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Abstract 

Let G be an Abelian topological group and G’ the group G endowed with the weak topol- 
ogy induced by continuous characters. We say that G respects compactness (pseudocompactness. 
countable compactness, functional boundedness) if G and Gt have the same compact (pseudo- 
compact, countably compact, functionally bounded) sets. The well-known theorem of Glicksberg 
that LCA groups respect compactness was extended by Trigos-Arrieta to pseudocompactness 
and functional boundedness. In this paper we generalize these results to arbitrary nuclear groups, 
a class of Abelian topological groups which contains LCA groups and nuclear locally con- 
vex spaces and is closed with respect to subgroups, separated quotients and arbitrary products. 
@ 1999 Elsevier Science B.V. All rights reserved. 

Let G be an Abelian topological group. By a churucter of G we mean a homo- 

morphism of G into the group R/Z. By the weak topology on G we mean the topol- 

ogy induced by the family G” of all continuous characters. It is convenient to denote 

by G+ the group G endowed with its weak topology. We say that G respects com- 

pactness if G and G+ have the same compact sets. Similarly, we say that G respects 

pseudocompactness (countable compactness, functional boundedness) if G and G+ have 

the same pseudocompact (countably compact, functionally bounded) sets (a subset X 

of G is said to be functionally bounded in G if every real-valued continuous function 

on G is bounded on X). 

That LCA groups respect compactness is a well-known theorem of Glicksberg. It 

was proved in [6,7] that LCA groups respect functional boundedness and pseudo- 
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compactness. Next, it was proved in [5] that limits of inverse sequences of LCA groups 

respect compactness. This result was generalized in [3] to arbitrary nuclear groups, a 

class of Abelian topological groups introduced in [l]. In the present paper we show 

that nuclear groups respect pseudocompactness, countable compactness and functional 

boundedness provided that they are complete. 

We have to introduce some notation and terminology. Let X, Y be two symmetric 

convex subsets of a vector space F (all vector spaces are assumed to be real). Suppose 

that XC Y. The Kolmogorov diameters of X with respect to Y are defined by 

d&C, Y) = iyf inf{ t > 0 : X c tY + L }, k = 1,2,. . . , 

where the infimum is taken over all linear subspaces L of F with dim L < k. 
Let G be an Abelian topological group. By _&o(G) we denote the family of all 

neighbourhoods of zero in G. We say that G is a nuclear group if it is separated and 

satisfies the following condition: given arbitrary U E &c(G), c > 0 and m = 1,2,. . ., 

there exist a vector space F, two symmetric and convex subsets X, Y of F with 

d&C, Y) < ck-” for every k, a subgroup K of F and a homomorphism cp : K -+ G 
such that cp(K n X) E Jo(G) and cp(K n Y) c 72. Motivations for introducing nuclear 

groups and the theory of such groups are presented in [l]. Let us recall here several 

basic facts; the proofs can be found in Section 7 of [l]. 

(Fi) every LCA group is nuclear; 

(Fz) every nuclear locally convex space, treated as an additive topological group, is 

a nuclear group; 

(F3) every subgroup of a nuclear group is nuclear; 

(Fd) every separated quotient group of a nuclear group is nuclear; 

(Fs) the product of an arbitrary family of nuclear groups is nuclear; 

(Fe) the direct sum of a countable family of nuclear groups is nuclear; 

(F7) every group locally isomorphic (in particular, topologically isomorphic) to a 

nuclear group is nuclear. 

Let us also mention that every nuclear group is maximally almost periodic (see 

Lemma 7 below). 

Assertions (Fs)-(Fb) say that the permanence properties of nuclear groups are similar 

to those of nuclear locally convex spaces. In particular, inverse limits of nuclear groups 

are nuclear. 

In connection with (Fz) it is worth mentioning that if a topological vector space E 
is a nuclear group, then E is a nuclear locally convex space (Proposition (8.9) of [l]). 

This means, for instance, that if a Banach space E is a nuclear group, then E must be 

finite dimensional. On the other hand, every locally convex space over an ultrametric 

field is a nuclear group (Proposition (7.1 I) of [ 11). 

Let F be a vector space and r a topology on F such that F, is an additive topological 

group. We say that F7 is a locally convex vector group if it is separated and has a base 

at zero consisting of symmetric convex sets. A locally convex vector group F is called 

a nuclear vector group if to each symmetric convex U E No(F) there corresponds 
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some symmetric convex V E MO(F) with dk( V, U) < k-’ for every k. Every nuclear 

vector group is a nuclear group (Proposition (9.4) of [l]). 

Lemma 1. An Abelian topological group G is nuclear if and only iJ’ there exist a 

nuclear vector group F, a subgroup H of F and a closed subgroup K of H such that 

G is topologically isomorphic to H/K. 

The “if” part follows from (F, ), (F3 ) and (Fd). The “only if” part is the main 

assertion of Theorem (9.6) of [I]. 

Lemma 2. Let cp : G + H be a continuous homomorphism of Abelian topological 

groups. Then cp : Gi + Ht is continuous, too. 

This simple fact is a direct consequence of the definitions. 

Remark. Theorem 1.2 of [6] says that if G and H are LCA groups, then a homo- 

morphism q : G ---f H is continuous if and only if cp : Gt + Ht is continuous. The 

analysis of the proof given in Remark 1.8 of [6] shows that it is enough to assume 

here that the dual group G” respects compactness and that G is reflexive (i.e. that 

the canonical mapping G --j G --is a topological isomorphism). That nuclear groups 

respect compactness was proved in [3]; see also theorem below. A detailed analysis of 

reflexivity for nuclear groups is given in Ch. 5 of [l]. In particular, countable products 

of LCA groups and nuclear Frkchet spaces are reflexive, together with their closed 

subgroups, Hausdorff quotients and dual groups. In general, however, for a nuclear 

group G the continuity of ~0 : Gf + HC does not imply the continuity of cp : G + H. 

Here is an example. 

Let H be an Abelian topological group with Hf # H (e.g. let H = R). The group 

G = H+ is nuclear, being a subgroup of the Bohr compactification of H (see (FI) 

and (F3 )). Let cp : G --f H be the identity homomorphism. Then cp : G+ --) Ht is a 

topological identity, while cp : G --f H is not continuous. It seems to be an interesting 

question if there exists a similar example with G nuclear and complete. 

Let X be a subset of a topological space S. We say that X is discretely embedded 

in S if every real-valued function on X can be extended to a continuous real-valued 

function on S. It is clear that every discretely embedded and countable subset of a 

Hausdorff space must be closed and relatively discrete. 

Lemma 3. Let X be an injinite subset of a discrete Abelian group G. Then X contains 

a denumerable subset which is discretely embedded in G+. 

This is a direct consequence of Theorem 1.1.3 of [S]. 

Let A be a subset of a normed space E. The distance of a point u E E to A is denoted 

by d(u,A). The closed unit ball of E is denoted by BE. If T : E + F is a bounded 

linear operator acting between normed spaces, then we write dk(T) = dk(T(BE),BF) 

for k = 1,2,... . 
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Lemma 4. Let T : E + F and S : F + G be bounded linear operators acting between 
pre-Hilbert spaces. Suppose that C,“=, kdk(T) 5 1 and dk(S) --) 0 as k + co. Let 
K be an additive subgroup of E and (a,,),Do=, a sequence in E such that 

4Wam - a,), ST(K)) 2 1, m # n. 

Then one can choose a subsequence (a,)zE, of (a,) satisfying the following condition: 
to each u E E there corresponds a bounded linear functional f on E with f(K) c ;2, 
such that cos211f (u - a,,,) 5 ~612 for almost all i. 

This is Lemma 3 of [3]. The completeness of the spaces E, F and G, assumed there, 

is not essential (cf. the proofs of Lemmas 3 and 4 in [2]). 

Let p be a seminorm on a vector space E. We write B, = { u E E : p(u) 5 1). 

The quotient space E/p-‘(O) endowed with its canonical norm is denoted by E,, and 

the canonical projection of E onto E, by I&. We say that p is a pre-Hilbert seminorm 

if E, is a pre-Hilbert space. If q 5 p is another seminorm on E, then the canonical 

operator from E, to E4 is denoted by i’&. 

Let D be a subgroup of an Abelian topological group E. It is not hard to see that D 
is weakly closed in E if and only if E/D is maximally almost periodic, i.e. if and only 

if (G/H)+ is separated. If E is a topological vector space, this holds if and only if H 

is closed in the weak topology induced on E by continuous linear functionals (see e.g. 

Proposition (2.5) of [I]). In the proof of Lemma 5 below by the weak topology we 

shall always mean the topology induced by continuous characters, even when dealing 

with subgroups and quotient groups of normed spaces. 

Lemma 5. Let X be a subset of a nuclear group G. Zf X is not totally bounded, then 
it contains a denumerable subset which is discretely embedded in Gi. 

Proof. By Lemma 1, we may assume that G = H/K where H is a subgroup of some 

nuclear vector group F, and K is a closed subgroup of H. Consider the canonical 

diagram 

id 

H-F 

Here 1 : H/K -+ F/K is a topological embedding, and Lemma 2 implies that z : 

(H/K)+ -+ (F/K)+ is continuous. Therefore, without loss of generality, we may assume 

that G = F/K. 
If X is not totally bounded, then we can find some U E .Mo(G) and some sequence 

(xn)Ft in X such that x, -x,, 6 U if m # n. Choose V E No(F) with y(V) c U. As 

in the proof of Theorem 1 in [2], we can find a linear subspace E of F and pre-Hilbert 

seminorms p > q > r 2 s on E such that B, C V, B, E A(F), c,“=, kdk(&) 5 1, 
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MT&) + 0 and &4&s) + 0 as k + co. We have the canonical diagram 

id id id 
E-E-E-E 

Since dk(T&) ---t 0 as k + co, and Tp4 maps E, onto Eq, it follows that Eq is separable. 

Let H = En K and let D be the weak closure of t&(H) in Eq. Consider the canonical 

diagram 
44 id 

E,-E-F 

1 1 

E,/D A 

1 B 
E/H v 

1 7 
FIK 

The subspace E spanned over B, is an open subgroup of F because B, E ,l/b(F). 

Hence A := y(E) is an open subgroup of G = F/K. Observe that, since E is an open 

subgroup of F, v is a topological embedding. By Lemma 2, the canonical projection 

71 : G+ 4 (G/A)+ is continuous. 

Suppose first that the set S = {rt(xn)}~, is infinite. Then, by Lemma 3, it contains a 

denumerable subset P which is discretely embedded in (G/A)+. For each p E P, choose 

some nP such that X(X,) = p. Then it is clear that the set {x,~}~~P is denumerable 

and discretely embedded in G+. 

Next, suppose that S is finite. Then we can choose a subsequence (xA),“=, of (x,) 

such that X(X:) is constant. Consequently, we can choose a sequence (a,,),~, in E such 

that XL -xi = ?(a,) for all n. Since XL - x; 6 U whenever m # II, we have that 

d(%X&($q(a,) - $&an)), r&($q(H))) > 1. 

Then it follows directly from Lemma 4 that we can choose a subsequence (a,)E, of 

(a,) such that the sequence (at,!~Ju,))~t does not have weak cluster points in E,/D. 

Then the set Z = {u&(u~,)}~, is relatively discrete and closed in (Eq/D)+. Without 

loss of generality, we may assume that ~&(a~,) # ~$~(a~,) if i # j. To complete the 

proof, it is enough to show that the set Y = {y(u,,)}E, is discretely embedded in 

(F/K) +. 
Let 5 be an arbitrary real-valued function on Y. Consider the function v : Z 4 R 

given by ~(a&(~~,)) = <(~(a~,)) for every i. Since Eq was a separable normed space, 

the group E,/D is separable and metrizable, hence Lindeliif. The group (E,/D)+ is a 

continuous image of E,/D, therefore it is Lindeliif, too ((Eq/D)+ is separated, hence 

completely regular, because D was weakly closed in Eq). Thus (Eq/D)+ is a normal 

space. So, we can extend q to a continuous function c : (E,/D)+ + W. 

Being a vector space, E is a divisible group, so that the group A = y(E) = v(E/H) 

is divisible, too. Consequently, the identity homomorphism A ---j A can be extended to 

some homomorphism cr : G + A (see [4], (A.7)). By Lemma 2, the homomorphisms 
0 : Gi + A+, 1j-l : A+ + (E/H)+ and p : (E/H)+ - (E,/D)+ are continuous. Then 

the function @V -’ r~ : G+ + R is a continuous extension of c. 0 
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We shall identify R/Z with the interval I = (-i, i] and treat characters as functions 

with values in I. Let x be a character of an Abelian group G and let A be a subset of 

G. We write 

Ix(A)1 = sup{ Ix(s)1 : g E A 1. 

By 2~ we denote the character of G given by (2x)(g) = x(g + g) for g E G. The 

following simple fact is a direct consequence of definitions. 

Lemma 6. If lx(A)1 < i and I&d(A)/ I f, then Ix(A)1 5 $. 

Let G be an abelian topological group. The group of all continuous characters of G 

is denoted by G’: A subset A of G is said to be quasi-convex if to each g E G\A there 

corresponds some x E G- with Ix(A)1 < j and Ix(g)] > i. We say that G is a locally 
quasi-convex group if it has a base of neighbourhoods of zero consisting of quasi- 

convex sets. It is clear that every separated locally quasi-convex group is maximally 

almost periodic. 

Lemma 7. Every nuclear group is locally quasi-convex. 

This is Theorem (8.5) of [l]. 

Lemma 8. The completion of a locally quasi-convex group is locally quasi-convex. 

Proof. Let G be the completion of a locally quasi-convex group G. We may identify 

G with a dense subgroup of G. Given a subset A of G, by 1 we shall denote the 

closure of A in G. For each x E G-, let X E (G)^ be the canonical extension of x. 

Choose an arbitrary U E .&s(G). We have to find a quasi-convex neighbourhood 

of zero in 6 contained in U. Since U E Jo(G), there is some V E MO(G) with 

Tic U. We may assume that V is a quasi-convex subset of G. Next, we can find some 

W E Jo(G) with W + W c V. Let us denote 

V” = {x E G-: Ix(g)\ 5 i for each g E V}, 

W” = {x E G”: Ix(g)1 I $ for each g E IV}, 

S = {g E I? : IX(g)1 5 i for each x E W” }. 

It is clear that S is a closed and quasi-convex subset of G containing W. Since W E 
No,(G), we have W E &(G) and therefore S E No(G). So, to complete the proof it 

is enough to show that S c V. 
Take an arbitrary x E V”. Then we have 

IX(W)l> Ica>(w>l I lx(W + W)l 5 MVI 5 $ 
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Thus )I E: IV0 and 2~ E IV’. Hence IX(S)1 < f and 1(2!)(S)I = 1(2,)(S)l < i. By 

Lemma 6, this implies that IX(S)\ < f . Hence, 

Since this holds for any x E V”, and V is quasi-convex, it follows that 

(S+S)nGc V. (1) 

For each P E .I’i(c) one has S c (S + P) n G because G is dense in G. Setting 

here, in particular, P = S and applying (1 ), one gets S c 7. 0 

Lemma 9. Let X be u totally bounded subset of a nuclear group. Then the )t.euk 

topology on X is equal to the original one. 

Proof. Denote the nuclear group by G. We may identify it with a dense subgroup of 

its completion G. Being nuclear, G is separated, and therefore so is G. Next, G is 

locally quasi-convex due to Lemma 7 and therefore, by Lemma 8, G is locally quasi- 

convex, too. Thus G is maximally almost periodic, which means that the canonical 

homomorphism cp : G + U(‘)- given by q(g)(x) = x(g) for x E (G)^ is injective. 

Observe that cp is a homeomorphism of Gt onto its image in UC’)? Observe also that 

the topology of G+ is equal to the topology induced on G by the embedding of G 

into G+. 

Since X is totally bounded, its closure X in G is compact. Consequently, ‘p,x : x + 

cp(X) and cplX : X + p(X) are homeomorphisms. 0 

Theorem. Nuclear groups respect compactness, countable compactness and pseudo- 

compactness. Complete nuclear groups respect functionul boundedness. 

The authors do not know if the assumption of completeness can be removed. 

Proof. Let A’ be a subset of a nuclear group G. If X is compact, countably compact, 

pseudocompact or functionally bounded in the weak topology, then X is totally bounded 

in the original topology, due to Lemma 5. Consequently, by Lemma 9, the weak 

topology on X is equal to the original one. If, in addition, G is complete, then x is 

compact and hence X is functionally bounded. 0 
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