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Introduction

E=(E,|-|),F=(F,]| -||) Banach lattices

Arnoud C. M. van Rooij, When do regular operators between
two Riesz spaces form a Riesz space ? (Report 8410,
Department of Mathematics, Catholic University Nijmegen,
1984, 97 pp.)

positive operators L, (E, F) (T(Ey) C Fy)

regular operators L,(E,F) (T =Ty — Tp, T; € Ly(E, F),
Lr(E,F) = span L,(E, F))

order bounded operators Ly(E, F) (A C E order bounded =
T(A) order bounded in F)

continuous operators L(E, F)

L/(E,F), Ly(E,F), L(E, F) are ordered vector space with
respect to the order generated by L, (E, F):
T<S & S—Tel(EF)



Introduction

T : E — F order continuous (x, LUNSVIN T(Xa) L), T(x))
= T eLy(E,F)
Ly(E,F) C L(E,F)

||XnH —0 = passing to a subsequence if necessary X = ZZ’L n|Xn| =
{nx,:ne N} C[-x,x] = {nT(xn):ne N} order bounded
InT(xn)|| <M = [[T(Xa)|| — O

for £ = C[0,1], F = C[0,1] x P (p < o0)
L(¢",F) = Lp(¢', F) = L(¢, F) for an arbitrary F

Tel(',F) = > 2 anT(en)| = S((an))
S, (S—-T)el,(!',FlandT=8—-(S-T)



Introduction

L/(E,F)=Ly(E,F)=L(E,F)foranarbitrary F = Eis
order isomorphic to ¢'(T')

Ly(E,F) = L,(E, F°) N L(E, F) because F is full (= cofinal) in its
Dedekind completion F? (i.e., V,cps3xcr ¥ < X)

finite rank operators F(E, F) C L/(E,F): T =Y _7_; fx ® Xk,

xx € E, fy € F*, then

T =35t i @ x| = (k=g [l @ x| = T)

Ti=Vici @ Vici Il = T=T (T4 - T)

Question: Is an operator of rank k a difference of two positive
operators of the same rank k ?



Introduction

f ® x is a difference of two positive rank-one operators iff x or f
is comparable with zero.

Suppose f and x are not comparable with zero but
T=fox=T,—Trowhere T, = fi® x; > 0.

T; >0 = we can assume without loss of generality x;, f; > 0.
T is not comparable with zero = T; #0.
fex=(x1—hxo = KerfynKerfh C Kerf. Hence
f=afi + 0

Suppose fi, f, are linearly independent. Therefore

Ker f, ¢ Ker fi. Hence f(y)x = af{(y)xs # 0 forsome y € E
which is impossible because x is not comparable with zero.
Assume now that fi, f, are linearly dependent. But now f = «f
for some nonzero ~ which is impossible again because f is not
comparable with zero.



Introduction

L/(E, F) contains nuclear operators, i.e., operators of the form
SR fie ® X where S5 [fill < oo and 5% x| < oo.

Topological properties of L,(E, F) and Ly(E, F).

Let K be a metrizable compact space.

Co is Dedekind complete = L,(C(K), cy) = Lp(C(K), ¢p)
order bounded sets in ¢; = relatively compact setsinc, =
Lr(C(K), co) = K(C(K), co) but X(C(K), co) # L(C(K), co)
because C(K) is separable and and so ¢, is complemented in
C(K) but a projection is not compact.

Let p,g € (1,00). There exists T € K(¢P,£9) ~ L (¢P,¢9).

(9 has the approximation property = T =lim,_. T, where
Th € F(LP£9) C L (4P, £9), i.e., L (¢P,¢9) = Lp(¢P,£9) is not
closed in L(¢P,¢9). If g < p, then L,(¢P,¢9) is a proper dense
subset in L(¢P, ¢9) because L(¢P,¢9) = K(¢P,¢9) by Pitt’s
theorem.



Introduction

L.(E, F) is a Banach space with respect to a norm called the
regular norm || - ||,

[Tl =inH{|[S]|: £T < S} =

inf{[|T1 + Tof| : T=Ty — T2, Tj € Li (E, F)}.

I TN < ||T|l, (there exists T : (R, || - ||l2) — (R?", || - ||2) with
|T| =1and ||T||; = v2"; for n = 1 we can choose

1
1
T=%11 1]



When do spaces L,(E, F) form a Riesz space ?

F is Dedekind complete = L,(E,F)is a Dedekind complete
Riesz space for every E and the modulus | T| = sup{T,—T} of
T is given by the Kantorovich’s formula

| T|(x) = supyy <« | T(y)| for every positive x € E

On the other hand if F is not necessary Dedekind complete but
T : E — F is such that the above formula makes sense for
each x € E, then it defines a positive operator, and it is
precisely the modulus of 7. When this is the case we say that
the modulus exists properly, or that T has a proper modulus.
Also, when the modulus | T| exists we shall say that it exists
properly at x if | T|(x) is given by the Kantorovich’s equality.

old open question: does there exist a regular operator with
non-proper modulus?



Assume that an operator T : E — F possesses the modulus
and let E,7) = {x € E; : T exists properly at x}

Proposition

The set Ep, 1| possesses the following properties.
@ E, 1) is acone.
e0<y<xekyr = yekEym.
@ E, 71| is closed under finite infima and suprema
X,y € Egiry = XAy, xVy € Epyr).




If T=f® x, then |T| = |f| ® |x| — but there exists a finite rank
operator whose modulus is not a finite rank operator.

If E, F are Banach lattices, then every continuous finite rank
operator T : E — F has a proper modulus |T| in L,(E, F) and
the modulus |T| is compact.

F is Dedekind complete = L,(E,F)is a Riesz space — what
about < ?



Y.A. Abramovich, V.A. Gejler, A.C.M. van Rooij, A.W.
Wickstead:

Theorem
For a Banach lattice F the following statements are equivalent.

(a) L,(E,F) is a Riesz space for all Banach lattices E.

(b) L/(L'(1), F) is a Riesz space for all measures .

(c) L,(C(K),F) is a Riesz space for every compact set K.
(d) Li(c

d (S), F) is a Riesz space for every set S, where
c(S) = {f € RS : 3y50 Veso |f(8) — 1| >
e for at most finitely many s}, and ||f|| = supgcs |f(S)|-
(e) F is Dedekind complete.

F
F




A. van Rooij’s characterization of o-Dedekind complete Banach
lattices.

Theorem

For a Banach lattice F the following statements are equivalent.
(a) L,(L'[0,1],F) is a Riesz space.
(b) L/(c,F) is a Riesz space, where ¢ = ¢(N).

(c) L(C(K),F) is a Riesz space for every infinite metrizable
compact space K.

(d) F is o-Dedekind complete.

Y.A. Abramovich, A.W. Wickstead:

(d) < (e): L/(E, F) are o-Dedekind complete Riesz spaces for
all separable Banach lattices E.




Proposition

IfL/(c, F) is a Riesz space, then every T € L,(c, F) has the
proper modulus.

Theorem
For a Banach lattice E the following statements are equivalent.

(@) L/(E,F) is a Riesz space for all Banach lattices F and
every T € L,(E, F) has the proper modulus.

(b) L.(E,F) is a Riesz space for all Banach lattices F.

(c) L/(E,C(K)) is a Riesz space for every compact space K.
(d) E is discrete and its norm is order continuous.

(e) E is o-Dedekind complete and L(E, cy) = L,(E, ¢y).

)

(f) Every x € E lies in an ideal of E that is order isomorphic to
a quotient Riesz space of ¢y.




0 < x € Eisdiscrete iff |[y| < x = y = tx for some scalar ¢
(unit vectors are discrete in classical sequence Banach
lattices).

E |S dlSCfGte If \V/O<X€E Eldiscrete ecE e g X.

E is discrete = dr Jgyplattice Fcrr SUch that

span{l;,;:y €l C F~E.

Examples of discrete spaces: all classical sequence Banach
lattices.

A Banach lattice is continuous when it contains none discrete
elements (C[0, 1], LP(u) for atomless measures p, £°°/cy).

A Banach lattice E = (E, || - ||) has order continuous norm if
Xa 10 = [Xaf = 0.



Ly o.c. norm

When is L,(E, F) discrete or continuous ?

Theorem

Let E, F be two Banach lattices and let F be Dedekind
complete.

(a) L,(E,F) is discrete iff E* and F are discrete.
(b) L,(E, F) is continuous iff E* or F is continuous.

Moreover, T € L,(E, F) is discrete iff T = f ® e where e is
discrete in E and f € F* is a homomorphism (i.e., f is discrete
in the dual space).




Ly o.c. norm

Z.L.Chen

The regular norm is order continuous on L.(E, F) iff positive
operators between E and F are simultaneously L-weakly and
M-weakly compact ( i.e., |ynl| — O whenever y, € sol T(Bg) are
disjoint and || Tx,|| — 0 for each norm bounded disjoint
sequence (xp) C E).




Ly o.c. norm

If a Banach lattice F has order continuous norm, then the
regular norm on L,(C(K), F) is order continuous too.

norm on F is order continuous < regular operators from
C(K) into F are weakly compact, but weakly compact operators
on C(K) spaces coincide with M-weakly compact operators.
The dual of C(K) has order continuous norm and now we can
use the Dodds-Fremlin theorem: M-weakly compact operators
mapping T : E — F are L-weakly compact and vice versa
whenever E* and F have order continuous norms.

The regular norm is order continuous on L,(E, E) iff E is finite
dimensional.




Ly o.c. norm

EisaKBspace < (0< x,1andsup,|Xx <o) = (Xn)
is convergent < E does not contain any subspace
isomorphic to ¢y

Z.L.Chen
Theorem
The following statements are equivalent.
(@) (L/(E,F),| - r) is a KB-space.
(b) || - ||, is order continuous and F is a KB-space.

(c) F is a KB-space and every positive T : E — F is M-weakly
compact.

Corollary
If LP(1), L9(v) are infinite dimensional, then
(Lr(LP(p), LI()), || - [Ir) is @ KB-space iff g < p.




Ly o.c. norm

E has the positive Schur property (E € (PSP)) whenever
o(E,E*)

0<xp ——>0 = |xn]| — 0.

L' (1) € (PSP)

D. Leung: n finite, ¢ an Orlicz function such that

lims_ 00 %(253)) = oo (Where ¢*(t) = sup;so(St — ¢(s))) =

L?(11) € (PSP); moreover (L# (1))@ € (PSP) for all n.

Suppose that E* (respectively F) possesses the positive Schur
property. Then L.(E, F) with the regular norm is a KB-space iff
F (respectively E*) is a KB-space.




Ly o.c. norm

A. van Rooij

Proposition

The space L,(¢>°, F) is a Riesz space iff F is c-complete, i.e.,
every order bounded from above subset X with card X < ¢ has
a supremum.




When L(E,F) =L, (E,F)?
? L.V Kantorovich, B.Z. Vulikh

Theorem

If E, F are such that F is order isomorphic to a Dedekind
complete space C(K) or E is order isomorphic to L' (1) and
simultaneously there exists norm one positive projection

P : F** — F, then every continuous operator T : E — F is
regular (and so L(E, F) is a Riesz space ). Moreover the
operator and regular norms are equal.

conjecture: L(E,F) = L,(E,F) = E is order isomorphic to
L' () or F is order isomorphic to a closed Riesz subspace in
some C(K) space.



D. Cartwright and H.P. Lotz

Let E, F be Banach lattices such that F (resp. E*) contains a
closed Riesz subspace order isomorphic to (P for a finite p. If
every compact operator T : E — F belongs to L,(E, F**), then
E is order isomorphic to L' () (resp. F is order isomorphic to a
closed Riesz subspace of some C(K)).

L(E,L"(n)) = L,(E, L' (u)) for infinite dimensional L' (1) iff E is
order isomorphic to L' (v).




Y.A. Abramovich and A.W. Wickstead: arguments “supporting”
the conjecture.

Theorem

The following conditions on a Banach lattice F are equivalent.

(a) F is order isomorphic to a Dedekind complete C(K) space.
(b) For every Banach lattice E the space L(E, F) is a Riesz
space.

(c) For every Banach lattice E every continuous T : E — F is
regular and L,(E, F) forms a Riesz space.

Y.A. Abramovich disproved the conjecture — there exits E and F
such that E is not order isomorphic to any L'(x), F is not order
isomorphic to any AM-space but every T € L(E, F) has the
modulus (in particular L(E, F) = L,(E, F)).



We have already mentioned that L(L" (1), F) = L(L' (1), F)
whenever there exists a contractive positive projection

P: F — F. The assumption about F can be slightly
weakened — it is enough to require that F has the Levi property,
i.e., increasing norm bounded nets of positive elements have a
supremum in F.

Abramovich and Wickstead noticed that this modified version of
the theorem can be reversed.

Theorem

The following conditions on a Banach lattice F are equivalent.
(a) F has the Levi property.

(b) L(L'(w), F) is a Riesz space for every measure .

(c) L(L'(n), F) = L(L' (), F) for every u and F is Dedekind
complete.




|| - || is order continuous on E (E € (o.c.) iff X, | 0 =

[Xall — 0

|| - || is o-order continuous on E (E € (0-o0.c.)) iff x, | 0 =
[Xnll — 0

order continuity = o-order continuity when E is o-Dedekind
complete

| - ||l is (0-0.c.) on spaces c(S) for every uncountable sets S
but || - ||oc ¢ (0.c.)

the same holds for the quotient norm on E/F whenever E
consists of sequences, F =span{e,: ne N} and F # E



Ea={xcE:|x| 22X, |0 = |X.|| — 0}
E, is always a norm closed ideal (but it may happen E4 = {0})

If E4 is a proper order dense ideal in a o-Dedekind complete
Banach lattice E, then the quotient norm on E/Ey is o-order
continuous and the norm is not order continuous. Additionally
E/E, is continuous and none nonzero ideal in the quotient is
o-Dedekind complete.




Characterizations of order continuity:

G.Ja. Lozanovskii — A o-Dedekind complete Banach lattice has
order continuous norm iff E does not contain any closed
subspace isomorphic to ¢>° (equivalently: E does not contain
any closed Riesz subspace order isomorphic to £>°)

D. Fremlin and P. Meyer-Nieberg: E has order continuous norm
iff Xp AXm=0and x, <x = |[xa| — 0.

Characterizations of o-order continuity:

Theorem

For a Banach lattice E the following statements are equivalent.

(a) E € (0-0.c.).

(b) E is order complete and E does not contain any closed
o-regular Riesz subspace order isomorphic to ¢°°.

(c) E is order complete and if elements x, € E, n € N are
such that x, A xm = 0 and sup,, x, exists, then || x,|| — 0.




Explanations:
E is order complete means that every sequence (x,) C E
satisfying the order Cauchy condition:

Jv,10 Vnk | Xntk — Xn| < Vp

is order convergent.

Examples: o-Dedekind complete Banach lattices, ¢>°/cy (it is
not o-Dedekind complete); the spaces C[0, 1] and ¢ are not
order complete.

A Riesz subspace F C E is o-regular if every countable subset
of F having an infimum (or a supremum) in F has the same
infimum (supremum) in E.

Examples: ideals, order dense Riesz subspace; but

{(xn) € ¢y : Xop = 0} ® Ry is not o-regular in £°°.

Let us note that ¢*° /¢, contains many Riesz subspaces order
isomorphic to ¢°° but none copy is o-regular.



Problem: does every Banach space possess an unconditional
basic sequence ? (No — W.T. Gowers and B. Maurey)

T. Figiel, J. Lindenstaruss, L. Tzafriri

A Banach lattice E has an order continuous norm iff it is
o-Dedekind complete and every closed subspace of E has an
unconditional basic sequence.




Operator characterizations of the order continuity.

Theorem
For a Banach lattice E the following statements are equivalent.

(a) E has order continuous norm.

(b) If K is an arbitrary compact space and T : C(K) — E is
positive, then T is weakly compact.

(c) E is o-Dedekind complete and every positive operator
T : (> — E is weakly compact.

(d) E is o-Dedekind complete and every Dunford-Pettis
operator T : E — ¢y is order bounded.




For a Banach lattice E the following statements are equivalent.
(a) E* € (o.c.).
(b) Every Dunford-Pettis operator on E is weakly compact.

(c) Every continuous operator T from E into a Banach space
without any subspace isomorphic to ¢, is weakly compact.

(d) Every continuous operator T : E — L'(p) is weakly
compact.

(e) Every positive operator T : E — L'[0, 1] is weakly compact.
(f) Every positive operator T : E — (' is compact.
(g) Every continuous operator T : E — E* is weakly compact.




Operator characterizations of the o-order continuity.
C. Aliprantis, O. Burkinshaw, P. Kranz

For a Banach lattice E the following statements are equivalent.

(a) E € (c-0.c.).

(b) IfO< Ty, T: E — E satisfy Tp(x) 1 T(x) foreach x > 0,
then also T3(x) 1 T?(x).




o 1 poo
J. Schur (1920): (xp) € €', xo 225 0 = |[xa]| — 0

Proof: gliding hump technique or the theory of basis argument
. e (ANA
—if X0 25N 0and x| > >0 = Ty (Xn) ~ (8)
X has the Schur property (X € (SP)) if

a(X,X*)
Xo 252520 = X0l — 0



Examples.

1. (T € (SP) for every set T.

2. Xpe(SP) = (&Xu)u € (SP),

in particular X = (@¢2),1 € (SP), but X ~ ¢! because X*
contains a complemented copy of /2.

3. Consider a weighted Orlicz sequence space ¢¥(ap)
generated by a convex function ¢ satisfying two conditions:
limy_o 24 =0, limy_o £ = oo and let

(@n) € (1 = {(Ca) € €1 : ¥ G > O}. IF limy oo £ = oo,
then ¢¥(a,) € (SP).

W, = {(bn) € (1, : £#(bn) ~ £} is of the first category in £
and ¢!, is adense Gs setin ¢1. Hence ¢, ~ W, # 0.
Conclusion: for every ¢ there exists a lot (a,) such that
¢%(an) € (SP) and £#(a,) ~ (1.



4. Nakano sequence space /), p, e [1, ).

|. Halperin and H. Nakano (1953): ¢(P) ¢ (SP) iff p, — 1
If (1 — 5-)log n — oo, then £(Pn) o ¢,

5. R.Ryan (1987) — L(X, Y) € (SP) iff X*, Y € (SP).
(®¢°) 1) is not isomorphic to any subspace of /! =

L(co, (®£5°),1) ~ £1(I) for every I because L(X, Y) contains Y
isometrically.



(a) E € (SP).
(b) If u is an arbitrary measure, then every weakly compact
operator T : L' (1) — E is compact.

(c) Every positive weakly compact operator T : (' — E is
compact.

(d) E has order continuous norm and every continuous linear
operator T : E — ¢y is Dunford-Pettis (= T maps weak null
sequences into norm null).




Every Banach lattice possessing the Schur property is a dual
space.

Theorem
For a Banach lattice E the following statements are equivalent.

(a) E* € (SP).

(b) Every weakly compact operator on E is compact.

(c) Every weakly compact operator T : E — ¢ is compact.
(d)

d) If F is a Banach lattice with order continuous norm and
T : E — F is weakly compact, then T is L-weakly compact.




PSP revisited

E has the positive Schur property (E € (PSP)) whenever
o(E,E*)

0<xp——>0 = |xa]| — O

Useful characterization:

E € (PSP) & (xk Axm =0, x4 0 = |[[xa]| — 0)

If E is discrete, then E € (PSP) < E € (SP).

o(E,E*)

Theorem

For a Banach lattice E the following statements are equivalent.

(a) E € (PSP).

(b) Every normalized sequence of pairwise disjoint positive
elements contains a subsequence equivalent to the unit
V16'CtOI’ basis in ¢ (and so E is saturated by order copies of
o).

(c) E is o-Dedekind complete and an operator T : E — ¢y is a
Dunford-Pettis operator iff T is regular




DPSP

Josefson-Nissenzweig theorem —
dimX =00 = Jpyex- |l = 1 and £, 5% 0,
But if 0 < f, ZCEVCHD 4 and 1, are regular Borel
measures representing fy, then ||f|| = [, 1 dun = fa(1) — O.
B. Agzzouz, A. Elbour, A. Wickstead (2010) — E has the dual
positive Schur property (E € (DPSP)) if

o<t ZEE 0 = i, — 0.

E € (DPSP) = E has the positive Grothendieck property
(E € (PGP)), ie., 0 < f, 5 o — f, ZELETD

E € (DPSP) < E € (PGP) and E* € (PSP) < every

0< T:E — ¢yiscompact



Examples.

1.

Theorem
For an AM-space E (= E is order isomorphic and isometric to a
closed sublattice in some C(K)) the following statements are
equivalent.

@ E < (DPSP).

@ E c (PGP).

@ E does not contain any positively complemented order

copy of ¢y.




DPSP

2. If L?(u) is an Orlicz space, then

L?(u) € (DPSP) < L¥"(u) € (PSP). Moreover

L#(u) € (DPSP) = (L#(1))** € (DPSP), (L#(1))™** € (DPSP),
.., (L? (1))@ € (DPSP)

For a finite measure 1 and an Orlicz function ¢ satisfying

limy_oo “‘;f(zj’)) = oo we obtain L¥(u) € (DPSP).

3. Let1< @gn— ooandlet p,(u) = %uq”. Then

¢(en) ¢ (DPSP), (¢(#))** € (DPSP), (¢£{#n))**** ¢ (DPSP),...,
(¢t¢n))(2M) ¢ (DPSP) and

(@A) € (DPSP), ((D4a")s )™ € (DPSP),

(€M) ) € (DPSP), ..., ((D3") )M € (DPSP)




For a Banach lattice E the following statements are equivalent.
(a) E € (DPSP).

(b) I A fi = 0 and f, ZEZEL 0, then ||f,]| — O.

(c) Every order weakly compact operator on E is M-weakly
compact.

(d) Every positive weakly compact operator T : E — F is
semi-compact
(i.e.,v5>030<ye,: T(BE(1 )) C [—y,y] + EBF(1 ))

(e) IfF is a discrete Banach lattice with order continuous
norm, then every positive operator T : E — F is compact.

The word “discrete”can not be rejected in the last statement.



DPSP

The last statement formulated in the theorem motivates
considerations of the following property of a Banach lattice E.
(x) If F is a Banach lattice with order continuous norm and

T : E — F is positive, then T is compact.

It is a surprise that o-Dedekind complete Banach lattices E
satisfying (x) are finite dimensional. On the other hand there
exist spaces C(K) satisfying (x) and we can characterize them.



For a space E = C(K) the following statements are equivalent.
(a) E* is order isomorphic to ¢'(T") for some set T .

(b) E does not contain any closed subspace isomorphic (i.e.,
linearly homeomorphic ) to /1.

(c) E satisfies (x).
(d) Every positive operator T : E — (¢>°)* is compact.

If K is a countable compact space then C(K) satisfies (x)
because (C(K))* is isomorphic to £1.
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