
1 Introduction

In Israel J. Math. 2011, Figiel, Johnson and Pelczyński introduced "Property
(k)" for Banach spaces.

Problem 1.1 does every pre-dual of a �-�nite von Neumann algebra have
property (k)?

In [FJP] it was shown that:

1. ifM is a von Neumann algebra and the pre-dualM� is separable, then
M� has property (k);

2. if � is a �-�nite measure, then L1 (�) has property (k).

This talk is based on joint work with Peter Dodds and Fedor Sukochev.
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2 Property (K)

De�nition 2.1 Let (xn)
1
n=1 be a sequence in a (real or complex) vector space

X. A sequence (yk)
1
k=1 in X is called a CCC sequence of (xn)

1
n=1 if there

exists a sequence 1 = N1 < N2 < � � � in N and a sequence (ck)1k=1 in R+ such
that

yk =

Nk+1�1X
j=Nk

cjxj;

Nk+1�1X
j=Nk

cj = 1; k = 1; 2; : : :

(CCC=consecutive convex combinations)

Example. (X; k�k) a Banach space and (xn)1n=1 a sequence in X such
that xn ! 0 w.r.t. � (X;X�). Then there exists a CCC sequence (yk) of (xn)
such that kykk ! 0.

Indeed: for all m 2 N,

0 2 co fxn : n � mg
�(X;X�)

= co fxn : n � mg
k�k
:

In Math. Annalen 1997, Kalton and Pelczyński introduced:

De�nition 2.2 A Banach space X is said to have property (K) if every
sequence (x�n) in X

� satisfying x�n ! 0 with respect to � (X�; X) has a CCC
sequence (y�k) such that hxk; y�ki ! 0 for every sequence (xk) in X satisfying
xk ! 0 with respect to � (X;X�).
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Examples.

1. The space c0 does not have property (K).

Indeed: consider in c�0 the sequence (e
�
n) of coordinate functionals of

the standard basis (en) in c0.

2. Every re�exive space has property (K).

3. Every Grothendieck space has property (K).

[Recall : Banach space X is a Grothendieck space if x�n ! 0 w.r.t.
� (X�; X) implies that x�n ! 0 w.r.t. � (X�; X��)]

In particular, X = `1 has property (K); every von Neumann algebra
has property (K) (P�tzner, 1994).

4. Every subspace of a separable Banach space with property (K) has
property (K).

5. Every complemented subspace of a Banach space with property (K)
has property (K).

6. If � 6= ;, then `1 (�) has property (K).
[Indeed, `1 (�) has the Schur property]

Note: "Property (K)"=)"Property (k)".
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3 Reformulation of Property (K)

Useful observation:

Lemma 3.1 (X; k�k) a Banach space and (x�n)
1
n=1 � X� such that x�n ! 0

w.r.t. � (X�; X). Equivalent are:

(i) for every (xn) � X with xn ! 0 w.r.t. � (X;X�) we have hxn; x�ni ! 0;

(ii) for every relatively � (X;X�)-compact set A � X we have

sup
x2A

jhx; x�nij ! 0; n!1:

(i.e., x�n ! 0 uniformly on relatively � (X;X�)-compact subsets of X).

Some notation: Let X be a Banach space.

� For A � X, bounded, de�ne the semi-norm �A : X
� ! [0;1) by

�A (x
�) = sup fjhx; x�ij : x 2 Ag :

� Let S be a collection of bounded sets in X such that span
S
A2SA is

dense in X. The locally convex topology in X� generated by

f�A : A 2 Sg

is denoted by �S: the topology of uniform convergence on the sets of
S.
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Recall:

1. Mackey topology � (X�; X): the topology onX� of uniform convergence
on absolutely convex � (X;X�)-compact subsets of X.

2. Mackey-Arens theorem: if � is a locally convex topology onX�, then the
dual of (X�; �) equals X if and only if � = �S for some collection S of
absolutely convex � (X;X�)-compact subsets ofX satisfying

S
A2SA =

X.

Note that then
� (X�; X) � � � � (X�; X)

and convex subsets of X� have the same closure for all such topologies.

3. Krein-Smulian: the absolute convex hull of a (relatively) � (X;X�)-
compact subset of X is again (relatively) � (X;X�)-compact.

With these observations we �nd:

Lemma 3.2 If X is a Banach space, then the following are equivalent:

(i) X has property (K);

(ii) every sequence (x�n) in X
� satisfying x�n ! 0 w.r.t. � (X�; X) has a

CCC sequence (y�k) such that y
�
k ! 0 w.r.t. � (X�; X).

Corollary 3.3 If X is a Banach space such that the Mackey topology
� (X�; X) is metrizable on norm bounded subsets of X�, then X has property
(K).

Proof. If (x�n) in X
� satis�es x�n ! 0 w.r.t. � (X�; X), then

0 2 co fxn : n � mg
�(X;X�)

= co fxn : n � mg
�(X�;X)

for all m 2 N.
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A general de�nition. Let X be a Banach space.

De�nition 3.4 Let S be a collection of bounded subsets of X. We say
that X has property (KS) if every sequence (x�n) � X� with x�n ! 0 w.r.t.
� (X�; X) has a CCC sequence (y�k) such that y

�
k ! 0 uniformly on the sets

in S, that is,

sup
x2A

jhx; y�kij ! 0; k !1;

for all A 2 S.

Proposition 3.5 Suppose that span
S
A2SA is dense in A and that �S �

� (X�; X). If �S is metrizable on norm bounded subsets of X�, then X has
property (KS).
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4 Banach lattices

� E a (real) Banach lattice.

� a subset A � E is order bounded if there exists 0 � w 2 E such that

A � [�w;w] ;
where

[�w;w] = fx 2 E : �w � x � wg :

� Sob: all order bounded subsets of E.

� � ob = �Sob; (Kob) = (KSob).

Lemma 4.1 For a Banach lattice E, the following two conditions are equiv-
alent:

(i) E has property (Kob);

(ii) every sequence (x�n) in E
� satisfying x�n ! 0 with respect to � (E�; E)

has a CCC sequence (y�k) such that jy�kj ! 0 with respect to � (E�; E).

Proposition 4.2 If E is a Banach lattice with order continuous norm and
weak order unit, then the topology � ob is metrizable on norm bounded subsets
of E�.

Proof. Let 0 � w 2 E be a weak order unit.
On the unit ball BE� the topology � ob is induced by the semi-norm �w:

�w (x
�) = sup fjhx; x�ij : x 2 E; jxj � wg = hw; jx�ji ; x� 2 E�:

Theorem 4.3 If E is a Banach lattice with order continuous norm and weak
order unit, then E has property (Kob).

Corollary 4.4 Let E be a Banach lattice with order continuous norm and

weak order unit. If (x�n) is a sequence in E
� satisfying x�n

�(E�;E)! 0, then (x�n)
has a CCC sequence (y�k) such that jy�kj ! 0 with respect to � (E�; E).

The above result is implicit in [FJP], (2011) and improves Sublemma 2.5
in Johnson, 1997.
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5 Property (K) in pre-duals of von Neumann
algebras

� M a von Neumann algebra on Hilbert space H.

� P (M) the complete lattice of projections inM.

� M is called �-�nite if every mutually disjoint system in P (M) is at
most countable.

� M� the pre-dual ofM;M� is a bimodule overM.

De�nition 5.1 A subset A � M� is said to be of uniformly absolutely
continuous norm if p� #� 0 in P (M) implies that

sup
'2A

kp�xp�kM�
!� 0:

We use the following ingredients.

Proposition 5.2 (Akemann, 1967) Every relatively � (M�;M)-compact
subset ofM� is of uniformly absolutely continuous norm.

Proposition 5.3 (Raynaud, Xu, 2003) IfM is �-�nite, then there exists
0 < '0 2M� such that for every A �M of uniformly absolutely continuous
norm and every 0 < " 2 R there exists 0 < C" 2 R satisfying

A � C" ('0BM +BM'0) + "BM� :
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With this we can prove:

Proposition 5.4 If M is �-�nite, then the Mackey topology � (M;M�) is
metrizable on norm bounded subsets ofM.

Proof. Let 0 < '0 2M� be as above and let

W = '0BM +BM'0:

De�ne the (semi-) norm �W :M! [0;1) by

�W (x) = sup
'2W

j' (x)j ; x 2M:

On norm bounded subsets ofM the topology generated by �W and � (M;M�)
coincide.

Remark. In case the underlying Hilbert space H is separable, the result
of the above proposition follows from results of Sakai (1965) and Akemann
(1967).

Theorem 5.5 IfM is �-�nite, then its pre-dualM� has property (K).

Remark. There exist (non �-�nite) measures � such that L1 (�) does
not have property (K).
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6 Non-commutative symmetric spaces

Now we consider the following setting:

� M a semi-�nite von Neumann algebra, � :M+ ! [0;1].

� S (�) the �-algebra of all � -measurable operators.

� For x 2 S (�) de�ne the generalized singular value function � (x) :
[0;1)! [0;1] by

� (t;x) = inf
�
0 � s 2 R : �

�
ejxj (s;1)

�
� s

	
; t � 0:

(here, ejxj is the spectral measure of jxj)

� If x; y 2 S (�), then we write x �� y whenever

Z t

0

� (s;x) ds �
Z t

0

� (s; y) ds; t � 0:
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� E � S (�) linear subspace with norm k�kE such that (E; k�kE) is Ba-
nach.

� E is called symmetric if x 2 S (�), y 2 E and � (x) = � (y) imply that
x 2 E and kxkE = kykE.

� A symmetric space E is called strongly symmetric if its norm has the
additional property that x; y 2 E and x �� y imply that kxkE � kykE.

� The norm on E is called order continuous if

x� #� 0 in E =) kx�kE #� 0:

Equivalently:

en # 0 in P (M) =) kenxenkE # 0; x 2 E:

� If the strongly symmetric space E has order continuous norm, then
E is fully symmetric: if x 2 S (�) and y 2 E, then x 2 E (and
kxkE � kykE).

� If the strongly symmetric space E has order continuous norm, then the
Banach dual E� may be identi�ed with the Köthe dual E�:

E� = fy 2 S (�) : xy 2 L1 (�) 8 x 2 Eg ;

kykE� = sup fj� (xy)j : x 2 E; kxkE � 1g ; y 2 E�;
via trace duality

hx; yi = � (xy) ; x 2 E; y 2 E�:
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De�nition 6.1 Let E � S (�) be a strongly symmetric space. A subset
A � E is said to be of uniformly absolutely continuous norm if

en # 0 in P (M) =) sup
x2A

kenxenkE ! 0:

Note: If E has order continuous norm and if A � E is of uniformly
absolutely continuous norm, then A is relatively � (E;E�)-compact.

Notation:

� San is the collection of all subsets ofE which are of uniformly absolutely
continuous norm.

� "Property (KSan)" � "Property (Kan)".

� �San = �an.

Theorem 6.2 IfM is �-�nite and E � S (�) is a strongly symmetric space
with order continuous norm, then E has property (Kan).

The main ingredients in the proof are:

Proposition 6.3 Let E � S (�) be a strongly symmetric space with order
continuous norm. Suppose that (pn) is a sequence of projections such that
pn " 1 and � (pn) <1 for all n 2 N.
If A � E is of uniformly absolutely continuous norm, then for every

0 < " 2 R there exists n = n (") 2 N and 0 < C" 2 R such that

A � C" (pnBM +BMpn) + "BE:
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Proposition 6.4 IfM is �-�nite and E � S (�) is strongly symmetric space
with order continuous norm, then �an is metrizable on norm bounded subsets
of E�.

Proof. Let (pn) in P (M) be such that pn " 1 and � (pn) <1 for all n 2 N.
De�ne

Wn = pnBM +BMpn; n 2 N:
On norm bounded subset of E�, the topology �an coincides with the topology
generated by the semi-norms

�
�Wn

: n 2 N
	
.

Consequence of the Theorem:

� Assume that � (1) <1.

� E � S (�) strongly symmetric with order continuous norm.

� For x 2 E let

 (x) = fy 2 S (�) : y �� xg :

� Then 
 (x) � E and 
 (x) is of uniformly absolutely continuous norm
for all x 2 E.

This gives:

Proposition 6.5 If (zn) is a sequence in E� such that zn ! 0 w.r.t.
� (E�; E), then there exists a CCC sequence (yk) of (zn) such thatZ 1

0

� (t;x)� (t; yk) dt! 0; k !1;

for all x 2 E.

Proof. Let (yk) be a CCC sequence of (zn) such that yk ! 0 uniformly on
sets of uniformly absolutely continuous norm. Then use thatZ 1

0

� (t;x)� (t; yk) dt = sup
y2
(x)

jhy; ykij :
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7 Property (k)

Let (X; k�k) be a Banach space.

Recall: A subset A � L1 [0; 1] is called order bounded if there exists
0 < w 2 L1 [0; 1] such that

A � [�w;w] + i [�w;w] ;

where
[�w;w] = ff 2 L1 [0; 1] : �w � f � wg :

De�nition 7.1 Let S1 be the collection of subsets of X which are of the
form T (A), where A � L1 [0; 1] is order bounded and T : L1 [0; 1] ! X is a
bounded linear operator.

Note: if A � L1 [0; 1] is order bounded, then A is relatively � (L1; L1)-
compact. Hence, T (A) � X is relatively � (X;X�)-compact for every
bounded linear operator T : L1 [0; 1]! X.

De�nition 7.2 The Banach space X has property (k) if X has property
(KS1).

Since every set in S1 is relatively � (X;X�)-compact it follows that:

Property (K) =) Property (k) :
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LetM be a semi-�nite von Neumann algebra.

Recall: a strongly symmetric space E � S (�) is called a KB-space if:

1. E has order continuous norm;

2. E has the Fatou property: if 0 � x� "� inE and sup� kx�kE =M <1,
then there exists 0 � x 2 E such that x� "� x and kxkE =M .

Theorem 7.3 If M is �-�nite and E � S (�) is a KB-space, then E has
property (k).

The main ingredient in the proof is:

Proposition 7.4 If E � S (�) is a KB-space and T : L1 [0; 1] ! E is a
bounded linear operator, then T can be written as

T = (T1 � T2) + i (T3 � T4) ;

where each Tj : L1 [0; 1]! E is linear and positivity preserving, i.e.,

0 � f 2 L1 [0; 1] =) 0 � Tjf 2 E:

Consequently, T maps order bounded sets in L1 [0; 1] onto order bounded sets
in E.

Fact: if E has order continuous norm, then every order bounded set in
E is of uniform absolutely continuous norm.

Corollary 7.5 If E � S (�) is a KB-space and T : L1 [0; 1] ! E is a
bounded linear operator, then for each order bounded set A � L1 [0; 1], the
image T (A) is a set of uniformly absolutely continuous norm in E.

The theorem now follows from the fact that E has property (Kan).
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8 Property (K) in symmetric spaces

Assume:

� M is a semi-�nite and �-�nite von Neumann algebra.

� E � S (�) is a strongly symmetric space with order continuous norm.

We know: then E has property (Kan).

Recall the following de�nition:

De�nition 8.1 (Krygin, Sheremet�ev, Sukochev, 1993) The space E
is said to have property (Wm) if for all sequences (xn) � E satisfying xn ! 0
both w.r.t. � (E;E�) and the measure topology, it follows that kxnkE ! 0.

Proposition 8.2 If � (1) <1, then the following statements are equivalent:

(i) E has property (Wm);

(ii) each relatively � (E;E�)-compact set in E is of uniformly absolutely
continuous norm.

Consequently:

Corollary 8.3 If � (1) <1 and E has property (Wm), then E has property
(K).
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Example

Assume � (1) = 1 and let � : [0; 1] ! [0;1) be increasing and concave
with � (0+) = � (0) = 0. De�ne the non-commutative Lorentz space by

�� (�) =

�
x 2 S (�) : kxk�� =

Z 1

0

� (t;x)�0 (t) dt <1
�
:

The space �� (�) has order continuous norm and has also property (Wm).

Consequently: the space �� (�) has property (K).

The following lifting result may also be of some interest:

Proposition 8.4 Assume that � (1) = 1. Suppose that E (0; 1) � S (0; 1)
is a strongly symmetric space with order continuous norm and property (K).
Then, the corresponding non-commutative space

E (�) = fx 2 S (�) : � (x) 2 E (0; 1)g ;

kxkE(�) = k� (x)kE(0;1) ;
has also order continuous norm and property (K).
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