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ABSTRACT: By the weak topology on an Abelian topological group we mean the topology
induced by the family of all continuous characters. A well-known theorem of I. Glicksberg says
that weakly compact subsets of locally compact Abelian (LCA) groups are compact. D. Remus
and F.J. Trigos-Arrieta [1993. Proceedings Amer. Math. Soc. 117] observed that Glicksberg’s
theorem remains valid for closed subgroups of any product of LCA groups. Here we show that,
in fact, it remains valid for all nuclear groups, a class of Abelian topological groups introduced
by the first author in the monograph, “Additive subgroups of topological vector spaces” [1991.
Lecture Notes in Math. 1466].

There are several theorems in commutative harmonic analysis which remain
valid for certain Abelian topological groups which are not locally compact. For
instance, the Bochner theorem on positive-definite functions is true for nuclear
locally convex spaces (see [6, Chapter 4, Section 2.3]), while the Pontryagin du-
ality theorem is true for closed subgroups of countable products of locally com-
pact Abelian (LCA) groups (see, e.g., [2] for further references). To treat results
of this type from a unified point of view, the first author introduced in [1] the so-
called nuclear groups, a class of Abelian topological groups which contains LCA
groups and nuclear locally convex spaces, and is closed with respect to the oper-
ations of taking subgroups, separated quotients and arbitrary products (a different
definition, of a nuclear Lie group, had been given in [6, Chapter 4, Section 5.4]).

Nuclear groups satisfy, among other properties, the Bochner theorem [1, The-
orem 12.1] and, under some additional assumptions, also the Pontryagin duality
theorem [1, Corollary 17.3]. From the point of view of convergent series and se-
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quences, properties of nuclear groups are similar to those of nuclear spaces (see
[1, Section 10] and [3]). For instance, every weakly convergent sequence of
points of a nuclear group is convergent in the original topology [3, Theorem 1].

Let G be an Abelian topological group. By a character of G we mean a homo-
morphism of G into the group T = R/Z. By the weak topology on G we mean the
topology induced by the family G of all continuous characters of G. Following
[7], we say that G respects compactness if every weakly compact subset of G is
compact in the original topology. It was proved in [7] that closed subgroups of
any product of LCA groups respect compactness. The aim of this paper is to prove
the following generalization of that result:

THEOREM: Nuclear groups respect compactness.

The proof given below is a modification of the proof of the above-mentioned
Theorem 1 of [3]. We apply notation and terminology introduced in [3]. The fam-
ily of neighborhoods of zero in an Abelian topological group G is denoted by
N o(G). Given a real number x, we denote by (x) the number y € (-4, 15] such that
x -y € Z. For the definitions of a nuclear group and a nuclear vector group we
refer the reader to [3] or to [1, (7.1) and (9.2)]. All vector spaces are assumed to
be real.

LEMMA 1:  Let (x);. 1 be a sequence of nonzero real numbers with |x,, VA
=3 for every s. Then there exists a real number ¢ such that [(ex)| = 2-1; for every s.

Proof: Foreachs=1,2,...,letA;={t€R: |{tx;)| = ; }. We have to show that
ﬂ;; 1A =D. All components of A, are closed intervals of length %xs'l, hence all
components of R\A, are open intervals of length %xs'l.

Now, choose any component I; of A;. Since |x,/x;| = 3, it follows easily that
Iy must contain some component I, of A,. Similarly, I, must contain some com-
ponent /3 of A3, and so on. This allows us to construct inductively a decreasing
sequence of closed intervals (/). ; such that I is a component of A for every s;
then 1=, A, ODNC. L=2. Q

Let T: E — F be a bounded linear operator acting between Banach spaces. By
dyT), k=1, 2, ..., we denote the Kolmogorov numbers of T (see [9, p. 308]). The
distance of a point u € F to a subset A of F is denoted by d(u, A). By spanA we
denote the linear subspace of F spanned over A. If K is an additive subgroup of
E, then we denote by Kz the family of all continuous linear functionals f on E
such that f(K) C Z.

LEMMA 2: Let E, F be Hilbert spaces and T: E — F a bounded linear operator
such that 3;_1kd(T) < 1. Let K be an additive subgroup of E. Given arbitrary a EE
and r >0 such that d(Ta, T(K)) = r, one can find an f € K with [(f(a))| = ; and

1711 4rt.

This follows directly from Proposition (8.4) of [1]. The condition w1 kdy(T)
=< 1 may be replaced by Y¢_d(T) s ¢, where c is some numerical constant; it is
enough to apply Theorem 3.1(i) of [4] instead of Proposition (3.11) of [1] in the
proof of (8.4) in [1].

LEMMA 3: LetT: E — F and S: F — G be bounded linear operators acting
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between Hilbert spaces. Suppose that Si-1kd(T) <1 and dy(S) — 0 as k — . Let
K be an additive subgroup of E and (a,) -1 a sequence in E such that

d(ST(a,, - a,), STK))=z1, m= n. (D

Then one can choose a subsequence (ans);”:l of (a,) satisfying the following con-
dition: to each u € E there corresponds some f € K such that |(f(u - a, )| = 3 for
almost all s.

Proof: Suppose that
C = sup d(Ta,, T(K)) < .
n

We can find a sequence (v,)5. 1 in K such that 11Ta, = Tv, |l <C + 1 for every n.
Then the set {ST(a, - v,)}5-1 is totally bounded, because the condition d(S) —0
implies that S is a compact operator (see [9, p. 308]). Hence,

lim inf 1| ST(a, = Vi) = ST(ap = va) Il =0,

which is impossible in view of (1). Thus C = o, and therefore, we may simply
assume that d(Ta,, T(K)) = ©asn—> . '
The rest of the proof is similar to the proof of Lemma 3(b) in [3]- Let M be the
linear subspace of E spanned over K, let N be the orthogonal completion of M in
E, and let ¢ and 1 be the orthogonal projections of E onto M and N, respectively.
Suppose first that lim sup lly(a,) Il = «. Then there is a continuous linear func-
tional g on N such that lim sup|gy(a,)| =  (weakly bounded subsets of locally
convex spaces are bounded). We can choose a subsequence (a,,s);’°=1 of (a,) such
that |g1p(a,,s+ 1)/g1p(a,,s)| > 4 for every s. Now, take an arbitrary u € E. Then

Iglp(ans+1 - u) |/|gw(ans - u)' 23

for almost all s, say, for s = so. By Lemma 1, we can find some ¢ € R such that
[(tgw(an, —u))| = 4 for s =50, and we may take f=tgy.

Next, suppose that lim sup lly(a,) Il < ®. Choose a sequence (bp)5=1in M with
b, - ¢(a,) — 0. For every n, we have

d(Ta,, TK)) < | Ta, - To(a,) |l + 1 To(a,) - Tb, |l +d(Tby,, T(K),
| Ta, - To(ay) !l < 1Tl - @, - (@)l = NTI - Ny,
| To(a,) - Tb, |l < T - 11¢(ay) = byl

As d(Ta,, T(K)) — =, it follows that d(Tb,, T(K)) = .

qkhoose an index nq such that d(Tb,,l, T(K)) >2. By Lemma 2, there is some g;
€ K37 with |<81(bn1)>| =3 and ligyll <4- 271 As bn, EspanK, we can find a finitely
generated subgroup K; of K with b, € My:= spanK;. Then we can find an index
n, such that d(Tb,, , T(K + My)) > 2% and, by Lemma 2, some g, € (K +M1)*M with
|(g2(bn2))| >; and lig,ll <4 - 272, By repeating this procedure, we construct by
induction a sequence M{ C M, C... of finite-dinlensional subspaces of M, a sub-
sequence (b, ). 1 of (b,) and a sequence g, € Ky such that b, €M, |(gs(b,,s))| S
i 8s+1(M5)={0} and ligll <4 - 27° for every s.

Now, take an arbitrary u € E. We can find a positive integer p such that I u)ll
<2P -7 and b, ~ d(an,) Il = 27 -7 whenever s = p. If x,y € R and |(y)| = 3, then
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there is a coefficient =0, +1 with |{x + ty)| = ;. Therefore, we can construct in-
ductively a sequence ¢y, {,, 1, ... =0, 1 such that

tp8p(bn ) + - + tigs(bn ) = §

fors=p, p+1, .... Consider the functional f, = Z‘f’=p t,g,on M. It is clear that f,(K)
CZ We have lif,Il s37.,llg Il s27P*3If s p, then

[KFpBa D =I5 =p tr8 B )] =135 - p 1:8Bx = 5,
which implies that
K00 = an M = {FpBa) = FoBa) + £,0(an,) - £

1 1 1 1

= [pba ) = 11 - by = @) = Nf I - @) 2§ = 5 - 5 = 5-

So, we may take f=f,0. O

Let p be a seminorm on a vector space E. We write B,={u €E: p(u) <1}. The
quotient space E/p‘l(O) endowed with its canonical norm is denoted by E,, and
the canonical projection of E onto EP,PY Y, We shall identify E, with the corre-
spgnding subspace of the completion E,. We say that p is a pre-Hilbert seminorm
if E_ is a Hilbert space. If g < p is another seminorm on E, the canonical operator
from E,, to E, is denoted by Tp,. By T,q: E, —E4 we denote the canonical exten-

sion of qu.

Proof of the Theorem: Let G be a nuclear group. Due to Theorem (9.6) of [1],
there exist a nuclear vector group F, a subgroup P of F and a closed subgroup K
of P such that G is topologically isomorphic to P/K. Naturally, we may identify
P/K with a subgroup of F/K. As the property of respecting compactness is evi-
dently inherited by arbitrary subgroups, we may simply assume that G =F/K. Let
B: F — G be the canonical projection.

Let X be a weakly compact subset of G. First we shall prove that X is totally
bounded. Suppose the contrary. Then we can find some V € N ((G) and some se-
quence (g,)y-1 in X such that g, - g, & V whenever m = n. To obtain a contradic-
tion, we shall construct a subsequence of (g,) without weak cluster points in G.

Choose U € N ((F) such that B(U) C V. By (9.3) and (2.14) of [1], we can find
a linear subspace E of F and pre-Hilbert seminorms p 2g =r on E such that B,CU,
B, € N(F), 3% - 1kdy(Tpg) < 1 and di(T,) — 0 as k — ». We have the canonical
commutative diagram

| w P V’ q 1” r
T’q Tq r
E, . E, T, F,
id id id
ot T’q ~ Tq r ~

3
=




38 ANNALS NEW YORK ACADEMY OF SCIENCES

Set H = E N K and consider the canonical commutative diagram

E——“—-rF

L L

E/H —* ., F/K

Since B ENO(F) the subspace E spanned over B, is an open subgroup of F, and
A:= B(E) is an open subgroup of G = F/K. Observe that p is a topological embed-
ding. The canonical projection y: G — G/A is continuous if both G and G/A are en-
dowed with their weak topologies, hence y(X) is a weakly compact subset of G/A.
As G/A is discrete, Glicksberg’s theorem implies that y(X) is compact, hence fi-
nite. Therefore, we can choose a subsequence (g,')5 -1 of (g,) such that y(g,") is
constant. Consequently, we can find a sequence (#,)5.1 in E such that g, = B(u,,)
+ g1 for all n.
According to our definitions, we have

AT g Tpf(Wp(tm) = Wp(un)), TorTpgwp(K))) = 1

whenever m = n. Then it easily follows from Lemma 3 that we can choose a sub-
sequence (u, )S= 1 of (u,) such that the sequence (o(u, ))s==1 does not have any
weak cluster points in E/H. In other words, the sequence (B(un ))s = 1 does not
have weak cluster points in A = B(E) = w(E/H). Being an open subgroup, Aisa
weakly closed subset of G. Thus, (B(x, ) +81 ")s=11s a subsequence of (g,) without
weak cluster points in G.

Let us identify G with a subgroup of the completion G. Let X be the closure of
X in G. As X is weakly compact, it is weakly closed in G, which means that X =
X. Then X is compact, being a closed and totally bounded subset of the complete
groupG. Q

REMARK 1: A nuclear vector group is not necessarily a topological vector
space (cf. [1, p.86]). If F above were indeed a topological vector space, then E =
F and the proof would be simpler.

REMARK 2: Following [7], let us denote by & and )9 the classes of Abelian
topological groups which respect compactness and satisfy Pontryagin duality, re-
spectively. Let A be an open subgroup of an Abelian topological group G. It was
observed in [7, Proposition 2.7], that if G belongs to & (respectively, to }0), then
so does A. The converse is also true: an easy argument shows that A ER =» G €
&, while A €)9 = G €9 was proved in [5, (2.3)].

REMARK 3: It was asked in [7] if every group in }9 N & can be embedded into
a product of LCA groups. The answer is negative; this result had been announced
in [8]. Here we give another argument. Corollary 1.5 of [7] says that all Montel
spaces belong to }9 N K. On the other hand, it easily follows from the structure
theorem for LCA groups that if a topological vector space E can be embedded into
a product of LCA groups, then it can be embedded into a product of real lines.
So, if E is infinite-dimensional, then every neighborhood of 0 in E contains an
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infinite dimensional linear subspace. Therefore, for instance, the classical Montel
spaces D, E, H, S (see, e.g, [10, Section 8, Chapter III]) cannot be embedded
into products of LCA groups.
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