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ABSTRACT
The facet equations of a 3–dimensional alcoved polyhedron P are

only of two types (xi = cnst and xi −x j = cnst ) and the f –vector of
P is bounded above by (20,30,12). In general, P is a dodecahedron

with 20 vertices and 30 edges. We represent an alcoved polyhedron

by a real square matrix A of order 4 and we compute the exact

volume of P: it is a polynomial expression in the ai j , homogeneous

of degree 3 with rational coefficients. Then we compute the volume

of the polar P◦, when P is centrally symmetric. Last, we show that

Mahler conjecture holds in this case: the product of the volumes of

P and P◦ is no less that 4
3/3!, with equality only for boxes. Our

proof reduces to computing a certificate of non–negativeness of a

certain polynomial (in 3 variables, of degree 6, non homogeneous)

on a certain simplex.
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1 INTRODUCTION
The theory of polytopes is a meeting point for optimization, convex

geometry, lattice geometry and geometry of numbers. There are

deep results, computationally difficult problems and open conjec-

tures concerning polytopes, even in three–dimensional space, as

the collective book [22] beautifully shows. The computation of the

volume is ♯-P , as M.E. Dyer and A.M. Frieze (together with Valiant’s

result on permanents) and, independently, L. Khachiyan showed
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in the 1980’s. The difficulty is present, no matter whether the de-

scription is by given the list of vertices or the facet equations. The

Mahler conjecture (an easy–to–state question on the product of the

volumes of a symmetric polytope and its polar) remains open since

1938, although progress has been reported [11, 12, 16, 24].

Volumes can be used to compute intersection numbers in alge-

braic geometry. More general than volume is the concept of mixed

volume, introduced by H. Minkowski. In the survey paper [8], the

authors ask for families of polytopes for which volume and mixed

volumes can be computed. We propose alcoved polytopes (as de-

scribed in this paper) for that role, as well as more general alcoved

polytopes (as in [18, 19, 25]). Volumes of matroid polytopes are

introduced in [2]. A lack of concrete non–trivial worked examples

in these papers is filled in by the present paper.

A frequent problem in real algebraic geometry is checkingwhether
a given polynomial is positive on a given semi–algebraic set. This

and related questions were studied by D. Hilbert and H. Minkowski.

The foundational statement is Hilbert 17th problem. An algebraic

method to give an answer to such queries is to show a certificate,
i.e., to express the given polynomial with a formula for which the

positiveness is self–evident.

In classical linear algebra one works with matrices. A linear

map between finite–dimensional spaces is represented by a matrix,

after having fixed bases. Here we do something similar: an alcoved

polyhedra is represented by a matrix. Then we develop a dictionary:
properties of alcoved polyhedra are converted into properties of

matrices, and viceversa. Our matrix–based technique has a big

potential and could be extended to higher dimensions and to alcoved

based on different root systems.

Our main result is the exact volume formula in theorem 4.1. As

application, we show that Mahler conjecture for alcoved centrally

symmetric polyhedra holds true. In this case, the conjecture is

equivalent to the following assertion: the polynomialMC displayed

in p. 7 is non–negative on a certain simplex S ⊆ R3. We show that

this is true, by finding a certificate of non–negativeness ofMC over

S, i.e., we expressMC as a linear combination, with non–negative

coefficients, of products of polynomialsw1,w2,w3,w4 such thatw j
is non–negative on S, all j . Thew j provide equations for the facets

of S.

We work with normal matrices operated tropically. We further

need to impose tropical idempotency on matrices in order to achieve

convexity (alcoved polytopes, in our setting). Without idempotency,

we do not get one convex set, but a complex of such sets. Among

NI matrices, we concentrate on two matrix families: visualized

and symmetric. Visualized matrices are easy to work with because

in them we clearly distinguish two parts: a box matrix and a per-
turbation matrix. Accordingly, the alcoved polyhedron is simply

a perturbed box, where we are able to read off the edge–lengths.

https://doi.org/10.1145/3208976.3208990
https://doi.org/10.1145/3208976.3208990


Symmetric matrices are useful because, as our dictionary shows, an

alcoved polyhedron is symmetric with respect to the origin if and

only if its defining matrix is symmetric.

The oldest known volume formula is Egyptian, found in Problem

14 in the Moscow Mathematical Papyrus (ca. 1850 BC). It expresses

the volume of a frustum of a square pyramid. Later, Piero della

Francesca (s. XVI) and Carnot (s. XVIII) found polynomial expres-

sions with rational coefficients for the square of the volume of a

tetrahedron in terms of the edge–lengths. Both expressions can be

rewritten, obtaining the Cayley–Menger determinantal formula.

Our volume formula has the same flavor, for two reasons. First,

it is a polynomial formula, with rational coeffcients. Second, any

alcoved polyhedron is a tetrahedron, in the sense that it is spanned

(tropically) by four points.

Tropical mathematics (also called Idempotent mathematics or

Max–plusmathematics) is the setting of this paper. There are several

books and paper collections on the subject (with grown branches in

analysis, geometry, algebra, etc.) For algebra, we refer the reader to

[1, 4, 20]. Normal matrices can be traced back to a paper of M. Yoeli

in the 1960’s (under a different name). Lately, they have been used

by Butcovič [4] and thoroughly studied in the thesis [21] (under a

different name). Idempotent tropical matrices have been used in

[14]. Visualized tropical matrices have been used in [23].

Volumes for non–square classical (i.e., non–tropical) matrices

have been introduced in [3].

2 MATRICES WITH TROPICAL OPERATIONS
For n ∈ N, let [n] denote the set {1,2, . . . ,n}. Consider the tropical
semiring (also called max–plus semiring) (R,⊕,⊙), where R := R ∪
{−∞} is the extended real numbers and a ⊕ b = max{a,b} and
a ⊙ b = a +b, a,b ∈ R. The neutral element with respect to tropical
addition ⊕ is −∞, and the neutral element with respect to tropical
multiplication ⊙ is 0. Addition is idempotent, because a ⊕ a =

max{a,a} = a, so that (R,⊕,⊙) is an idempotent semiring or dioid.
LetMn be the set of order n square matrices over R. The tropical
operations are extended to matrices in the standard way. (Mn ,⊕,⊙)
is a semiring.We also addmatrices classically, but we never multiply

them classically. Therefore, we omit the symbol ⊙ between matrices

(for simplicity). For example:

A =

[
1 2

3 4

]
, B =

[
−1 0

−∞ 5

]
, A + B =

[
0 2

−∞ 9

]

A⊕B =

[
1 2

3 5

]
,AB =

[
max{0,−∞} max{1,7}

max{2,−∞} max{3,9}

]
=

[
0 7

2 9

]
.

Definition 2.1. A matrix A = [ai j ] ∈ Mn is normal if aii = 0 and

ai j ≤ 0, all i, j ∈ [n].

Why normal? The matrix [ai j ] ∈ Mn with aii = 0 and ai j = −∞,
for i , j is denoted In . The all–zero matrix is denoted Zn .

A normal matrix A satisfies AZn = Zn = ZnA (but a general

matrix does not). A matrix A is normal if and only if In ≤ A ≤ Zn
if and only if In ≤ A ≤ A2 ≤ A3 ≤ · · · ≤ Zn (since matrix tropical

multiplication is monotonic).

In the setMN
n of normal matrices, notice that In is the identity

for both tropical addition and multiplication inMN
n (but not inMn ).

Restricting to work with normal matrices is advantageous and no

serious limitation. Indeed, every matrix can be normalized (in a non

unique way, using the Hungarian algorithm [17]). Normalization

consists of a translation and a rearrangement of columns. This is

explained below.

Definition 2.2. InMn ,

(1) a matrix D = [di j ] ∈ Mn is diagonal if dii is real and di j =
−∞, if i , j. The inverse of the diagonal matrix D, denoted
D−1, is [ai j ] such that aii = −dii and ai j = −∞, if i , j.

(2) For a permutationσ ∈ Sn , the permutationmatrix Pσ = [ai j ]
is defined by aiσ (i ) = 0, ai j = −∞, otherwise.

Definition 2.3. For a matrix A ∈ Mn , we define

(1) row(A, j ) to be the j–th row of A, and col(A, j ) to be the j–th
column of A, all j ∈ [n],

(2) if row(A,n) is real, then the visualization of A is the matrix

A0 := AD−1, where D is the diagonal D = diag(row(A,n)).
Obviously, row(A0,n) is all–zero.

Visualization has a meaning. Think of the columns of a matrix

A ∈ Mn as n points in n–dimensional space. Consider n parallel

lines passing through these points with directional vector (1, . . . ,1).
Intersect these n lines with the hyperplane {xn = 0} and write the

coordinates of the resulting points as the columns of a matrix. This

matrix is A0. When the matrix is visualized, we have A = A0.

What do we want to see? The set spanA gathers of all tropical

linear combinations of columns of A ∈ Mn

spanA := {λ1 col(A,1) ⊕ · · · ⊕ λn col(A,n) : λ1, . . . ,λn ∈ R}. (1)

Clearly spanA = spanA0 (because columns of A and A0 are pro-

portional).

Normality has a geometric meaning: A is normal if and only if

col(A0, j ) ∈ Rj , all j ∈ [n]. (2)

where the regions

Rj := {x ∈ R
n−1

: 0 ≤ x j and xk ≤ x j , k ∈ [n − 1]}, j ∈ [n − 1],

Rn := {x ∈ Rn−1 : xk ≤ 0, k ∈ [n − 1]}.

provide a closed covering of Rn−1 = ∪nj=1Rj and R
n−1

is identified

with {xn = 0} inside Rn (see figure 1).

Figure 1: Coordinate axes in the plane (left), closed regions
R1,R2,R3 in the plane (center) and coordinate axes in 3–
dimensional space (right).

Definition 2.4. A matrix A ∈ Mn is visualized if A = A0.

Definition 2.5. Given matrices A,D,Pσ ∈ Mn with D diagonal

and Pσ permutation matrix,

(1) the translate of A by D is the matrix DA,
(2) the conjugate of A by D is the matrix

DA := DAD−1,



(3) the matrix APσ is the result of relabeling the columns of A
according to the permutation σ .

In the paragraph prior to definition 2.2, we said that every ma-

trix M ∈ Mn can be normalized. This means that a there exists a

translate DM ofM , and a relabeling of columns DMP of DM , such

that A = DMP satisfies (2).

Definition 2.6. A matrix A = [ai j ] ∈ Mn is idempotent if A2 = A.

Thus, a matrix A is normal idempotent if and only if In ≤ A2 ≤

A ≤ Zn if and only if

aii = 0 and ai j + ajk ≤ aik ≤ 0, all i, j,k ∈ [n]. (3)

LetMN I
n the set of normal idempotent matrices of order n.

Corollary 2.7. Any conjugate DA is normal (resp. idempotent),
whenever A is.

A matrix is symmetric if A = AT , where AT is the classical trans-
posed matrix. LetMSN I

n the set of symmetric normal idempotent

matrices and MV N I
n be the set of visualized normal idempotent

matrices. The only symmetric and visualized normal idempotent

matrix is the zero matrix Zn .
In the rest of paper we work with normal idempotent matrices,

the reason being that they represent alcoved polyhedra.

3 ALCOVED POLYHEDRA FROM NORMAL
IDEMPOTENT MATRICES

In order to study the set spanA ⊂ Rn defined in (1), it is enough

to study its intersection with the hyperplane {xn = 0} (identified

with Rn−1), because both sets determine each other

P (A) := spanA ∩ {xn = 0}. (4)

For a general matrix A ∈ Mn , the set P (A) ⊂ R
n−1

is a polytopal

complex of impure dimension no bigger that n − 1. However, if

A is normal idempotent, then P (A) reduces to just one convex

polytope and this polytope is alcoved (see [5, 6, 13, 15, 18, 19,

23, 25]). In other words, normality and idempotency prevents the

existence of lower dimensional parts in P (A).

Definition 3.1. An alcoved polytope in Rn−1 is a bounded poly-
tope P whose facet equations are of type xi = cnst , and xi − x j =

cnst , i, j ∈ [n − 1]. A box in Rn−1 is a bounded polytope B whose

facet equations are of type xi = cnst , i ∈ [n − 1]. A cube is a box
of equal edge–lengths.

Clearly, the property of being alcoved is preserved by translation.

The simplest alcoved polytopes are boxes. Every alcoved polytope

is a perturbed box, more precisely, it is a canted box. The verb to
cant means to bevel, to form an oblique surface upon something.We

cant edges of boxes, always at an angle of π/4 radians (45 degrees).
To cant an edge in a box means to create a new facet. 45 degrees

is the angle determined by the intersecting planes xi = cnst and
xi − x j = cnst . Note that Assume n = 4, so our box is in R3. Only
six edges of a box are cantable: front top, top left, left back, back

bottom, bottom right and right front. Note that the cantable edges

are arranged in a cycle: ℓ1, ℓ2, . . . , ℓ6 (see figure 2).

For each alcoved polytope P ⊂ Rn−1 we have a preferred trans-
lation; it is vP : Rn−1 → Rn−1 such that the origin O of Rn−1

Figure 2: Cantable edges (in dashed blue lines) in a cube
make a cycle: ℓ1 is front top, ℓ2 is top left, ℓ3 is left back, ℓ4 is
back bottom, ℓ5 is bottom right and ℓ6 is right front. Genera-
tors are marked with big blue dots and labeled 1,2,3,4, indi-
cating the column in A0 each of them is: 1 is bottom right, 2
is bottom back, 3 is top left, 4 is bottom left.

satisfies O = maxvP (P). This is easily achieved matrix–wise, as

the next lemma shows.

Lemma 3.2. For A ∈ MN I
n , the matrix A is visualized if and only

if O = maxP (A).

Proof. We know that P (A) is alcoved. AssumeA = A0 is NI. By

(2) we have col(A0, j ) ∈ Rj ∩ Rn , all j , whence O ∈ P (A) and P (A)
is contained in the non–positive octant Rn . Thus O = maxP (A).
The converse is similar. �

Mahler conjecture deals with centrally symmetric bodies. For

a centrally symmetric alcoved polytope P ⊂ Rn−1, a preferred
translation is sP : Rn−1 → Rn−1 such that O is the center of

symmetry of sP (P). This is easily achieved matrix–wise, as the

next lemma shows.

Lemma 3.3 (Lemma 3 in [13]). For A ∈ MN I
n , the matrix A is

symmetric if and only if −P (A) = P (A) (i.e., O is the center of
symmetry of P (A)).

Example 3.4. Given a column vector t ∈ R4
≤0

with coordinates

(t1,t2,t3,0)
T
, the followingmatrix (easily checked to be idempotent)

is called visualized box matrix

VB (t ) :=



0 t1 t1 t1
t2 0 t2 t2
t3 t3 0 t3
0 0 0 0



∈ MV N I
4
. (5)

A conjugate of VB (t ) is the matrix SB (t ) = DVB (t ), with D =
diag(−t/2)). We have SB (t ) = (ttT )/2 ⊕ I4 = [bi j ], with bii = 0

and bi j = (ti + tj )/2, if i , j . The matrix SB (t ) is called symmetric
box matrix and we easily get

SB (t )0 =



−t1/2 t1/2 t1/2 t1/2
t2/2 −t2/2 t2/2 t2/2
t3/2 t3/2 −t3/2 t3/2

0 0 0 0



. (6)

The polyhedron P (SB (t )) is a box in R3, centered at O , whose
edge–lengths are |t1 |, |t2 |, |t3 |. The polyhedron P (VB (t )) is a trans-
late ofP (SB (t )), satisfyingO = maxP (VB (t )). Note thatminP (VB (t ))
is the vector t .

These boxes are cubes if ti = tj , i , j.



We will work in R3, from now on.

Definition 3.5 (Perturbation). For a visualized normal idempotent

matrix V = [vi j ] ∈ M
V N I
4

, we write B := VB (col(V ,4)) (as in (5))

and E := B −V . The matrix E is called perturbation matrix of V .

By definition, B is a visualized matrix box. We say that V is the

result of perturbing B by E. Similarly, we say that P (B) is the
bounding box of P (V ) (see figure 3).

Notice that a perturbation matrix E is normal visualized, but not

idempotent, in general.

Figure 3: One cant performed on a box. The box is contained
in the non–positive orthant R3. The origin O is marked in
red. Generators, i.e., columns of the defining matrix A = A0

are marked in blue big dots and labeled 1,2,3,4. We haveO =
maxP (A) withA = B−E and ei j = 0 unless (i, j ) = (2,3). Notice
the edge–length |e23 |

√
2.

Definition 3.6 (Cant tuple). For V = B − E ∈ MV N I
4

as in defini-

tion 3.5, the cant tuple of V is c = (c j ) ∈ R
6

≤0
, with c1 := e23,

c2 := e13, c3 := e12, c4 := e32, c5 := e31 and c6 := e21. Set
mj := min{|c j |, |c j+1 |}, Mj := max{|c j |, |c j+1 |}, j ∈ [6] and c7 = c1.
Also set ℓi := |vi4 |, i ∈ [3].

In summary, every alcoved polytope is a perturbed box. A box is

rather degenerate (i.e., non–maximal) alcoved polyhedron.

4 VOLUME OF AN ALCOVED POLYHEDRON
In this section we show that the volume of an alcoved convex

polyhedron P is a cubic homogeneous polynomial in the entries vi j
of a defining matrix V for P, with rational coefficients. Multiplying

by 3! we get integral coefficients.

The volume is a valuation, i.e., vol(P1) + vol(P2) = vol(P1 ∪
P1) + vol(P1 ∩ P2). Further, the volume of P is preserved under

translation, so we can assume that a defining matrix for P is VNI.

Theorem 4.1. For V = [vi j ] ∈ MV N I
4

, take c j ,mj ,Mj , ℓj as in
definition 3.6. Then the volume of the alcoved polytope P (V ) is

volP (V ) = ℓ1ℓ2ℓ3 +
6∑
j=1

m2

jMj

2

−
m3

j

6

−
c2j ℓj

2

. (7)

Proof. Write V = B − E. The volume of the bounding box is

ℓ1ℓ2ℓ3. From this box we remove six right prisms Pj , j ∈ [6]. The
base of prism Pj is a right isosceles triangle legged |c j |. The prisms

Figure 4: TwoprismsP1 (left) andP6 (right) to be intersected.

Figure 5: The wedge P6 ∩ P1.

are organized in a cycle. The intersection of two consecutive prisms

has been removed twice, so it must be added once. We get

volP (V ) = volP (B)−
6∑
j=1

volPj+
∑

j ∈[6] mod 6

vol(Pj∩Pj+1). (8)

Clearly we have volPj =
c2j ℓj
2

, where ℓi = ℓi−3, i = 4,5,6. In

addition, the intersection Pj ∩ Pj+1 is a wedge, (i.e., a prism Pj
from which a tetrahedron T has been removed) (see figures 4 and

5). Thus vol(Pj ∩ Pj+1) = volPj − volT =
m2

jMj

2
−

m3

j
6
. �

After a symmetry of R3 (i.e., a map preserving distances and

angles), each prism Pj is an alcoved polyhedron. The same holds

for the tetrahedron T appearing in the former proof. Tetrahedra as

such have been studied by M. Fiedler, and called Schläfli simplex by

this author. T is a right simplex whose tree of legs is a path (see

[7]).

Example 4.2. We want to compute the volume of the polyhe-

dron P defined by the inequalities −7 ≤ x1 ≤ 1, −6 ≤ x2 ≤ 1,

−5 ≤ x3 ≤ −3,−6 ≤ x1−x2 ≤ 1,−8 ≤ x2−x3 ≤ 3,−1 ≤ x3−x1 ≤ 8.

A defining matrix is A =



0 −6 −8 −7

−1 0 −8 −6

−1 −3 0 −5

−1 −2 −3 0



,which is normal

and idempotent. The conjugate matrix of A by D = diag(row(A,4))

is V = V0 =



0 −5 −6 −8

−2 0 −7 −8

−3 −4 0 −8

0 0 0 0



and P (V ) is a translate of P.

ToV we apply theorem 4.1: we letV = B − E with perturbation ma-

trix E =



0 −3 −2 0

−6 0 −1 0

−5 −4 0 0

0 0 0 0



and cubic box of edge–length 8. The



Figure 6: The polyhedron P in example 4.2. It is a dodeca-
hedron. The generators, i.e., the columns of matrix A0 are
marked with big blue dots and labeled 1,2,3,4.

cant tuple is c = (−1,−2,−3,−4,−5,−6), whencem = (1,2,3,4,5,1),
M = (2,3,4,5,6,6), ℓj = 8, so that

6∑
j=1

m2

jMj

2

=
428

3

,

6∑
j=1

m3

j

6

=
113

3

,

6∑
j=1

c2j ℓj

2

= 364

giving a total value volP = volP (V ) = 512+ 428

3
− 113

3
−364 = 760

3
.

Note that the former polyhedron P is maximal, i.e., its f –vector
is ( f0, f1, f2) = (20,30,12) (see [5, 6, 13, 15]) and P is a dodecahe-

dron. For general n, the number f0 of vertices is bounded above by(
2n−2
n−1

)
, as proved in [6].

5 THE 2–MINORS OF A MATRIX
How do we compute the edge–lengths of the alcoved P (A) from the

entries ai j of A? The answer is easy if the matrix A is VNI: take the

bi j = ai4 and the ei j , for A = B − E, B = [bi j ] box matrix, E = [ei j ]
perturbation matrix (see figure 3). In general, if A is only NI, the

first thing we must do is computing the conjugate matrix V = DA.
In this section we introduce the 2–minors of A and show that

the entries of the conjugate matrix V are certain 2–minors of A.
The same is true for the perturbation matrix E of V .

Definition 5.1. (1) The difference of matrix

[
a b
c d

]
is a+

d − b − c .
(2) The 2–minors of a matrix A = [ai j ] are the differences of

the order 2 submatrices of A. If i, j,k,l ∈ [n], i < j and k < l ,
we write

ai j ;kl := aik + ajl − ail − ajk , and (9)

ai j ;kl = −aji ;kl = −ai j ;lk = aji ;lk . (10)

If i = j or k = l , we write ai j ;kl = 0.

Straightforward computations yield the following.

Lemma 5.2 (Entries of conjugate matrix). Let V = DA =
[vi j ] ∈ MV N I

4
be the conjugate of A = [ai j ] ∈ MN I

4
by D =

diag(row(A,4)) and write V = B − E, with perturbation matrix
E = [ei j ]. Then

vi j = a4i ;i j , ei j = a4i ;j4. (11)

6 SYMMETRY
In this section we show that symmetry is transferred from a matrix

S to the perturbation matrix E of its conjugate
DS , and conversely.

Lemma 6.1 (Conjugation and symmetry). (1) If S ∈ MSN I
4

andV = DS = B−E is the conjugate of S byD = diag(row(S ,4)),
then E is symmetric.

(2) If V = B − E ∈ MV N I
4

with E symmetric, then DV ∈ MSN I
4

,
with D = diag(−v14/2,−v24/2,−v34/2,0).

(3) In either case if, in addition, B is a visualized cube matrix, then
si j = vi j , for i, j ∈ [3].

Proof. From lemma 5.2, S = ST and equalities (10), we get

ei j = s4i ;j4 = sj4;4i = s4j ;i4 = eji , whence E = ET , proving item 1.

For the proof of item 2 write S = DV . We have si j = v ′i j ;j4 if

j ∈ [3], si4 = v
′
i4, where V

′ = [v ′i j ] is an auxiliary matrix such that

v ′i4 = vi4/2 and v
′
i j = vi j , otherwise. Then S = ST follows from

E = ET , S idempotent follows from V idempotent and S normal

follows from S = ST and V normal.

Last, if B is a visualized cube matrix, then vi4 = vj4, for i, j ∈ [3],
whence si j = v

′
i j ;j4 = vi j +vj4/2 −vi4/2 −vj j = vi j , proving item

3. �

Corollary 6.2 (Volume formula for V such that E = ET ).
If V = B − E ∈ MV N I

4
with symmetric E, then

volP (V ) = ℓ1ℓ2ℓ3 +
3∑
j=1

m2

jMj −
m3

j

3

− c2j ℓj . (12)

Proof. We have c j = c j+3,mj =mj+3 andMj = Mj+3. �

7 POLARS AND MAHLER CONJECTURE
Let r ∈ N and p1,p2, . . . ,pr be vectors in Rn . Let ⟨,⟩ denote the

standard inner product. If P = {x ∈ Rn : ⟨x ,pk ⟩ ≤ 1,∀k ∈ [r ]},
then the polar P◦ is defined as conv(p1,p2, . . . ,pr ), the convex hull
of vectors p1,p2, . . . ,pr ; see figure 7. Moreover, if O belongs to the

interior of P, then (P◦)◦ = P.
Let (v1,v2,v3) be the canonical basis in R

3
and let x1,x2,x3 be

coordinates in R3.
We know that a SNImatrix S yields a centrally symmetric alcoved

polyhedron P (S ), by lemma 3.3.

Lemma 7.1 (Polar of a centrally symmetric alcoved poly-

hedron). If S = [si j ] ∈ M
SN I
4

with si j < 0, all i , j, then

(P (S ))◦ = conv

(
±
vi
si4
,±

vi −vj

si j
: i, j ∈ [3],i , j

)
. (13)

Proof. We know that si j = sji ≤ 0. The alcoved polyhedron

P (S ) is defined by si4 ≤ xi ≤ −si4 and si j ≤ xi − x j ≤ −si j , or



equivalently,

−1 ≤
xi
si4
=

〈
x ,

vi
si4

〉
≤ 1 and − 1 ≤

xi − x j

si j
=

〈
x ,
vi −vj

si j

〉
≤ 1,

i, j ∈ [3], i , j, whence the result follows. �

A normal matrix without zeros outside the diagonal (as in the

former lemma) is called strictly normal.

Figure 7: Unit square centered at O and its polar. The origin
is marked in red

8 MAHLER CONJECTURE HOLDS FOR
ALCOVED POLYHEDRA

The Mahler volume product of P is the product vol(P) vol(P◦), by
definition. It is well known that Mahler volume product is invariant

with respect to affine–linear transformations and homotheties. For

a centrally symmetric convex body, the Mahler conjecture is

vol(P) vol(P◦) ≥
4
3

3!

(14)

with equality if and only if P is a box. It dates back to 1938. A

recent survey on the conjecture is [16]; see also [11, 24] and the

bibliography therein. A proof of the conjecture in 3–dimensional

space is announced in [12].

In this section we show that Mahler conjecture holds true, for

centrally symmetric alcoved polyhedra.

First, we compute the volume of the polar of a centrally symmet-

ric alcoved polyhedron P. We write a defining matrix S ∈ MSN I
4

for P and, if V = DS is a conjugate of S , then volP = volP (V ).
Now corollary 6.2 applies toV , because the symmetry is transferred

from S to E = B −V (by item 1 in lemma 6.1).

It is no restriction to assume that P is maximal with respect

to f –vector. Then the matrix S ∈ MSN I
4

satisfies si j , 0, unless

i = j. By affine invariance of the Mahler volume product, we may

assume that the bounding box of P is the unit cube (of edge–length

2), centered at the origin. Further, we may assume that −1 ≤ e12 ≤
e13 ≤ e23 ≤ 0, without loss of generality. Thus, our matrices are

S =



0 −2 − e12 −2 − e13 −1

−2 − e21 0 −2 − e23 −1

−2 − e31 −2 − e31 0 −1

−1 −1 −1 0



(15)

V =



0 −2 − e12 −2 − e13 −2

−2 − e21 0 −2 − e23 −2

−2 − e31 −2 − e32 0 −2

0 0 0 0



(16)

with E = ET . For simplicity of notation, we write x = e23, y = e13
and z = e12, with

− 1 ≤ z ≤ y ≤ x ≤ 0. (17)

The cant sequence is c = (x ,y,z,x ,y,z) andm = ( |x |, |y |, |x |, |x |, |y |, |x |),
M = ( |y |, |z |, |z |, |y |, |z |, |z |). Using formula (12), we get

vol(P) = 8 − x2 (y + z) − y2z +
1

3

(
2x3 + y3

)
− 2

(
x2 + y2 + z2

)
.

(18)

Assume y = x = 0.We get

vol(P|y=x=0) = 8 − 2z2.

Indeed, P|y=x=0 is the unit cube Q (of volume 8) canted by the two

planes of equations

x2 − x1
2 + z

= ±1.

Since the polar of Q is an octahedron, then the polar of P|y=x=0 is

Q◦ with two additional vertices:

±
v2 −v1
2 + z

.

Since both P and P◦ are symmetric, we look at the upper half of

these bodies. There, the plane
x2−x1
2+z = 1 yields a 4–gonal facet in

P, whence the vertex
v2−v1

2+z yields 4 concurrent facets in P◦. The

difference between P◦ and Q◦ is that tetrahedra with vertices 0,

v2−v1

2+z ,v2, ±v3 and tetrahedra with vertices 0,
v2−v1

2+z , −v1, ±v3 have
been added (toQ◦) and tetrahedra with vertices 0,v2,−v1,±v3 have
been removed (fromQ◦). The volume of any of the added tetrahedra

is
1

6(2+z ) and the volume of any of the removed tetrahedra is
1

6
. So,

when passing from Q◦ to P◦, we have a total volume gain of

2

(
4

6(2 + z)
−
2

6

)
=
−2z

3(2 + z)

and we get

vol((Q)◦) =
4

3

, vol((P|y=x=0)
◦) =

4

3

+
−2z

3(2 + z)
.

Assume now x = 0. From (18), we have

vol(P|x=0) = 8 − 2z2 − (2 + z)y2 +
y3

3

.

Indeed, P|x=0 is the unit cube Q canted by the 4 planes of equations

x2 − x1
2 + z

= ±1,
x3 − x1
2 + y

= ±1. (19)

We look at the upper half of P and P◦ and note that two vertices

appear in the polar P◦

v2 −v1
2 + z

,
v3 −v1
2 + y

. (20)

The planes (19) yield a 4–gon and an adjacent 5–gon as facets in P.

Thus, the vertices (20) yield a 4–pyramid and an adjacent 5–pyramid

in P◦. Some computations show that

vol((P|x=0)
◦) =

4

3

+ д(y,z), д(y,z) :=
−3y − 4z − 3yz

3(2 + y) (2 + z)
.

Note that д(0,z) = −2z
3(2+z ) agrees with the case y = x = 0 above.



General case: similar computations show that vol(P◦) = 4

3
+

h(x ,y,z) with h(x ,y,z) := 2/3
(2+x ) (2+y ) +

2/3
(2+y ) (2+z ) +

2/3
(2+z ) (2+x ) +

1/3
2+y +

2/3
2+z − 1 and h(0,y,z) = д(y,z). We have proved

Theorem 8.1. If P ⊂ R3 is the centrally symmetric alcoved poly-
hedron given by the inequalities −1 ≤ x j ≤ 1, j ∈ [3], −2 − z ≤
x1 − x2 ≤ 2+ z, −2− x ≤ x2 − x3 ≤ 2+ x , −2−y ≤ x3 − x1 ≤ 2+y,
then

vol(P◦) =
1

3

+
2/3

(2 + x ) (2 + y)
+

2/3

(2 + y) (2 + z)
+

2/3

(2 + z) (2 + x )
+

1/3

2 + y
+

2/3

2 + z
.

(21)

Proof. P = P (S )with S =



0 −2 − z −2 − y −1

−2 − z 0 −2 − x −1

−2 − y −2 − x 0 −1

−1 −1 −1 0



.

�

Using (18) and (21), and clearing denominators, we transform

Mahler conjecture (14) into the question of whether the below de-

fined polynomialMC is non–negative on the simplex S given by

−1 ≤ z ≤ y ≤ x ≤ 0, where MC =
∑
6

j=1MCj , with MCj homoge-

neous in x ,y,z of degree j:

MC6 = 2x4yz − 3x3y2z − 3x3yz2 + xy4z − 3xy3z2,

MC5 = 8x4y + 6x4z − 12x3y2 − 23x3yz − 9x3z2

−6x2y2z − 6x2yz2

+4xy4 − 15xy3z − 9xy2z2 − 6xyz3 + 2y4z − 6y3z2,

MC4 = 24x4 − 40x3y − 38x3z − 30x2y2 − 66x2yz

−24x2z2 − 12xy3 − 54xy2z

−24xyz2 − 18xz3 + 10y4 − 34y3z − 24y2z2 − 12yz3,

MC3 = −8x
3 − 156x2y − 144x2z − 72xy2 − 72xyz

−72xz2 − 28y3 − 144y2z − 60yz2 − 48z3,

MC2 = −192x
2 − 96xy − 120xz − 192y2 − 144yz − 192z2,

MC1 = −96x − 144y − 192z.

In order to answer the questionMC |S ≥ 0, we consider the poly-

nomials w1 = 1 + z, w2 = y − z, w3 = x − y, w4 = −x , which
determine the simplex S and are non–negative on S. We have

x = −w4, y = −w3 −w4, z = −w2 −w3 −w4 and the relation

1 = w1 +w2 +w3 +w4. (22)

For each j ∈ [6], we computeMCj = 1
6−jMCj = (w1 +w2 +w3 +

w4)
6−jMCj , a degree 6 polynomial, homogeneous in thew ′js , and

we add from 1 to 6, getting the following expression

MC = 192w5

1
w2 + 336w

5

1
w3 + 432w

5

1
w4 + 768w

4

1
w2

2
+ 2112w4

1
w2w3

+2472w4

1
w2w4 + 1152w

4

1
w2

3
+ 2568w4

1
w3w4 + 1224w

4

1
w2

4

+1200w3

1
w3

2
+ 4524w3

1
w2

2
w3 + 5076w

3

1
w2

2
w4

+4824w3

1
w2w

2

3
+ 10440w3

1
w2w3w4 + 4992w

3

1
w2w

2

4

+1528w3

1
w3

3
+ 4896w3

1
w2

3
w4 + 4740w

3

1
w3w

2

4
+ 1380w3

1
w3

4

+912w2

1
w4

2
+ 4392w2

1
w3

2
w3 + 4830w

2

1
w3

2
w4 + 6960w

2

1
w2

2
w2

3

+14850w2

1
w2

2
w3w4 + 7146w

2

1
w2

2
w2

4
+ 4442w2

1
w2w

3

3

+14034w2

1
w2w

2

3
w4 + 13656w

2

1
w2w3w

2

4
+ 4050w2

1
w2w

3

4

+972w2

1
w4

3
+ 4092w2

1
w3

3
w4 + 6072w

2

1
w2

3
w2

4
+ 3702w2

1
w3w

3

4

+774w2

1
w4

4
+ 336w1w

5

2
+ 1980w1w

4

2
w3 + 2160w1w

4

2
w4

+4176w1w
3

2
w2

3
+ 8862w1w

3

2
w3w4 + 4302w1w

3

2
w2

4

+4030w1w
2

2
w3

3
+ 12657w1w

2

2
w2

3
w4 + 12414w1w

2

2
w3w

2

4

+3744w1w
2

2
w3

4
+ 1790w1w2w

4

3
+ 7475w1w2w

3

3
w4 + 11163w1w2w

2

3
w2

4

+6918w1w2w3w
3

4
+ 1482w1w2w

4

4
+ 292w1w

5

3
+ 1534w1w

4

3
w4

+3120w1w
3

3
w2

4
+ 2988w1w

2

3
w3

4
+ 1326w1w3w

4

4
+ 216w1w

5

4

+48w6

2
+ 336w5

2
w3 + 366w

5

2
w4 + 888w

4

2
w2

3
+ 1884w4

2
w3w4

+924w4

2
w2

4
+ 1152w3

2
w3

3
+ 3615w3

2
w2

3
w4 + 3582w

3

2
w3w

2

4

+1098w3

2
w3

4
+ 776w2

2
w4

3
+ 3233w2

2
w3

3
w4 + 4875w

2

2
w2

3
w2

4

+3072w2

2
w3w

3

4
+ 672w2

2
w4

4
+ 256w2w

5

3
+ 1340w2w

4

3
w4

+2752w2w
3

3
w2

4
+ 2682w2w

2

3
w3

4
+ 1218w2w3w

4

4
+ 204w2w

5

4

+32w6

3
+ 204w5

3
w4 + 540w

4

3
w2

4
+ 728w3

3
w3

4
+ 516w2

3
w4

4

+180w3w
5

4
+ 24w6

4
.

This is a certificate of non–negativeness of MC on S, since all the
coefficients are non–negative. The only missing term inMC (as a

homogeneous polynomial inw1,w2,w3,w4) isw
6

1
. This means that

the only real root ofMC is given byw1 = 1 andw2 = w3 = w4 = 0,

equivalently, by x = y = z = 0. This shows that equality is only
attained by boxes, among centrally–symmetric alcoved polyhedra.
We have proved Mahler conjecture for alcoved polyhedra. The con-

jecture also holds for limits of centrally symmetric alcoved polyhe-

dra. �
Inspiration came from [9] and 2.24 in [10], for the former proof.

9 SUMMARY, FINAL REMARKS AND FUTURE
DEVELOPMENTS

We have computed the volume of alcoved polyhedra and we have

verified Mahler conjecture. Geometry tells us that our polyhedron

is a perturbed box, more precisely, a canted box. In general, it is

a dodecahedron with 20 vertices and 30 edges. Our method is to

represent a d–dimensional polytope by a normal idempotent square

matrix of order n = d + 1. Then, geometric questions about the

polytope are answered through matrix computations. We have

worked out the case d = 3. By a translation of the polyhedron, the

vertex having larger coordinates can be moved to the origin. The

corresponding matrix is then visualized, in which case the matrix

splits as a (classical) sum of a box matrix and a perturbation matrix.



The entries of these two matrices are precisely the edge–lengths of

the polyhedron. The volume formula follows from here.

What is specific of our method in dimension 3 is a natural ques-

tion to ask. The particularities of dimensionsd = 2 and 3 are various.

First, we know the f–vectors of maximal alcoved polytopes, which

are (6,6), for d = 2, and (20,30,12) for d = 3. In other words,

we have hexagons, for d = 2, and dodecahedra with 20 vertices

and 30 facets, for d = 3. Second, we know how many cantable

faces are there, and how are they organized. Indeed, for d = 2, we

have two cantable vertices in a rectangle, and for d = 3 we have

a 3–dimensional box with six (out of a total of 30) cantable edges,

ℓ1, ℓ2, . . . , ℓ6, arranged in a topological 1–dimensional sphere or

cycle. At the matrix level, the counterpart are the entries ei j of the
perturbation matrix, organized in a cycle, renamed (c1,c2, . . . ,c6)
and called cant tuple. The cyclic structure is essential for us to

obtain formula 4.1.

What do we know for higher dimensions? For n − 1 = d = 4

we can prove that ( f0, f1, f2, f3) = (70,140,90,20) is the f–vector
of maximal alcoved polytopes (using simplicity and zero Euler

characteristic). However, we only know two entries of this vector

for n − 1 = d > 4, namely, the number of vertices is f0 =
(
2n−2
n−1

)
and the number of facets is fn−1 = n

2 − n, in the alcoved case. We

also know that maximal alcoved polytopes are simple. Which faces

are cantable and how are they arranged?

Another question is whether one can use a similar method to

obtain volume formulas for polytopes arising from other root sys-

tems. Connections with Ehrhart theory could be sought. We do not

have answers yet.

An application of our volume expression is the possibility of

producing a formula for mixed volumes, in the alcoved case. We

will report this in a subsequent paper.

Our second contribution on the volume product lower bound

is a simple proof of Mahler conjecture in a particular case. We are

expectant to learn whether the 67 pages long preprint by Iriyeh and

Shibata provides a correct proof of the conjecture in 3 dimensions.
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