible
components of ˜Xx . As these irreducible components are conjugated,

Xx ∩ π(Yy) = Xx ∩ π(Yy) ∩ σ(π(Yy)) = Xx ∩ π(Yy) ∩ π(Yσ(y)),

so dimR(Xx ∩ π(Yy)) ≤ d − 1. Thus, C1,y ⊂ π−1(X)y ⊂ Yy has dimension ≤ d − 1
because π is proper and has finite fibers.

As Y is a normal complex analytic space,

dimC(Sing(Y )) ≤ dimC(Y ) − 2 = d − 2.

Consequently, as Sing(Y σ̂ ) ⊂ Sing(Y ) ∩ Y σ̂ , we have dimR(Sing(Y σ̂ )) ≤ d − 2. As
C2 ⊂ Sing(Y σ̂ ), also dimR(C2) ≤ d − 2.
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Observe that Ci ∩ Ai ⊂ Ci ∩ Y σ̂
(d) = ∅, so Ai ⊂ Cl(Ci )\Ci . Thus, dimR(Ai ) <

dimR(Ci ) for i = 1, 2 (use [4, VIII.2.11]). We conclude dimR(A1) ≤ d − 2 and
dimR(A2) ≤ d − 3.

As π(A1) and π(A2) are C-semianalytic subsets of M and they are the images of
A1 and A2 under a proper analytic map with finite fibers, dimR(π(A1)) ≤ d − 2 and
dimR(π(A2)) ≤ d − 3, as required. ��
Proposition 5.5 A point x ∈ X belongs to Nd(X, R) if and only if the germ Xx has a
non-coherent irreducible component Tx of dimension d such that dim(Tx\Rx ) = d.

Proof The proof is conducted in several steps.

5.3.1 We prove first the ‘only if’ part of the statement. To that end, it is enough to
show the following: Let x /∈ Nd(X, R) be such that the germ Xx has an irreducible
component Bx of dimension d and dim(Bx\Rx ) = d. Then, Bx is coherent.

By Lemma 5.2(i) it holds that the complexification ˜Bx of Bx is an irreducible
component of ˜Xx . In addition, there exists a point y ∈ Y σ̂ such that π(Yy) = ˜Bx and
dim(Y σ̂

y ) = d.

5.3.2 Let us check: y ∈ Y σ̂
(d)\(Cl(C1) ∪ Cl(C2)).

As dim(Y σ̂
y ) = d, it holds y ∈ Y σ̂

(d). We prove next dim(Y σ̂
(d),y\π−1(R)y) = d.

Indeed, Bx = Xx ∩ π(Yy), so

π−1(Bx ) ∩ Yy = π−1(Xx ) ∩ π−1(π(Yy)) ∩ Yy = π−1(X)y ∩ Yy

= π−1(X)y = (π−1(X)\Y σ̂ )y ∪ (Y σ̂
y \Y σ̂

(d),y) ∪ Y σ̂
(d),y

= C1,y ∪ C2,y ∪ Y σ̂
(d),y .

Consequently,

π−1(Bx\Rx ) ∩ Yy = (π−1(Bx ) ∩ Yy)\π−1(R)y ⊂ C1,y ∪ C2,y ∪ (Y σ̂
(d),y\π−1(R)y)

As π(π−1(Bx\Rx ) ∩ Yy) = Bx\Rx , dim(Bx\Rx ) = d and π has finite fibers, we
deduce

C1,y ∪ C2,y ∪ (Y σ̂
(d),y\π−1(R)y)

has dimension d. By Lemma 5.4(i) dim(C1,y ∪ C2,y) ≤ d − 2, so dim(Y σ̂
(d),y\π−1

(R)y) = d.
In particular, y ∈ Cl(Y σ̂

(d)\π−1(R)) ⊂ Y σ̂
(d). If y ∈ Cl(Ci ), then y ∈ Ai , so

x ∈ π(Ai ) ⊂ Nd(X, R), which is a contradiction. Thus, y ∈ Y σ̂
(d)\(Cl(C1)∪Cl(C2)).

5.3.3 Write π−1(x) = {y1, . . . , yr } and assume y1 = y. Let Wi ⊂ Y be an invariant
open neighborhood of yi and let V be an open neighborhood of x such that π−1(V ) =
⋃r

i=1 Wi and Wi ∩ Wj = ∅ if i �= j . We may assume that W1 is connected and
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W1 ∩ (Cl(C1) ∪ Cl(C2)) = ∅. As W1 is closed in π−1(V ) and π : Y → ˜X is proper,
the restriction π : W1 → V is proper, so by Remmert’s Theorem the set π(W1) is a
complex analytic subset of V . Observe that π : W1 → π(W1) is the normalization
of π(W1). The set B := π(W1) ∩ X is a representative of Bx . As dim(π(W1)) =
dim(B) and π(W1) is irreducible (recall that W1 is normal and connected), π(W1) is
a complexification of B.

5.3.4We claim: B σ̂ := {y ∈ W1 : σ̂ (y) = y} = (π |W1)
−1(B).

Indeed, observe that B σ̂ = Y σ̂ ∩ W1 and

(π |W1)
−1(B) = π−1(π(W1)) ∩ π−1(X) ∩ W1 = π−1(X) ∩ W1.

Thus, we have to prove Y σ̂ ∩ W1 = π−1(X) ∩ W1. As W1 ∩ Cl(C1) = ∅, we have
(π−1(X)\Y σ̂ ) ∩ W1 = ∅, so Y σ̂ ∩ W1 = π−1(X) ∩ W1.

5.3.5 Since W1 ∩ Cl(C2) = ∅, we have (Y σ̂ \Y σ̂
(d)) ∩ W1 = ∅, so dim(Y σ̂

z ) = d for

each z ∈ (π |W1)
−1(a) where a ∈ B. By Lemma 5.3 the irreducible component Bx is

coherent.

5.3.6Next we show the ‘if’ part of the statement. To that end, we prove: If all the non-
coherent irreducible components Bx of Xx of dimension d satisfy dim(Bx\Rx ) < d,
then x /∈ Nd(X, R), or equivalently, π−1(x) ∩ (A1 ∪ A2) = ∅.

Let y ∈ π−1(x). If y /∈ Y σ̂
(d), then y /∈ A1 ∪ A2. So let us assume y ∈ Y σ̂

(d). By
Lemma 5.2(ii) we deduce dim(π(Yy)∩ Xx ) = d. Consequently, Bx := π(Yy)∩ Xx is
an irreducible analytic germ of dimension d contained in Xx . Thus, Bx is an irreducible
component of Xx and π(Yy) is the complexification of Bx . In particular π(Y σ̂

y ) ⊂ Bx .
We distinguish two cases:

Case 1. Bx is non-coherent. Then dim(Bx\Rx ) < d, so dim(π(Y σ̂
y )\Rx ) < d. Denote

Ey := Y σ̂
(d),y\π−1(R)y . As π has finite fibers and π(Ey) ⊂ π(Y σ̂

y )\Rx , we have
dim(Ey) < d. As R is closed and dim(Ey) < d,

Y σ̂
(d),y = Cl(Y σ̂

(d),y\Ey) ⊂ Cl(π−1(R)y) = π−1(R)y .

Consequently, Y σ̂
(d),y\π−1(R)y = ∅, so y /∈ Cl(Y σ̂

(d)\π−1(R)). We conclude y /∈
A1 ∪ A2.

Case 2. Bx is coherent. Proceeding as we have done in Sect. 5.3.3 we find an invariant
neighborhoodW1 of y in Y such that π(W1) is an irreducible complex analytic subset
of an invariant neighborhood V of x in X and B := π(W1) ∩ X is a representative of
Bx . As Bx is coherent, by Lemma 5.3 we may shrink V and W1 to have

1. π−1(X) ∩ W1 = Y σ̂ ∩ W1 and
2. dim(Y σ̂

z ) = d for every z ∈ π−1(a) and a ∈ B ∩ V .

Condition (1) is equivalent to (π−1(X)\Y σ̂ )∩W1 = ∅, so y /∈ Cl(C1). Condition (2)
means y /∈ Cl(C2). Consequently, y /∈ Cl(C1) ∪ Cl(C2), so y /∈ A1 ∪ A2.

Thus, π−1(x) ∩ (A1 ∪ A2) = ∅, as required. ��
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5.4 Proof of Theorem 5.1

Given a set germ Sx ⊂ R
n
x , we define its Zariski closure Sx

zar
as the smallest analytic

germ at x that contains Sx . Before proving Theorem 5.1 we state the following easy
fact concerning germs that will be used several times in its proof.

Lemma 5.6 Let Ax ⊂ Bx ⊂ R
n
x be analytic germs and let Tx be an irreducible

component of Bx such that Tx ⊂ Ax . Then Tx is also an irreducible component of Ax .

Proof Let T ′
x be an irreducible component of Ax such that Tx ⊂ T ′

x . As Ax ⊂ Bx , there
exists an irreducible component T ′′

x of Bx such that Tx ⊂ T ′
x ⊂ T ′′

x . Consequently
Tx = T ′

x = T ′′
x , so Tx is an irreducible component of Ax . ��

Proof of Theorem 5.1 Observe that by its definition and Proposition 3.5 each C-
semianalytic set Rk isA(˜Xσ )-definable. Consequently, statement (i) follows from 5.3
and Lemma 5.4(ii), so it remains to prove statements (ii) and (iii). We have to show:
N (X) = ⋃d

k=2 Nk(Zk, Rk) where

• Zk := ⋃

Z∈Fk
Z ,

• Fk is the collection of all the irreducible C-semianalytic subsets Z of M of dimen-
sion k that are an irreducible component of Sing�(X) for some � ≥ 0,

• Rk := ⋃d
j=k+1 Z j,( j) where Z j,( j) := {z ∈ Z j : dimR(Z j ) = j} =

Cl(Z j\Sing(Z j )).

In addition, we have to prove:
⋃d

k= j Nk(Zk, Rk) is the set of points of X such that the
germ Xx has a non-coherent irreducible component of dimension ≥ j .

The proof is conducted in several steps.

5.4.1 Let x ∈ N (X) and let Tx be an irreducible component of Xx of dimension e
that it is non-coherent. Recall that e ≥ 2 because C-analytic curves are coherent. We
claim: Tx is an irreducible component of Ze,x .

Let Z be an irreducible component of X such that Tx ⊂ Zx . As Zx ⊂ Xx , we have
Tx is an irreducible component of Zx by Lemma 5.6. As Z = ⋃

�≥0 Reg(Sing�(Z)),

Zx =
⋃

�≥0

(Reg(Sing�(Z)))x
zar

.

As Tx is an irreducible component of Zx , there exists � ≥ 1 such that

Tx ⊂ (Reg(Sing�(Z)))x
zar ⊂ Zx .

Thus, Tx is by Lemma 5.6 an irreducible component of (Reg(Sing�(Z)))x
zar

. Since
all the irreducible components of (Reg(Sing�(Z)))x

zar
have the same dimension and

dim(Tx ) = e, we deduce dim(Sing�(Z)) = e. By Lemma 5.6 there exists an irre-
ducible component Z ′ of Sing�(Z) (of dimension e) such that Tx is an irreducible
component of Z ′

x . Observe that Z
′ ∈ Fe, so Tx is an irreducible component of Ze,x .

5.4.2Weclaim: x ∈ Ne(Ze, Re) or equivalently by Proposition 5.5 the germ Ze,x has a
non-coherent irreducible component Bx of dimension e such that dim(Bx\Re,x ) = e.
It is enough to check: dim(Tx\Re,x ) = e.
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Otherwise, dim(Tx\Re,x ) < e, so

Tx ⊂ Re,x
zar =

d
⋃

j=e+1

Z j,( j),x
zar

.

Consequently, there exists e + 1 ≤ j ≤ d such that Tx ⊂ Z j,( j),x
zar ⊂ Xx . By

Lemma 5.6 Tx is an irreducible component of Z j,( j),x
zar

, which is a contradiction
because all the irreducible components of Z j,( j),x

zar
have dimension j > e. We

conclude dim(Tx\Re,x ) = e.

5.4.3 Thus, we have shown N (X) ⊂ ⋃d
k=2 Nk(Zk, Rk). We prove now the converse

inclusion
⋃d

k=2 Nk(Zk, Rk) ⊂ N (X). Let x ∈ N�(Z�, R�) for some 2 ≤ � ≤ d and let
us show: Xx has a non-coherent irreducible component of dimension≥�. In particular,
x ∈ N (X).

As x ∈ N�(Z�, R�), the germ Z�,x has an irreducible component Tx of dimension
� that is non-coherent and such that dim(Tx\R�,x ) = �. As Z�,x ⊂ Xx , there exists an
irreducible component Ax of Xx that contains Tx . If Tx = Ax , then Ax is non-coherent.
Otherwise, � = dim(Tx ) < dim(Ax ) = j . As

Xx =
d

⋃

k=0

Zk,(k),x
zar

,

we deduce by Lemma 5.6 that Ax is an irreducible component of some Zk,(k),x
zar

. As
all the irreducible components of Zk,(k),x

zar
have dimension k, we conclude j = k.

Consequently, Ax is an irreducible component of Z j,( j),x
zar

.
Let us assume by contradiction that Ax is coherent. Then Ax ⊂ Z j,( j),x

zar ⊂ Z j,x

is pure dimensional (because it is coherent), so Tx ⊂ Ax ⊂ Z j,( j),x ⊂ R�,x , which
contradicts the fact dim(Tx\R�,x ) = �. Consequently, Ax is non-coherent, so Xx has
a non-coherent irreducible component and x ∈ N (X), as required.

5.4.4 Finally, by Sects. 5.4.1 and 5.4.2 we deduce that if Xx has a non-coherent
irreducible component of dimension j , then x ∈ N j (Z j , R j ) while by Sect. 5.4.3 we
get that if x ∈ N j (Z j , R j ), then Xx has an irreducible component of dimension ≥ j .
Consequently, statement (ii) holds. ��

We finish this section with two examples that illustrate some key facts of the proofs
above.

Examples 5.7 (i) In [2] it is shown that the set of points of non-coherence of the
C-analytic set X := {x3 − x2wz − wy2 = 0} is

N (X) = {x = 0, y = 0, z = 0} ∪ {x = 0, y = 0, w = 0, z ≥ 0},

which is a C-semianalytic set but not a C-analytic set.
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(ii) Let X1 := {(x2 − (z + 1)y2)2z − u2 = 0} ⊂ R
4 and X2 := {u = 0}. Let us

prove

N (X1) = {x2 − y2 = 0, z = 0, u = 0} ∪ {(0, 0,−1, 0)}

while N (X1 ∪ X2) = {x2 − y2 = 0, z = 0, u = 0}.
We compute first N (X1). Let Z1 := {(x2 − (z + 1)y2)2z − u2 = 0} ⊂ C

4 be a
complexification of X1. It holds that

π : C
3 → C

4, (x, y, v) �→ (x, y, v2, v(x2 − (v2 + 1)y2)),

is the normalization of Z1. The singular locus of Z1 is

Sing(Z1) = {x2 − (z + 1)y2 = 0, u = 0}.

It holds

π−1(X1) = R
3 � {(s

√

1 − t2, s, i t) : 0 < |t | ≤ 1} � {(0, 0, i t) : |t | > 1}.

Observe that

T1 := π(R3) = X1 ∩ {z ≥ 0},
T2 := π({(±s

√

1 − t2, s, i t) : 0 < |t | ≤ 1})
= {(±s

√

1 − t2, s,−t2, 0) : 0 < |t | ≤ 1},
T3 := π({(0, 0, i t) : |t | > 1}) = {(0, 0,−t2, 0) : |t | > 1}.

Thus, T1 is the set of points of X1 of maximal dimension. By Theorem 5.1

π(R3 ∩ ({(±s
√

1 − t2, s,−t2, 0) : 0 < |t | ≤ 1} ∪ {(0, 0,−t2, 0) : |t | > 1}))
= {x − y = 0, z = 0, u = 0} ∪ {x + y = 0, z = 0, u = 0}

is the set of points of X1 that have a non-coherent irreducible component of dimension
3.

To find the set of points of X1 that have a non-coherent irreducible component of
smaller dimension we have to look at T2 ∪ T3 = {x2 − (z + 1)y2, z < 0}, which is an
open subset a classical Whitney umbrella. This set has only the point (0, 0,−1, 0) as
its unique non-coherence point. Consequently,

N (X1) = {x2 − y2 = 0, z = 0, u = 0} ∪ {(0, 0,−1, 0)}.

On the other hand, N (X1 ∪ X2) = {x2 − y2 = 0, z = 0, u = 0} because at these
points of X1 ∪ X2 the corresponding germ has a non-coherent irreducible component
of dimension 3 while at the point (0, 0,−1, 0) the unique irreducible component is
{u = 0}, which is coherent.
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6 Subanalytic sets as proper images of basic C-semianalytic sets

We begin with some examples concerning the properties of the images of C-
semianalytic sets under analytic maps.

Example 6.1 (Image under a proper analytic map with finite fibers of a C-analytic
set) Consider the compact analytic set S := { f = 0} introduced in Example 3.3(ii).
Observe that S\{(0, 0,±1)} is a C-analytic subset of R

3\{z = ±1} and S(2) ⊂ {g :=
1
4 − x2 + y2 + z2 ≥ 0}. Define

X1 := {(x, y, z, t) ∈ R
4 : f = 0, t2 − ( 14 − x2 − y2 − z2) = 0},

which is a compact 2-dimensional C-analytic subset of the sphere S1 := {x2 + y2 +
z2 + t2 = 1

4 }. Define π : R
4 → R

3, (x, y, z, t) �→ (x, y, z).
Themapπ |S1 is proper, analytic, has finite fibers and satisfiesπ(X1) = S∩{g ≥ 0}.

Let S2 := {x2+(y−1)2+z2+(t−2)2 = 1} and X2 := S2∩{x = 0, t = 2}. Themap
π |S2 is proper, analytic, has singleton fibers and satisfiesπ(X2) = S∩{x = 0} = {x =
0, (y−1)2+z2 = 1}. Of course X := X1∪X2 is aC-analytic subset of M := S1�S2.
Thus, π |M is proper, analytic, has finite fibers and satisfies π(X1 ∪ X2) = S, which
is semianalytic but not C-semianalytic.

Example 6.2 (Osgood: Subanalytic set that is not a semianalytic set) Let

f : R
2 → R

3, (x, y) �→ (x, xy, xey).

Then S := f ({x2 + y2 ≤ ε2}) is subanalytic but it is not semianalytic.
Observe that S is subanalytic because it is the image of a compact semianalytic

set under an analytic map. Let us prove next that S is not semianalytic. We claim:
If G(u, v) ∈ R[[u, v]] is a formal power series such that G(x, xy, xey) = 0, then
G = 0.

WriteG(u, v, w) = ∑

j≥0 G j (u, v, w)whereG j (u, v, w) is a homogeneous poly-
nomial of degree j . Then

0 = G(x, xy, xey) =
∑

j≥0

G j (x, xy, xe
y) =

∑

j≥0

x jG j (1, y, e
y).

Therefore, G j (1, y, ey) = 0 for each j ≥ 0, so each G j = 0 and G = 0.
Consequently, the smallest real analytic set containing (the germ at the origin of)

S is the whole R
2, so S is not semianalytic.

Example 6.3 (Image under an analytic map of a C-analytic set) The image of a C-
analytic set under an analytic map is not in general a subanalytic set. Let X :=
⋃

k≥1{( 1k , k)} ⊂ R
2 and let ρ : R

2 → R, (x, y) �→ x be the projection onto the first

coordinate. Then S = ρ(X) = ⋃

k≥1{ 1k } ⊂ R is not subanalytic.
Indeed, suppose S is subanalytic. Then S′ := S\{0} is also subanalytic and there

exists a neighborhoodU of the origin such that S′ ∩U is the projection of a relatively
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compact semianalytic set A ⊂ M × N where N is a real analytic manifold. By [7,
2.7] the connected components of A are finitely many. Consequently, π(A) = S ∩U
has finitely many connected components, a contradiction.

6.1 Proof of Theorem 1.5

Recall first two relevant results [7, 3.12, 5.1]. Theorem 1.5 can be understood as a
kind of global version of [7, 3.12]. Following [7, 3.5] the dimension of a subanalytic
set is the highest of the dimensions of its smooth points.

Proposition 6.4 [7, 3.12]Let M be a real analyticmanifold and let S ⊂ M be a closed
subanalytic set. Then each point of S admits a neighborhoodU such that S∩U = π(A)

where A is a closed analytic subset of U × R
q for some q, dim(A) = dim(S ∩ U )

and π |A is proper (where π : U × R
q → U is the projection).

Theorem 6.5 (Uniformization Theorem, [7, 5.1]) Let X be a closed analytic subset
of M. Then there exists a real analytic manifold N (of the same dimension as X) and
a proper real analytic map p : N → M such that p(N ) = X.

We are ready to prove Theorem 1.5.

Proof of Theorem 1.5 The implication (ii) �⇒ (iii) is immediate. Let us prove (iii)
�⇒ (i). We have to show: each point of M admits a neighborhood U such that S ∩U
is a projection of a relatively compact semianalytic set.

Let� f be the graph of f and let π : M×N → N be the projection onto the second
factor. Let T ′ := � f ∩ (T × N ) and C := � f ∩ (Cl(T ) × N ), which are semianalytic
subset of M × N .

6.1.1We claim: C = Cl(T ′).
Only the inclusion C ⊂ Cl(T ′) requires a comment. Pick (x, f (x)) ∈ C and let

U × V be a neighborhood of (x, f (x)) in M × N . As f is continuous, we may
assume f (U ) ⊂ V . As x ∈ Cl(T ), there exists x ′ ∈ T ∩ U , so (x ′, f (x ′)) ∈
(U × V ) ∩ (� f ∩ (T × N )). Consequently (x, f (x)) ∈ Cl(T ′).

6.1.2 Let us prove: The restriction map π |C : C → N is proper.
Indeed, � f is a real analytic submanifold of M × N and it is analytically diffeo-

morphic to M via the restriction to � f of the projection ρ : M × N → M . Let K be
a compact subset of N and observe that

f −1(K ) ∩ Cl(T ) = ρ(� f ∩ (Cl(T ) × N ) ∩ (M × K ))

= ρ(C ∩ π−1(K )) = ρ(π |−1
C (K )).

As f |Cl(T ) : Cl(T ) → N is proper, f −1(K ) ∩Cl(T ) is compact. As ρ|� f : � f → M

is an analytic diffeomorphism, π |−1
C (K ) is compact. Consequently, π |C is proper.

6.1.3 Let y ∈ N and let U be an open semianalytic neighborhood of y in N such that
K := Cl(U ) is compact. Asπ |C is proper,π |−1

C (K ) is compact. As f (T ) = S, it holds
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π(T ′) = S, so π(T ′ ∩π−1(U )) = S∩U . It only remains to prove: A := T ′ ∩π−1(U )

is a relatively compact semianalytic set.
As T ′ is a semianalytic subset of M × N and U is a semianalytic subset of N , we

have that A is a semianalytic subset of M × N . To prove that A is relatively compact,
we only need to show that it is contained in a compact subset of M × N . Indeed,

A = T ′ ∩ π−1(U ) ⊂ C ∩ π−1(U ) = π |−1
C (U ) ⊂ π |−1

C (K ),

which is a compact set because π |C is proper.
We prove next (i) �⇒ (ii). Let S be a subanalytic subset of N .

Step 1.Local construction.Fix x0 ∈ N and denote n := dim(N ). In this stepwe prove:
there exist and open neighborhood U ⊂ N of x0, a compact real analytic manifold
M ⊂ R

2n+1, an analytic function g ∈ O(M) and an analytic map π : M → N such
that

π({g > 0} ∩ π−1(U )) = S ∩U.

As S is subanalytic, there exist an open neighborhoodU ⊂ N of x0, a real analytic
manifold N ′ and a relatively compact semianalytic subset A of N × N ′ such that
S ∩ U = π1(A) where π1 : N × N ′ → N is the projection onto the first factor. We
can suppose dim(S ∩ V ) = dim(S ∩U ) for each open neighborhood V ⊂ U of x0.

6.1.4We may assume: dim(A) = dim(S ∩U ) and π−1
1 (x0) ∩ A is a finite set.

By [7, 3.6] there exist finitely many smooth semianalytic subsets Bk of A such that

• S ∩U = π1(A) = π1(
⋃

k Bk).
• For each Bk the restriction π1|Bk : Bk → N is an immersion.

This means that there exists a relatively compact semianalytic subset B := ⋃

k Bk of
N × N ′ of the same dimension as S ∩U such that π1(B) = S ∩U and π−1

1 (x0) ∩ B
is a finite set. After substituting A by B, we are under the hypothesis of Sect. 6.1.4.

6.1.5 After shrinking U and using that π−1
1 (x0) ∩ A is finite, there exists an open

neighborhood W of π−1
1 (x0) in N ×N ′ and finitely analytic functions fi , gi j ∈ O(W )

such that A = ⋃r
i=1{ fi = 0, gi1 > 0, . . . , gis > 0}.

6.1.6 Let h ∈ O(W ) be such that π−1
1 (x0) ∩ A ⊂ {h > 0} and {h ≥ 0} is compact.

After shrinking U we assume S ∩U = π1(A ∩ {h > 0} ∩ π−1
1 (U )).

Now, we transform inequalities into equalities. For each i = 1, . . . , r define

Xi := {(x, y, z) ∈ W × R
s+2 : fi (x, y) = 0, z21 − gi1(x, y)

= 0, . . . , z2s − gis(x, y) = 0, z2s+1 − h(x, y) = 0, zs+2 = i}

Let X := ⋃r
i=1 Xi , which is a compact analytic subset of W × R

s+2 (recall that
{h ≥ 0} is compact) of the same dimension as A, so dim(X) ≤ dim(N ). Let π2 : N ×
N ′ ×R

s+2 → N × N ′ be the projection onto the first two factors. Let gi := ∏s
j=1 gi j
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and g′ := h
∏r

i=1(g
2
i + (zs+2 − i)2). Notice that

π2(X\{g′ = 0} ∩ π−1
2 (π−1

1 (U ))) = A ∩ {h > 0} ∩ π−1
1 (U ),

π1(π2(X\{g′ = 0} ∩ π−1
2 (π−1

1 (U )))) = S ∩U.

By Theorem 6.5 there exists a compact real analytic manifold M (of the same dimen-
sion as X ) and a proper real analytic map p : M → W such that p(M) = X .

6.1.7 By Whitney’s immersion theorem for the analytic case [32, 2.15.12] we can
embed M in R

2n+1 as a closed analytic submanifold where n = dim(N ) ≥ dim(M).
Write g := (g′)2◦ p andπ := π1◦π2◦ p : M → N .We haveπ({g > 0}∩π−1(U )) =
S ∩U .
Step 2. Global construction. By Lemma 3.1 there exists a countable locally finite
open refinement {Vj } j≥1 of {Ux }x∈N such that each Vj = {h j > 0} is a open C-
semianalytic subset of N where h j ∈ O(N ). We have seen above that for each j ≥ 1
there exists a compact real analytic submanifold Mj ⊂ R

2n+1 × { j} ⊂ R
2n+2, an

analytic function g j ∈ O(Mj ) and an analytic map π j : Mj → N such that

S ∩ Vj = π j ({g j > 0} ∩ π−1
j (Vj )) = π j ({g j > 0, (h j ◦ π j ) > 0}).

Consider the real analytic manifold M := ⊔

j≥1 Mj ⊂ R
2n+2, whose connected

components are all compact. Let g, h ∈ O(M) be given by g|Mj = g j and h|Mj =
h j ◦ π j . Consider the analytic map π : M → N such that π |Mj = π j and define
T := {g > 0, h > 0}, which is a basic C-semianalytic set. We have

π(T ) = π({g > 0, h > 0}) =
⋃

j≥1

π j ({g j > 0, (h j ◦ π j ) > 0}) =
⋃

j≥1

S ∩ Vj = S.

6.1.8 It only remain to check: π |Cl(T ) : Cl(T ) → N is proper.
Let K0 be a compact subset of N and denote K := K0∩Cl(S). As S = ⋃

j≥1 S∩Vj

and the family Vj is locally finite, Cl(S) = ⋃

j≥1 Cl(S ∩ Vj ) and the family {Cl(S ∩
Vj )} j≥1 is locally finite. As K is compact, we may assume K ∩ Cl(S ∩ Vj ) = ∅

for j ≥ �. As the family {Mj } j≥1 is locally finite and Mj ∩ Mk = ∅ if j �= k, we
have Cl(T ) ∩ Mj = Cl(T ∩ Mj ). In addition, π(T ∩ Mj ) = S ∩ Vj . We claim:
π−1(K ) ∩ Cl(T ) ∩ Mj = ∅ for j ≥ �.

Suppose by contradiction that there exists x ∈ π−1(K ) ∩ Cl(T ∩ Mj ) for some
j ≥ �. Thus, as π is continuous and j ≥ �,

π(x) ∈ K ∩ π(Cl(T ) ∩ Mj ) = K ∩ π(Cl(T ∩ Mj ))

⊂ K ∩ Cl(π(T ∩ Mj )) = K ∩ Cl(S ∩ Vj ) = ∅,

which is a contradiction.
As π−1(K ) ⊂ ⋃�−1

j=1 Cl(T ) ∩ Mj and each Mj is compact, we conclude that

π−1(K ) is compact, so π |Cl(T ) : Cl(T ) → N is proper, as required. ��
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