Matrices commuting with a given normal tropical matrix

J. Linde
Dpto. de Algebra
Facultad de Matemáticas
Universidad Complutense
jorgelinde@ucm.es

M.J. de la Puente*
Dpto. de Algebra
Facultad de Matemáticas
Universidad Complutense
mpuente@mat.ucm.es

Phone: 34-91-3944659

AMS class.: 15A80; 14T05.
Keywords and phrases: tropical algebra, commuting matrices, normal matrix, idempotent matrix, alcoved polytope, convexity.

Abstract

Consider the space $M_{n}^{\text {nor }}$ of square normal matrices $X=\left(x_{i j}\right)$ over $\mathbb{R} \cup$ $\{-\infty\}$, i.e., $-\infty \leq x_{i j} \leq 0$ and $x_{i i}=0$. Endow $M_{n}^{\text {nor }}$ with the tropical sum \oplus and multiplication \odot. Fix a real matrix $A \in M_{n}^{\text {nor }}$ and consider the set $\Omega(A)$ of matrices in $M_{n}^{\text {nor }}$ which commute with A. We prove that $\Omega(A)$ is a finite union of alcoved polytopes; in particular, $\Omega(A)$ is a finite union of convex sets. The set $\Omega^{A}(A)$ of X such that $A \odot X=X \odot A=A$ is also a finite union of alcoved polytopes. The same is true for the set $\Omega^{\prime}(A)$ of X such that $A \odot X=X \odot A=X$.

A topology is given to $M_{n}^{\text {nor }}$. Then, the set $\Omega^{A}(A)$ is a neighborhood of the identity matrix I. If A is strictly normal, then $\Omega^{\prime}(A)$ is a neighborhood of the zero matrix. In one case, $\Omega(A)$ is a neighborhood of A. We give an upper bound for the dimension of $\Omega^{\prime}(A)$. We explore the relationship between the polyhedral complexes span $A, \operatorname{span} X$ and $\operatorname{span}(A X)$, when A and X commute. Two matrices, denoted \underline{A} and \bar{A}, arise from A, in connection with $\Omega(A)$. The geometric meaning of them is given in detail, for one example. We produce examples of matrices which commute, in any dimension.

1 Introduction

Let $n \in \mathbb{N}$ and K be a field. Fix a matrix $A \in M_{n}(K)$ and consider $K[A]$, the algebra of polynomial expressions in A. In classical mathematics, the set $\Omega(A)$ of

[^0]matrices commuting with A is well-known: $\Omega(A)$ equals $K[A]$ if and only if the characteristic and minimal polynomials of A coincide. Otherwise, $K[A]$ is a proper linear subspace of $\Omega(A)$; see [27], chap. VII.

In this paper we study the analogous of $\Omega(A)$ in the tropical setting. Moreover, we restrict ourselves to square normal matrices over $\overline{\mathbb{R}}:=\mathbb{R} \cup\{-\infty\}$, i.e., matrices $A=\left(a_{i j}\right)$ with $a_{i i}=0$ and $-\infty \leq a_{i j} \leq 0$, for all i, j. The set of all such matrices, endowed with the tropical operations $\oplus=\max$ and $\odot=+$, is denoted $M_{n}^{n o r}$.

For any $r \in \mathbb{R}_{\leq 0}$, the half-line $[-\infty, r):=\{x:-\infty \leq x<r\}$ is open in $\overline{\mathbb{R}}_{\leq 0}$ with the usual interval topology. A Cartesian product of such half-lines is open in $\overline{\mathbb{R}}_{\leq 0}^{n^{2}-n}$ with the usual product topology. The half-line $(r, 0]:=\{x: r<x \leq 0\}$ is open in $\overline{\mathbb{R}}_{\leq 0}$. A Cartesian product of such half-lines is open in $\overline{\mathbb{R}}_{\leq 0}^{n^{2}-n}$.

The set $M_{n}^{\text {nor }}$ can be identified with $\overline{\mathbb{R}}_{\leq 0}^{n^{2}-n}$ and, via this identification, $M_{n}^{\text {nor }}$ gets a topology. Consider a matrix $X \in M_{n}^{\text {nor }}$ and a subset $V \subseteq M_{n}^{n o r}$. We say that V is a neighborhood of X if there exists an open subset $U \subseteq M_{n}^{n o r}$ such that $X \in U \subseteq V$ (we do not require V to be open).

Let $\Omega(A)$ be the subset of matrices commuting with a given real matrix A, i.e., $X \in M_{n}^{\text {nor }}$ such that $A \odot X=X \odot A$. The tropical analog of $K[A]$ inside $M_{n}^{\text {nor }}$ is the set $\mathcal{P}(A)$ of tropical powers of A. In general, $\Omega(A)$ is larger than $\mathcal{P}(A)$ (see proposition 1).

Our new results are gathered in sections 3, 4 and 5. In section 3 we prove that

$$
\Omega(A)=\bigcup_{w} \Omega_{w}(A)
$$

is a finite union of alcoved polytopes, (see corollary 5). In particular, $\Omega(A)$ is a finite union of convex sets.

Two important subsets of $\Omega(A)$ are

$$
\Omega^{A}(A)=\{X \in \Omega(A): X \odot A=A \odot X=A\}
$$

and

$$
\Omega^{\prime}(A)=\{X \in \Omega(A): X \odot A=A \odot X=X\}
$$

Both are finite unions of alcoved polytopes (see theorems 9 and 12). Moreover, $\Omega^{A}(A)$ is a neighborhood (not necessarily open) of the identity matrix I. If A is strictly normal, then $\Omega^{\prime}(A)$ is a neighborhood of the zero matrix 0 (see propositions 7 and 8).

The study of $\Omega^{A}(A)$ and $\Omega^{\prime}(A)$ lead us to two matrices arising from A, denoted \underline{A} and \bar{A}, and we prove

$$
\underline{A} \leq A \leq \bar{A}
$$

(see proposition 17). Moreover, $X \leq \underline{A}$ is a necessary condition for $A \odot X=$ $X \odot A=A$, and $\bar{A} \leq X$ is a necessary condition for $A \odot X=X \odot A=$ X (see corollary 15). This provides an upper bound for the dimension of $\Omega^{\prime}(A)$ (see corollary 16). The matrix \underline{A} is explicitly given in expression (19), while the definition and computation of \bar{A} is more involved (see definition 14).

In section 4 we study some instances of commutativity of matrices under perturbations. Theorem 20 is an easy way to produce two real matrices in $M_{n}^{\text {nor }}$ which commute. Another way to obtain two such matrices is given in theorem 22. The geometry is different in both instances: in the first case, the polyhedral complexes (i.e., tropical column spans) associated to the matrices are convex, but not so in the second. Under certain hypothesis we prove that $\Omega(A)$ is a neighborhood of A (see corollary 21).

Section 5 has an exploratory nature. We examine the relationship among the complexes span A, span B, $\operatorname{span}(A B)$ and $\operatorname{span}(B A)$ when commutativity is present or absent. In addition, the geometric meaning of the matrices \underline{A}, A and \bar{A} is given in full detail, for one example in the paper. We believe that classical convexity of span A depends on the matrices \underline{A} and \bar{A}. We suspect that this is related to the question of commutativity. We leave two open questions in pages p. 15 and 20.

Alcoved polytopes play a crucial role in this paper. By definition, a polytope \mathcal{P} in \mathbb{R}^{n-1} is alcoved if it can be described by inequalities $c_{i} \leq x_{i} \leq b_{i}$ and $c_{i k} \leq$ $x_{i}-x_{k} \leq b_{i k}$, for some $i, k \in[n-1], i \neq k$, and $c_{i}, b_{i}, c_{i k}, b_{i k} \in \mathbb{R} \cup\{ \pm \infty\}$. They are classically convex sets. Alcoved polytopes have been studied in [22, 23]. In connection with tropical mathematics, they appeared in [17, 18, 19, 29, 36]. Kleene stars are matrices A such that $A=A^{*}$, where $*$ is the so-called Kleene operator. Alcoved polytopes and Kleene stars are closely related notions; see [29, 32, 33]. See also [10] for tropical convexity issues.

By definition, a matrix $A=\left(a_{i j}\right)$ over $\overline{\mathbb{R}}$ is normal if $a_{i i}=0$ and $-\infty \leq a_{i j} \leq$ 0 , for all i, j. It is strictly normal if, in addition, $-\infty \leq a_{i j}<0$, for all $i \neq j$. There are FOUR REASONS for us to restrict to normal matrices. First, it is not all too restrictive. Indeed, by the Hungarian Method (see [5, 6, 21, 26]), for every matrix A there exist a (not unique) similar matrix N which is normal. In practice, this means that by a relabeling of the columns of A and a translation, any A can be assumed to be normal. Second, normality of A has a clear geometric meaning in \mathbb{R}^{n-1}. Consider the alcoved polytope

$$
C_{A}:=\left\{x \in \mathbb{R}^{n-1}: \begin{array}{c}
a_{i n} \leq x_{i} \leq-a_{n i} \tag{1}\\
a_{i k} \leq x_{i}-x_{k} \leq-a_{k i}
\end{array} ; 1 \leq i \neq k \leq n-1\right\} .
$$

Then, A is normal if and only if the zero vector belongs to C_{A} and the columns of the matrix A_{0} (see definition in p . 5), viewed as points in \mathbb{R}^{n-1}, lie around the zero vector and are listed in a predetermined order (and this order is a kind of orientation
in \mathbb{R}^{n-1}); see [29] and also [14, 15, 16]. Third, when computing examples, normal matrices are easy to handle, due to inequalities (2). Fourth and last, normal matrices satisfy many max-plus properties (e.g., they are strongly definite; see $[6,7]$).

Some aspects of commutativity in tropical algebra (also called max-plus algebra or max-algebra) have been addressed earlier. It is known that two commuting matrices have a common eigenvector; see [7], sections 4.7, 5.3.5 and 9.2.2. In [20] it is proved that the critical digraphs of two commuting irreducible matrices have a common node.

2 Background and notations

For $n \in \mathbb{N}$, set $[n]:=\{1,2, \ldots, n\}$. Let $\mathbb{R}_{\leq 0}, \mathbb{R}_{\geq 0}, \overline{\mathbb{R}}_{\leq 0}$, etc. have the obvious meaning. On $\overline{\mathbb{R}}_{\leq 0}$, i.e., on the closed unbounded half-line $[-\infty, 0]$, we consider the interval topology: an open set in $[-\infty, 0]$ is either a finite intersection or an arbitrary union of sets of the form $[-\infty, a)$ or $(b, 0]$, with $-\infty<a, b<0$.
$\oplus=\max$ is the tropical sum and $\odot=+$ is the tropical product. For instance, $3 \oplus(-7)=3$ and $3 \odot(-7)=-4$. Define tropical sum and product of matrices following the same rules of classical linear algebra, but replacing addition (multiplication) by tropical addition (multiplication). Consider order n square matrices. The tropical multiplicative identity is $I=\left(\alpha_{i j}\right)$, with $\alpha_{i i}=0$ and $\alpha_{i j}=-\infty$, for $i \neq j$. The zero matrix is denoted 0 (every entry of it is null). We will never use classical multiplication of matrices; thus $A \odot X$ will be written $A X$, for matrices A, X, for simplicity.

If $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ are matrices of the same order, then $A \leq B$ means $a_{i j} \leq b_{i j}$, for all i, j.

By definition, a square matrix $A=\left(a_{i j}\right)$ over $\overline{\mathbb{R}}$ is normal if $a_{i i}=0$ and $-\infty \leq a_{i j} \leq 0$, for all i, j. Thus, A is normal if and only if $I \leq A \leq 0$. Let us define A^{0} to be the identity matrix I. So we have

$$
\begin{equation*}
I=A^{0} \leq A \leq A^{2} \leq A^{3} \leq \cdots \leq 0 \tag{2}
\end{equation*}
$$

since tropical multiplication by any matrix is monotonic (because it amounts to computing certain sums and maxima). By a theorem of Yoeli's (see [37]), we have $A^{n-1}=A^{n}=A^{n+1}=\cdots$ and we denote this matrix by A^{*} and call it the Kleene star of A. A matrix A is a Kleene star if $A=A^{*}$.

A normal matrix A is strictly normal if $a_{i j}<0$, whenever $i \neq j$.
Let $M_{n}^{\text {nor }}$ denote the family of order n normal matrices over $\overline{\mathbb{R}}$. It is in bijective correspondence with $\overline{\mathbb{R}}_{\leq 0}^{n^{2}-n}$. We consider the product interval topology on $\overline{\mathbb{R}}_{\leq 0}^{n^{2}-n}$.

The bijection carries this topology onto $M_{n}^{\text {nor }}$. The border of $M_{n}^{\text {nor }}$ is the set of matrices A such that $a_{i j}=0$ or $-\infty$, for some $i \neq j$.

We will write the coordinates of points in \mathbb{R}^{n} in columns. Let $A \in \mathbb{R}^{n \times m}$ and denote by $a_{1}, \ldots, a_{m} \in \mathbb{R}^{n}$ the columns of A. The (tropical column) span of A is, by definition,

$$
\begin{align*}
\operatorname{span} A:= & \left\{\left(\mu_{1} \odot a_{1}\right) \oplus \cdots \oplus\left(\mu_{m} \odot a_{m}\right) \in \mathbb{R}^{n}: \mu_{1}, \ldots, \mu_{m} \in \mathbb{R}\right\} \tag{3}\\
& =\max \left\{\mu_{1} u+a_{1}, \ldots, \mu_{m} u+a_{m}: \mu_{1}, \ldots, \mu_{m} \in \mathbb{R}\right\}
\end{align*}
$$

where $u=(1, \ldots, 1)^{t}$ and maxima are computed coordinatewise. We will never use classical linear spans in this paper. Clearly, the set span A is closed under classical addition of the vector μu, for $\mu \in \mathbb{R}$, since $\odot=+$. Therefore, the hyperplane section $\left\{x_{n}=0\right\} \cap \operatorname{span} A$ determines span A completely. The set $\left\{x_{n}=0\right\} \cap$ span A is a connected polyhedral complex of impure dimension $\leq n-1$ and it is not convex, in general. Let A be normal. Then span $A=C_{A}$ in (1) (and so it is convex) if and only if A is a Kleene-star; see [29, 32]. Throughout the paper, we will identify the hyperplane $\left\{x_{n}=0\right\}$ inside \mathbb{R}^{n} with \mathbb{R}^{n-1}. In particular, columns of order n matrices having zero last row are considered as points in \mathbb{R}^{n-1}.

For any $d \in \mathbb{R}^{n}$, diag d denotes the square matrix whose diagonal is d and is $-\infty$ elsewhere.

For any real matrix A, the matrix A_{0} is defined as the tropical product

$$
\begin{equation*}
A \operatorname{diag}(-\operatorname{row}(A, n)) \tag{4}
\end{equation*}
$$

Thus, the j-th column of A_{0} is a tropical multiple of the corresponding column of A (i.e., the j-th column of A_{0} is the sum of the vector $-a_{n j} u$ and the j-th column of A). The last row of A_{0} is zero. Therefore, the matrix A_{0} is used to draw the complex $\left\{x_{n}=0\right\} \cap \operatorname{span} A$ inside \mathbb{R}^{n-1}. The sets span A and $\left\{x_{n}=0\right\} \cap \operatorname{span} A$ determine each other.

The simplest objects in the tropical plane $\overline{\mathbb{R}}^{2}$ are lines. Given a tropical linear form

$$
p_{1} \odot X \oplus p_{2} \odot Y \oplus p_{3}=\max \left\{p_{1}+X, p_{2}+Y, p_{3}\right\}
$$

a tropical line consists of the points $(x, y)^{t}$ where this maximum is attained, at least, twice. Such twice-attained-maximum condition is the tropical analog of the classical vanishing point set. Denote this line by L_{p}, where $p=\left(p_{1}, p_{2}, p_{3}\right) \in \mathbb{R}^{3}$. Lines in the tropical plane are tripods. Indeed, L_{p} is the union of three rays meeting at point $\left(p_{3}-p_{1}, p_{3}-p_{2}\right)^{t}$, in the directions west, south and north-east. The point is called the vertex of L_{p}.

Take $p=0$. The line L_{0} splits the plane $\overline{\mathbb{R}}^{2}$ into three closed sectors $S_{1}:=\{x \geq$ $0, x \geq y\}, S_{2}:=\{x \leq y, y \geq 0\}$ and $S_{3}:=\{x \leq 0, y \leq 0\}$. An order 3 real
matrix A is normal if and only if (omitting the last row in A_{0}, which is zero) each column of A_{0} lies in the corresponding sector i.e., $\operatorname{col}\left(A_{0}, j\right) \in S_{j}$, for $j=1,2,3$. For instance, consider the normal matrix B and take B_{0} in example 11, figure 3 top centre, p. 20. Notice that $(5,1)^{t} \in S_{1},(-3,0)^{t} \in S_{2}$ and $(-1,-6)^{t} \in S_{3}$. An analogous statement holds for $\overline{\mathbb{R}}^{n-1}$ and order n matrices. See $[3,4,11,12,13,24$, $25,30,34]$ for an introduction to tropical geometry. See [1, 2, 5, 7, 8, 9, 35, 38] for an introduction to tropical (or max-plus) algebra.

3 Normal matrices which commute with A

The set $M_{2}^{n o r}$ is commutative, since $A B=B A=A \oplus B$, for any $A, B \in M_{2}^{n o r}$. Thus, we will study the set

$$
\begin{equation*}
\Omega(A):=\left\{X \in M_{n}^{\text {nor }}: A X=X A\right\}, \tag{5}
\end{equation*}
$$

for a real matrix $A \in M_{n}^{n o r}$ and $n \geq 3$.
If $A \in M_{n}^{n o r}$ is real and $\lambda \in \mathbb{R}$, then $\lambda \odot A=\lambda u+A$ is normal if and only if $\lambda=0$, where u denotes the order n one matrix. Together with (2), this means that the tropical analog of $K[A]$ inside $M_{n}^{n o r}$ is the set of powers of A together with the zero matrix

$$
\begin{equation*}
\mathcal{P}(A):=\left\{I=A^{0}, A, A^{2}, \ldots, A^{n-1}=A^{*}, 0\right\} . \tag{6}
\end{equation*}
$$

For $A \in M_{n}^{n o r}$ real, set

$$
\begin{equation*}
m(A):=\min _{i, j \in[n]} a_{i j}=\min _{i \neq j \in[n]} a_{i j} \in \mathbb{R}_{\leq 0}, \quad M(A):=\max _{i \neq j \in[n]} a_{i j} \in \mathbb{R}_{\leq 0} \tag{7}
\end{equation*}
$$

For each $r \in \mathbb{R}$, and $i, j \in[n], i \neq j$, let $E_{i j}(r) \in M_{n}^{n o r}$ denote the matrix whose (i, j) entry equals r, being zero everywhere else. For a generic $A \in M_{n}^{n o r}$ the matrix $E_{i j}(r)$ is not a power of A.

The following proposition shows that, in general, $\Omega(A)$ is larger than $\mathcal{P}(A)$.
Proposition 1. For any real $A \in M_{n}^{\text {nor }}$ there exist $\epsilon>0$ and $i, j \in[n]$ with $i \neq j$ such that $E_{i j}(-\epsilon) \in \Omega(A)$.

Proof. Fix i, j and ϵ. We have $A E_{i j}(-\epsilon)=E_{i j}(\alpha)$ and $E_{i j}(-\epsilon) A=E_{i j}(\beta)$, where
$\alpha=\max \left\{a_{i 1}, \ldots, a_{i, i-1},-\epsilon, a_{i, i+1}, \ldots, a_{i n}\right\}$ and
$\beta=\max \left\{a_{1 j}, \ldots, a_{j-1, j},-\epsilon, a_{j+1, j}, \ldots, a_{n j}\right\}$.
If $a_{i j}=0$, then $\alpha=\beta=a_{i j}=0$, whence $A E_{i j}(-\epsilon)=E_{i j}(-\epsilon) A=0$.
Assume now that A is strictly normal. Then $M(A)<0$. For any ϵ with $M(A)<-\epsilon<0$ and any $i \neq j$, we have $\alpha=\beta=-\epsilon$, whence $A E_{i j}(-\epsilon)=$ $E_{i j}(-\epsilon) A=E_{i j}(-\epsilon)$.

Let W_{n} be the set of empty-diagonal order n matrices with entries in $[n]^{2}$ (the diagonal is irrelevant in these matrices). Each $w \in W_{n}$ is called a winning position or a winner. Set

$$
\left.\begin{array}{rl}
\Omega_{w}(A):=\{X \in \Omega(A): & (A X)_{i j}
\end{array}=a_{i, w(i, j)_{1}}+x_{w(i, j)_{1}, j}=, ~ f o r ~ i, j \in[n], i \neq j\right\} .
$$

Example 2. Consider

$$
A=\left[\begin{array}{rrrr}
0 & -4 & -6 & -3 \\
-6 & 0 & -4 & -3 \\
-3 & -6 & 0 & -3 \\
-6 & -3 & -3 & 0
\end{array}\right], \quad B=\left[\begin{array}{rrrr}
0 & -4 & -4 & -6 \\
-2 & 0 & -3 & -4 \\
-5 & -6 & 0 & -5 \\
-6 & -5 & -2 & 0
\end{array}\right]
$$

Then

$$
A B=B A=\left[\begin{array}{rrrr}
0 & -4 & -4 & -3 \\
-2 & 0 & -3 & -3 \\
-3 & -6 & 0 & -3 \\
-5 & -3 & -2 & 0
\end{array}\right]
$$

so that $B \in \Omega_{w}(A)$ with

$$
w=\left[\begin{array}{llll}
& (1,1) & (1,3) & (4,1) \\
(2,1) & & (2,3) & (4,2) \\
(1,3) & (2,2) & & (4,3) \\
(2,3) & (2,4) & (4,3) &
\end{array}\right]
$$

Example 3. For any real $A \in M_{n}^{\text {nor }}$,

- if tr denotes the transposition operator, then $I \in \Omega_{\mathrm{tr}}(A)$,
- if id denotes the identity operator, then $0, A^{*} \in \Omega_{\mathrm{id}}(A)$.

Proposition 4. For any real $A \in M_{n}^{n o r}, \Omega_{w}(A)$ is an alcoved polytope.
Proof. Fix $i, j \in[n], i \neq j$. Then (8) means that

$$
\begin{equation*}
a_{i, w(i, j)_{1}}+x_{w(i, j)_{1}, j}=x_{i, w(i, j)_{2}}+a_{w(i, j)_{2}, j} \tag{9}
\end{equation*}
$$

and the following $2 n-2$ inequalities hold

$$
\begin{align*}
a_{i s}+x_{s j} & \leq a_{i, w(i, j)_{1}}+x_{w(i, j)_{1}, j}, \text { for } s \neq w(i, j)_{1}, \tag{10}\\
x_{i t}+a_{t j} & \leq x_{i, w(i, j)_{2}}+a_{w(i, j)_{2}, j}, \text { for } t \neq w(i, j)_{2} \tag{11}
\end{align*}
$$

Equalities and inequalities (9), (10) and (11) show that $X \in \Omega_{w}(A)$ if and only if $X=\left(x_{i j}\right)$ belongs to certain alcoved polytope in $\overline{\mathbb{R}}_{\leq 0}^{n^{2}-n} \simeq M_{n}^{\text {nor }}$.

Remark 1: Given a winner w, if there exist $i, j, s, t \in[n]$ with $i \neq j$ and $s \neq t$ such that
$(i, j) \neq(s, t) \neq(j, i), \quad w(i, j)=(s, t), \quad w(s, t)=(i, j), \quad a_{i s}+a_{s i} \neq a_{j t}+a_{t j}$,
then $\Omega_{w}(A)$ is empty. Indeed, by (9), the following two parallel hyperplanes

$$
a_{i s}+x_{s j}=x_{i t}+a_{t j}, \quad a_{s i}+x_{i t}=x_{s j}+a_{j t}
$$

take part in the description of $\Omega_{w}(A)$.
For instance, back to A in example 2, if $\tau \in W_{n}$ is such that $\tau(1,3)=(2,4)$ and $\tau(2,4)=(1,3)$, then $\Omega_{\tau}(A)=\emptyset$, because $a_{12}+a_{21}=-10 \neq a_{34}+a_{43}=-6$.

Remark 2: Given a winner w and $i, j \in[n], i \neq j$, if

$$
\begin{equation*}
w(i, j)=(i, j) \text { or } w(i, j)=(j, i) \tag{13}
\end{equation*}
$$

then equality (9) is tautological. In particular,

$$
\begin{equation*}
\operatorname{dim} \Omega_{w}(A) \leq n^{2}-n-\operatorname{card} P_{w}^{c} \tag{14}
\end{equation*}
$$

where $P_{w}:=\{(i, j): 1 \leq i<j \leq n$ with $w(i, j)=(i, j)$ or $w(i, j)=(j, i)\}$ and ${ }^{c}$ denotes complementary.

Example 2. (Continued) For w, the pairs which do not satisfy (13) are $w(1,2)=$ $(1,1), w(3,2)=(2,2)$ and $w(4,1)=(2,3)$, so that $P_{w}^{c}=\{(1,2),(3,2),(4,1)\}$. It follows that $x_{12}=-4, x_{32}=-6$ and $x_{21}=x_{43}$ are some of the equations describing $\Omega_{w}(A)$. Besides, condition (12) is satisfied for no pairs, whence

$$
0<\operatorname{dim} \Omega_{w}(A) \leq 16-4-3=9
$$

Clearly,

$$
\begin{equation*}
\Omega(A)=\bigcup_{w \in W_{n}} \Omega_{w}(A) \tag{15}
\end{equation*}
$$

and the set W_{n} is finite, whence the following corollary is a straightforward consequence of proposition 4.

Corollary 5. For any real $A \in M_{n}^{n o r}, \Omega(A)$ is a finite union of alcoved polytopes.

The sets $\Omega_{w}(A)$ are not too natural. On the contrary, the sets $\Omega^{S}(A)$ described below are more natural but harder to study. For any $S \in M_{n}^{\text {nor }}$, let

$$
\begin{equation*}
\Omega^{S}(A):=\{X \in \Omega(A): X A=A X=S\} \tag{16}
\end{equation*}
$$

so that

$$
\begin{equation*}
\Omega(A)=\bigcup_{S \in M_{n}^{n o r}} \Omega^{S}(A) \tag{17}
\end{equation*}
$$

is a disjoint union. For instance, $B \in \Omega^{S}(A)$, for $S:=B A$ in example 2. We also consider the set

$$
\begin{equation*}
\Omega^{\prime}(A):=\{X \in \Omega(A): X A=A X=X\} \tag{18}
\end{equation*}
$$

It is immediate to see that

1. $A^{j-1} \in \Omega^{A^{j}}(A)$, for $j \in[n]$. In particular, $I=A^{0} \in \Omega^{A}(A)$, i.e., $A I=$ $I A=A$.
2. $A^{*} \in \Omega^{\prime}(A)$, i.e., $A A^{*}=A^{*} A=A^{*}$.
3. $0 \in \Omega^{\prime}(A)$, i.e., $A 0=0 A=0$.

Proposition 6. For any real $A, B \in M_{n}^{n o r}$, if that $A^{n-2} \leq B \leq A^{*}$, then $B \in$ $\Omega^{A^{*}}(A)$.

Proof. $A^{n-1}=A^{n}=A^{n+1}=\cdots=A^{*}$, by Yoeli's theorem, and left or right multiplication by A is monotonic, so that $A^{n-2} \leq B \leq A^{*}$ implies $A^{*} \leq A B \leq A^{*}$ and $A^{*} \leq B A \leq A^{*}$.

Recall $m(A)$ and $M(A)$ defined in (7). Recall the topology in $M_{n}^{\text {nor }}$, defined in p. 2.

For $r \in \overline{\mathbb{R}}$, denote by $K(r)=\left(\alpha_{i j}\right)$ the constant matrix such that $\alpha_{i i}=0$ and $\alpha_{i j}=r$, for all $i \neq j$. For instance, $I=K(-\infty)$ and $0=K(0)$.

Proposition 7. For any real $A \in M_{n}^{n o r}$, if $I \leq B \leq K(m(A))$, then $B \in \Omega^{A}(A)$. In particular, $\Omega^{A}(A)$ is a neighborhood of the identity matrix I.

Proof. The hypothesis $I \leq B \leq K(m(A))$ means that B is normal and $b_{i j} \leq$ $m(A)$, for all $i \neq j$.

If $i \neq j$, we have $(A B)_{i j}=\max _{k \in[n]} a_{i k}+b_{k j}=a_{i j}$, since $a_{i k}+b_{k j} \leq a_{i k}+$ $m(A) \leq m(A) \leq a_{i j}$, when $k \neq j$, and $a_{i j}+b_{j j}=a_{i j}$. Similarly, $(B A)_{i j}=a_{i j}$. This shows $A B=B A=A$, so that $B \in \Omega^{A}(A)$.

The value $m(A)$ defined in (7) is real. The set $U=\{B: I \leq B<K(m(A))\}$ is in bijective correspondence with the Cartesian product of half-lines $[-\infty, m(A))^{n^{2}-n}$, which is open. Moreover, $I \in U \subseteq \Omega^{A}(A)$, proving the neighborhood condition.

Notice that $m(A)$ equals $-\| \| A\| \|$, as defined in [29]. There, it is proved that $\|\|A\|\|$ is the (tropical) radius of the section $\left\{x_{n}=0\right\} \cap \operatorname{span} A$, i.e., the maximal tropical distance to the zero vector, from any point on $\left\{x_{n}=0\right\} \cap \operatorname{span} A$. This conveys a geometrical meaning to proposition 7 .

Proposition 8. Suppose that $A \in M_{n}^{\text {nor }}$ is real and strictly normal. If B is such that $K(M(A)) \leq B \leq 0$, then $B \in \Omega^{\prime}(A)$. In particular, $\Omega^{\prime}(A)$ is a neighborhood of the zero matrix 0 .

Proof. We have $M(A)<0$, by strict normality. The hypothesis on $B=\left(b_{i j}\right)$ means that $M(A) \leq b_{i j}$, for every $i, j \in[n]$ with $i \neq j$.

For $i \neq j$, we get $(A B)_{i j}=\max _{k \in[n]} a_{i k}+b_{k j}=b_{i j}$, since $a_{i k}+b_{k j} \leq M(A)+$ $b_{k j} \leq M(A) \leq b_{i j}$, when $k \neq i$, and $a_{i i}+b_{i j}=b_{i j}$. Similarly, $(B A)_{i j}=b_{i j}$. This shows $A B=B A=B$, so that $B \in \Omega^{\prime}(A)$.

The set $U=\{B: K(M(A))<B \leq 0\}$ is in bijective correspondence with the Cartesian product of half-lines $(M(A), 0]^{n^{2}-n}$, which is open. Moreover, $0 \in U \subseteq$ $\Omega^{\prime}(A)$, proving the neighborhood condition.

Note that the former proposition is analogous to proposition 7, with the zero matrix playing the role of the identity matrix.

Below we describe the sets $\Omega^{A}(A)$ and $\Omega^{\prime}(A)$ as finite union of alcoved polytopes. In order to do so, for $i \in[n]$, consider the matrices

- $R_{A}^{i}=\left(r_{k j}^{i}\right)$, with $r_{k j}^{i}=a_{i j}-a_{i k}$ (difference in i-th row; subscripts k, j get inverted),
- $C_{A}^{i}=\left(c_{k j}^{i}\right)$, with $c_{k j}^{i}=a_{k i}-a_{j i}$ (difference in i-th column; subscripts k, j don't get inverted).

Let \oplus^{\prime} denote min. Write $R:=\bigoplus_{i \in[n]}^{\prime} R_{A}^{i}$ and $C:=\bigoplus_{i \in[n]}^{\prime} C_{A}^{i}$ and consider

$$
\begin{equation*}
\underline{A}:=R \oplus^{\prime} C=A \oplus^{\prime} R \oplus^{\prime} C \tag{19}
\end{equation*}
$$

the last equality being true since $r_{i j}^{i}=a_{i j}$ and $c_{k j}^{j}=a_{k j}$, by normality of A. Clearly, $\underline{A} \leq A$ and \underline{A} is real and normal, if A is.

Notation: $(\leftarrow, \underline{A}]:=\left\{X \in M_{n}^{n o r}: X \leq \underline{A}\right\}$. This is an alcoved polytope of dimension $n^{2}-n$.

Theorem 9. For any real $A \in M_{n}^{\text {nor }}, \Omega^{A}(A)$ is a finite union of alcoved polytopes. Moreover,

$$
\Omega_{\mathrm{tr}}(A) \subseteq \Omega^{A}(A) \subseteq(\leftarrow, \underline{A}]
$$

Proof. $A X=X A=A$ if and only if

$$
\begin{equation*}
\max _{k \in[n]} a_{i k}+x_{k j}=a_{i j}, \quad \max _{k \in[n]} x_{i k}+a_{k j}=a_{i j}, \text { for } i, j \in[n], i \neq j \tag{20}
\end{equation*}
$$

Now, for each $X=\left(x_{i j}\right) \in \Omega^{A}(A)$ there exists some winner w_{X} such that, for each pair (i, j) with $i \neq j$, the maxima in (20) are attained at $w_{X}(i, j)$. Since W_{n} is finite, then (20) describe a finite union of alcoved polytopes in the variables $x_{i j}$. Moreover, $X \leq \underline{A}$ follows from (19) and (20). In addition, the maxima in (20) are attained, at least, for the transposition operator. Therefore, $\Omega_{\operatorname{tr}}(A) \subseteq \Omega^{A}(A)$.

Algorithm 10. To compute \underline{A}, we proceed as follows: for $1 \leq i<j \leq n$,

- compute the minimum and maximum of $\operatorname{row}(A, i)-\operatorname{row}(A, j)$, denoted $\operatorname{mr}_{i j}$ and $\mathrm{MR}_{i j}$, respectively,
- compute the minimum and maximum of $\operatorname{col}(A, i)-\operatorname{col}(A, j)$, denoted $\mathrm{mc}_{i j}$ and $\mathrm{MC}_{i j}$, respectively,
- $\underline{A}_{i j}=\min \left\{a_{i j}, \mathrm{mr}_{i j},-\mathrm{MC}_{i j}\right\}$,
- $\underline{A}_{j i}=\min \left\{a_{j i},-\mathrm{MR}_{i j}, \mathrm{mc}_{i j}\right\}$.

A sorting algorithm is needed to compute $\mathrm{mr}_{i j}, \mathrm{mc}_{i j}, \mathrm{MR}_{i j}, \mathrm{MC}_{i j}$. For instance, Mergesort has $O(n \log n)$ complexity, whence the complexity of the computation of \underline{A} is $O\left(n^{3} \log n\right)$.

Example 11. For

$$
B=\left[\begin{array}{rrr}
0 & -3 & -1 \tag{21}\\
-4 & 0 & -6 \\
-5 & 0 & 0
\end{array}\right] \text { we get } \underline{B}=\left[\begin{array}{rrr}
0 & -3 & -3 \\
-5 & 0 & -6 \\
-5 & -2 & 0
\end{array}\right]
$$

On the other hand, for A in example 2, we get $A=\underline{A}$.
Notation: $[A, \rightarrow):=\left\{X \in M_{n}^{n o r}: A \leq \underline{X}\right\}$. It is an alcoved polytope, since the definition of \underline{X} involves differences $x_{i j}-x_{k l}$ of two entries.

The proof of the theorem below is similar to the proof of theorem 9. Alternatively, theorem 12 is a corollary of theorem 9 , using that $X \in \Omega^{A}(A)$ if and only if $A \in \Omega^{\prime}(X)$.

Theorem 12. For any real $A \in M_{n}^{n o r}, \Omega^{\prime}(A)$ is a finite union of alcoved polytopes. Moreover,

$$
\Omega_{\mathrm{id}}(A) \subseteq \Omega^{\prime}(A) \subseteq[A, \rightarrow)
$$

The sets $(\leftarrow, \underline{A}]$ and $[A, \rightarrow)$ are alcoved polytopes, but $[A, \rightarrow)$ is trickier than $(\leftarrow, \underline{A}]$. We can compute a tight description of any of them, as explained in [29]. It goes as follows. For any $m \in \mathbb{N}$, any real matrix $H \in M_{m}^{n o r}$ yields the alcoved polytope C_{H} (see (1)), and it turns out that $C_{H}=C_{H^{*}}$. Moreover, the description of this convex set given by H^{*} is tight.

Example 11. (Continued) Let us compute a tight description of $\underline{[B, \rightarrow)}$, for B in (21). The matrix \underline{X} is defined in (19) and we have $B \leq \underline{X}$ if and only if

$$
\begin{array}{rlrl}
-3 & \leq x_{12} & -6 & \leq x_{23} \\
-3 & \leq x_{32}-x_{31} & & -6 \leq x_{13}-x_{12} \\
-3 & \leq x_{13}-x_{23} & -6 & \leq x_{21}-x_{31} \\
-1 & \leq x_{13} & -5 & \leq x_{31} \\
-1 & \leq x_{23}-x_{21} & -5 & \leq x_{21}-x_{23} \\
-1 & \leq x_{12}-x_{32} & -5 & \leq x_{32}-x_{12} \\
-4 & \leq x_{21} & 0 & \leq x_{32} \\
-4 & \leq x_{31}-x_{32} & 0 & \leq x_{12}-x_{13} \\
-4 & \leq x_{23}-x_{13} & & 0
\end{array}
$$

Now, in order to write down the matrix H, we perform a relabeling of the unknowns; for instance:

$$
y_{1}=x_{12}, y_{2}=x_{13}, y_{3}=x_{21}, y_{4}=x_{23}, y_{5}=x_{31}, y_{6}=x_{32}
$$

so that,

$$
\begin{aligned}
& -3 \leq y_{1} \quad 0 \leq y_{1}-y_{2} \leq 6 \\
& -1 \leq y_{2} \quad-1 \leq y_{1}-y_{6} \leq 5 \\
& -4 \leq y_{3} \quad-3 \leq y_{2}-y_{4} \leq 4 \\
& -6 \leq y_{4} \quad-5 \leq y_{3}-y_{4} \leq 1 \\
& -5 \leq y_{5} \quad-6 \leq y_{3}-y_{5} \leq 0 \\
& 0 \leq y_{6} \quad-4 \leq y_{5}-y_{6} \leq 3
\end{aligned}
$$

and we get $\underline{[B, \rightarrow)}=C_{H}$, with

$$
H=\left[\begin{array}{rrrrrrr}
0 & 0 & -\infty & -\infty & -\infty & -1 & -3 \\
-6 & 0 & -\infty & -3 & -\infty & -\infty & -1 \\
-\infty & -\infty & 0 & -5 & -6 & -\infty & -4 \\
-\infty & -4 & -1 & 0 & -\infty & -\infty & -6 \\
-\infty & -\infty & 0 & -\infty & 0 & -4 & -5 \\
-5 & -\infty & -\infty & -\infty & -3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Then $H^{3}=H^{4}=H^{*}$, with

$$
H^{*}=\left[\begin{array}{rrrrrrr}
0 & 0 & -1 & -1 & -1 & -1 & -1 \\
-1 & 0 & -1 & -1 & -1 & -1 & -1 \\
-4 & -4 & 0 & -4 & -4 & -4 & -4 \\
-5 & -4 & -1 & 0 & -5 & -5 & -5 \\
-4 & -4 & 0 & -4 & 0 & -4 & -4 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

so that $\underline{[B, \rightarrow)}=C_{H}=C_{H^{*}}$, by [29], and this set is described tightly as follows:

$$
\begin{aligned}
-1 & \leq y_{1} \leq 0 & & -1 \leq y_{1}-y_{4} \leq 5 \\
-1 & \leq y_{2} \leq 0 & & -1 \leq y_{1}-y_{5} \leq 4 \\
-4 & \leq y_{3} \leq 0 & & -1 \leq y_{2}-y_{3} \leq 4 \\
-5 & \leq y_{4} \leq 0 & & -1 \leq y_{2}-y_{4} \leq 4 \\
-4 & \leq y_{5} \leq 0 & & -1 \leq y_{2}-y_{5} \leq 4 \\
0 & =y_{6} & & -4 \leq y_{3}-y_{4} \leq 1 \\
0 & \leq y_{1}-y_{2} \leq 1 & & -4 \leq y_{3}-y_{5} \leq 0 \\
-1 & \leq y_{1}-y_{3} \leq 4 & & -5 \leq y_{4}-y_{5} \leq 4
\end{aligned}
$$

In particular, $\operatorname{dim}[B, \rightarrow)=\operatorname{dim} C_{H^{*}}=9-3-1=5$. Undoing the relabeling, we get

$$
\begin{aligned}
-1 & \leq x_{12} \leq 0 & & -1 \leq x_{12}-x_{23} \leq 5 \\
-1 & \leq x_{13} \leq 0 & & -1 \leq x_{12}-x_{31} \leq 4 \\
-4 & \leq x_{21} \leq 0 & & -1 \leq x_{13}-x_{21} \leq 4 \\
-5 & \leq x_{23} \leq 0 & & -1 \leq x_{13}-x_{23} \leq 4 \\
-4 & \leq x_{31} \leq 0 & & -1 \leq x_{13}-x_{31} \leq 4 \\
0 & =x_{32} & & -4 \leq x_{21}-x_{23} \leq 1 \\
0 & \leq x_{12}-x_{13} \leq 1 & & -4 \leq x_{21}-x_{31} \leq 0 \\
-1 & \leq x_{12}-x_{21} \leq 4 & & -5 \leq x_{23}-x_{31} \leq 4
\end{aligned}
$$

Write

$$
\bar{B}=\left[\begin{array}{rrr}
0 & -1 & -1 \tag{22}\\
-4 & 0 & -5 \\
-4 & 0 & 0
\end{array}\right]
$$

and notice that $\bar{B} \leq X$ follows from the first six inequalities above.
Computations as in the former example can be done for any real matrix $A \in$ $M_{n}^{n o r}$, as follows.

Definition 13. For $n \in \mathbb{N}$, a relabeling is a bijection between two sets of variables: $\left\{x_{i j}:(i, j) \in[n]^{2}, i \neq j\right\}$ and $\left\{y_{k}: k \in\left[n^{2}-n\right]\right\}$. By abuse of notation, we write $y_{k}=x_{i j}$, for corresponding y_{k} and $x_{i j}$.

Definition 14. Given $A \in M_{n}^{\text {nor }}$ real, suppose that $[A, \rightarrow)$ equals $C_{H^{*}}$, for some idempotent matrix $H^{*}=\left(h_{i j}^{*}\right) \in M_{n^{2}-n+1}^{n o r}$ and some relabeling $y_{k}=x_{i j}$. Then $\bar{A}=\left(\alpha_{i j}\right) \in M_{n}^{n o r}$, with $\alpha_{i j}=h_{k, n^{2}-n+1}^{*}$, i.e., the entries of \bar{A} are obtained form the last column of H^{*}.

The matrix \bar{A} does not depend on the relabeling. The arithmetical complexity of computing \bar{A} is that of H^{*}, which is $O\left(\left(n^{2}-n\right)^{3}\right)=O\left(n^{6}\right)$, by the Floyd-Warshall algorithm.

Corollary 15. For any $A, X \in M_{n}^{\text {nor }}$ with A real, $A \leq \underline{X}$ implies $\bar{A} \leq X$. In particular, $\Omega^{\prime}(A) \subseteq[\bar{A}, \rightarrow)$.

Proof. We proceed as in example above and we use theorem 12.
Corollary 16. Given $A \in M_{n}^{\text {nor }}$ real, suppose that $[A, \rightarrow)$ equals $C_{H^{*}}$, for some idempotent matrix $H^{*}=\left(h_{i j}^{*}\right) \in M_{n^{2}-n+1}^{n o r}$. Then

$$
\operatorname{dim} \Omega^{\prime}(A) \leq n^{2}-n-\operatorname{card} Q
$$

where $Q=\left\{\left(i, n^{2}-n+1\right): h_{i, n^{2}-n+1}^{*}=h_{n^{2}-n+1, i}^{*}=0\right.$, with $1 \leq i<$ $\left.n^{2}-n+1\right\} \cup\left\{(i, k): h_{i k}^{*}=h_{k i}^{*}=0\right.$, with $\left.1 \leq i<k \leq n^{2}-n+1\right\}$.

Proof. The description of $[A, \rightarrow)$ via H^{*} is tight, by proposition 2.6 in [29]. Thus, the dimension of $[A, \rightarrow)$ drops by one unit each time that a chain of two inequalities in expression (1) (for H^{*} instead of A), turns into two equalities, which occurs whenever $h_{i k}^{*}=h_{k i}^{*}=0$, by normality of H^{*}. Thus, $\operatorname{dim}[A, \rightarrow)=n^{2}-n-\operatorname{card} Q$ and this is an upper bound for $\operatorname{dim} \Omega^{\prime}(A)$.

Proposition 17. For any $A \in M_{n}^{\text {nor }}$ real, we have $\underline{A} \leq A \leq \bar{A}$.
Proof. The inequality $\underline{A} \leq A$ was explained in p. 10. Now consider X such that $A \leq \underline{X}$. Then,

$$
A \leq \underline{X} \leq X
$$

by the same reason, so that $A \leq X$. By definition 14 , the matrix \bar{A} is obtained from the last column of H^{*} and, by [29], the description of the alcoved polytope $\underline{[A, \rightarrow)}$ as $C_{H^{*}}$ is tight. Part of this description is $\bar{A} \leq X$. Therefore, $A \leq \bar{A} \leq \overline{X, \text { by }}$ tightness.

Some questions arise, such as:

1. We know that $\underline{A} \leq A \leq \bar{A}$. Does every X with $\underline{A} \leq X \leq \bar{A}$ commute with A ? The answer is NO. Example: take B in (21) and

$$
X=\left[\begin{array}{rrr}
0 & -2 & -2 \\
-4 & 0 & -5 \\
-4 & 0 & 0
\end{array}\right], B X=\bar{B} \neq X B=\left[\begin{array}{rrr}
0 & -2 & -1 \\
-4 & 0 & -5 \\
-4 & 0 & 0
\end{array}\right]
$$

2. We know that A^{*} and 0 belong to $\Omega^{\prime}(A)$. Does every X with $A^{*} \leq X \leq 0$ commute with A ? The answer is NO. Example: for B in (21), we have $B^{*}=\bar{B}$ in (22) and

$$
X=\left[\begin{array}{rrr}
0 & -1 & -1 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right]=X B \neq B X=\left[\begin{array}{rrr}
0 & -1 & -1 \\
0 & 0 & -1 \\
-1 & 0 & 0
\end{array}\right]
$$

4 Perturbations

Definition 18. Assume $a, b \in \mathbb{R}_{\geq 0}$ with $a \leq b$. Then a, b are of the same size if $b \leq 2 a$. Otherwise, $2 a<b$ and we say that a is small with respect to b.

In the topological space $M_{n}^{n o r} \simeq \overline{\mathbb{R}}_{\leq 0}^{n^{2}-n}$ the following is expected to hold true, for any real matrix $A \in M_{n}^{n o r}$:

1. for $j \in[n]$ and each sufficiently small perturbation X of A^{j-1}, we have $A X=X A$, and this is a perturbation of A^{j}, (including the case that X is a perturbation of $I=A^{0}$ or of $A^{*}=A^{n-1}$)
2. for each sufficiently small perturbation X of 0 , we have $A X=X A$, and this is a perturbation of 0 .

The point here is, of course, to give a precise meaning of sufficiently small perturbation. Although we are not able to do it yet, we believe that the statement will be about linear inequalities in terms of the non-zero entries $a_{i j}$ of A and some perturbing constants $\pm \epsilon_{1}, \ldots, \pm \epsilon_{s}$, with $\epsilon_{k} \geq 0$ for $k=1, \ldots, s$, and some $s \geq 0$. We further believe that the perturbing constants must be small with respect to every non-zero absolute value $\left|a_{i j}\right|$, according to definition 18 . Recall that $\Omega(A)$ is larger than $\mathcal{P}(A)$ (see p. 2). An intriguing related QUESTION is the following: is every $X \in \Omega(A)$ a small perturbation of some member of $\mathcal{P}(A)$?

Below we present some partial results.
For brevity, write $A \oplus B:=M=\left(m_{i j}\right)$.
Proposition 19. Assume $A, B \in M_{n}^{\text {nor }}$ are such that $a_{i k}+b_{k j} \leq m_{i j}$, for all $i, j, k \in[n]$. Then $A B=B A=M$. In particular, $B \in \Omega^{M}(A)$.

Proof. By normality, $I \leq A \leq 0$ and $I \leq B \leq 0$, whence $A \leq A B \leq 0$ and $B \leq$ $A B \leq 0$, since (tropical) left or right multiplication by any matrix is monotonic. Thus, $M \leq A B$ and, similarly, $M \leq B A$ and, by hypothesis, $A B \leq M$ and $B A \leq M$. Therefore $A B=B A=M$.

Theorem 20. For each $n \in \mathbb{N}$ and each non positive real number r, any two order n matrices A, B having zero diagonal and all off-diagonal entries in the closed interval $[2 r, r]$ satisfy $A B=B A=M$. In particular, $B \in \Omega^{M}(A)$.

Proof. Let $a_{i i}=b_{i i}=0$ and $2 r \leq a_{i j}, b_{i j} \leq r \leq 0$, for $i, j \in[n]$. Fix $i, j \in[n]$ with $i \neq j$. For each $k \in[n]$, we have $a_{i k}+b_{k j} \leq 2 r \leq a_{i j}, b_{i j}$, and we can apply the previous proposition to conclude.

That is an easy way to produce two real matrices which commute! Moreover, the matrices A, B and M are idempotent. Indeed, $A \leq A^{2}$ by normality and, since $a_{i j}+a_{j k} \leq 2 r \leq a_{i k}$, we get $A^{2} \leq A$, whence $A=A^{2}$; similarly $B=B^{2}$ and $M=M^{2}$. Here $B \in \Omega(A)$ is a perturbation of A and $A B=B A=M$ is a perturbation of $A^{2}=A$, so this is an example of item 1 in p .15 , for $j=2$.

In the former theorem, notice that the absolute value of the entries $\left|a_{i j}\right|$ and $\left|b_{i j}\right|$ of A and B are of the same size, taken by pairs, as in definition 18. The reader should compare theorem 20 with example 2 , where $M^{2}=A B=B A \neq M$, these matrices being different only at entry $(4,1)$. There A, B and $A B$ are idempotent, but M is not.

Corollary 21. For each $n \in \mathbb{N}$ and each negative real number r, take $a_{i j}$ in the open interval $(2 r, r)$, whenever $i \neq j$ and $a_{i i}=0$, all $i, j \in[n]$. Then $A=\left(a_{i j}\right)$ is strictly normal and $\Omega(A)$ is a neighborhood of A.

Proof. The Cartesian product of intervals $U=(2 r, r)^{n^{2}-n}$ is open in $\overline{\mathbb{R}}_{\leq 0}^{n^{2}-n}$. The image U^{\prime} of U in $M_{n}^{n o r}$ satisfies $A \in U^{\prime} \subseteq \Omega(A)$, by theorem 20, proving the neighborhood condition.

Corollary 21 is an instance of item 1 in p. 15 . Below we present another one.
For $n \geq 3$, consider $p=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{R}^{n} \geq 0$ and $\epsilon \geq 0$ and set

$$
P(-p,-\epsilon):=\left[\begin{array}{rrrrr}
0 & -\epsilon & \cdots & -\epsilon & -p_{n} \tag{23}\\
-p_{1} & 0 & -\epsilon & \cdots & -\epsilon \\
-\epsilon & -p_{2} & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & -\epsilon \\
-\epsilon & \cdots & -\epsilon & -p_{n-1} & 0
\end{array}\right] \in M_{n}^{n o r}
$$

and for $n \geq 4$, set

$$
Q(-p,-\epsilon):=\left[\begin{array}{rrrrrr}
0 & 0 & \cdots & 0 & -\epsilon & -p_{n} \tag{24}\\
-p_{1} & 0 & \cdots & \cdots & 0 & -\epsilon \\
-\epsilon & -p_{2} & 0 & \cdots & \cdots & 0 \\
0 & -\epsilon & -p_{3} & 0 & \cdots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & -\epsilon & -p_{n-1} & 0
\end{array}\right] \in M_{n}^{\text {nor }} .
$$

The matrices $P(-p,-\epsilon)$ and $Q(-p,-\epsilon)$ are perturbations of $P(-p, 0)=Q(-p, 0)$.
Theorem 22. Let $p \in \mathbb{R}^{n} \geq 0$ and let $\delta, \epsilon \geq 0$ be such that $\delta+\epsilon \leq \min _{i \in[n]} p_{i}$. Write $m=\min \{\delta, \epsilon\}$. Then

1. $P(-p,-\delta) P(-p,-\epsilon)=P(-p,-\epsilon) P(-p,-\delta)=P(-(\delta+\epsilon, \ldots, \delta+\epsilon),-m)$.
2. $Q(-p,-\delta) Q(-p,-\epsilon)=Q(-p,-\epsilon) Q(-p,-\delta)=Q(-(m, \ldots, m), 0)$.

Proof. Straightforward computations.
Example 23. Take $p=(4,3,5), \epsilon=1$ and $\delta=2$,

$$
P(-p,-2)=\left[\begin{array}{rrr}
0 & -2 & -5 \tag{25}\\
-4 & 0 & -2 \\
-2 & -3 & 0
\end{array}\right], P(-p,-1)=\left[\begin{array}{rrr}
0 & -1 & -5 \\
-4 & 0 & -1 \\
-1 & -3 & 0
\end{array}\right] .
$$

By theorem 22, we have
$P(-p,-2) P(-p,-1)=P(-p,-1) P(-p,-2)=P(-(3,3,3),-1)=\left[\begin{array}{rrr}0 & -1 & -3 \\ -3 & 0 & -1 \\ -1 & -3 & 0\end{array}\right]$.
Pictures for this example are shown in figure 1. Write $A=P(-p,-2), B=$ $P(-p,-1), C=A B=B A$. In \mathbb{R}^{2} we have sketched the intersection of the classical hyperplane $\left\{x_{3}=0\right\}$ with $\operatorname{span} A$, span $P(-p, 0)$ and $\operatorname{span} B$ on top, and with span C bottom. To do so, we have used the matrices $A_{0}, P(-p, 0)_{0}, B_{0}$ and C_{0} as defined in p. 5:

$$
\begin{gathered}
A_{0}=\left[\begin{array}{rrr}
2 & 1 & -5 \\
-2 & 3 & -2 \\
0 & 0 & 0
\end{array}\right], P(-p, 0)_{0}=\left[\begin{array}{rrr}
0 & 3 & -5 \\
-4 & 3 & 0 \\
0 & 0 & 0
\end{array}\right], B_{0}=\left[\begin{array}{rrr}
1 & 2 & -5 \\
-3 & 3 & -1 \\
0 & 0 & 0
\end{array}\right], \\
C_{0}=\left[\begin{array}{rrr}
1 & 2 & -3 \\
-2 & 3 & -1 \\
0 & 0 & 0
\end{array}\right] .
\end{gathered}
$$

Figure 1: Top: $\left\{x_{3}=0\right\} \cap \operatorname{span} A$ (left), $\left\{x_{3}=0\right\} \cap \operatorname{span} P(-p,-(1,-2)$ (center) and $\left\{x_{3}=0\right\} \cap \operatorname{span} B$ (right), for $p=(4,3,5)$. Bottom: $\left\{x_{3}=0\right\} \cap \operatorname{span} C$, with $C=A B=B A$. In each case, the zero vector is marked in white and generators are represented in blue. The matrices A, B and C are perturbations of $P(-p, 0)$.

5 Geometry

Let $A, B \in M_{n}^{n o r}$ be real. Here we study the role played by the geometry of the complexes span A and span B in order to have $A B=B A$. To do so, we bear in mind how the maps f_{A} and f_{B} act, where $f_{A}: \overline{\mathbb{R}}^{n} \rightarrow \overline{\mathbb{R}}^{n}$ transforms a column vector X into the product $A X$. For $n=3, f_{A}$ is described in detail in see [28]; see also [31].

Before, we have met two instances where the geometry explains why $A B=$ $B A$. Namely, in remarks after propositions 7 and 8 . In the first (resp. second) case we have $A B=B A=A$ (resp. $A B=B A=B$) because span B is much larger (resp. smaller) than span A.

More generally, we explore the relationship among the sets $\operatorname{span} A, \operatorname{span} B$, $\operatorname{span}(A B)$ and $\operatorname{span}(B A)$ when commutativity is present or absent. In general, we have $\operatorname{span}(A B) \subseteq \operatorname{span} A$ and $\operatorname{span}(B A) \subseteq \operatorname{span} B$. In particular, if $A B=B A$ then $\operatorname{span}(A B) \subseteq \operatorname{span} A \cap \operatorname{span} B$.
 and $\operatorname{span} A \supseteq \operatorname{span} B$.

Proof. By normality, we have $I \leq A \leq B \leq 0$ and left or right tropical multiplication by any matrix is monotonic. Therefore, $B \leq A B \leq B^{2}=B$ and
$B \leq B A \leq B^{2}=B$, whence $A B=B A=B$ and $A \in \Omega^{B}(B)$. Moreover, whatever the matrices A and B may be, we have span $A \supseteq \operatorname{span}(A B)$ and, in our case, $\operatorname{span}(A B)=\operatorname{span} B$.

The hypothesis $B=B^{2}$ cannot be removed in the previous proposition, as the following example shows.

Example 25. Consider

$$
A=\left[\begin{array}{rrr}
0 & -1 & -3 \\
0 & 0 & -4 \\
0 & 0 & 0
\end{array}\right] \leq B=\left[\begin{array}{rrr}
0 & -1 & -2 \\
0 & 0 & -4 \\
0 & 0 & 0
\end{array}\right]
$$

then

$$
A B=\left[\begin{array}{rrr}
0 & -1 & -2 \\
0 & 0 & -2 \\
0 & 0 & 0
\end{array}\right] \neq B A=\left[\begin{array}{rrr}
0 & -1 & -2 \\
0 & 0 & -3 \\
0 & 0 & 0
\end{array}\right]
$$

and $\operatorname{span} A \nsupseteq \operatorname{span} B$; see figure 2 .

Figure 2: Top: $\left\{x_{3}=0\right\} \cap \operatorname{span} A$ (left), $\{x(-2=2)(0\} \cap \operatorname{span} B$ (right). Bottom: $\left\{x_{3}=0\right\} \cap \operatorname{span}(A B)($ left $),\left\{x_{3}=0\right\} \cap \operatorname{span}(B A)$ (right). In this case ${ }_{(-2,-3)} A \cap$ $\operatorname{span} B=\operatorname{span}(A B)$. Generators are represented in blue.

Below we explore the properties of the matrices \underline{A}, A and \bar{A} and of the corresponding polyhedral complexes.

Example 11. (Continued) By proposition 17, we have

$$
\underline{B}=\left[\begin{array}{rrr}
0 & -3 & -3 \\
-5 & 0 & -6 \\
-5 & -2 & 0
\end{array}\right] \leq B=\left[\begin{array}{rrr}
0 & -3 & -1 \\
-4 & 0 & -6 \\
-5 & 0 & 0
\end{array}\right] \leq \bar{B}=\left[\begin{array}{rrr}
0 & -1 & -1 \\
-4 & 0 & -5 \\
-4 & 0 & 0
\end{array}\right]
$$

and we can easily check, in this case, that

$$
\operatorname{span} \underline{B} \supseteq \operatorname{span} B \supseteq \operatorname{span} \bar{B}
$$

See figure 3, where we are using the matrices

$$
\underline{B}_{0}=\left[\begin{array}{rrr}
5 & -1 & -3 \\
0 & 2 & -6 \\
0 & 0 & 0
\end{array}\right], B_{0}=\left[\begin{array}{rrr}
5 & -3 & -1 \\
1 & 0 & -6 \\
0 & 0 & 0
\end{array}\right], \bar{B}_{0}=\left[\begin{array}{rrr}
4 & -1 & -1 \\
0 & 0 & -5 \\
0 & 0 & 0
\end{array}\right]
$$

as defined in p. 5. Notice that $\left\{x_{3}=0\right\} \cap \operatorname{span} B$ is the union of one closed $2-$ dimensional cell (called soma) and three closed 1-dimensional cells (called antennas); see [28] for the definition of soma, antennas and co-antennas (with a slightly different notation and language). In figure 3, bottom, we can see $\left\{x_{3}=0\right\} \cap \operatorname{span} B$ together with its co-antennas.

In this example,

$$
\bar{B}=B^{*}
$$

and the matrix \underline{B} is idempotent. Therefore, the sets $\operatorname{span} \underline{B}$ and $\operatorname{span} \bar{B}$ are classically convex, and so are the sections $\left\{x_{3}=0\right\} \cap \operatorname{span} \underline{B}$ and $\left\{x_{3}=0\right\} \cap \operatorname{span} \bar{B}$.

Consider \mathcal{H}, the classical convex hull of $\left\{x_{3}=0\right\} \cap \operatorname{span} B$: its the vertices are $(5,0)^{t},(5,1)^{t},(-2,1)^{t},(-3,0)^{t},(-3,-6)^{t}$ and $(-1,-6)^{t}$, going counterclockwise. Notice that $\left\{x_{3}=0\right\} \cap \operatorname{span} \underline{B}$ is strictly larger than \mathcal{H}. Actually, $\left\{x_{3}=0\right\} \cap \operatorname{span} \underline{B}$ is the convex hull of the union of $\left\{x_{3}=0\right\} \cap \operatorname{span} B$ and the co-antennas of it. On the other hand, $\left\{x_{3}=0\right\} \cap \operatorname{span} \bar{B}$ is the soma of $\left\{x_{3}=0\right\} \cap \operatorname{span} B$, i.e., it is the maximal convex set contained there.

We wonder whether the statements in the former example are true for any real $B \in M_{n}^{n o r}$. This is an open QUESTION.

References

[1] M. Akian, R. Bapat and S. Gaubert, Max-plus algebra, chapter 25 in Handbook of linear algebra, L. Hobgen (ed.) Chapman and Hall, 2007.
[2] F.L. Baccelli, G. Cohen, G.J. Olsder and J.P. Quadrat, Syncronization and linearity, John Wiley; Chichester; New York, 1992.
[3] E. Brugallé, Un peu de géométrie tropicale, Quadrature, 74, (2009), 10-22.

Figure 3: Top: $\left\{x_{3}=0\right\} \cap \operatorname{span} \underline{B}$ (left), $\left\{x_{3}=0\right\} \cap \operatorname{span} B$ (center) and $\left\{x_{3}=\right.$ $0\} \cap \operatorname{span} \bar{B}$ (right), for B in (21). In each case, the zero vector is marked in white, and generators (i.e., columns of the corresponding matrix \underline{B}_{0}, B_{0} and \bar{B}_{0}) are represented in blue. The hyperplane section $\left\{x_{3}=0\right\} \cap \operatorname{span} B$ has three antennas. Bottom: $\left\{x_{3}=0\right\} \cap \operatorname{span} B$ is represented together with its co-antennas, which appear dotted in green. The convex hull of the bottom figure is the top left one.
[4] E. Brugallé, Some aspects of tropical geometry, Newsletter of the European Mathematical Society, 83, (2012), 23-28.
[5] P. Butkovič, Max-algebra: the linear algebra of combinatorics?, Linear Algebra Appl. 367, (2003), 313-335.
[6] P. Butkovič, Simple image set of $(\max ,+)$ linear mappings, Discrete Appl. Math. 105, (2000), 73-86.
[7] P. Butkovič, Max-plus linear systems: theory and algorithms, 2010, Springer.
[8] R. Cuninghame-Green, Minimax algebra, LNEMS, 166, Springer, 1970.
[9] R.A. Cuninghame-Green, Minimax algebra and applications, in Adv. Imag. Electr. Phys., 90, P. Hawkes, (ed.), Academic Press, 1-121, 1995.
[10] M. Develin, B. Sturmfels, Tropical convexity, Doc. Math. 9, (2004) 1-27; Erratum in Doc. Math. 9 (electronic), (2004) 205-206.
[11] A. Gathmann, Tropical algebraic geometry, Jahresbericht der DMV, 108, n.1, (2006), 3-32.
[12] I. Itenberg, E. Brugallé, B. Tessier, Géométrie tropicale, Editions de l'École Polythecnique, 2008.
[13] I. Itenberg, G. Mikhalkin and E. Shustin, Tropical algebraic geometry, Birkhäuser, 2007.
[14] M. Johnson and M. Kambites, Idempotent tropical matrices and finite metric spaces, to appear in Adv. Geom.; arXiv: 1203.2480, 2012.
[15] Z. Izhakian, M. Johnson and M. Kambites, Pure dimension and projectivity of tropical politopes, arXiv: 1106.4525, 2012.
[16] Z. Izhakian, M. Johnson and M. Kambites, Tropical matrix groups, arXiv: 1203.2449, 2012.
[17] A. Jiménez and M.J. de la Puente, Characterizing the convexity of the $n-$ dimensional tropical simplex and the six maximal convex classes in \mathbb{R}^{3}, arXiv : 1205.4162, 2012.
[18] M. Joswig and K. Kulas, Tropical and ordinary convexity combined, Adv. Geom. 10, (2010) 333-352.
[19] M. Joswig, B. Sturmfels and J. Yu, Affine buildings and tropical convexity, Albanian J. Math. 1, n.4, (2007) 187-211.
[20] R. Katz, H. Schneider and S. Sergeev, On commuting matrices in max algebra and in classical nonegative algebra, Linear Algebra Appl. 436, (2012), 276292.
[21] H.W. Kuhn, The Hungarian method for the assignment problem, Naval Res. Logist. 2, (1955), 83-97.
[22] T. Lam and A. Postnikov, Alcoved polytopes I, Discrete Comput. Geom., 38 n.3, (2007) 453-478.
[23] T. Lam and A. Postnikov, Alcoved polytopes II, arXiv:1202.4015v1 (2012).
[24] G.L. Litvinov, V.P. Maslov, (eds.) Idempotent mathematics and mathematical physics, Proceedings Vienna 2003, American Mathematical Society, Contemp. Math. 377, (2005).
[25] G. Mikhalkin, What is a tropical curve?, Notices AMS, April 2007, 511-513.
[26] C.H. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms and complexity, Prentice Hall, 1982 and corrected unabrideged republication by Dover, 1998.
[27] V.V. Prasolov, Problems and theorems in linear algebra, AMS, 1994.
[28] M. J. de la Puente, Tropical linear maps on the plane, Linear Algebra Appl. 435, n.7, (2011) 1681-1710.
[29] M. J. de la Puente, On tropical Kleene star matrices and alcoved polytopes, Kybernetika, 49, n.6, (2013) 897-910.
[30] J. Richter-Gebert, B. Sturmfels, T. Theobald, First steps in tropical geometry, in [24], 289-317.
[31] F. Rincón, Local tropical linear spaces, Discrete Comput. Geom. 50, (2013), 700-713.
[32] S. Sergeev, Max-plus definite matrix closures and their eigenspaces, Linear Algebra Appl. 421, (2007) 182-201.
[33] S. Sergeev, H. Scheneider and P. Butkovič, On visualization, subeigenvectors and Kleene stars in max algebra, Linear Algebra Appl. 431, 2395-2406, (2009).
[34] D. Speyer, B. Sturmfels, Tropical mathematics, Math. Mag. 82, n.3, (2009) 163-173.
[35] E. Wagneur, Moduloüds and pseudomodules. Dimension theory, Discr. Math. 98 (1991) 57-73.
[36] A. Werner and J. Yu, Symmetric alcoved polytopes, arXiv: 1201.4378v1 (2012).
[37] M. Yoeli, A note on a generalization of boolean matrix theory, Amer. Math. Monthly 68, n.6, (1961) 552-557.
[38] K. Zimmermann, Extremální algebra, Výzkumná publikace ekonomickomatematické laboratoře při ekonomickém ústavé ČSAV, 46, Prague, 1976, in Czech.

[^0]: * Corresponding author

