COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI
23. TOPOLOGY, BUDAPEST (HUNGARY), 1978.

ON THE SET OF BOUNDED LINEAR OPERATORS TRANS-FORMING A CERTAIN SEQUENCE OF A HILBERT SPACE. INTO AN ABSOLUTELY SUMMABLE ONE

E. MARTIN-PEINADOR

Let $\mathscr H$ be a real, separable Hilbert space, $\mathscr B$ the set of bounded linear operators on $\mathscr H$, and $S=\{a_n\mid n\in N\}$ a fixed sequence in $\mathscr H$; we shall denote by

$$C_{\mathcal{S}} = \left\{ A \in \mathscr{B} \, \middle| \, \sum_{n=1}^{\infty} \, \|Aa_n\| < \infty \right\}. \quad \text{Obviously} \quad C_{\mathcal{S}} \neq \phi, \ \forall S \in \mathscr{H}.$$

It is straightforward to check that C_S is a left ideal. We will prove that it never is a proper bilateral ideal, using the following result of Calkin [1]:

Every proper bilateral ideal in the ring of bounded operators of a Hilbert space contains the ideal \mathfrak{S}_0 of finite rank operators and is contained in the ideal of the completely continuous ones, \mathfrak{S} .

Lemma 1. It is a necessary and sufficient condition for $\mathfrak{S}_0 \subset C_S$ that S be a summable sequence.

Proof. Let $S = \{a_n \mid n \in N\}$. S is weakly summable if and only if

 $\forall x \in \mathscr{H}, \ \sum_{n=1}^{\infty} |(a_n,x)| < \infty, \ ((\ ,\)\ \text{denotes scalar product}). \ \text{In the Hilbert}$ space \mathscr{H} a sequence is summable iff it is weakly summable. By the assumption $\mathfrak{S}_0 \subset C_S$ we have all the uni-dimensional projectors, $P_{w(x)}, x \in \mathscr{H} - \{0\}$, included in C_S and hence

$$\begin{aligned} &\forall x \in \mathcal{H} - \{0\}, \quad P_{w(x)} \in C_S \ \Leftrightarrow \ \sum_{n=1}^{\infty} \|P_{w(x)}(a_n)\| < \infty, \\ &\forall x \in \mathcal{H} - \{0\} \ \Leftrightarrow \ \sum_{n=1}^{\infty} |(a_n, x)| < \infty, \quad \forall x \in \mathcal{H}. \end{aligned}$$

Thus we also see that whenever S is summable, C_S contains the unidimensional rank operators and from this it is easy to prove that it contains the whole set of finite rank operators.

Recalling that the Hilbert – Schmidt operators on \mathcal{H} coincide with

the absolutely p-summing ones, $1 \le p < \infty$, ([4]), one has that there exists no sequence S for which $C_S = \mathfrak{S}_0$. In fact, if $C_S \supset \mathfrak{S}_0$ then $C_S \supset \mathfrak{S}_2$, ideal of the Hilbert — Schmidt operators, since every $A \in \mathfrak{S}_2$ transforms a summable sequence into an absolutely summable one, that is $\sum_{n=1}^{\infty} \|Aa_n\| < \infty$, which is to say $A \in C_S$. Nevertheless one can find sequences S such that C_S consists only of finite rank operators, but not of all of them though.

So far we have proved that if a sequence $S \subset \mathcal{H}$ is not summable, C_S cannot be a proper bilateral ideal. Let us now see that for S summable C_S is not proper bilateral either.

Theorem 1. Let $S = \{a_n \mid n \in N\}$ be summable. C_S then contains a non completely continuous operator.

For the proof of this theorem we prove first the following

Lemma 2. If S is summable, for every $\epsilon > 0$ there exists a natural number μ such that

$$|(a_{p_1} + \ldots + a_{p_s}, x)| < \epsilon,$$

with $\mu \le p_1 < \ldots < p_s$ and $x \in \mathcal{H}$ only restricted by ||x|| = 1.

Proof. Suppose that there is an $\epsilon>0$ such that $\forall m, \exists x_m, \mu_m>m$ verifying $|(a_{\mu_m}+\ldots+a_{\mu_m+s_m},x_m)| \geq \epsilon$. We take m_1,m_2,\ldots such that $m_{i+1}>\mu_{m_i}+s_{m_i}$, and construct the subsequence of S

$$a_{\mu_{m_1}}, \ldots, a_{\mu_{m_1} + s_{m_1}}, a_{\mu_{m_2}}, \ldots, a_{\mu_{m_2} + s_{m_2}}, \ldots$$

for which the corresponding series does not verify the Cauchy condition and therefore is non-summable. This clearly contradicts $\{a_n \mid n \in N\}$ summable.

Proof of the theorem. If $\{a_n \mid n \in N\}$ spans a finite dimensional subspace of \mathscr{H} , then $\{a_n \mid n \in N\}$ summable is equivalent to $\{a_n \mid n \in N\}$ absolutely summable, and $C_S = \mathscr{B}$.

Let us now suppose that the closed linear hull $[a_1,\ldots,a_n,\ldots]$ is not finite dimensional, and consider in $\mathscr H$ a complete orthonormal system $\{e_n\mid n\in N\}$; let $a_n=\sum_{j=1}^\infty a_{nj}e_j$. The series

$$\sum_{n} |(a_{n}, e_{j})| = \sum_{n} |a_{nj}|, \quad (j = 1, 2, ...)$$

converge uniformly following the lemma just proved.

If $\eta > 0$ denotes any fixed real number, for $\frac{\eta}{2}$ there exists $v\left(\frac{\eta}{2}\right)$ such that $\sum_{n=\nu}^{\infty} |a_{nj}| < \frac{\eta}{2}$ $(\forall j \in N)$. Since for each n, $a_{nj} \to 0$ $(j \to \infty)$, for large enough j we can obtain

$$\sum_{n=1}^{\nu-1} |a_{nj}| < \frac{\eta}{2}$$

and so

$$\sum_{n=1}^{\infty} |a_{nj}| < \eta,$$

thus

$$\sum_{n=1}^{\infty} |a_{nj}| \to 0 \qquad (j \to \infty).$$

Let us denote $\theta_j = \sum_n |a_{nj}|$, $\theta_j \to 0$ $(j \to \infty)$, and choose θ_{l_j} so that $\sum_j \theta_{l_j} < \infty$, that is

$$\sum_{n,l_j} |a_{nl_j}| < \infty.$$

Construct the coordinate subspace $[e_{l_1}, e_{l_2}, \ldots, e_{l_j}, \ldots]$ corresponding to the sequence $\{l_j \mid j \in N\}$, and denote by P the orthogonal projection on it. We have,

$$Pa_n = a_{nl_1}e_{l_1} + \ldots + a_{nl_j}e_{l_j} + \ldots$$
 $(j = 1, 2, \ldots)$
 $||Pa_n|| \le |a_{nl_1}| + \ldots + |a_{nl_1}| + \ldots$ $(j = 1, 2, \ldots)$

thus

$$\sum_n \| \operatorname{\textit{Pa}}_n \| \leq \sum_{n,l_i} | \, a_{nl_i} | < \infty.$$

So we see that P transforms S into $S' = \{Pa_n \mid n \in N\}$ which is absolutely summable, and therefore $P \in C_S$, being P a non completely continuous operator.

The existence of a non completely continuous operator in $C_{\mathcal{S}}$ implies the existence of infinitely many of them.

This theorem shows that when we impose C_S to contain the whole set of finite rank operators, we obtain a very strong condition on S, namely that it must be summable, and because of this fact C_S contains "too many" operators, and it cannot be included in the ideal set of the completely continuous ones \mathfrak{S} , proving that C_S is never a proper bilateral ideal.

However C_S can be the whole set \mathscr{B} . Indeed, it is so iff $S = \{a_n \mid n \in N\}$ is absolutely summable. The other extreme case, $C_S = \{0\}$, 0 the null operator, is also possible and we consider it now. We quote first the following result [3]:

"Let J designate a left ideal in \mathcal{B} . If J does not include projectors, then $J = \{0\}$ ".

Then it is easy to prove that whenever $C_S \neq \{0\}$, it includes an unidimensional projector; hence a necessary and sufficient condition for $C_S \neq \{0\}$ is the existence of a ray $r \in \mathcal{H}$ such that $\sum_n \|P_r a_n\| < \infty$, or equivalently:

$$C_S = \{0\} \Leftrightarrow \sum |(a_n, x)| = \infty, \quad \forall x \in \mathcal{H} - \{0\}.$$

A geometrical consequence of this is that for $C_S = \{0\}$ the nucleus of S, $N(S) = \bigcap_{n=1}^{\infty} [a_n, \ldots]$ must be the whole \mathscr{H} hence in particular $[S] = \mathscr{H}$.

 $N(S) \neq \mathscr{H}$ would imply the existence of a natural number p such that $E = [a_p, a_{p+1}, \ldots] \neq \mathscr{H}$, consequently $P_{\mathscr{H} \Theta E}$ would belong to C_S , and there would exist uni-dimensional projectors in C_S .

We give an instance of a sequence S for which $C_S = \{0\}$. Let $\{r_n \mid n \in N\}$ be a complete system of rays in \mathcal{H} , $[r_1, \ldots, r_n, \ldots] = \mathcal{H}$. If we choose

$$a_1^{(n)},\ldots,a_m^{(n)},\ldots$$

in r_n , $r_n = w(a_m^{(n)})$ $(n, m \in \mathbb{N})$ such that

$$||a_m^{(n)}|| \ge k_n > 0$$
 $(n \in N),$

then $S = \{a_m^{(n)} \mid n, m \in N\}$ verifies $C_S = \{0\}$.

We can even impose conditions on this sequence S so that it becomes a L-system, (that is, the image of an orthonormal basis by a bounded linear operator) with $C_S = \{0\}$. This would be the case if

$$\sum_{n,m=1}^{\infty} \|a_m^{(n)}\|^2 < \infty \quad \text{and} \quad \sum_{m=1}^{\infty} \|a_m^{(n)}\| = \infty \quad (n \in \mathbb{N}).$$

If we project S on any ray r of \mathcal{H} , we have $\sum_{m=1}^{\infty} \|P_r a_m^{(p)}\| = \infty$ for a certain $r_p \in \{r_n \mid n \in N\}$ and therefore

$$\sum_{n,m} |(a_m^{(n)}, x)| = \infty, \quad \forall x \in \mathcal{H} - \{0\},$$

hence $C_S = \{0\}.$

We observe the fact that whenever we have $C_S = \{0\}$ for a given S, we also have $C_{S'} = \{0\}$ for any $S' \supset S$, and this suggests to search the "minimal systems", S, for which $C_S = \{0\}$. We point out that any heterogonal in direction system, S, — even if it is complete — gives $C_S \neq \{0\}$, since it verifies $N(S) = \{0\} \neq \mathscr{H}$.

However the join S of two, or more, heterogonal systems can give $C_S = \{0\}$. To see this, choose an orthonormal complete system of \mathscr{H} , $\{e_n \mid n \in N\}$. Let $S' = \{b_n \mid n \in N\}$ be a L-system such that $C_{S'} = \{0\}$ and such that $\{e_n + b_n \mid n \in N\}$ is heterogonal. Then, for

$$S = \{e_n, e_n + b_n \mid n \in N\}$$

we have $C_{S} = \{0\}.$

Indeed, had we

$$\sum_{n} |(e_{n}, x_{0})| + \sum_{n} |(e_{n}, x_{0}) + (b_{n}, x_{0})| < \infty$$

for a certain $x_0 \in \mathcal{H} - \{0\}$, then we would have $\sum_{n} |(b_n, x_0)| < \infty$ contradicting $C_{S'} = \{0\}$.

We summarize the above results in the following:

Proposition. C_S can never be a bilateral ideal unless either

- (i) it is the whole A. For this we need a very strong summability condition on S, namely S must be absolutely summable or
- (ii) C_S is the zero ideal. For this we need a very strong condition of non-summability on S, i.e. for every $x \in \mathcal{H} \{0\}$, $\{(a_n, x) \mid n \in N\}$ must not be absolutely summable.

Finally we show that C_S can not contain the ideal $\mathfrak S$ of the completely continuous operators, except when C_S equals $\mathcal B$, that is, when S is absolutely summable.

Theorem 2. Let $S = \{a_n \mid n \in N\}$ be such that $\sum_n ||a_n|| = \infty$. Then there exists a completely continuous operator C such that

$$\sum_{n=1}^{\infty} \|Ca_n\| = \infty.$$

To prove this we give the following

Lemma 2. Let $\sum_{n=1}^{\infty} p_n$ be a numerical divergent series of positive terms. Then there exists a sequence $\{q_n \mid n \in N\}$ verifying

$$q_1 \ge q_2 \ge \ldots \ge q_n \ge \ldots > 0, \qquad q_n \to 0 \quad (n \to \infty)$$

such that

$$\sum_{n=1}^{\infty} p_n q_n = \infty.$$

Proof of the theorem. Let us refer \mathscr{H} to an orthonormal basis $\{e_n \mid n \in N\}$. Let $a_n = \sum_{j=1}^{\infty} a_{nj} e_j$. By the assumption made above we have

$$\sum_{n=1}^{\infty} \sqrt{a_{n1}^2 + \ldots + a_{nj}^2 + \ldots} = \infty.$$

We are trying to construct a completely continuous diagonal operator C,

$$C = \left(\begin{array}{ccc} \lambda_1 & & & 0 \\ & \ddots & & \\ & & \lambda_n & \\ & & & \ddots & \\ 0 & & & & \end{array}\right), \qquad \lambda_j \to 0 \quad (j \to \infty),$$

such that

$$\sum_{n=1}^{\infty} \| Ca_n \| = \sum_{n=1}^{\infty} \sqrt{a_{n1}^2 \lambda_1^2 + \ldots + a_{nj}^2 \lambda_j^2 + \ldots} = \infty.$$

One can find natural numbers v_n $(n \in N)$ with the condition that

$$\sum_{n=1}^{\infty} \sqrt{a_{n1}^2 + \ldots + a_{nv_n}^2} = \infty$$

and we can additionally suppose that $v_n < v_{n+1}$ $(n \in N)$.

Lemma 2 guarantees the existence of a sequence $\mu_1 \ge \mu_2 \ge \ldots$ $\dots \ge \mu_n \ge \ldots > 0$, $\mu_n \to 0$ $(n \to \infty)$ such that

$$\sum_{n=1}^{\infty} \mu_n \sqrt{a_{n1}^2 + \ldots + a_{n\nu_n}^2} = \infty.$$

Let us take

$$\lambda_1 = \ldots = \lambda_{\nu_1} = \mu_1, \lambda_{\nu_1 + 1} = \ldots = \lambda_{\nu_2} = \mu_2, \ldots$$
$$\ldots, \lambda_{\nu_{n-1} + 1} = \ldots = \lambda_{\nu_n} = \mu_n, \ldots$$

As

$$\sqrt{a_{n1}^2 \lambda_1^2 + \ldots + a_{nv_n}^2 \lambda_{v_n}^2} \ge \mu_n \sqrt{a_{n1}^2 + \ldots + a_{nv_n}^2},$$

we have

$$\sum_{n=1}^{\infty} \sqrt{\lambda_1^2 a_{n1}^2 + \ldots + \lambda_{\nu_n}^2 a_{n\nu_n}^2} = \infty,$$

and consequently

$$\sum_{n=1}^{\infty} \sqrt{\lambda_1^2 a_{n1}^2 + \ldots + \lambda_{\nu_n}^2 a_{n\nu_n}^2 + \ldots} = \infty. \blacksquare$$

Thus we can establish that if a sequence S is such that $\forall C \in \mathfrak{S}$, $\sum_{n=1}^{\infty} \|Ca_n\| < \infty, \text{ then necessarily } \sum_{n=1}^{\infty} \|a_n\| < \infty, \text{ and } C_S = \mathcal{B}.$

This theorem, in a certain sense, can be considered as dual of the one due to Gohberg and Markus [2] which asserts that for every bounded operator $A \in \mathcal{B}$, $A \neq 0$, there exists an orthonormal base $\{e_n \mid n \in N\}$ such that

$$\sum_{n=1}^{\infty} \|Ae_n\| = \infty.$$

We have obtained that for every non absolutely summable sequence — hence in particular for all the orthonormal bases — there exists not only a bounded operator, but a completely continuous one, C, such that $\sum \|Ca_n\| = \infty$.

REFERENCES

- [1] J.W. Calkin, Two sided ideals and congruences in the ring of bounded operators in Hilbert spaces, *Ann. of Math.*, 42 (2) (1941), 839-873.
- [2] C. Gohberg A. Markus, Some relations between eigenvalues and matrix elements of linear operators, *Math. Sbornik*, 64 (106) (1964), 48-496.
- [3] M.A. Naimark, Normed rings, Wolters Noordhoff publishing groingen, 1970, the Netherlands.
- [4] A. Peiczynski, A characterization of Hilbert Schmidt operators, Studia Mathematica, 28 (1967).

E. Martin-Peinador

Capitan Esponera 7, Zaragoza, Spain.