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ON THE SET OF BOUNDED LINEAR OPERATORS TRANS-
FORMING A CERTAIN SEQUENCE OF A H!LBERT SPACE
INTO AN ABSOLUTELY SUMMABLE ONE
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Let # Dbe a real, separable Hilbert space, # the set of bounded
linear operators on #, and S={q,|n& N} a fixed sequence in #;
we shall denote by

Cy={A€ =

2 llAa, |I<=}. Obviously Cg+# ¢, VSe #.
n=1

It is straightforward to check that Cg is a left ideal. We will prove
that it never is a proper bilateral ideal, using the following result of
Calkin [1]:

Every proper bilateral ideal in the ring of bounded operators of a
Hilbert space contains the ideal € of finite rank operators and is con-
tained in the ideal of the completely continuous ones, &.

Lemma 1. It is a necessary and sufficient condition for €, C Cg
that S be a summable sequence.

Proof. Let S={a, In€N}. § is weakly summable if and only if
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Vx € &, 2; [@,,x)|<e, ((, ) denotes scalar product). In the Hilbert
n=

space ¢ a sequence is summable iff it is weakly summable. By the as-
sumption &, C C; we have all the uni-dimensional projectors, P, )
x € # — {0}, included in C and hence

VXE€ # —{0}, P, €Cs * 2 1P, @)l<,

V€ # -0} » 2 1@, X)|<=, Vxe .
n=

Thus we also see that whenever S is summable, CS contains the uni-
dimensional rank operators and from this it is easy to prove that it con-
tains the whole set of finite rank operators.

Recalling that the Hilbert — Schmidt operators on s coincide with
the absolutely p-summing ones, 1 < p <, ([4]), one has that there ex-
ists no sequence S for which Cg=&,. In fact, if C;D &, then
Cs 0 &,, ideal of the Hilbert — Schmidt operators, since every 4 € &,
transforms a summable sequence into an absolutely summable one, that

is 2’1 IIAa,l [| <o, which isto say A€ Cs. Nevertheless one can find
n=

sequences S such that Cs consists only of finite rank operators, but
not of all of them though.

So far we have proved that if a sequence S C # is not summable,
C, cannot be a proper bilateral ideal. Let us now see that for S summable
C, is not proper bilateral either.

Theorem 1. Let S={a,|n€ N} be summable. Cg then contains
a non completely continuous operator.

For the proof of this theorem we prove first the following

Lemma 2. If S is summable, for every € > 0 there exists a natural
number u such that )

+
I(_ap1 R aps,x)l< €,
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with p<p, <...<p, and x € K only restricted by |lx|l=1.

Proof. Suppose that thereisan € > 0 such that Vm, 3x_, p, >m
verifying I(a“m + ...+ a“m+sm,xm)|> €. We take m,,m,,... such
that m, ; >u, +s, , and construct the subsequence of S

] ]

a ,...,a

i, ,d o, ...,d

nml+sml “"'2 +s

5o .
m3

for which the corresponding series does not verify the Cauchy condition
and therefore is non-summable. This clearly contradicts {a, | ne N} sum-
mable. I

Proof of the theorem. If {a, | n € N} spans a finite dimensional sub-
space of #, then {a, | n € N} summable is equivalent to {a, |n e N}
absolutely summable, and Cg = 2.

Let us now suppose that the closed linear hull [a,...,q,,...]

is not finite dimensional, and consider in # a complete orthonormal

system {e, |n€N}; let a, = i=21' a,;¢€;. The series

?l(an,e,.)|= §|an,|, G=1,2,...)

converge uniformly following the lemma just proved.

If n> 0 denotes any fixed real number, for 121 there exists v[g)

such that 2, Ian].|<—721 (Vj€ N). Since for each n, a,; > 0 (- ),
n=y
for large enough j we can obtain

v—1

n
2 a1 <2
and so
ngl |a"i l < "
thus

- 831 -



2 g, 1>0 ().

Let us denote 0].=Z|am.|, 0].—*0 (j > =), and choose 0, so
n 7
that 20, <, that is
] ]

Construct the coordinate subspace [ell , el2 se++1€,...] corre-
]

sponding to the sequence {l]. |7€ N}, and denote by P the orthogonal
projection on it. We have,

Pa =a

n n11e11+...+an1ie1i+... G=1,2,..)

1Pa, 1< lay, 1+ .+ lay |+ G=1,2,..)

thus

2NPayll< 2 lay, | <=
n "’Ii j

So we see that P transforms S into S'={Pa, |n€ N} which is
absolutely summable, and therefore P€ C., being P a non completely
continuous operator. i

The existence of a non completely continuous operator in Cg im-
plies the existence of infinitely many of them.

This theorem shows that when we impose Cg to contain the whole
set of finite rank operators, we obtain a very strong condition on S,
namely that it must be summable, and because of this fact Cs contains
”too many’’ operators, and it cannot be included in the ideal set of the
completely continuous ones &, proving that C is never a proper bi-
lateral ideal.

However C; can be the whole set #. Indeed, it is so iff S=
={a, |n € N} is absolutely summable. The other extreme case, Cg = {0},
0 the null operator, is also possible and we consider it now. We quote
first the following result [3]:
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"Let J designate a left ideal in #. If J does not include pro-
jectors, then J={0}".

Then it is easy to prove that whenever Cs # {0}, it includes an uni-
dimensional projector; hence a necessary and sufficient condition for

Cs # {0} is the existence of a ray rC # such that ; HPran || < oo,
or equivalently:

CS={0}<> Zl(an,x)|=°°, Vx € # —{0}.
A geometrical consequence of this is that for Cg = {0} the nucleus of S,

NS = f;l [a,,...] mustbethe whole # hencein particular [S]= .

N(S)# »# would imply the existence of a natural number p such
that E= [ap 2y g .1# #, consequently P .. would belong to

Cy, and there would exist uni-dimensional projectors in Cg.

We give an instance of a sequence S for which Cg = {0}. Let
{r, In€ N} be a complete system of rays in ¢, [r|,...,r,,...]1= #.
If we choose

(n) (n)
ap e sa,,

; —- (n)
in r,, r, —w(am”) (n,m € N} such that

laili=k >0 (neN),
then S= {a,(n”) | n,m e N} verifies Cg = {0}.

We can even impose conditions on this sequence § so that it be-
comes a L-system, (that is, the image of an orthonormal basis by a bounded
linear operator) with Cg = {0}. This would be the case if

oo

2 NP <= and 2 lal== (N,
m =

nm=1

If we project § on any ray r of #, we have 21 IIPra’(n”)||= o for
. e

a certain i, €{r, | n € N} and therefore
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2 1@y, x)| ==, Vxe.x-{0}
n,

hence Cs = {0}.

We observe the fact that whenever we have Cg = {0} for agiven S,
we also have Cg. ={0} forany S'D S, and this suggests to search the
“minimal systems”, S, for which Cg ={0}. We point out that any
heterogonal in direction system, S, — even if it is complete — gives
Cs # {0}, since it verifies N(S) = {0} # #.

) However the join S of two, or more, heterogonal systems can give

C; ={0}. To see this, choose an orthonormal complete system of ¢,
{e,In€N}. Let S'={b,|n€N} bea L-system such that Cg.= {0}
and such that {e, + b, |n € N} is heterogonal. Then, for

S={e,,e, + b, |n€N}
we have Cs = {0}.
Indeed, had we
PAICRENIE nZI(e,,,xo) + (b, %) <
for a certain x, € # — {0}, then we would have Zl(bn,x0)|< o0
contradicting Cg. = {0}. g
We summarize the above results in the following:

Proposition. C¢ can never be a bilateral ideal unless either

(1) it is the whole . For this we need a very strong summability
condition on S, namely S must be absolutely summable or

(ii) Cg is the zero ideal. For this we need a very strong condition
of non-summability on S, ie. for every x€ # —{0}, {(a,,x)|n€ N}
must not be absolutely summable.

Finally we show that Cg can not-contain the ideal & of the com-
pletely continuous operators, except when C¢ equals #, that is, when
S is absolutely summable.
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Theorem 2. Let S = {a, |ne N} be such that Z I a, | = eo. Then
n

there exists a completely continuous operator C such that
2l Ca,ll = .
= Il Ca,
To prove this we give the following

Lemma 2. Let 21 p, be a numerical divergent series of positive
n=
terms. Then there exists a sequence {q, | n € N} verifying
4,2q9,2...2q,2...>0, q,>0 (n>)

such that

Proof of the theorem. Let us refer s to an orthonormal basis

{e, |n€e N}. Let a, = 211 a,;€;- By the assumption made above we have
]=

o

2 Va2 + .. +ak ..

n=1 nj

I
8

We are trying to construct a completely continuous diagonal operator C,

N 0
C: * An- N A]—)O (j-)oo),
0
such that
3 _ 3 2 32 232 — oo
2l ll= 2 Vel M+ el N =

One can find natural numbers v, (n € N) with the condition that
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n=1
and we can additionally suppose that v <v_ ., (#€N).

Lemma 2 guarantees the existence of a sequence TR
Zp,=...>0, g, >0 (n—>e) such that

3 2 2
n;; ynVan1+...+anvn—°°.

Let us take
)\1_ =4, —#l’xv 1 = vz—#Z’
’>\vn_l+1= =)\"n #n’
As
232 + 2 32 2 2
Vanly\l anvn)\vn = #n Vanl Tt anvn ’
we have
2 2 2 2 _
n_Zl Y A%4? N 4y, =,
and consequently
2 2 2 2 -
n% R N L

Thus we can establish that if a sequence S is such that VC€ &,
21 1Ca, | <<=, then necessarily 2 lla, /| <=, and Cg =
n= n=

This theorem, in a certain sense, can be considered as dual of the
one due to Gohberg and Markus [2] which asserts that for every
bounded operator A€ B, A+ 0, there exists an orthonormal base

{e, | n € N} such that

2 Nl de, |l =
n=1
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We have obtained that for every non absolutely summable sequence

— hence in particular for all the orthonormal bases — there exists not only
a bounded operator, but a completely continuous one, C, such that

2 llCall= .
n

(1]

[2]

[3]

[4
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