1 Introduction

In Israel J. Math. 2011, Figiel, Johnson and Pelczynski introduced "Property
(k)" for Banach spaces.

Problem 1.1 does every pre-dual of a o-finite von Neumann algebra have

property (k) ?

In [FJP] it was shown that:

1. if M is a von Neumann algebra and the pre-dual M, is separable, then
M. has property (k);

2. if p is a o-finite measure, then L; (1) has property (k).

This talk is based on joint work with Peter Dodds and Fedor Sukochev.



2 Property (K)

Definition 2.1 Let (z,),-, be a sequence in a (real or complex) vector space
X. A sequence (yi)pe, in X is called a CCC sequence of (x,).., if there

exists a sequence 1 = N1 < Ny < --- in N and a sequence (cy),, in RT such
that
Ngy1—1 Ngy1—1
Y = Z ci%j, Z c;=1, k=12 ...
J=Np J=Ni

(CCC=consecutive convex combinations)

Example. (X, |-|) a Banach space and (z,) -, a sequence in X such
that z,, — 0 w.r.t. o (X, X*). Then there exists a CCC sequence (ys) of (z,)
such that ||yx|| — 0.

Indeed: for all m € N,

o(X,X*)

0€cof{x,:n>m} =co{x,:n>m} .

In Math. Annalen 1997, Kalton and Pelczynski introduced:

Definition 2.2 A Banach space X is said to have property (K) if every
sequence (x}) in X* satisfying x} — 0 with respect to o (X*, X) has a CCC
sequence (y;) such that (xr,y;) — 0 for every sequence (xy) in X satisfying

x — 0 with respect to o (X, X*).



Examples.

1. The space ¢ does not have property (K).

*

*) of coordinate functionals of

Indeed: consider in ¢ the sequence (e
the standard basis (e,) in co.

2. Every reflexive space has property (K).

3. Every Grothendieck space has property (K).

[Recall: Banach space X is a Grothendieck space if x — 0 w.r.t.
o (X*, X) implies that z} — 0 w.r.t. o (X*, X*™)]

In particular, X = {,, has property (K); every von Neumann algebra
has property (K) (Pfitzner, 1994).

4. Every subspace of a separable Banach space with property (K) has
property (K).

5. Every complemented subspace of a Banach space with property (K)
has property (K).

6. If T' # (), then ¢; (T') has property (K).
[Indeed, ¢; (I') has the Schur property]

Note: "Property (K)"=="Property (k)".



3 Reformulation of Property (K)
Useful observation:

Lemma 3.1 (X, |-||) a Banach space and (z7);" | € X* such that z}; — 0
w.r.t. o (X* X). Equivalent are:

(1) for every (z,) C X with x, — 0 w.r.t. o (X, X"*) we have (x,,x}) — 0;
(ii) for every relatively o (X, X*)-compact set A C X we have

sup [(z, 73,)| — 0,  n — oo.
T€EA

(i.e., ¥ — 0 uniformly on relatively o (X, X*)-compact subsets of X ).

Some notation: Let X be a Banach space.

e For A C X, bounded, define the semi-norm p, : X* — [0, 00) by

pa(a®) =sup{[{z,a")|: 2z € A},

e Let G be a collection of bounded sets in X such that span|J, g A is
dense in X. The locally convex topology in X* generated by

{pa: Ae 6}

is denoted by 7g: the topology of uniform convergence on the sets of

S.



Recall:

1. Mackey topology T (X*, X): the topology on X* of uniform convergence
on absolutely convex o (X, X*)-compact subsets of X.

2. Mackey-Arens theorem: if T is a locally convex topology on X*, then the
dual of (X*, 7) equals X if and only if 7 = 7g for some collection & of
absolutely convex o (X, X*)-compact subsets of X satisfying (J,.s A =
X.

Note that then
o(X",X)CrCr(X"X)

and convex subsets of X* have the same closure for all such topologies.

3. Krein-Smulian: the absolute convex hull of a (relatively) o (X, X*)-
compact subset of X is again (relatively) o (X, X*)-compact.

With these observations we find:

Lemma 3.2 If X is a Banach space, then the following are equivalent:
(i) X has property (K);

(i1) every sequence (z) in X* satisfying x, — 0 w.r.t. o(X*, X) has a

n

CCC sequence (y;) such that y; — 0 w.r.t. 7(X* X).

Corollary 3.3 If X is a Banach space such that the Mackey topology
7 (X*, X) is metrizable on norm bounded subsets of X*, then X has property
(K).

Proof. If (z}) in X* satisfies x} — 0 w.r.t. o (X*, X), then

(X, X*) X*,X)

0€cof{x,:n>m} :co{xn:an}l(

forallmeN. m



A general definition. Let X be a Banach space.

Definition 3.4 Let & be a collection of bounded subsets of X. We say
that X has property (Kg) if every sequence (x}) C X* with x} — 0 w.r.t.
o (X*,X) has a CCC sequence (y;) such that y; — 0 uniformly on the sets
in &, that is,

sup |(z,y;)| — 0, k — oo,
z€A

forall A € 6.

Proposition 3.5 Suppose that span|],.s A is dense in A and that T C
7(X*, X). If Tg is metrizable on norm bounded subsets of X*, then X has

property (Kg).



4 Banach lattices

e E a (real) Banach lattice.

e a subset A C F is order bounded if there exists 0 < w € E such that

AC [—w,w],

where
[—w,w|={r e E:—w<x<w}.

o S, all order bounded subsets of E.

® Tob = TGyps (Kob) = (K60b>‘

Lemma 4.1 For a Banach lattice E, the following two conditions are equiv-
alent:
(i) E has property (Ku);
(i1) every sequence (x) in E* satisfying x¥ — 0 with respect to o (E*, E)
has a CCC sequence (y;) such that |y;| — 0 with respect to o (E*, E).

Proposition 4.2 If E is a Banach lattice with order continuous norm and

weak order unit, then the topology 7., is metrizable on norm bounded subsets
of E*.

Proof. Let 0 < w € E be a weak order unit.
On the unit ball Bg+ the topology 7, is induced by the semi-norm p,,:

Py () =sup{|(z,2")| : x € E,|z| <w} = (w, |z*]), z* € E".

Theorem 4.3 If F is a Banach lattice with order continuous norm and weak
order unit, then E has property (Ky).

Corollary 4.4 Let E be a Banach lattice with order continuous norm and
weak order unit. If (x}) is a sequence in E* satisfying 7, o(Z4F) 0, then (z})
has a CCC sequence (y;) such that |y;| — 0 with respect to o (E*, E).

The above result is implicit in [FJP], (2011) and improves Sublemma 2.5
in Johnson, 1997.



5 Property (K) in pre-duals of von Neumann
algebras

e M a von Neumann algebra on Hilbert space H.

P (M) the complete lattice of projections in M.

M is called o-finite if every mutually disjoint system in P (M) is at
most countable.

M., the pre-dual of M; M, is a bimodule over M.

Definition 5.1 A subset A C M., s said to be of uniformly absolutely
continuous norm if p, o 0 in P (M) implies that

Sup [|Papall pg, —a 0.
peA

We use the following ingredients.

Proposition 5.2 (Akemann, 1967) Fvery relatively o (M., M)-compact
subset of M., is of uniformly absolutely continuous norm.

Proposition 5.3 (Raynaud, Xu, 2003) IfM is o-finite, then there exists
0 <y € M, such that for every A C M of uniformly absolutely continuous
norm and every 0 < ¢ € R there exists 0 < C. € R satisfying

A C C. (poBm + Bpmpy) + B,



With this we can prove:

Proposition 5.4 If M is o-finite, then the Mackey topology T (M, M.) is
metrizable on norm bounded subsets of M.

Proof. Let 0 < ¢, € M, be as above and let

W = @y Bm + Brpo-
Define the (semi-) norm py, : M — [0, 00) by
pw (z) = sup |p (z)], =€ M.
peW

On norm bounded subsets of M the topology generated by py;, and 7 (M, M.)
coincide. m

Remark. In case the underlying Hilbert space H is separable, the result
of the above proposition follows from results of Sakai (1965) and Akemann
(1967).

Theorem 5.5 If M is o-finite, then its pre-dual M, has property (K).

Remark. There exist (non o-finite) measures p such that L () does
not have property (K).



6 Non-commutative symmetric spaces
Now we consider the following setting:

e M a semi-finite von Neumann algebra, 7 : M™% — [0, c0].

e S (1) the x-algebra of all 7-measurable operators.

e For x € S(7) define the generalized singular value function u(z) :
[0,00) — [0, 0] by

,u(t;x):inf{OSSG]R:T(e'ml(s,oo)) <s}p, t>0.

(here, e?! is the spectral measure of |z|)

o If x,y € S(7), then we write x << y whenever

t ¢
/ ,u(s;x)dsg/ p(s;y)ds, t>0.
0 0

10



E C S(7) linear subspace with norm ||-|| such that (£, ||| ;) is Ba-
nach.

E is called symmetric if v € S (1), y € F and p(x) = p(y) imply that
v € Eand 2], = [yl

A symmetric space E is called strongly symmetric if its norm has the
additional property that z,y € E and << y imply that ||| < ||yl 5.

The norm on F is called order continuous if

To la 0 In B = ||z4]lp la 0.

Equivalently:

e, 10 in P(M) = |leaze,|lp 10, ze€k.

If the strongly symmetric space F has order continuous norm, then
E is fully symmetric: if x € S(r) and y € FE, then x € E (and
2]l < llyllg)-

If the strongly symmetric space E has order continuous norm, then the
Banach dual £* may be identified with the Kothe dual E*:

EX={yeS(r):xzyeli(r) V z € FE},

1Yl gx = sup{|7 (zy)| : 2 € E, ||zllp <1}, y € B,

via trace duality

(z,y)=7(zy), z€E, yekL

11



Definition 6.1 Let E C S (1) be a strongly symmetric space. A subset
A C FE is said to be of uniformly absolutely continuous norm f

e, 10 in P(M) = suplle,ze,lz — 0.
€A

E is of uniformly
)-compact.

Note: If F has order continuous norm and if

A C
absolutely continuous norm, then A is relatively o (E, E*

Notation:

o &, is the collection of all subsets of E which are of uniformly absolutely
continuous norm.

n_—-n

e "Property (Kg,, )" = "Property (Ku,)".

® TS, — Tan-

Theorem 6.2 If M is o-finite and E C S (7) is a strongly symmetric space
with order continuous norm, then E has property (Kg).

The main ingredients in the proof are:

Proposition 6.3 Let E C S (1) be a strongly symmetric space with order
continuous norm. Suppose that (p,) is a sequence of projections such that
pn 11 and 7 (pn) < 0o for all n € N.

If A C E is of uniformly absolutely continuous norm, then for every
0 <e €R there existsn =n(e) € N and 0 < C. € R such that

A g Os (pnBM + BMpn) + é\BE'

12



Proposition 6.4 If M is o-finite and E C S (1) is strongly symmetric space
with order continuous norm, then T, 1s metrizable on norm bounded subsets

of E*.

Proof. Let (p,) in P (M) be such that p, T 1 and 7 (p,) < oo for all n € N.
Define
W, = pnB./\/l + BMan n € N.

On norm bounded subset of E*, the topology 7., coincides with the topology
generated by the semi-norms { Pw, T E N}. ]

Consequence of the Theorem:

e Assume that 7 (1) < oo.
e [/ C S (7) strongly symmetric with order continuous norm.

e For x € F let
Qx)={yeS(r):y=<<z}.

e Then Q(z) C E and Q () is of uniformly absolutely continuous norm
for all z € E.

This gives:

Proposition 6.5 If (z,) is a sequence in E* such that z, — 0 w.r.t.
o (E*, E), then there exists a CCC sequence (yi) of (zn) such that

| ntoutmdt -0, ko,
0

forallz € F.

Proof. Let (y) be a CCC sequence of (z,) such that y, — 0 uniformly on
sets of uniformly absolutely continuous norm. Then use that

/ w(t) ) dt = sup |yl
0 yeQ(x)

13



7 Property (k)
Let (X, ||||) be a Banach space.

Recall: A subset A C L;[0,1] is called order bounded if there exists
0 < w € Ly [0, 1] such that

AC [—w,w]+i[—w,w],

where
[—w,w] ={f € L[0,1]: —w < f <w}.

Definition 7.1 Let Gy be the collection of subsets of X which are of the
form T (A), where A C Ly [0,1] is order bounded and T : L1[0,1] — X is a
bounded linear operator.

Note: if A C L;]0,1] is order bounded, then A is relatively o (Lj, Lo)-
compact. Hence, T (A) C X is relatively o (X, X*)-compact for every
bounded linear operator 7" : L, [0,1] — X.

Definition 7.2 The Banach space X has property (k) if X has property
(KGI)‘

Since every set in &, is relatively o (X, X*)-compact it follows that:

Property (K) = Property (k).

14



Let M be a semi-finite von Neumann algebra.

Recall: a strongly symmetric space E C S (7) is called a K B-space if:

1. E has order continuous norm;

2. E has the Fatou property: if 0 < z,, T, in £ and sup, ||z.||z = M < o0,
then there exists 0 < x € E such that z, T,  and ||z||, = M.

Theorem 7.3 If M is o-finite and E C S (1) is a KB-space, then E has
property (k).

The main ingredient in the proof is:

Proposition 7.4 If E C S(7) is a KB-space and T : L, [0,1] — E is a
bounded linear operator, then T" can be written as

T=(Ty—T)+i(T3—Ty),

where each T; : Ly [0,1] — E is linear and positivity preserving, i.e.,

0<fel[0,1]] = O0<T,fek.

Consequently, T maps order bounded sets in Ly [0, 1] onto order bounded sets
n E.

Fact: if I/ has order continuous norm, then every order bounded set in
E is of uniform absolutely continuous norm.

Corollary 7.5 If E C S(7) is a KB-space and T : L1[0,1] — E is a
bounded linear operator, then for each order bounded set A C Ly |0,1], the
image T (A) is a set of uniformly absolutely continuous norm in E.

The theorem now follows from the fact that E has property (Kg,).

15



8 Property (K) in symmetric spaces

Assume:

e M is a semi-finite and o-finite von Neumann algebra.
e [/ C S (7) is a strongly symmetric space with order continuous norm.

We know: then E has property (K;,).

Recall the following definition:

Definition 8.1 (Krygin, Sheremet’ev, Sukochev, 1993) The space E
is said to have property (Wm) if for all sequences (x,) C E satisfying x, — 0
both w.r.t. o (E, E*) and the measure topology, it follows that ||z, | ; — 0.

Proposition 8.2 If7(1) < oo, then the following statements are equivalent:

(i) E has property (Wm);

(ii) each relatively o (E, E*)-compact set in E is of uniformly absolutely
continuous norm.

Consequently:

Corollary 8.3 If7(1) < co and E has property (Wm), then E has property
(£).

16



Example

Assume 7 (1) = 1 and let ¢ : [0,1] — [0,00) be increasing and concave
with ¢ (0+) = ¢ (0) = 0. Define the non-commutative Lorentz space by

A¢<r>={xes<f>:||x||A¢=/01;»<t;m>¢'<t>dt<oo}'

The space Ay (7) has order continuous norm and has also property (Wm).

Consequently: the space A, (7) has property (K).

The following lifting result may also be of some interest:

Proposition 8.4 Assume that 7 (1) = 1. Suppose that E(0,1) C S(0,1)
is a strongly symmetric space with order continuous norm and property (K).
Then, the corresponding non-commutative space

E(r)={ze€S(1):u(x) € E(0,1)},

||93||E(r) = ||M($>||E( 1)

0 )
has also order continuous norm and property (K).
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