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Resumen

El titulo de esta Memoria ”Las topologias débiles y fuertes en los
grupos topoldgicos abelianos” requiere una explicaciéon. En el marco de
los espacios vectoriales topoldgicos nociones como topologia débil, topologia
de Mackey, topologia fuerte son primordialmente el objeto de estudio de
la teoria de dualidad. La extensién de la teoria de dualidad a la clase mas
amplia de los grupos topoldgicos abelianos encuentra serios obstaculos, como
por ejemplo la falta de sentido de la nocién de convexidad, que es la piedra
angular en dicha teoria.

Una primera idea para trasladar la teoria de dualidad a la clase de los
grupos topoldgicos abelianos, es tomar como objeto dualizante el circulo
complejo unidad T en lugar del cuerpo de los reales R, y sustituir las for-
mas lineales continuas por homomorfismos continuos definidos del grupo en
cuestion al grupo T. De este modo se obtiene el grupo dual, cuyos elemen-
tos se denominan caracteres. La nocién de grupo dual de un grupo dado se
remonta a Pontryagin hacia los anos ’30, y uno de los teoremas mas bellos y
utiles que subyace en los origenes del andlisis armoénico es el teorema de du-
alidad de Pontryagin van-Kampen. La nocién equivalente a “convexidad” en
el marco de los grupos topoldgicos, llamada cuasi-convexidad, se inspira en
el teorema de Hahn-Banach, valido para los espacios localmente convexos.
Fué introducida por Vilenkin (en ruso, en 1951) y de hecho los subconjuntos
cuasi-convexos en un espacio vectorial topoldgico son muy distintos de los
convexos. Baste decir que el subconjunto de ntmeros reales formado por
{0,1,—1} es cuasi-convexo en el grupo R. No es exagerado decir que la
teoria de dualidad en grupos topoldgicos abelianos ha dado lugar a resul-
tados matematicas de gran complejidad, como iremos desgranando en estas
lineas introductorias.

Se define la topologia de Bohr (o topologia débil) en un grupo topoldgico
abeliano como la topologia inicial relativa a sus caracteres continuos. Por
tanto es la topologia menos fina de todas las que admiten el mismo grupo
dual. En sentido amplio es la versiéon para grupos de la topologia débil de
un espacio vectorial topolégico. Como puede verse en la Bibliografia muchos
matematicos notables se han ocupado de esta topologia como Van Dowen,
Kunen, Givens, Gladdines, Dikranjan, Hernandez, Galindo etc. y los resul-
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tados obtenidos inciden en diversos campos de la Matemaética.

En el extremo contrario a la topologia débil encontramos — en el con-
texto de los espacios localmente convexos — la llamada topologia de Mackey.
También cabe definirla para grupos topolégicos abelianos, pero ésto se ha he-
cho muy recientemente. El primero en mencionar algo es Varopoulos (1962)
refiriéndose a una clase muy pequena de grupos topoldgicos: los localmente
precompactos. La clase mas natural de grupos topoldgicos para definir y
estudiar la topologia de Mackey es la formada por los grupos localmente
cuasi-convexos. Kl primer estudio de este tipo se hace por Chasco, Martin
Peinador y Tarieladze en [23]. Este trabajo ha sido el origen de esta Tesis.

A lo largo de la presente Memoria probamos resultados nuevos que per-
miten ampliar el conocimiento de las topologias débiles y fuertes en los
grupos localmente cuasi-convexos. Para lograr nuestro objetivo, es nece-
sario consolidar el conocimiento de la topologia de Bohr y de la teoria de los
subconjuntos cuasi-convex de un grupo topolégico. La Tesis esta estructura
en tres partes:

1) Los conjuntos cuasi-convexos. Sobre la estructura y caracteri-
zacién de subconjuntos cuasi-convexos. Incluso en grupos elementales
como Z o T no hay criterios determinantes para dilucidar si un sub-
conjunto es o no cuasi-convexo. Hemos dado luz sobre estos conjuntos
en los capitulos 3, 6, 7y 8.

2) Nuevos aspectos de la topologia de Bohr y otros tipos de
topologias ”débiles” corresponde a los capitulos 3, 4 y 5.

3) La topologia de Mackey de un grupo. De hecho esta definicién
aparece por primera vez en esta tesis. Corresponde al capitulo 9. El
estudio en profundidad de esta topologia es la motivaccién que subyace
en los otros capitulos. Hemos avanzado sobre lo que ya se sabia, a
partir de [23], dando resultados nuevos, y estructurando méas de fondo
la teoria.

Queda de manifiesto a lo largo de nuestro estudio que en los grupos
abelianos la teoria de dualidad presenta notables diferencias con la teoria
clésica para los espacios localmente convexos y de algin modo tiene una
mayor riqueza. No puede considerarse terminado el estudio, de hecho ten-
emos problemas abiertos que seran motivo de trabajo en los préximos anos.
En los capitulos 4 y 5 incluimos resultados obtenidos conjuntamente con D.
Dikranjan y con M. Tkatchenko, y recogidos en sendos trabajos de préxima
publicacién (V. [29] y [30]).
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La topologia de Mackey en los grupos abelianos

El primero en tratar de dualidades de espacios vectoriales reales y de topo-
logias compatibles fué George Mackey ([60, 61, 62, 63]).

En los trabajos [60, 63], Mackey introdujo lo que él llamé sistema lineal
(linear system) como un par (E, L), donde F es un espacio vectorial real
y L es un subespacio vectorial del espacio vectorial de las formas lineales
l: E — R. Ademés, denominé regular a un sistema lineal (E, L) cuando
L separa los puntos de E. Estos objetos se conocen hoy dia como par dual
y par dual separado o dualidad (separada). En [61, 62], se considerd el
sistema lineal (F, L) obtenido al fijar una topologia localmente convexa 7
en F y tomar como espacio L el formado por todos los funcionales lineales
T -continuos; se observé asimismo que la correspondencia entre 7 y L no es,
en general, univoca.

La existencia de las topologias localmente convexa més débil y mas
fuerte en E entre todas aquéllas que dan lugar al mismo sistema lineal
regular (E, L) fue formulada en [61, Theorem 1], y probada en [62, The-
orem 5]. Mackey no fij6 ninguna notacién para estas topologias, pero en
nuestro lenguaje actual son, respectivamente, la topologia débil (denotada
por o(E, L) en [32, 33, 34]) y la de Mackey (denotada por 7(E, L) en [34])
para el par (F, L).

Un espacio localmente convexo E es un espacio de Mackey si su topologia
coincide con 7(F, L), donde L es el conjunto de todos los funcionales lineales
continuos de E. Estos espacios fueron introducidos directamente por Mackey
(con otra nomenclatura), que desarrollé una buena parte de la teoria que hoy
en dia consideramos clésica en el marco de los espacios localmente convexos.
Los términos “topologia de Mackey” y “espacio de Mackey” aparecieron por
primera vez en [18]. En dicho libro podemos encontrar la nocién de topologia
compatible: una topologia (localmente convexa) 7 en E se denomina com-
patible con la dualidad (E,L) si L coincide con el conjunto de todos los
funcionales lineales 7 -continuos de E en R.

Otra demostracion de la existencia y la descripcién concreta de la topo-
logia de Mackey fue alcanzado por R. Arens en [1]. Mds precisamente, en
[1, Theorem 2] se demuestra que, dado un sistema lineal regular (E, L), la
topologia k en FE de la convergencia uniforme sobre los subconjuntos o (L, E)-
compactos y convexos de L es la mas fuerte entre todas las topologias lo-
calmente convexas t de F tales que “los elementos de L representan exac-
tamente los funcionales lineales continuous en E'”. La combinacién de [1,
Theorem 2] con [61, Theorem 1] se conoce como el Teorema de Mackey-
Arens.

Casi cuarenta anos después del articulo de Mackey [62], Kakol observé en
[56] que la convexidad local es esencial para asegurar la validez del Teorema
de Mackey-Arens. El prob6 que, dada una dualidad (F, L), no tiene por qué
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existir la topologia en F mas fuerte entre las topologias (no necesariamente
localmente convexas) compatibles con (F, L).

Aunque Mackey tenia profundos conocimientos acerca de los grupos
topoldgicos, no formuld el problema en términos de grupos topolégicos a-
belianos. Las dualidades de grupos abstractos y las topologias (de grupo)
compatibles fueron consideradas por primera vez por N. T. Varopoulos en
[80], donde se desarrolla una teoria de dualidad para la clase de los gru-
pos localmente precompactos. Sin embargo esta clase de grupos resulta
demasiado restringida como se demuestra en [23, Proposition 5.5]. Puesto
que los grupos localmente cuasi-convexos presentan una buena analogia con
los espacios localmente convexos, los autores de [23] abordan el estudio de
la topologia de Mackey para dicha clase de grupos. La principal pregunta
formulada en el trabajo mencionado permanece aun sin respuesta:

si G es un grupo topoldgico, existe la topologia en G mas fuerte entre todas
las topologias localmente cuasi-convexas que admiten el mismo grupo dual?

A lo largo de § 8 mejoramos los resultados del articulo antes citado y

también de [16] y [13], que se basan en [23], y tratamos otros aspectos de la
que se podria llamar la topologia de Mackey de un grupo topolégico abeliano.
Para un grupo MAP G y el grupo de sus caracteres G”, hemos definido la
topologia de Mackey 7(G,G") como la topologia localmente cuasi-convexa
y compatible de G mas fina, siempre y cuando ésta existe (véase Definition
8.6). El estudio de la topologia de Mackey se puede restringir a la clase de
los grupos localmente cuasi-convexos. Esto se explica en § 8.1 utilizando la
topologia débil de un grupo MAP G con respecto a la clase de los grupos
localmente cuasi-convexos.
En la misma linea de los espacios localmente convexos, decimos que G es
un grupo de Mackey si su topologia de Mackey 7(G,G") coincide con la
topologia original de G (véase Definition 8.9). Dicho grupo se caracteriza
por la propiedad que si 7 es otra topologia localmente cuasi-convexa en G
que da lugar al mismo grupo dual que (G, v), entonces 7 < v.

De acuerdo con [23], consideramos la topologia localmente cuasi-convexa
74(G, G") de un grupo topoldgico G definida como el extremo superior de la
familia de todas las topologias localmente cuasi-convexas en G' compatibles
con (G, G"). La existencia de la topologia de Mackey en G se caracteriza por
la compatibilidad de 74(G, G") en el sentido que sigue: eziste la topologia de
Mackey 7(G,G") en G (y 7(G,G") = 14(G,G")) si y solo si 74(G,G") es
una topologia compatible en G (véase Theorem 8.13). Se trata de una carac-
terizacién interna de la existencia de la topologia de Mackey. No obstante,
consideramos también la posibilidad de describir la topologia de Mackey de
un grupo localmente cuasi-convexo G como la topologia de la convergencia
uniforme sobre una familia de subconjuntos del grupo dual G”, igual que
en el contexto de los espacios localmente convexos. Para ello, recordamos
y estudiamos la nocién de &-topologia: dado un grupo topoldgico G, si &



es una familia de subconjuntos no vacios de G, entonces 7s(G, G") es la
topologia en G de la convergencia uniforme sobre los conjuntos A € &. Por
ejemplo, la topologia de Bohr es la topologia de la convergencia uniforme
sobre los subconjuntos finitos de G”.

El candidato natural & para definir la topologia de Mackey de G como
S-topologfa es la familia Sy de todos los subconjuntos o(G”, G)-compactos
y cuasi-convexos de G. De esta manera obtenemos una topologfa en G —
que depende solo del par dual (G, G")- llamada &,.-topologia y denotada
por 74.(G,G"). Dicha topologia es més fina que cualquier otra topologia lo-
calmente cuasi-convexa y compatible en G, y o(G,G") < 7 < 74(G,G") <
T4c(G, G") siempre que (G, T) sea un grupo localmente cuasi-convexo (véase
Proposition 8.24). Este hecho es muy relevante porque implica que si
Tqc(G,G") es compatible (G,G"), entonces la topologia de Mackey de G
eziste y coincide con T4(G,G") (véase Corollary 8.25). Hemos llamado
Arens groups a aquellos grupos para los que 74.(G,G") es compatible. La
relevancia de esta clase de grupos reside en el hecho que es la clase de gru-
pos abelianos donde se cumple fidedignamente lo que podriamos llamar la
versién para grupos del Teorema de Mackey-Arens ((véase Remark 8.26).
Obsérvese que la propiedad de ser un grupo de Arens depende solo del par
dual (G,G") en el sentido que sigue: un grupo topolégico (G, v) es Arens si
y solo si (G, 7;) es Arens, para toda topologia 7; compatible con (G, G").
Un ejemplo en [16] demuestra que la topologia 7,.(G, G") no tiene por qué
ser compatible. Profundizado en este hecho hemos afirmado que un grupo
de Mackey no tiene por que ser Arens (véase Theorem 8.61). Por esta razén
declaramos que el Teorema de Mackey Arens no puede imitarse completa-
mente en el marco de los grupos topoldgicos dado que la existencia de la
topologia de Mackey no garantiza que pueda ser descrita como la topologia
de la convergencia uniforme sobre los subconjuntos o(G”, G)-compactos y
cuasi-convexos del grupo dual.

Cuando la topologia 7,.(G,G") coincide con la topologfa original de G,
decimos que G es fuertemente Mackey. La propiedad de ser fuertemente
Mackey es equivalente a la combinacion “Arens” y “Mackey”. Obsérvese
que ninguna de estas propiedades implica individualmente “fuertemente
Mackey”.

fuertemente Mackey

T

\ /}rens
Mackey///\

En [23] los autores introdujeron la clase de los grupos g-barrelled, desta-
cando que eran grupos que tenian la topologia de Mackey, y que ademés
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en ellos coincidian las dos posibles definiciones de topologia de Mackey.
Nosotros percibimos que dicha clase no agotaba la propiedad, y ésto es lo que
nos llevé a definir los grupos fuertemente Mackey, ( V. Theorem 8.34). En
Theorem 8.62 probamos la existencia de una clase de grupos (precompactos)
fuertemente Mackey que no son g-barrelled.

Un resultado interesante de esta tesis es la obtencién de una clase de
grupos g-barrelled que no se conocia en la literatura. Hemos probado que
todo grupo w-bounded es g-barrelled (Theorem 8.37). Un grupo topolégico
abeliano G se dice que es w-bounded si todo subconjunto numerable de G
estd contenido en un subgrupo compacto de G (véase Definition 8.41). Tal
como observamos en Remark 8.48, la clase de los grupos w-bounded no com-
pactos no esta incluida en las subclases de grupos g-barrelled previamente
conocidas, mencionadas en [23], a saber: la clase de los grupos metrizables
hereditariamente Baire, la de los grupos Baire separables v la de los grupos
Cech-completos (véase también Theorem 8.37).

El hecho de que todo grupo localmente cuasi-convexo g-barrelled es
fuertemente Mackey conlleva a lo siguiente: dado un grupo topolégico G,
existe a lo sumo una topologia localmente cuasi-convexa y compatible T tal
que (G,T) es g-barrelled (Theorem 8.50). De aqui deducimos directamente
la siguiente propiedad de interés general: existe a lo sumo una topologia
localmente cuasi-convexa y compatible perteneciente a la union de las sigu-
ientes clases de grupos topologicos: metrizable hereditariamente Baire, Baire
separable, Cech-completo y w-bounded. Esto generaliza el conocido resultado
probado por Glicksberg en [49] que afirma que si G es un grupo abeliano
localmente compacto, entonces no puede existir otra topologia de grupo
localmente compacta en G con el mismo grupo dual.

Dejamos como problema abierto el deducir como es de grande el con-
junto de todas las topologias localmente cuasi-convexas y compatibles de un
grupo topolégico dado (véase Question 8.92 y Problem8.93). Hasta ahora
hemos introducido y estudiado la clase ULQC de los grupo localmente cuasi-
convexos que admiten solo una topologia localmente cuasi-convexa y com-
patible, que en ese caso coincide necesariamente con la topologia de Bohr.
Dichos grupos son precisamente precompactos y Mackey. Demostramos que
todo grupo w-bounded pertenece a dicha clase. Ademads, consideramos una
clase de grupos MAP — que llamamos grupos BTM inspirados en [16] —
caracterizados por la propiedad de ser precompactos y de peso estrictamente
menor que la cardinalidad del continuo (véase Definition 8.54). Resulta que
todo grupo BTM localmente cuasi-convexo es ULQC (Corollary 8.60).

En la clase de grupos BTM localmente cuasi-convexos encontramos ejemplos
de grupos que son Mackey per no Arens (Theorem 8.61, que generaliza [16,
Example 4.2]), y fuertemente Mackey pero no g-barrelled (Theorem 8.62).
Gracias a estos resultados, podemos dar una descripcion completa de rela-
ciones entre todos los objetos que hemos considerado en el estudio de la
topologia de Mackey en grupos. Recopilamos la informacién en el siguiente
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diagrama:;

LQC g-barrelled

4

N\

\

\

fuertemente Mackey

T

| " Arens

— |

uLQCc- \

\ (//\

Mackey

En [13], Barr and Kleisly trataron de responder a la pregunta principal

de [23] utilizando métodos categdricos. Aunque no alcanzaron del todo su
objetivo, el nuevo punto de vista que introdujeron nos proporcioné un nuevo
método para atacar dicha pregunta. En § 8.4 preparamos el terreno para
tratar la topologia de Mackey en diferentes categorias de grupos topoldgicos.
Para toda subcategoria completa X de la categoria MAP de los grupos
méximamente casi periddicos, definimos la topologia X-Mackey 71 (G, G")
de G € X como la X-topologia de G mas fina entre todas las X'-topologias
que dan lugar al mismo dual que G (véase Definition 8.64). Si G € X admite
la topologia X-Mackey, entonces decimos que G es X-pre-Mackey, mientras
que G se llama X-Mackey si su topologia original coincide con la topologia
X-Mackey.
Claramente, la topologia de Mackey de un grupo topolégico G en los tér-
minos descritos en su contexto natural coincide, en este marco méas general,
con la topologia LOC-Mackey, donde LOC denota la categoria de los grupos
localmente cuasi-convexos.

Dado un par (G, ), (H,~) de grupos X-pre-Mackey, es natural consid-
erar la siguiente propiedad de coreflerividad (o propiedad CR), lo cual es es-
encial en la nocién de topologia fuerte (véase § 1.3.1): si f: (G,7) — (H,7)
es un homomorfismo continuo, entonces el correspondiente homomorfismo
wf : (G,1gn) — (H,7gr) (que coincide algebraicamente con f) es continuo
en el diagrama que sigue a continuacién:

(G,7) ! (H,7)

idg T id gy T

(G, (G, GMN) L (H, 72 (H, HY))
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La subcategoria completa X formada por todos los grupos X-Mackey es una
subcategoria correflexiva de X en los términos especificados a continuacion:

(MS 1) todo grupo en X es X-pre-Mackey;
(MS 2) todo par (G,7)y (H,7) en X tiene la propiedad CR.

Por lo tanto, la subcategoria de los grupos X-Mackey admite una topologia
fuerte, la topologia de Mackey.

En [13], los autores estudian la posibilidad de caracterizar aquellas cat-
egorias que admiten una subcategoria de Mackey. El resultado principal de
dicho articulo es el siguiente: X admite una subcateogria de Mackey si y solo
si T es un objeto inyectivo con respeto a la inclusién en X' (véase Theorem
8.70). Esto significa que la forma més fuerte (categdrica) del problema de la
existencia de la topologia de Mackey para un grupo topolégico (G,7) € X
se traduce completamente en términos categoricos, es decir, el “problema
de Mackey” es equivalente a la caracterizaciéon de aquellas categorias en las
que T es un objeto inyectivo.

En la presente memoria demostramos una version mas completa de dicho
resultado, con el fin de aclarar el sentido en que la hipétesis “inyectividad de
T” en la categoria X asegura la existencia de una subcategoria de Mackey.
Nuestra motivacion reside en el hecho que LOC no admite una subcategoria
de Mackey ya que se sabe que T no es inyectivo en LQC. Sin embargo ésto
no excluye que todo G € LQC sea LOC-pre-Mackey.

Demostramos en Theorem 8.75 que un nivel més débil de inyectividad es su-
ficiente para asegurar la condicién (MS 1), en el caso en que X sea cerrada
con respecto a productos arbitrarios y subobjetos. Este resultado se prueba
de una manera que recuerda la caracterizacion “clasica” de la topologia de
Mackey para los grupos localmente cuasi-convexos. En efecto, definimos la
topologia TQX(G, G”) en un grupo G € X como el supremo de todas las X'-
topologias en G que son compatibles con (G, G""). Ahora para una categoria
X que sea cerrada con respecto a productos y subgrupos se obtiene que G es
X -pre-Mackey si y solo si Tf(G, G™) es compatible (véase Proposition 8.67).
Probamos que la compatibilidad de TéX (G, G") representa una condicién que
es mas débil que la inyectividad de T en X' (Proposition 8.74). Més precisa-
mente, podemos afirmar que la inyectividad de T en X es la unién de las
condiciones “compatibilidad de TgX (G,G")” — la cual implica la condicién
(MS 1) — y otra condicién (mds débil) de inyectividad, que implica (MS 2).

En § 8.5 discutimos ulteriores aspectos de la topologia de Mackey. En
particular, presentamos brevemente algunos resultados sobre propiedades de
estabilidad de dicha topologia con respecto a subgrupos, cocientes y produc-
tos. Ademds, inspirados en [45], introducimos la clase de aquellos grupos
precompactos que no son la modificacién de Bohr de ningin grupo local-
mente compacto: la clase de los G-grupos. Probamos que todo grupo ULQC
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es un G-grupo (Proposition 8.90).

La topologia de Bohr

Dado un grupo topoldgico GG, existe un grupo compacto bG y un homo-
morfismo continuo r : G — bG con la siguiente propiedad universal: para
todo homomorfismo continuo f : G — K con K compacto, existe un tnico
homomorfismo continuo f :bG — K tal que f = f or. El par (r, bG)
se llama compactificacion de Bohr de G (por el matemético danés Harald
Bohr que estudié el caso especial G = R) y es tinico a menos de isomorfismo
topoldgico. Se tiene que 7(G) es denso en b(G) y si r es inyectiva, decimos
que G es mazimally almost periodic (brevemente, MAP). En el marco del
Anialisis Arménico Abstracto, dichos grupos son muy relevantes y nos re-
stringiremos a esta clase de grupos. Sabemos que todo grupo compacto es
MAP (por el Teorema de Peter-Weyl-van Kampen); por lo tanto, para un
grupo compacto G tenemos que G = bG.

La imagen inversa en G con respeto al homomorfismo r : G — bG es
precisamente la topologia de Bohr de G, y se utiliza la notacién G* para
denotar el grupo G dotado de su topologia de Bohr. Se tiene que la topologia
de Bohr de un grupo topolégico abeliano es la topologia inicial con respeto a
todos lo homomorfismos continuos G — T, es decir, coincide con la topologia
débil o(G,G") considerada anteriormente. Un grupo topoldgico G se dice
totalmente acotado si y solo si G = G*. En el caso en que G sea un grupo
abeliano discreto, denotamos G con G7, es decir, G* es el grupo G dotado
de la topologia inducida por todos los homomorfismo de G al circulo unitario.
Por lo tanto obtenemos que la topologia de Bohr de un grupo discreto es la
topologia totalmente acotada maximal de G.

La clase de todos los grupos localmente compactos abelianos (LCA) y
la de todos los espacios localmente convexos y Hausdorff (LCS) sobre R o
C representan dos ejemplos fundamentales de grupos MAP. El hecho que
LCA estd contenido en MAP es un punto clave de la teoria de dualidad
de Pontryagin-van Kampen. Por otra parte, los funcionales lineales contin-
uos de un espacio localmente convexo estan en correspondencia uno a uno
con los homomorfismos al circulo unitario T. Esta sencilla pero importante
observacién relaciona el estudio de la topologia de Bohr con la analisis fun-
cional, y en particular con el concepto de dualidad y de topologias débiles
en la clase LCS de los espacios localmente convexos.

La corriente principal en esta direccion es el estudio de la preservaciéon
de distintas propiedades topoldgicas a través del functor de Bohr G — G
(entre los muchos autores que trabajan en este tema, mencionamos a Glicks-
berg, Wu, Comfort, Herndndez, Trigos-Arrieta, Remus, Galindo).

Para un grupo abeliano arbitrario G, el grupo precompacto G# es triv-
ialmente un grupo pre-Mackey. Uno de los problemas maés intrigantes rela-
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cionado con grupos de este tipo fue propuesto por van Douwen hace mas de
quince anos (véase [79]):

(Question 3.1) Dados dos grupos abelianos infinitos G, H de la misma car-
dinalidad, G¥# y H# son homeomorfos como espacios topoldgicos?

El problema fue resuelto negativamente por Kunen ([59]) e independien-
temente por Dikranjan-Watson ([43]). En busqueda de una solucién pos-
itiva del problema de van Douwen, diferentes resultados acerca de Bohr-
homeomorfismos han sido desarrollados. Véase, por ejemplo, los articulos
de Hart y Kunen ([51]) y Comfort, Hernandez y Trigos-Arrieta ([25]).

En cada par de grupos que representa una solucién negativa al prob-
lema de van Douwen, uno de ellos no es ni siquiera Bohr-sumergible en el
otro. Esta observacion motivé el estudio del problema — més general —
del embedding en la topologia de Bohr. En § 3.0.2 recopilamos y discuti-
mos distintos tipos de posibilidades de embedding para grupos dotados de
la topologia de Bohr que han sido introducidos en la linea de la Question
3.1. Los definimos a continuacion. Dos grupos abelianos G 'y H son:

e almost isomorphic si sus subgrupos de indice finito son isomorfos ([51]);

e weakly Bohr-homeomorphic si existen embeddings (de espacios topo-
l6gicos) G# «— H* y H* — G# ([36, 37));

o weakly isomorphic si cada uno de estos grupos tiene un subgrupo de
indice finito que es isomorfo a un subgrupo del otro.

A continuacién recopilamos las relaciones entre estas nociones:

almost isomorphic

PR

Bohr-homeomorphic weakly isomorphic

S

weakly Bohr-homeomorphic

El resultado principal de § 3 es el siguiente:



xi

(Straightening Theorem 3.10) toda funcion continua f entre dos grupos
abelianos acotados y dotados de la topologia de Bohr coincide con un ho-
momorfismo en un subgrupo infinito del dominio.

Observemos que, en un cierto sentido, este resultado es el contrapuesto del
hecho que todo homomorfismo entre dos grupos G y H es continuo con
respeto a la topologia de Bohr, lo cual expresa nada mas que la esencia
funtorial de la topologia de Bohr.
El Theorem 3.10 extiende los resultados principales de [59, 43] y se basa en
interesantes técnicas de particion de funciones definidas sobre el conjunto
de n-uplas de w con valores en V) (véase Theorem 3.29 para més detalles),
donde, en general, V7 denota la suma directa de x copias de Z,,, para todo
entero positivo m y todo cardinal k.

El conjunto de los invariantes de Ulm-Kaplansky determina un grupo
(acotado) a menos de isomorfismo, y por lo tanto, de Bohr-homeomorfismo.
En § 3.4 aplicamos Theorem 3.10 con el fin de discutir el siguiente problema:

hasta qué punto los Bohr-homeomorfismos preservan los invariantes de
Ulm-Kaplansky?

Entre otros resultados, establecemos la equivalencia entre weak isomor-
phisms, weak Bohr-homeomorphisms (y otra condicién basada en invariantes
de tipo algebraico) para dos grupos numerables y acotados G, H (véase The-
orem 3.12). Ademas, presentamos ejemplos de como el Theorem 3.10 puede
ser empleado para relacionar el p-rango de dominio y codominio de funciones
Bohr-continuas. Pues, probamos lo siguiente:

(see Corollary 3.13) Los weakly Bohr-homeomorfismos entre grupos acotados
preservan la propiedad de poseer infinitos elementos de p-torsion.

Gracias a esta observacion podemos responder negativamente a una pre-
gunta propuesta por Givens y Kunen en [47, §6] sobre la existencia de un
embedding topoldgico de (V3")# en (V4 x V§1)# (véase Corollary 3.14 para
méas detalles y ulteriores resultados mas generales). Ademads, probamos una
versién mas general de [47, Theorem 5.1] (que afirma que la propiedad “ser
acotado” se preserva por Bohr-homeomorfismos), pues, los Bohr-homeomor-
fismos detectan la propiedad de “poseer elementos de p-torsion no triviales,
para todo primo p” (Corollary 3.41).

Consideramos también distintas aplicaciones en la clase de los grupos almost
homogeneous. Concretamente, probamos que para grupos almost homoge-
neous y acotados G, H, las propiedades “almost isomorphic”, “weakly iso-
morphic”, “Bohr-homeomorphic” y “weakly Bohr-homeomorphic” coinciden
(Corollary 3.42).
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En § 3.4.3 consideramos aplicaciones del Theorem 3.10 a la teoria de los
retractos Bohr-continuos y de las cross sections. Probamos una caracteri-
zacion de los ces-subgrupos esenciales de los grupos abelianos acotados (The-
orem 3.55) y damos una demostracién concisa del hecho que para todo primo
p, el subgrupo pV;’;Q =V, de V;‘)’Q no es un ccs-subgrupo de V;’;g (véase Exam-
ple 3.51). Observemos que este resultado fue demostrado en [25] utilizando
una prueba bastante mas compleja (a la que los autores dedicaron entera-
mente [25, §5]). Este hecho aporta incluso més interés a nuestras nuevas
técnicas introducidas con el Straightening Theorem 3.10 que, en términos
mas generales, pueden contribuir a solucionar el problema de van Douwen

(todavia no resuelto) sobre los subgrupos que son retractos en la topologia
de Bohr ([77]):

(see Question 3.43) es cierto que todo subgrupo numerable H de un grupo
abeliano G es un retracto de G con respeto a la topologia de Bohr?

En § 4 definimos y estudiamos una nueva topologia de grupos que rep-
resenta una generalizacion de la topologia de Bohr.
En [69] se prueba que existe un grupo abeliano sequndo-numerable universal,
es decir, un grupo abeliano U que cumple el segundo axioma de numerabili-
dad y tal que todo grupo segundo-numerable H es topolégicamente isomorfo
a un subgrupo de U. Ademds, podemos suponer que U sea divisible puesto
que — de acuerdo con [9, Corollary 3] — dado un grupo abeliano K segundo-
numerable, existe un grupo abeliano D segundo-numerable y divisible que
contiene a K como subgrupo. Si GG es un grupo topoldgico abeliano GG, con-
sideramos la U-topologia débil en G, es decir, la topologia en G inicial con
respeto a U. Estd claro que T < U, por lo tanto la U-topologia débil refina
la topologia de Bohr .
Denotamos un grupo topolégico G dotado de la U-topologfa débil por G*.
Resulta que un grupo topoldgico G es w-narrow si y solo si G = G* (la
definicién original de grupo w-narrow puede encontrarse en §4). Si el grupo
de partida G es discreto, denotamos G¥ por GH. En este case, la U-topologia
débil es la topologia inicial con respeto a la familia de todo homomorfismo
G — U, con lo cual es la topologia w-narrow mazimal en G.
Claramente, GH y G# tienen caracteristicas muy parecidas desde un punto
de vista funtorial. Sin embargo, podemos destacar desemejanzas substan-
ciales: a diferencia del caso de la topologia de Bohr, todo subconjunto nu-
merable de GU es cerrado y discreto en GB (Corollary 4.11) y también
C-embedded en G- (Proposition 4.12).

Entre otros resultados, probamos que todo grupo abeliano no numerable
G dotado de la topologia w-narrow maximal es un espacio de primera cate-
goria y no es un P-grupo.
Recordemos que un grupo G es R-factorizable si toda funcién continua de
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G con valores reales admite una factorizacién a través de un grupo segundo-
numerable K, un homomorfismo continuo p : G — K y una funcién con-
tinua h en K con valores reales (véase Definition 4.18). La clase de los
grupos R-factorizable constituye una subclase propria de la clase de los gru-
pos w-narrow; sin embargo es muy amplia. Entre otros, contiene todo grupo
precompacto, todo grupo Lindelof, todo subgrupo arbitrario de grupos o-
compact ([73]). Hasta la fecha actual, solo aparecen en la literatura ejemp-
los esporadicos de grupos que no son R-factorizable y w-narrow (véase [71,
Example 5.14]). En Theorem 4.19 demostramos que todo grupo abeliano
no numerable admite una topologia de grupo con dicha combinacién de
propiedades.

Grupos abelianos localmente cuasi-convexos

Después de que Pontryagin introdujera el grupo dual de un grupo topoldgico
abeliano, Vilenkin observé que dado un espacio normado considerado como
grupo abeliano, el grupo dual y el espacio dual pueden ser identificados.
Siguiendo esta linea, introdujo los conjuntos cuasi-convexros de un grupo
topoldgico abeliano. Dicha nocién se inspira en el Teorema de Hahn-Banach,
y es la nocién andloga a subconjunto convexo de un espacio vectorial to-
polégico. Gracias a esta nueva importante herramienta, Vilenkin pude
definir los grupos localmente cuasi-convexos ([81]). Cuarenta anos después,
Banaszczyk desarrollé en [10] distintas propiedades de los grupos local-
mente cuasi-convexos, aunque su principal objetivo era la introduccién de
los grupos nucleares — una subclase propria de los grupos localmente cuasi-
convexos. La clase de los grupos localmente cuasi-convexos incluye LCA y
LCS, y es cerrada con respeto a productos arbitrarios y subgrupos.

Las consideraciones anteriores, y también el clasico libro de Banach
“Théorie des opérations linéaires”, expresan el hecho que el problema de
considerar los grupos abelianos topoldgicos como una clase que abarque los
espacios vectoriales topoldgicos es muy tipico en nuestro contexto. Por lo
tanto, entran en juego de manera natural los subgrupos de los espacios vec-
toriales topolégicos — como expresa el titulo de [10] — y se estudia la posi-
bilidad de extender propiedades tipicas de los espacios localmente convexos
a la clase mas amplia de los grupos localmente cuasi-convexos. Muchos au-
tores han estado trabajando en esta direcciéon (Kye, Herndndez, Galindo,
Martin-Peinador, Chasco, Tarieladze, entre otros) y distintos teoremas del
Anélisis Funcional tienen ahora una versiéon andloga para grupos topoldgicos
abelianos ([20, 23, 52], etc.).

Dado un subconjunto F de G’y un subconjunto A de G”, definimos los
polares

EP={xeG"|x(E)CTs} y A={zeG|x(x)eTy,VxeA}
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Un subconjunto E de G se dice cuasi-convexo si E = E™?, es decir, para
todo z € G\ E existe x € E” tal que x(z) ¢ T4+. En lo que sigue, de-
notamos por Qg ) (E) la envoltura cuasi-conveza de E C G, que coincide
con el subconjunto de (G,7) més pequeno que contiene a E (escribiremos
simplemente Q¢ (E) cuando no hay posibilidad de confusién).

Aunque los subconjuntos cuasi-convexos representan la esencia de la

teoria de los grupos localmente cuasi-convexos, podemos afirmar que su
naturaleza no es del todo conocida. Incluso para grupos elementales como,
por ejemplo, los enteros Z o el circulo unitario T, no existen criterios claros
para reconocer los subconjuntos cuasi-convexos.
Uno de los objetivos principales de la presente Tesis consiste en desarrollar
la teoria de los conjuntos cuasi-convexos, con especial atencion a los ca-
sos més desconocidos, es decir, los conjuntos cuasi-convexos pequenos (méas
precisamente, finitos y numerablemente infinitos).

Usualmente la cuasi-convexidad se estudia en la clase de los grupos MAP,
pues son grupos en los que los caracteres continuos separan puntos. La
razon es clara, de acuerdo con la siguiente equivalencia: un grupo topoldgico
G es MAP si y solo si {0g} es cuasi-convexos. Una motivacién mds pro-
funda se deduce por el hecho que el célculo de la envoltura cuasi-convexas
se puede reducir al caso de topologias precompactas (véase Remark 5.4).
En particular, esta observacion relaciona la cuasi-convexidad con la nocién
de precompaccidad y, por lo tanto, con la topologia de Bohr. Puesto que
Q) (E) = Qg+ (E) para todo E C Gy para toda topologia 7 en GG
(véase Fact 5.3), deducimos claramente que un buen conocimiento de la
topologia de Bohr es esencial en el estudio de la cuasi-convexidad.

Entre los pocos resultados conocidos sobre los conjuntos cuasi-convexos,
destacan los que exponemos a continuacion.

Theorem 0.1 ([5],[41]) Sea G un grupo MAP y F un subconjunto finito.
Entonces:

(1) Qa(F) C(F);
(2) Qa(F) es finito.

Obsérvese que ambas propiedades dejan de ser ciertas si F' es infinito. Por
ejemplo, si F' es el conjunto numerablemente infinito F' := {£27" | n € N} C
T, entonces Qr(F) =T ¢ (F) = Z(2*) (Example 5.24). Motivados por este
ejemplo, introducimos en § 5.4 la nocién de subconjunto cc-denso con el fin
de describir aquellos conjuntos ¥ C G tales que su envoltura cuasi-convexa
es lo mas grande posible, es decir, Qa(E) = G.

Theorem 0.2 ([5]) Sea G un grupo abeliano topoldgico. Entonces G es
MAP si y solo si el conjunto A, := {0, £x} es cuasi-convero en G para todo

z €.
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En particular, este ejemplo nos ensena que en algin caso la cuasi-convexidad
depende solo aparentemente de la topologia.

No se posible generalizar Theorem 0.2 a todo conjunto de la forma
{0, £z, ..., £kz}, incluso en el caso k = 2. Pues, {0, :l:% +7Z, :t% +Z}yCT
no es cuasi-convexo en T (véase Example 6.21). Tenemos por lo tanto una
motivacion concreta para estudiar la cuasi-convexidad de los conjuntos de la
forma E, ) := {0,%x,...,£ka} C (z) (para algin k > 1) y, por otro lado,
la siguiente nocién:

(Definition 5.32) Un subconjunto E de un grupo abeliano G es incondicional-
mente cuasi-convexo en G si E es cuasi-convexo en toda topologia MAP de
G (obsérvese que es equivalente pedir dicha condicion inicamente para las
topologias precompactas de G ).

Es la version andloga a la de incondicionalmente cerrado introducida por
Markov en [64] (véase también Definition 5.29).
Probamos — utilizando un resultado de [42] — que estas dos nociones co-
inciden en subgrupos: st H es un subgrupo de un grupo abeliano infinito G,
entonces H es incondicionalmente cerrado en G si y solo si es incondicional-
mente cuasi-convero en G (Theorem 5.35). En particular, basdndonos en
la caracterizacién algebraica de los subgrupos incondicionalmente cerrados
probada en [42], podemos afirmar que la dependencia de la cuasi-convexidad
a la topologia se traduce en restricciones de tipo algebraico.

Inspirados en la nocién de conjunto potencialmente denso introducida
por Markov (véase § 5.5.2), a continuacién proponemos también la nocién
de subconjunto potencialmente cuasi-convexo:

(Definition 5.36) Un subconjunto E de un grupo abeliano G es potencial-
mente cuasi-convexo en G si existe una topologia MAP T en G tal que E es
cuasi-convero en (G, ).

Esta claro que éste es el nivel més débil de cuasi-convexidad. Obsérvese que
un subconjunto £ C G es potencialmente cuasi-convexo en G si y solo si es
cuasi-convexo con respeto a la topologia discreta de G (véase Remark 5.38).
Tras aplicar Theorem 0.1 (1), podemos deducir que la cuasi-convezidad po-
tencial y la cuasi-converidad incondicional coinciden para todo subgrupo
finito H < G (Remark 5.37); no obstante, no podemos afirmar lo mismo
en el caso de subconjuntos: pues, el conjunto E = {0,+1,£3} C Z es
potencialmente cuasi-convexo en 7 pero mo es incondicionalmente cuasi-
convero (Example 5.40). Sin embargo, mostramos una amplia clase de
ejemplos de conjuntos incondicionalmente cuasi-convexos en Z: por ejem-
plo, By = {0,%1,£2} y Uy 4 = {0,%1, £4} son incondicionalmente cuasi-
convexos en 7Z (més en general, véase Example 6.34 and Example 6.35).
Ademsds, estos ejemplos se puede extender a cualquier grupo MAP G que
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tenga un elemento de no torsién: dado un subconjunto finito E de Z, E
es incondicionalmente cuasi-convex en Z si y solo si xtE = {xe | e € E}
es incondicionalmente cuasi-convexo en cualquier grupo MAP G que con-
tenga un elemento x de no torsion (se deduce de Theorem 6.36 y Theorem
6.33). De esta manera tenemos una motivacién adicional para estudiar los
subconjuntos cuasi-convexos y finitos de Z.

El estudio de los conjuntos incondicionalmente cuasi-convexos y finitos
estd relacionado con otras nociones mas fuertes de cuasi-convexidad que
hemos introducido en esta Tesis. Se basan en la observaciéon que cuando
aplicamos la definicién de cuasi-convexidad y separamos un conjunto £ C Z
(no necesariamente finito) de un cierto punto z € Z \ E por medio de un
caracter continuo x de Z, es extremadamente importante reconocer si la
imagen de F a través de x corta el borde de T, formado por {—%—i—Z, %—l—Z}.
Por lo tanto distinguimos dos situaciones concretas:
decimos que un subconjunto ' C Z es

FE existe

e potencialmente Int-cuasi-convexro en 7. si para todo e € Z\
) ¢ Ty (véase

X :Z — T tal que x(E) C Int(T}) = (-3 ) x(e
también Definition 5.43);

e S-potencialmente cuasi-convero en Z si para todo z € Z \ E, existe
X : Z — T tal que vale la siguiente condicién:

= xX(E) C T+ y x(2) ¢ Ty
—six(e1) = i + Z para algin 0 < e; € F, entonces x(e) # % +7Z
para todo 0 < e € FE.

Resulta que “potencial. Int-c.c..” = “S-potencial. c.c..” = “potencial.
c.c..” (véase Lemma 6.30 y Lemma 6.29, respectivamente).

El Theorem 6.33 afirma que las tres nociones “fuertes” de cuasi-convexidad
que hemos introducido coinciden en el caso de subconjuntos finitos del los
enteros. A continuacién presentamos el diagrama completo de relaciones
para subconjuntos finitos de Z:

potencialmente Int-c.c..

Aeorem 6 ;N

inc. c.c.. S-pot. c.c..

\/

potencialmente c.c..

Una herramienta de extrema utilidad a la hora de manejar conjuntos
finitos es la siguiente consecuencia de Theorem 0.1 (2): si E C H es finito,
entonces no hay diferencia a la hora de calcular la envoltura cuasi-convexa de
E en G o en (E) (Corollary 5.19). Esta sencilla observacién es la clave para
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entender todos los ejemplos de conjuntos cuasi-convexos finitos presentados
en §6 como los siguientes:

o Ay, U...UA,, ={0,%+ay,...,+a} es cuasi-convexo in T para todo
t>0y ai,...,aq €T linealmente independientes (Corollary 6.2);

o Ay + ... kveces...+ Ay = By = {0, %0, ..., +ka} es cuasi-convexo
en T para todo « € T\ Q/Z y k > 0 (Lemma 6.3); sin embargo, si
a € Q/Z, la cuasi-convexidad no estd garantizada (véase § 6.2.2).

Estos ejemplos se basan en un conocimiento profundo de los conjuntos cuasi-
convexos de Z. Realmente no es un hecho sorprendente si tenemos en cuenta
la estrecha relacién entre Z y T manifestada por los isomorfismos topolégicos
7" = Ty TN = 7Z. M4s precisamente, la clave de nuestras consideraciones
se puede encontrar en el estudio de los conjuntos cuasi-convexos elementales
de 7Z que vamos a introducir a continuacion.

Dado un grupo topolégico, se deduce de la definicién que x (T, ) es cuasi-
convexo para todo y € G”. Utilizaremos el nombre elementales para estos
conjuntos cuasi-convexos. Ahora, todo conjunto cuasi-convexo se obtiene
como intersecciéon de conjuntos cuasi-convexos elementales; ma&s precisa-
mente, la envoltura cuasi-convexa Qg (FE) de cualquier E C G coincide con
la interseccién de todos los cuasi-convexos elementales que contienen a F.
Esto explica la importancia de los cuasi-convexos elementales. Los cuasi-
convexos elementales de Z coinciden con la coleccion de los conjuntos de
Bohr, que dan lugar a una subbase de Z# (discutimos este hecho en § 5.3).
En un cierto sentido, los enteros son probablemente el marco en el que mejor
se puede observar la estrecha relacién entre la topologia de Bohr y la cuasi-
convexidad. Esto nos hizo plantearnos un estudio extensivo de Z# y, més
concretamente, de los conjuntos de Bohr, lo cual ha sido desarrollado en
§ 2.2. El Lemma 2.3 refleja el hecho que la coleccién de los conjuntos de
Bohr posee, en un cierto sentido, un alto nivel de independencia. Por ejem-
plo, es posible deducir del Lemma 2.3 que

(Corollary 2.7) Dados dos conjuntos de Bohr Wo,Wg C Z, si Wy estd con-
tenido en Wy entonces los dos conjuntos tienen que coincidir.

Analizamos los conjuntos de Bohr también desde un punto de vista
numérico. En el resultado principal de § 2.2.1, concretamente en Theo-
rem 2.9, damos una descripcién explicita de un conjunto de Bohr genérico,
y mostramos que consiste de bloques (es decir, intervalos) de enteros y
“saltos”, en términos de su distribucién en Z. Ademds, indicamos descrip-
ciones alternativas utilizando las fracciones continuas, y relacionamos los
conjuntos de Bohr con una clase mas general de conjuntos: la clase de los
conjuntos de Hartman y de las sucesiones de Hartman (y, més en general,
las sucesiones de Sturmian). De aqui podemos extender las propiedades de
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los conjuntos de Bohr de Z a un contexto mas amplio: Estocastica, Teoria
de Numeros, Teorfa Ergédica y Anélisis Arménico.

La estructura en bloques de los conjuntos de Bohr se utiliza en §6.2 para
caracterizar aquellos conjuntos cuasi-convexos finitos que estan contenidos
en algun subgrupo ciclico de T (véase Lemma 6.8). Como consecuencia,
deducimos lo siguiente:

(Theorem 6.9) Sea @ C (@) un conjunto cuasi-convexo en (o) = 7. Si existe
un entero m > 2 tal que QQ contiene un bloque de longitud m + 1, entonces:

(1) la longitud minima de un salto de Q@ es m — 1;

(2) Eoy CQ, donde r =3 sim es par yr = mTfl st m es impar.

En particular, los conjuntos cuasi-convexos que no contienen « son delgados
en el sentido que contienen solo bloques pequenos de longitud 1 6 2 (Corol-
lary 6.10).

Otra aplicaciéon de Theorem 6.9 es Example 6.14, donde deducimos que la
suma de dos conjuntos cuasi-convexos Q1,Q2 C (a) < T\ Q/Z no tiene
por qué ser cuasi-convexa (véase también Example 6.6). Por otro lado,
probamos en Theorem 6.4 que si Q; C («;) es finito y cuasi-convero en (o)
(o, equivalentemente, en'T), con a1, v, ..., € T independientes, entonces
E=0Q1+Q2+...+Q; es cuasi-convero en T. Esto nos da una herramienta
para construir conjuntos cuasi-convexos en T que no estan contenidos en
ningin grupo ciclico.

Hablando del grupo T, hay numerosos ejemplos de subconjuntos cuasi-
convexos finitos y infinitos no numerables ([5, 4]). En este contexto, Dikran-
jan propuso la siguiente pregunta ([35]):

Question 0.3 Es cierto que existe un conjunto cuasi-convero y numerable-
mente infinito en T ?

En el capitulo 7 contestamos positivamente a esta pregunta. Nuestro resul-
tado se basa en conjuntos cuasi-convexos dados por sucesiones convergentes
en T. Por ejemplo:

el subconjunto {0} U{£272" |n > 1} C T es cuasi-convero en T.

Maés precisamente, probamos lo siguiente (Theorem 7.2):

Dada una sucesion a = (ay)n, sea
Ky :={0}u{x2"(@+) | n e N} CT.

1a = 10 b1 1—a
Sia Gn)n €S una sucesion de enteros positivos tales que an+ n > 1
para todo n € N, entonces K, es cuasi-convero en T.
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Ademas, K, es hereditariamente cuasi-convexo en T en el siguiente sentido:
todo subconjunto simétrico y cerrado de K, que contiene a Ot es cuasi-
convexo (véase Remark 7.45).

Observemos que hemos supuesto ag > 0 (lo cual es equivalente a % ¢ K,).
Hay que remarcar que si anadimos el termino % a K,, entonces la cuasi-
convexidad de K, se pierde: pues, en este caso Qr(K,) = K, U (1/2+ K,)
(véase Theorem 7.3).

Notemos también que la condicién de lacunaridad a,11 — a, > 1 para
todo n € N no puede se omitida en Theorem 7.2. Pues, ya hemos mencionado
Example 5.24 en el que tenemos que si a,, = n para todo n € N, entonces
K, es cc-denso en T.

Proponemos una nueva técnica para calcular la envoltura cuasi-convexa
Qr(K,): se basa en “factorizar” Qr(K,) como interseccién de “compo-
nentes” (; que son mas practicas a la hora de calcular. Para definir estas
componentes, que son conjuntos cuasi-convexos, utilizamos una particién de
la polar de K, en subconjuntos mas pequenos J; (véase Notation 7.12). De
esta manera, @);, al ser la polar de J;, contiene a Qr(K,). La clave de la
demostracién de Theorem 7.2 reside en el hecho que Q1 (K,) coincide con la
interseccion de dnicamente dos conjuntos de la forma @);, concretamente Q1
vy Q3. Por esta razén, es fundamental caracterizar aquellos z € T que estan
contenidos en Q)q: dicha caracterizacion se desarrolla en detalle en § 7.2.1
utilizando la representacién de T en términos de “bloques” de potencias neg-
ativas de 2. Remarcamos que a la hora de caracterizar ()1 queda evidente
el rol de nuestra hipétesis ag > 0 en Theorem 7.2 y, por lo tanto, la sutil
diferencia entre este resultado y Theorem 7.3.

En § 7.3 presentamos distintas pistas hacfa una posible generalizacién de
Theorem 7.2 basada en nuestra nueva técnica de factorizacion de la envoltura
cuasi-convexa.



XX

Resumen




Introduction

The main topic of this thesis are the weak and strong topologies on abelian
groups. The former notion is generally known in the theory of topological
abelian groups; the most common example is probably the celebrated Bohr
topology. The latter notion is known mainly in the theory of topological
vector spaces, as the equally celebrated Mackey topology. This is why, the
origin of a “global” study of weak and strong topologies is deeply rooted in
the theory of topological vector spaces, where similar notions appeared for
the first time (see § for details).

A starting step in the foundation of this kind of study in the framework
of topological abelian group was done by Chasco, Martin Peinador and
Tarieladze in [23]. In this paper, they show — among other results —
that it is natural to restrict to the class of locally quasi-convex groups. Such
a class of groups is widely known and used in different instances, but we
observed that there is a deep lack of knowledge of the quasi-convex sub-
sets, even in thoroughly studied groups like, for example, the integers or the
unitary complex circle.

The main aim of the present thesis is to offer a contribution to the study
begun in [23]. This is done by introducing new notions and proving new
results that permit to widen the knowledge on the weak and strong topolo-
gies in locally quasi-convex groups. In order to develop this line we need a
solid background on the Bohr topology and the theory of the quasi-convex
subsets of a topological group. The first part of the thesis is dedicated to
this trend.

The Mackey topology for abelian groups

The study of dualities of abstract real vector spaces and compatible topolo-
gies for them goes back to George Mackey ([60, 61, 62, 63]).

In [60, 63], Mackey introduced what he called a linear system as a pair
(E, L), where E is a real vector space and L is a vector subspace of the
vector space of all linear functionals [ : £ — R. Moreover, he called a linear
system (E, L) regular if L separates the points of E. These objects coincide
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with the more recent notion of (separated) dual pair or (separated) duality.
In [61, 62], the linear system (F, L) arising by fixing in F a locally convex
topology 7 and by taking as L the 7 -continuous linear functionals is con-
sidered, and it is noted that the correspondence between 7 and L in general
may be the correspondence of many to one.

The existence of the weakest and the strongest locally convex topology

in £ among all those which give rise to the same regular linear system
(E, L) was announced in [61, Theorem 1] and proved in [62, Theorem 5];
nevertheless, Mackey did not fix any notation for these topologies. In our
actual language, they are respectively the weak (denoted by o(F, L) in [32,
33, 34]) and the Mackey topology (denoted by 7(E, L) in [34]) for the pair
(E,L). In [62, p. 524] Mackey noted also that the topologies o(E, L) and
7(E, L) are distinct provided F is an infinite-dimensional normed space and
L is the set of all continuous linear functionals on E (still no special notation
for the topological dual space of a locally convex space was used).
Mackey also introduced the notion of Mackey space (but with another name)
as a locally convex space F whose topology coincides with 7(E, L), whenever
L is the set of all continuous linear functionals given on E. In this context,
he developed there some of the theory which nowadays we consider classic
in the field of locally convex spaces.

Seemingly, the terms “Mackey topology” and “Mackey space” first ap-
peared in [18]. In the same book we can find the notion of compatible
topology: a (locally convex vector) topology 7 in E is said to be compatible
with a duality (E, L) if L coincides with the set of all 7-continuous linear
functionals £ — R.

Another proof of the existence and the concrete description of the Mackey
topology was achieved R. Arens in [1], in which only [61] is quoted. Namely,
for a regular linear system (E, L) it is proved in [1, Theorem 2] that the
topology k in E of uniform convergence on all o(L, F)-compact convex sub-
sets of L is the strongest one among the locally convex topologies t for F
for which “the elements of L represent precisely the continuous linear func-
tionals on E'”. The combination of [1, Theorem 2| with [61, Theorem 1] is
known as the Mackey Arens Theorem.

Almost forty years after Mackey’s paper [62], Kakol observed in [56]
that the local convexity is essential for the validity of the Mackey Arens
Theorem. Indeed, he proved that for a duality (E, L) there need not exist
the strongest vector topology in F, among all (not necessarily locally convex)
vector topologies compatible with (F, L).

Although Mackey also had a deep knowledge of topological groups, he
did not set the question in the framework of abelian topological groups.
The abstract group dualities and compatible topologies for them were first
considered by N. T. Varopoulos in [80]. More precisely, he noticed that a sit-
uation similar to vector space dualities in the context of abelian groups can
be produced by substituting the reals by the unitary circle group T, and by
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considering the group dualities as pairs (G, H), where G is an abelian group
and H is a group of homomorphisms G — T which separates the points
of G. With these new tools, he could introduce the notion of “compatible
topology” and “weak topology” in the context of topological groups and
group dualities. Moreover, in the same paper he described the locally pre-
compact group topologies on a group G which are compatible with (G, H),
for a given dual pair (G, H), and he deduced that o(G, H) is a (precompact)
group topology compatible with (G, H).

Varopoulos proved in [80, Proposition 5] that the least upper bound v(G, H)
of all locally precompact group topologies in G which are compatible with
(G,H) is also compatible with (G, H). However, the topology v(G, H) is
not a good “group candidate” for the Mackey topology. In fact, a vector
space duality (F, L) gives rise in a natural way to the group duality (F, H),
where H = {exp(il) | [ € L} and — according to [23, Proposition 5.5] —
v(E, H) coincides with the weak topology o(E, H). Therefore, Varopoulos’s
topology may not coincide with the Mackey topology.

It arises thus the problem of finding the class of compatible group topologies,
wider than the class of locally precompact topologies, such that the least
upper bound will be again compatible. In [23] it is observed also that the
class of MAP compatible topologies, roughly speaking, is too big for these
purposes: indeed, its least upper bound need not be compatible.

Since the locally quasi-convex groups are a good group analogue for
locally convex spaces, in [23] the authors begun the study of the problem
for this class. This paper is the starting point of our work. As a matter of
fact, the main question of [23] still remains open, namely:

if G is a topological group, is there a strongest topology in G among all
those locally quasi-convex topologies that admit the same dual group?

Along § 8 we improve the results of the mentioned paper and also of [16]
and [13], which are based upon [23], and we deal with other aspects of what
could be called the Mackey topology for an abelian topological group.

For a MAP group G and its character group G”, we defined the Mackey
topology 7(G,G") as the finest locally quasi-convex topology on G com-
patible with (G, G"), whenever it exists (see Definition 8.6). The study of
the Mackey topology can be restricted to the class of locally quasi-convex
groups. This is explained in § 8.1 using the weak topology on a MAP group
G with respect to the class of locally quasi-convex groups.

On the same line as in the case of locally convex spaces, we say that G is a
Mackey group if the Mackey topology 7(G,G") coincides with the original
topology of G (see Definition 8.9). Such a group is characterized by the
property that if 7 is another locally quasi-convex topology on G with the
same dual group as (G, v), then 7 < v.

Following [23], we consider the locally quasi-convex topology 74(G,G")
on a topological group G which is defined as the least upper bound of the
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family of all locally quasi-convex topologies on G' compatible with (G, G").
The existence of the Mackey topology on G is characterized by the compat-
ibility of 7,(G, G") in the following sense: there exists the Mackey topology
7(G,G") on G (and 7(G,G") = 14(G,G")) if and only if 7,(G,G") is a
compatible topology for G (see Theorem 8.13). This is a sort of internal
characterization of the existence of the Mackey topology. Nevertheless, we
also deal with the possibility of describing the Mackey topology of a locally
quasi-convex group G by uniform convergence on a certain family of subsets
of the dual G”, as done in the context of locally convex spaces. To this aim,
we recall and study the notion of &-topology: given a topological group G,
if & is a family of non-empty subsets of G, then 7g(G, G") is the topology
on G of uniform convergence on the sets A € &. For example, the Bohr
topology is the topology of uniform convergence on the family of all finite
subsets of G/

The natural candidate & to define the Mackey topology of G as an &-

topology is the family &4 of all ¢(G”, G)-compact and quasi-convex subsets
of G. We obtain in this way a topology on G — depending only on the
dual pairing (G,G") — which is called the Sy-topology and is denoted
by 74¢(G,G"). This topology is finer than any other locally quasi-convex
compatible topology, and o(G, G") < 7 < 74(G, G") < 74.(G, G") whenever
(G, 7) is a locally quasi-convex group (see Proposition 8.24). This is a rele-
vant fact since it implies that if 7,.(G, G") is compatible with (G,G"), then
the Mackey topology of G exists and it coincides with T4.(G,G") (see Corol-
lary 8.25). This motivates the study of those groups such that 7,.(G,G")
is compatible, which we call Arens groups. Their importance is given by
the fact that they constitute the class of groups for which the counterpart
of the Mackey Arens Theorem holds (see Remark 8.26). Note that the pro-
perty “being an Arens group” depends only on the dual pair (G, G") in the
following sense: a topological group (G, v) is Arens if and only if (G, ;) is
Arens, for every topology 7; compatible with (G, G").
However, an example of [16] alerted us that the topology 7.(G,G") may
not be compatible. A deep study of this fact led us to state that a Mackey
group need not be Arens (see Theorem 8.61). For this reason we claim that
the Mackey-Arens Theorem cannot be completely imitated in the class of
topological groups since the existence of the Mackey topology does not guar-
antee that it can be described as the topology of uniform convergence on
the o(G", G)-compact and quasi-convex subsets of the dual group.

If the topology 7,.(G, G") coincides with the original topology of G, then
we say that G is strongly Mackey. The property of being strongly Mackey
is equivalent to the combination of Arens and Mackey. Observe that none
of these two properties alone implies strongly Mackey.
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In [23] the authors introduced the class of g-barrelled groups and they
realized that the counterpart of the Mackey Arens Theorem holds for this
class of groups. Actually, it can be proved that every locally quasi-convex g-
barrelled group is strongly Mackey (Theorem 8.34). We prove however that
they do not exhaust the class, showing the existence of a class of strongly
Mackey (precompact) groups which are not g-barrelled (Theorem 8.62).

Another achievement of this thesis is the determination of another class
of g-barrelled groups that was not known in the literature. Recall that an
abelian topological group G is said to be w-bounded if every countable subset
of G is contained in a compact subgroup of G (see Definition 8.41). Theorem
8.37 states that every w-bounded is a g-barrelled group. In particular, as
we observe in Remark 8.48, the class of w-bounded non-compact groups is
not included in the previously known subclasses of g-barrelled groups, that
are those mentioned in [23]: the class of all metrizable hereditarily Baire
groups, of all separable Baire groups and of all Cech-complete groups (see
also Theorem 8.37).

The fact that every locally quasi-convex g-barrelled group is strongly
Mackey leads to the following: given a topological group G, there exists
at most one locally quasi-conver compatible topology T such that (G, T) is
g-barrelled (Theorem 8.50). This immediately implies the following pro-
perty of general interest: there is at most one locally quasi-conver com-
patible topology which is in the union of the following classes of topological
groups: metrizable hereditarily Baire, separable Baire, Cech-complete and
w-bounded. This generalizes the well known fact proved by Glicksberg in
[49] that if G is a locally compact abelian group, there cannot be another
locally compact group topology in G with the same dual group.

We leave as an open problem the study of how large is the set of all lo-
cally quasi-convex compatible topologies for a given topological group (see
Question 8.92 and Problem8.93). So far we have introduced and studied
the class ULQC of locally quasi-convex groups that admit only one locally
quasi-convex compatible topology, which has to coincide with the Bohr to-
pology. Clearly, such groups are exactly precompact and Mackey. It turns
out that every w-bounded group belongs to this class. Moreover, we con-
sider a class of MAP groups — which we call BTM groups inspired by [16]
— characterized by the property to be precompact of weight strictly less
than the cardinality of continuum (see Definition 8.54). Then, every locally
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quasi-convex BTM group is ULQC (Corollary 8.60).

In the class of locally quasi-convex BTM groups we find examples of groups
that are Mackey but non-Arens (Theorem 8.61, which generalizes [16, Ex-
ample 4.2]), and strongly Mackey but non-g-barrelled (Theorem 8.62). By
means of these results, we are able to give a complete description of the
relations (and non-relations) between all the objects we have considered in
the study of the Mackey topology on groups. The situation is resumed in
the following diagram:

LQC g-barrelled

4

AN

\

AN

Strongly Mackey

.

| \—> Arens

ULQC ™ \

~

Mackey

Barr and Kleisly attempted in [13] to answer the main question of [23] by
categorical methods. Although they did not completely achieve their aim,
their point of view provided us with a new way to tackling this question. In
§ 8.4 we settle the natural framework to deal with the Mackey topology in
different categories of topological groups.

For every full subcategory X of the category MAP of all the maximally
almost periodic groups, we define the X-Mackey topology v (G, G") of G €
X as the finest X-topology on G among those X-topologies that have the
same dual group as G (see Definition 8.64). If G € X admits the X-Mackey
topology, then it is called a X-pre-Mackey groups, while it is said to be
X-Mackey if its original topology coincides with the X-Mackey topology.

Clearly, the Mackey topology of a topological group G as we have described
it in its natural context is, in this more general setting, the £LQC-Mackey
topology, where LOC is the category of all the locally quasi-convex groups.

Given a pair (G, 1), (H,7) of X-pre-Mackey groups, it is natural to con-
sider the following property of coreflectivity which essentially is the notion of
strong topology (see § 1.3.1): whenever f : (G,7) — (H,7) is a continuous
homomorphism, then the corresponding homomorphism pf : (G,7gr) —
(H,Tyn) (algebraically coinciding with f) is continuous in the following di-
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agram:

(H,7)

idg T idy T

(G, 72(G, G L (H, 72 (H, HM))

The full subcategory of X having for objects all X-Mackey groups is a core-
flective subcategory of X in the following sense:

(MS 1) every group in X is a X-pre-Mackey group;
(MS 2) every pair (G, 7) and (H,7) in X has the CR-property.

Hence, the subcategory of X-Mackey groups admits a strong topology, name-
ly the Mackey strong topology.

In [13], the authors dealt with the possibility of characterizing those cat-
egories admitting a Mackey subcategory. Their main result is the following:
X admits a Mackey subcategory if and only T is injective with respect to
inclusions in X (see Theorem 8.70). So, the stronger categorical form of the
problem of existence of a Mackey topology for a topological group (G,7) € X
is completely translated in categorical terms, i.e. the “Mackey problem” is
equivalent to characterize those categories in which T is an injective object.

We offer a more complete version of this result with the aim of clarifying

which is the role of the hypothesis “injectivity of T” on the category X in
order to assure the existence of a Mackey subcategory. We are motivated
by the fact that LOC does not admit a Mackey subcategory since it is well-
known that T is not injective in LOC, but this does not exclude that — at
least — every G € LOC is LAC-pre-Mackey.
We prove in Theorem 8.75 that a weaker level of injectivity is sufficient to as-
sure condition (MS 1) above, provided X is closed under arbitrary products
and subobjects. This is done in a way that follows the “classical” charac-
terization of the Mackey topology for locally quasi-convex groups. Indeed,
we define the topology TgX (G,G") on a group G € X as the supremum of
all the X-topologies on G that are compatible with (G, G"). Then, for a
category X which is closed under products and subgroups, we have that G is
X -pre-Mackey if and only if TgX(G’, G") is compatible (see Proposition 8.67).
Now, we show that the compatibility of TgX (G,G") is a condition which is
weaker then the injectivity of T in X (Proposition 8.74). More precisely, it
can be stated that the injectivity of T in X is the union of the condition
“compatibility of 7,¥(G, G")” — which yields condition (MS 1) — and an-
other (weaker) instance of injectivity, which yields (MS 2).

In § 8.5 we discuss more aspects of the Mackey topology. In particular,
we briefly present some new results concerning properties of permanence of
such topology with respect to subgroups, quotients and products. Moreover,
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inspired by [45], we introduce the class of those precompact groups that are
not the Bohr modification of any locally compact group, namely the class of
G-groups, and we show that every ULQC group is a G-group (Proposition
8.90).

The Bohr topology

Given a topological group G, there exist a compact group bG and a conti-
nuous homomorphism r : G — bG with the following universal property: for
any continuous homomorphism f : G — K with K a compact group, there
exists a unique continuous homomorphism f :bG — K such that f = f or.
The pair (r, bG) is called the Bohr compactification of G (after the Danish
mathematician Harald Bohr who studied the special case G = R) and it is
unique up to a topological isomorphism. It follows that r(G) is dense in
b(G) and when r is an injection, G is said to be mazimally almost periodic
(briefly, MAP). In the framework of abstract harmonic analysis these groups
are very important and we will restrict ourselves to this class of groups in
the sequel. It is known that all compact groups are MAP (Peter-Weyl-van
Kampen Theorem). Hence, for a compact group G we have: G = bG.

The pre-image topology in G with respect to the homomorphism r :
G — bG is called the Bohr topology of G, and the group G endowed with
its Bohr topology is frequently denoted by the GT. It turns out that the
Bohr topology of a topological abelian group is the initial topology with
respect to all continuous homomorphisms G — T, i.e. it coincides with the
above considered weak topology o(G,G"). A topological group G is totally
bounded if and only if G = GT. In case G is a discrete abelian group, G7 is
denoted by G#, i.e., this is the group G equipped with the “Bohr topology”
induced by all homomorphisms to the circle group. Then, the Bohr topology
of a discrete abelian group G is the maximal totally bounded topology on G.

Two important examples of MAP groups are the classes of locally com-
pact Abelian groups (LCA), and of Hausdorff locally convex spaces (LCS)
over R or C. That LCA is contained in MAP is a fundamental step in the
Pontryagin-van Kampen duality theory. On the other hand, the continuous
linear functionals of a locally convex space are in one-to-one correspondence
with the continuous homomorphisms into the unit circle T. This simple,
but important observation connects the study of the Bohr topology with
functional analysis, and in particular with the concept of duality and weak
topologies on the class LCS of locally convex spaces.

The main trend in this direction is the study of the preservation and
reflection of various topological properties by the Bohr functor G +— G
(among many authors who worked on this topic, we mention Glicksberg,
Wu, Comfort, Herndndez, Trigos-Arrieta, Remus, Galindo).

For an arbitrary abelian group G the precompact group G7 is trivially a
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pre-Mackey group. One of the most challenging problems related with these
sort of groups was posed by van Douwen more than fifteen years ago (see
[79]):

(Question 3.1) Given two infinite abelian groups G, H of the same cardinal-
ity, are G and H* homeomorphic as topological spaces?

The problem was answered negatively by Kunen ([59]) and independently
by Dikranjan-Watson ([43]). Towards the positive direction of van Douwen’s
problem, results concerning Bohr-homeomorphism have been developed.
See, for example, the papers by Hart and Kunen ([51]) and Comfort, Hernan-
dez and Trigos-Arrieta ([25]).

In every pair of groups, known to provide a negative solution to van
Douwen’s homeomorphism problem, one of the groups is not even embed-
dable into the other under the Bohr topology. This motivates the study of
the more general question of embeddings in the Bohr topology. In § 3.0.2
we collect and discuss several kinds of possibility of embedding of groups
equipped with the Bohr topology that have been introduced in light of Ques-
tion 3.1. They are defined as follows. Two abelian groups G and H are:

e almost isomorphic if they posses isomorphic finite index subgroups

([51));

o weakly Bohr-homeomorphic if there exist topological space embeddings
G# — H# and H?" — G7 ([36, 37));

o weakly isomorphic if each one of these groups has a finite-index sub-
group that is isomorphic to a subgroup of the other.

The relation between these notions is given in the next diagram:

almost isomorphic

PR

Bohr-homeomorphic weakly isomorphic

S

weakly Bohr-homeomorphic

The main result of § 3 is the following one:
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(Straightening Theorem 3.10) every continuous function f between two bo-
unded abelian groups equipped with the Bohr topology coincides with a ho-
momorphism when restricted to an infinite subset of the domain.

Observe that, in some sense, this is the counterpart of the fact that every
homomorphism between groups G and H is continuous with respect to the
Bohr topology, expressing nothing else but the functorial essence of the Bohr
topology.
Theorem 3.10 extends the main results of [59, 43] and is based, as well as
the counterexamples in [59, 43], on interesting techniques of partition of
functions defined over the set of n-tuples of w into Vi (see Theorem 3.29 for
details), where, in general, V denotes the direct sum of x copies of Z,,, for
every positive integer m and cardinal x.

The set of Ulm-Kaplansky invariants determines the (bounded) group
up to (isomorphism, hence) Bohr-homeomorphism. We apply Theorem 3.10
in § 3.4 with the aim of discussing the following problem:

to what extent do Bohr-homeomorphisms preserve the Ulm-Kaplansky
invariants?

Among other results, we establish the equivalence between weak isomor-
phisms, weak Bohr-homeomorphisms (and a condition involving algebraic
invariants) for two countable bounded groups G, H (see Theorem 3.12).
Moreover, we offer examples of how Theorem 3.10 can be used to relate the
p-rank of the domain and codomain of Bohr-continuous maps. Indeed we
deduce that

(see Corollary 3.13) Weakly Bohr-homeomorphisms between bounded groups
preserve the property of having infinitely many p-torsion elements.

This observation can be pushed further to answer negatively a question pro-
posed by Givens and Kunen in [47, §6] on the existence of a topological
embedding of (V§")# into (V¥ x V§')# (see Corollary 3.14 for details and a
more general result). Moreover, we also establish a stronger version of [47,
Theorem 5.1] (stating that the property of being bounded is preserved by
Bohr-homeomorphisms), namely, Bohr-homeomorphisms detect the property
of having non-trivial p-torsion elements, for every prime p (Corollary 3.41).
We also consider applications in the class of almost homogeneous groups.
Concretely, we prove that for arbitrary almost homogeneous bounded groups
G and H, the properties “almost isomorphic”, “weakly isomorphic”, “Bohr-
homeomorphic” and “weakly Bohr-homeomorphic” are equivalent (Corol-
lary 3.42).

In § 3.4.3 we consider applications of Theorem 3.10 to the theory of
Bohr-continuous retracts and cross sections. We give a characterization of
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the essential ccs-subgroups of bounded abelian groups (Theorem 3.55) and
we offer a concise proof of the fact that for every prime p, the subgroup
pV;’;Q =V, of V;Q is not a ccs-subgroup of V;’z (see Example 3.51). Ob-
serve that this was originally proved in [25] with a rather involved proof
(consisting of the entire [25, §5]) developing in detail Kunen’s approach of
normal forms in the case of V¥,. This fact gives an additional interest in the
new techniques derived from our Straightening Theorem 3.10 which, more in
general, apport a contribution for the solution of the still open van Douwen’s

problem about retract subgroups in the Bohr topology ([77]):

(see Question 3.43) is it true that every countable subgroup H of an abelian
group G is a retract of G with relation to the Bohr topology?

The entire § 3 is the object of our publication [28].

In § 4 we define and study a new topology on abelian groups which is a
generalization of the Bohr topology.
It is proved in [69] that there exists a wuniversal second-countable abelian
group, that is, a second-countable topological abelian group U such that
every second-countable topological abelian group H is topologically isomor-
phic to a subgroup of U. Moreover, we can suppose that U is divisible
since, according to [9, Corollary 3], given a second-countable abelian group
K there exists a second-countable divisible abelian group D containing K
as a subgroup. So, given a topological abelian group (G, 7), we consider on
G the weak U-topology, i.e., the initial topology with respect to U. Now, it
is clear that this topology refines the Bohr topology since T < U.
We denote a topological group G equipped with the U-weak topology by G¥.
Then, a topological group G is w-narrow if and only if G = G* (see §4 for the
original definition of w-narrow group). If the starting group G is discrete, we
denote G by GH. So, the weak U-topology of a discrete abelian group is the
initial topology with respect to the family of all homomorphisms G — U,
hence it is the mazimal w-narrow topology on G.
Clearly, GH and G# are very close from a functorial point of view. Nev-
ertheless, there are basic differences: unlike the case of the Bohr topology,
every countable subset of G5 is closed and discrete in G- (Corollary 4.11)
and also C-embedded in G5 (Proposition 4.12).

We prove, among other results, that every uncountable abelian group
equipped with the maximal w-narrow topology is a first category space which
is not a P-group.

Recall that a group G is said to be R-factorizable if every continuous real-
valued function on G admits a decomposition by means of a second-coun-
table group K, a continuous homomorphism p : G — K and a continuous
real-valued function h on K (see Definition 4.18). The class of R-factorizable
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groups constitutes a proper subclass of the class of w-narrow groups, but
still it is pretty wide. It contains, among others, all precompact groups, all
Lindel6f groups, arbitrary subgroups of o-compact groups ([73]). During
quite a long period of time, only “sporadic” examples of non R-factorizable
w-narrow groups were known (see [71, Example 5.14]). We prove in Theorem
4.19 that every uncountable abelian group admits a group topology with this
combination of properties.
The principal results of § 4 are contained in our publication [30].

Locally quasi-convex abelian groups

Soon after Pontryagin’s introduction of the character group of a topological
abelian group, Vilenkin observed that for a normed space considered as an
abelian group, the character group and the dual space could be identified
(loosely speaking). In this vein, he introduced the quasi-convezr subsets of
a topological abelian group. This notion is inspired by the Hahn-Banach
theorem, and it is the counterpart of that of convex subset of a topological
vector space. This important tool led him to define the locally quasi-convex
groups in [81]. Forty years later, Banaszczyk developed in [10] many prop-
erties of locally quasi-convex groups, although the primary objective of that
book was the introduction of nuclear groups — a proper subclass of locally
quasi-convex groups. The class of Hausdorff locally quasi-convex groups in-
cludes LCA and LCS, and it is closed under taking arbitrary products and
subgroups.

The above facts, as well as the classical book of Banach “Théorie des
opérations linéaires”, witness that it is an old project to look at abelian topo-
logical groups as a class that embraces the topological vector spaces. There-
fore, it is natural to consider the subgroups of topological vector spaces
— as expressed in the title of [10] — and also to try to extend proper-
ties known to hold for locally convex spaces to the broader class of locally
quasi-convex groups. Several authors (Kye, Herndndez, Galindo, Martin-
Peinador, Chasco, Tarieladze, among others) have worked in this direction
and for the time being some big theorems of functional analysis have their
counterparts for abelian topological groups ([20, 23, 52], etc.).

For a subset E of G and a subset A of G”, define the polars
EP={xeG"|x(E)CT,} and A"={r € G |x(x) €T, ,Vx € A}.

A subset E of G is said to be quasi-convex if E = E9, i.e., for every
x € G\ E there exists x € E” such that x(z) € T4. In the sequel we
denote by Qg (E) the quasi-conver hull of E C G, namely the smallest
quasi-convex set of (G, 7) containing F (we will simply write Qg (FE) if there
is no possibility of confusion).
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Although quasi-convex subsets are the corner-stone of the theory of lo-
cally quasi-convex groups, we dare to say that their nature is not well-
understood. Even for elementary groups like the group of integers Z, or the
circle group T, there are no established criteria to recognize quasi-convex
subsets.

One of the main aims of this thesis is to develop the theory of quasi-convex
sets, with special care to the most unknown cases, namely the small (i.e.,
finite and countably infinite) quasi-convex sets.

Quasi-convexity is usually studied in the class of MAP groups, since
they are the groups in which the continuous characters separate points. The
reason is clear, according to the following equivalence: a topological group
G is MAP if and only if {0g} is quasi-conver. A deeper motivation comes
from the fact that one can reduce the computation of the quasi-convex hull to
the case of precompact topologies (see Remark 5.4). In particular, this also
relates quasi-convexity with the notion of precompactness and, consequently,
with the Bohr topology. Since Qg - (E) = Q(g,++)(E) for every E C G and
every topology 7 on G (see Fact 5.3), it is clear that a good knowledge of
the Bohr topology is essential in the study of quasi-convexity.

The following general results are among the few known properties of
finite quasi-convex sets:

Theorem 0.4 ([5],[41]) Let G be a MAP group and F' a finite subset. Then:
(1) Qa(F) C (F);
(2) Qa(F) is finite.

Observe that both statements of Theorem 0.4 do not hold in general if F' is
infinite. For example, if F' is the countably infinite set F' := {+27" | n €
N} C T, then Qp(F) =T € (F) = Z(2*) (this is Example 5.24). Motivated
by this example, we introduce in § 5.4 the notion of qc-dense subset to
describe those sets £ C G such that their quasi-convex hull is the biggest
possible, i.e., Qa(E) = G.

Theorem 0.5 ([5]) Let G be an abelian topological group. Then G is MAP
if and only if the set A, := {0, £x} is quasi-convex in G for every x € G.

In particular, this example shows that in some cases the dependence of the
quasi-convexity of a set on the topology is only apparent.

Theorem 0.5 cannot be extended to every set of the form {0, £z, ..., £kz},
even in the case k = 2. Indeed, {0, j:% + 7, j:% + Z} C T is not quasi-
convex in T (see Example 6.21). This observation motivates the study of
the quasi-convexity of the sets of the form E,j := {0, +x,...,tkz} C (z)
(for some k > 1) and, on the other hand, the following general definition:
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(Definition 5.32) A subset E of an abelian group G is unconditionally quasi-
convex in G if E is quasi-convex in every MAP topology on G (this is equiv-
alent to ask it only for precompact group topologies).

This is the analogue of the unconditional closedness introduced by Markov
in [64] (see also Definition 5.29). We prove — by means of a result of [42] —
that these two notions actually coincide on subgroups: if H is a subgroup of
an infinite abelian group G, then H is unconditionally closed in G if and only
if it is unconditionally quasi-convex in G (Theorem 5.35). In particular, the
algebraic characterization of unconditionally closed subgroups given in [42]
applies, so the apparent dependence of the quasi-convexity we mentioned
above on the topology is translated to algebraic restrictions.

Inspired by the notion of potentially dense set due to Markov (see also
§ 5.5.2), we also introduce the notion of potentially quasi-convex subset as
follows:

(Definition 5.36) A subset E of an abelian group G is said to be potentially
quasi-convex in G if there exists a MAP topology T on G such that E is
quasi-convez in (G, ).

Clearly, this is the weakest level of quasi-convexity one can expect. Observe
that a subset F C G is potentially quasi-convex in G if and only if it is
quasi-convex with respect to the discrete topology of G (see Remark 5.38).
Applying Theorem 0.4 (1), it is possible to deduce that potential quasi-
convexity and unconditional quasi-convezity coincide for every finite sub-
group H < G (Remark 5.37), but yet this does not hold for subsets: in-
deed, the set E = {0,£1,43} C Z is potentially quasi-convex in Z but not
unconditionally quasi-convex (Example 5.40). Nevertheless, we show that
examples of unconditionally quasi-convex subsets exist in abundance in Z:
for instance, Ej 9 = {0,£1,£2} and U; 4 = {0, %1, 4} are unconditionally
quasi-convex in Z (more in general, see Example 6.34 and Example 6.35).
Moreover, these examples can be extended to any MAP group G that pos-
sesses a non-torsion element: given a finite subset £ of Z, E is uncondition-
ally quasi-conver in Z if and only if xtE = {xe | e € E} is unconditionally
quasi-convez in every MAP group G with a non-torsion element x (this is a
consequence of Theorem 6.36 and Theorem 6.33). This motivates the study
of the finite quasi-convex subsets of Z.

The study of the finite unconditionally quasi-convex sets is related to
other two stronger notions of quasi-convexity that we introduce in this thesis.
They are based on the observation that when we apply the definition of
quasi-convexity and we separate a (not necessarily finite) given set £ C Z
from a certain z € Z \ E by means of a continuous character x of Z, it
is extremely important to recognize if the image of E through x meets the
border of T4, namely {—i—i—Z, i—l—Z}. So we distinguish between two special
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situations:
we say that a subset £ C Z is

e potentially Int-quasi-convez in 7 if for every e € Z \ E there exists
X : Z — T such that x(E) C Int(T4) = (-1, %) and x(e) ¢ T4 (see
also the more general Definition 5.43);

e S-potentially quasi-convex in Z if for every z € Z \ E, there exists
X : Z — T such that the following conditions hold:

~ X(B) C Ty and x(2) ¢ T
— if x(e1) = 4+Zfor some 0 < e; € E, then x(e) # %—i—Zfor every
0<eec k.

Then, “potential Int-q.c.” =— “S-potential q.c.” =— “potential qg.c.”
(see Lemma 6.30 and Lemma 6.29, respectively).

Theorem 6.33 states that the three strongest notions of quasi-convexity that
we have introduced coincide for finite subsets of the integers. Then, the
complete diagram of relations for finite subsets of Z is the following one:

potentially Int-q.c.

Aeorem 6?’“

unc. q.c. S-pot. q.c.

\/

potentially q.c.

A very useful tool when dealing with finite sets is the following conse-
quence of Theorem 0.4 (2): if E C H is finite, then there is no difference
in calculating the quasi-convex hull of E in G and in (E) (Corollary 5.19).
This simple observation is the key to understand all the examples of finite
quasi-convex sets presented in §6 like the following ones:

o A, U...UA,, ={0,%a,...,+a} is quasi-convex in T for every ¢ > 0
and every linearly independent a;,...,a; € T (Corollary 6.2);

o Ay + ... ktimes...+ Ay = Eq = {0, %0, ..., £ka} is quasi-convex in
T for every o € T\ Q/Z and every k > 0 (Lemma 6.3); however, if
a € Q/Z the quasi-convexity is not guaranteed (see § 6.2.2).

These examples are based on a deep knowledge of the quasi-convex sets of Z.
This is not surprising, provided the strong relation between Z and T given
by the topological isomorphisms Z" = T and T” = Z. More precisely, the
key of our considerations is given by the elementary quasi-convex subsets of
Z that we introduce as follows.
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Given a topological group, it is clear from the definition that xy~!(Ty) is
quasi-convex for every xy € G”*. Call these quasi-convex sets elementary.
Then, every quasi-convex set is an intersection of elementary ones; more
precisely, the quasi-convex hull Qg (E) of any E C G coincides with the
intersection of all the elementary quasi-convex sets containing F. This ex-
plains the importance of the elementary quasi-convex sets. The elementary
quasi-convex sets of Z coincide with the collection of the Bohr sets, that
gives a subbase of Z# (this fact is discussed in § 5.3). As a matter of fact,
the integers are probably the best framework in which we can immediately
observe how strong is the relation between the Bohr topology and the no-
tion of quasi-convexity. This stimulated a careful study of Z# and the Bohr
sets, which has been done in § 2.2. Lemma 2.3 expresses the fact that the
collection of Bohr sets has, in some sense, a high level of independency. For
example, it can be deduced from Lemma 2.3 that

(Corollary 2.7) Given two Bohr sets Wa, Wg C Z, if Wy is contained in Wg
then they necessarily coincide.

We also analyze the Bohr sets from a numerical point of view. In the
main result of § 2.2.1, namely Theorem 2.9, we give an explicit description
of a generical Bohr set, which consists of blocks (i.e., intervals) of integers
and “gaps”, in terms of its distribution in Z. Moreover, we indicate alter-
native descriptions by means of continuous fractions, and we also relate the
Bohr sets to a more general class of sets, namely the class of Hartman sets
and Hartman sequences (and the more general Sturmian sequences). This
permits to extend the properties of the Bohr sets in Z to a much wider con-
text, namely areas as stochastic, number theory, ergodic theory and abstract
harmonic analysis.

The block-gap structure of the Bohr sets is employed in §6.2 to character-
ize those finite quasi-convex sets that are contained in some cyclic subgroup
of T (see Lemma 6.8). As a consequence, we deduce the following:

(Theorem 6.9) Let Q C (a) be quasi-convex in () = Z. If there exists an
integer m > 2 such that Q contains a block of length m + 1, then:

(1) the minimum length of every gap of @Q is m — 1;
(2) Eor C Q, where r =% if m is even and r = 2L if m is odd.

In particular, the quasi-convex sets that do not contain a are slim in the
sense that they contain only small blocks of length 1 or 2 (Corollary 6.10).
Another application of Theorem 6.9 is given in Example 6.14, where we eas-
ily deduce that the sum of quasi-convex sets Q1,Q2 C (a) < T\ Q/Z does
not need to be quasi-convex (see also Example 6.6). On the other hand,
we show in Theorem 6.4 that if Q; C (a;) is finite and quasi-convex in
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(i) (or, equivalently, in T), for some independent aq,ag,...,ap € T, then
E=Q1+ Q2+ ...+ Q is quasi-convex in T. This can be also seen as a
tool to construct examples of quasi-convex sets of T that are not contained
in a cyclic group.

As far as the group T is concerned, examples of finite and uncountably
infinite quasi-convex sets are well-known ([5, 4]). In this context, Dikranjan
asked the following ([35]):

Question 0.6 Does there exist a countably infinite quasi-convexr subset of
T?

In Chapter 7 we answer this question in the positive by means of one of the
simplest infinite compact subsets of T, namely a convergent sequence. For
instance:

the subset {0} U {£272" | n > 1} C T is quasi-convex in T.

More precisely, we prove the following (Theorem 7.2):

For a sequence a = (ay)n, put
K, = {0} u{x27(@+) | n e N} C T.

If a = (an)n is a sequence of positive integers such that an+1 — a, > 1 for
every n € N, then K, is quasi-convex in T.

Moreover, K, is hereditarily quasi-conver in T in the sense that every sym-
metric closed subset of K, that contains O is still quasi-convex (see Remark
7.45).

Observe that we suppose ag > 0 (that is, % ¢ K,). It is impressing
that if we add the term % to K,, then the quasi-convexity of K, granted by
Theorem 7.2 is lost: indeed, in this case, Qr(K,) = K, U (1/2 4+ K,) (see
Theorem 7.3).

Note also that the lacunarity condition a,4+1 — a, > 1 for every n € N
cannot be omitted in Theorem 7.2. In fact, we have already mentioned
Example 5.24 that states that if a, = n for every n € N, then K, is qc-
dense in T.

We propose a new idea for the computation of the quasi-convex hull
Qr(K,), namely “factorizing” Qr(K,) as an intersection of larger “compo-
nents” (); that are much easier to compute. To define these larger quasi-
convex sets ();, we use an appropriate partition of the whole polar of K,
into smaller parts J; (see Notation 7.12), so that @;, being the polar of
J;, contains the Qr(K,). The key of the proof of Theorem 7.2 is that the
intersection of only two sets of the form @Q;, namely ;1 and @3, coincides
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with Qr(K,). For this reason, it is crucial to characterize those x € T that
are in J1; we deal with this in § 7.2.1. Such a characterization is developed
gradually by means of the representation of T in terms of “block” of negative
powers of 2. Observe that throughout the characterization of @)1, it will be
clear the role that the assumption ag > 0 has in Theorem 7.2 and, hence,
the intimate difference between this result and Theorem 7.3.

In § 7.3 we present several comments towards a generalization of The-
orem 7.2 by means of our techniques of factorization of the quasi-convex
hull.
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Chapter 1

Preliminaries

We denote by R, Q,Z, N respectively the field of real numbers, the field of
rationals, the ring of integers and the set of positive integers. The set of all
prime numbers is denoted by P. For every p € P, [, is the finite field of
order p.
The first infinite cardinal is denoted by w.

For every x € R, [z] denotes the integer part of , and {x}; := 2 — [2] is
the fractional part of z. Then {-};: R — [0,1).

1.1 Abelian groups

All the groups in this thesis are supposed to be abelian, and we use additive

notation. The neutral element of a group G is denoted by Og.

Given g € G and n € N, the notation ng means g + g + - - - + g. Moreover,
n times

for a subset A C G, nA = {na | a € A}.

Given an abelian group G, an element = € G is said to be torsion if there
exists an integer n > 0 such that nz = 0. The order of x is the smallest n
such that nz = 0, and it is denoted by o(z). The group Z/mZ is denoted
by Zp,, for every m > 2. Observe that if p € P, then Z, = F, as abelian
groups.

Given a family G = {G;};ez of groups, the (direct) product of G is de-

noted by [[;er Gi- f T = {1,2,...,n}, we also write G1 x Ga x ... x Gp.
Given a cardinal «, the product of « copies of a group G is denoted by G,
so that G* = H,@Ga G, where Gg = G for each 3 € a.
The direct sum of G is the subgroup of [[,.; G; of all its elements with fi-
nite support. It is denoted by @,;.; Gi. Observe that P,.7 Gi = [[;c7 Gi
whenever 7 is finite. Given a cardinal «, the direct sum of a copies of a
group G is denoted by G(@).
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A non-empty subset M of an abelian group G is said to be indepen-
dent if the equality Y 7, n;b; = 0 for distinct b1, ...,bs € M and arbitrary
ni,...,ns € Z implies that n1by = ... = ngbs = 0 (for s > 0). Equivalently,
M is independent if (M) = @, c,,(m). We say that M is mazimal inde-
pendent if it is not properly contained in any independent subset of G.

A subgroup H of an abelian group G is essential in G if for every non-

trivial subgroup N of G we have N N H # {0¢}. It can be proved that if H
is essential in G, then H contains a maximal independent subset of G.
The cardinality of a maximal independent subset of G consisting of elements
of infinite order is called torsion-free rank of G and is denoted by r(G).
Similarly, given a prime number p, the cardinality of a maximal independent
subset of G consisting of elements of order p is denoted by 7,(G) and called
the p-rank of G. Set G[m| := {z € G | max = 0} for every m € N. Then
rp(G) is the dimension of the vector space G[p] over F),. Put Soc(G) :=
&b, Glp)-

The p-component of G (equivalently, p-primary part of G or p-torsion
part of G) is the subgroup G}, of G of all the g € G such that p"g = 0, for
some integer n > 0.

Put T := R/Z. For a prime number p, the Priifer group Z(p>) is the p-
torsion part of Q/Z < T. Observe that T[m] = Z,,, for every m > 2.

A group G is said to be bounded if there exists m > 1 such that
mG = {0}.
For every positive integer m and a cardinal &, let V, := @, Z,,. Observe
that V7 is the vector space over Iy, for every prime p, and that G|p] = V) @,
According to Priifer’s theorem (see [44]), every bounded abelian group is a
direct sum of cyclic subgroups, so the p-primary part of G can be written
asGp=V1o...0 VZ? . The cardinals x; determine G, up to isomorphism
and are known as Ulm-Kaplansky invariants of the group G ([44]). In par-
ticular, every infinite bounded group has the form @;_, Vri | for certain
integers m; > 0 and cardinals ;.

An abelian group G is divisible if for every x € G and n € N, there
exists y € GG such that z = ny. A typical example of divisible group is T.
If D is a divisible abelian group with o = (D) and a; = r,(D), then D is
isomorphic to the direct sum of « copies of the group Q of rationals and of
oy, copies of the Priifer group Z(p>), where p runs over all primes P:

D= Q" x P z(p™)).

peP

For every abelian group G, there exists a monomorphism j: G — D, where
D is a divisible abelian group and j(G) is essential in D. The divisible group
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D is unique up to isomorphism and is called the divisible hull of G. In some
sense we can say that D is the smallest divisible abelian group that contains
G. The divisible hull of a countable group is still countable.

Proposition 1.1 Let H be a subgroup of an abelian group G. If f is any
homomorphism of H into a divisible abelian group D, then f can be extended
to a homomorphism of G into D.

The following lemma will be used in this thesis.

Lemma 1.2 Let x : Z — T. Then there exists X : R — T such that the
following diagram is commutative:

R

s 7

%flw

, O
T

Z—

where @ is the natural quotient map r — r + Z for every r € R. Under the
additional retrain X (1) € [0,1), the lifting X of x is unique.

Example 1.3 Since R does not contain torsion elements, no homomor-
phism X : Zpy — T admits a lifting to R, for every m € N.

1.1.1 The group T

The symbol T usually denotes the unitary circle in the complex plane, and
Ty ={z € T| Re(z) > 0}, where Re(z) stands for the real part of z € C. As
already mentioned, we identify T with the quotient group R/Z of the reals
modulo the integers, through the exponential mapping. Thus, every element
of T has a representative belonging to [0, 1) which is for us the fundamental
domain, that is, any r € [0,1) is identified with the complex number 7.
However, when it is convenient, the elements x € [3/4,1) are replaced by
x — 1, which obviously are in [—1/4,0). In some concrete context and when
no possibility of confusion may occur, we identify ¢ with a 4+ Z in order to
have a simpler notation.

Via the above identification, T coincides with [0,1/4] U [3/4,1) or, in the
second option, with [—1/4,1/4].

An element o € T is said to be rational if « € Q/Z < T and irrational
ifa e T\Q/Z. Put
Observe that if aj,...,a; € T are linearly independent (for some ¢t > 1),
then aq,..., o are irrational.
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1.2 Topological spaces

In this thesis, the discrete topology is denoted by 74.

A topological space X is said to be first-countable if every x € X admits
a countable base; it is second-countable if X has a countable base (i.e., X
has countable weight: w(X) < w).

A set A C X is a Gg-set if it is a countable intersection of open sets.
The space X is a P-space if every Gs-set is open.

The pseudocharacter of a point x in a T} space X is the smallest cardinal
number of the form |/|, where U is the family of open subsets of X such that
(U = {z}; it is denoted by 1(z, X). The pseudocharacter of a T space X
is the supremum of all numbers ¥ (x, X) for x € X and it is denoted by ¥ (X).

The smallest cardinal number m > w such that every family of pairwise
disjoint non-empty open subsets of X has cardinality < m is called cellular-
ity of X (or Souslin number of X), and it is denoted by ¢(X).

The tightness of a point x € X is the smallest cardinal number m > w
with the property that if x € C, then there exists Cy C C such that |Cp| < m
and z € Cp; it is denoted by t(x, X). The tightness of X is the supremum
of all numbers ¢(z, X) for x € X and it denoted by t(X).

A topological space X is said to be a first category space if X is the
countable union of closed sets with empty interior, and a second category
space (or Baire) if it is not a first category space.

A subset Y of a topological space X is C-embedded in X if every con-
tinuous real-valued function on Y extends to a continuous function over
X.

1.3 Topological groups

A topological group is a triplet (G, -,7), where (G,-) is an abstract group
and 7 is a topology defined on G such that the map

GxG——=G
(2,y) —>=z -y~

is continuous. Since we adopt additive notation, we omit the symbol - and
we will simply write (G, 7). We refer to such a 7 as group topology.
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All groups are Hausdorff in this thesis.

In a topological group G, the translations are homeomorphisms, there-
fore every neighborhood V of g € G is of the form g + V', for some neigh-
borhood V' of 0g. Given (G, 1), we denote by N - (0) or simply by N¢(0)
the filter of neighborhoods of 0g.

We observe that

Lemma 1.4 FEvery discrete subgroup of a topological group is closed.

We consider on T = R/Z the quotient topology. This group is important
since it is the “dualizing” object for the duality theory of topological abelian
groups.

For z € T, ||z|| is the distance to the nearest integer, so 0 < ||z|| < 1/2. In
particular, T4 = {z € T : ||z|]| < 1/4}.

1.3.1 Functorial topologies

The idea that certain group topologies are naturally associated with any
abelian group (such as e.g. the p-adic topology) leads to the concept of a
functorial topology introduced by B. Charles. It was later the subject of
study by D. Boyer, A. Mader, and R. Mines.

A functor U : A — B is forgetful, whenever U f = Ug for two morphisms
f,9: X — Y in the category A implies f = g. For example, if A is the cate-
gory AGr (of abelian groups and homomorphisms) or VS (of vector spaces
and linear maps), then the usual forgetful functor is U : A — Set, where
Set is the category of sets, and U(X) is the underlying set of, respectively,
the group or vector space. Clearly, this example can be naturally extended
to the categories TAGr (of topological abelian groups and continuous ho-
momorphisms), Top (of topological spaces and continuous maps) or TVS
(of topological vector spaces and continuous linear maps). Nevertheless, the
category TAGr admits two other forgetful functors:

e VV : TAGr — Top, that assigns to every topological group its under-
lying topological space;

o V, : TAGr — Grp, that assigns to every topological group its under-
lying abstract group.

Definition 1.5 A functorial topology is a functor T: AGr — TAGr with
VyT = 1agr- Moreover,

o if T sends epimorphisms to open maps, then it is said to be ideal;

e T is Hausdorff if T(L) is Hausdorff, for every L in AGr.
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Proposition 1.6 Let T be a functorial topology on AGr. Then:
(a) T(Gy x Ga) =T(G1) x T(G2), for arbitrary abelian groups G1,Ga;

(b) T(G) > [1;c; T(G), for arbitrary family {G;}ier of abelian groups and

G =[lie; Gis
(c) T(H) > T(G) g, for every group abelian G and every subgroup H <
G;

(d) for every abelian group G and every subgroup N of G, the quotient
topology of G/N s finer than T(G/N); equality holds for every G and
N if and only if T is an ideal functorial topology.

Given G, the pro-finite topology on G can be also characterized as the
initial topology on G with respect to the family of all homomorphism G — F,
for every finite group F'. In other words, the pro-finite topology belongs also
to another wide class of “functorial topologies”, namely the class of initial
topologies or weak topologies, i.e., the topologies induced by (continuous)
homomorphisms in topological groups. To give a formal definition of initial
topology, let us note first that AGr can be considered in a natural way
as a full subcategory of TAGr (identifying each abelian group G with the
discrete group (G, 74))-

Initial topologies are defined in the larger category TAGr as follows.
Let E be a subclass of TAGr. Then we consider the functor Tg : TAGr —
TAGr that assigns to every topological abelian group G the group Tg(G)
with underlying group G and topology the initial topology of the family
{CHom(G, E) | E € E}. Clearly, one can restrict the functor Tg to the
subcategory AGr. This will produce a functorial topology in AGr.

In what follows, given G in TAGr we denote Tg(G) by G° and we
call the topology of Tg(G) the E-initial topology of G, or also the weak E-
topology. Moreover, keeping the same terminology as in the case of functorial
topologies, we say that:

e the weak E-topology is ideal, if the functor Ty preserves quotients;

e Tg is Hausdorff, whenever Tg(G) is Hausdorff for every Hausdorff
group G.

Observe that initial topologies have the following fundamental property:

if G € TAGr and K € E, then a homomorphism f: G — K is continuous
if and only if f: G° — K is continuous. Moreover,

Proposition 1.7 Let G,H € TAGr. Then:



1.3 Topological groups 11

1) A function f : G — H° is continuous if and only if go f : G — K
is continuous for every K € E and every continuous homomorphism
g:H— K.

¢-l-p

"N

K

2) If f: G — H is a continuous homomorphism, then f : G° — H°® is
continuous.

Corollary 1.8 Let G, H be in AGr. Then:

1) A function f: G° — H° is continuous if and only if go f: G° — K is
continuous for every K € E and every homomorphism g: H — K.

2) If f: G — H is a homomorphism, then f: G° — H° is continuous.

Proposition 1.9 Fix H < G in TAGr. Then:

(a) Suppose that E verifies the following: for every A € E, there exists a
divisible A’ € E that contains A. Then Tg(H) = Te(G) |u;

(b) if Tg is Hausdorff, then H is closed in G°.

In general, the group Tg(G) need not belong to the class E. Nevertheless,
this is the case when CHom(G, E) separates the points of G and the class
E is stable under taking isomorphisms, direct products and subgroups (for
example, consider the class LQC of locally quasi-convex groups).

An important and simple instance of weak E-topologies is obtained when
the class E = {F; | i € I} is a set, so that one can consider the group E =
[Lic; £i- Then the weak E-topology and the weak {E}-topology coincide.
In other words, it is not restrictive to take a singleton E = {E'}. In such a
case we say briefly weak E-topology instead of weak { E'}-topology.

The Bohr topology represents the fundamental example of ideal ini-

tial topology. It is the initial topology given by E = {T}. In particular,
Tt [agr: AGr — TAGr is the Hom( ,T)-topology.
The group (G,7) equipped with the Bohr topology will be denoted by
(G,7T) or simply by G*. Following van Douwen ([77]), we denote G+
by G# when G is discrete. We say that a topological group G is Minimally
Almost Periodic (briefly, MinAP), if 7 is the indiscrete topology of G.

A topological group (G, 1) is totally bounded if it is a fixed point of the
Bohr functor, i.e., Tr((G,7)) = (G, 7). Note that a totally bounded group
need not be Hausdorff, actually every indiscrete group is totally bounded
(while a MinAP group is totally bounded only if it is indiscrete).



12 Preliminaries

A totally bounded group which is Hausdorff is called precompact. Ob-
serve that G is precompact if and only if G «— TCHM(GETD) j e @G is topo-
logically isomorphic to a subgroup of a product of T. In particular, every
totally bounded group is a subgroup of a compact group.

A strong topology is a coreflector in the category of topological abelian

group, i.e., a functor T : TAGr — TAGr that assigns every (G, 7) to (G, 75)
with 74 > 7.
A typical example is given by the coreflector T, that sends any topological
group G to the (abstract) group (G, 74). Let us show an example of a special
coreflector in the category of topological vector spaces. Our interest in this
example is related to § 8.4.

Example 1.10 Let us consider the subcategory LCVS C TVS of all locally
convex vector spaces. Recall that by the Mackey Arens Theorem, for every
(E, 1) € LCVS there exists the Mackey topology 7(E, E*) and 7(E, E*) > 7.
Moreover, according to [67, Chapter IV, 7.2], if f : E — F is a conti-
nuous linear map between two locally convexr vector spaces, then also f :
(E,7(E,E*)) — (F,7(F,F*)) is continuous. Therefore the Mackey func-
tor Ty : TVS — TVS that sends a locally convex vector space E to the
Mackey space (E,T(E, E*)) is a corflector, i.e., the Mackey topology of a
locally convex vector space is a strong topology in this category.

1.3.2 MAP groups and duality

The following corollary of Proposition 1.1 states that Hom (G, T) separates
the points of G, for every group G.

Corollary 1.11 If G is an abelian group. Then for any distinct g,h € G
there exists a homomorphism ® : G — T such that ®(g) # ®(h), i.e.,
Hom(G, T) separates the points of G.

In particular, G¥ is always Hausdorff whenever G is abelian and, hence, the
Bohr topology of a discrete group G is precisely the maximal precompact
topology on G.

Definition 1.12 Given a topological group G, we say that G is Maximally
Almost Periodic (briefly, MAP) if G is Hausdorf}.

The class of abelian MAP groups includes, among other, the class of precom-
pact groups, of locally compact abelian (briefly, LCA) groups (according to
Peter-Weyl Theorem) and of additive groups of locally convex vector spaces
(by Hahn-Banach Theorem).

Observe that we can give a characterization of MAP groups in terms of
the separation property of Corollary 1.11.
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Remark 1.13 A group G is MAP if and only if for every 0 # g € G there
exists a continuous character x : G — T such that x(g) # 0, i.e., CHom(G, T)
separates the points of G.

For a topological abelian group G, we denote by G” the dual group of
G, that is the group CHom(G, T) equipped with the compact-open topology
Teo-

Example 1.14 The following topological isomorphisms are well-known:
T™ =27, 72" =T.

A group G is said to be reflexvive if the canonical map ag : G — G™
defined by x — (x — x(z)) is a topological isomorphism. The celebrated
Pontryagin-van Kampen theorem states that every locally compact abelian
group is reflexive ([65, 78]). In particular, every discrete group and every
compact group is reflexive.

Fact 1.15 The following properties are equivalent:
o GG is MAP;

e the canonical homomorphism « is injective.

Given a group G and a subgroup H of Hom(G, T), we denote by 7 the
initial topology on G with respect to H. Then, 7y is totally bounded for
every H < Hom(G, T). More precisely, the following characterization holds:

Theorem 1.16 ([27]) A MAP topology T on a group G is precompact if
and only if T = T for some H < Hom(G,T).

1.3.3 The Bohr compactification

According to Definition 1.12, given a MAP group (G,7), (G,7") is Haus-
dorff, so we can consider the completion bG of (G,71). The Bohr compacti-
fication of (G, TT) or, equivalently, of (G, T) is the pair (pg, bG), where pg :
G — bG is a continuous injective homomorphism such that pg+ : GT — bG
is the immersion of G into bG.

Fact 1.17 The following properties hold:

(1) pa(G) is dense in bG;
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(2) bG is a compact group;

(3) for every compact group K and every continuous homomorphism f :
G — K there exists a unique continuous homomorphism f : bG — K
such that f = f - pa.

bG
o =
PGT \f
f \
G—K
Indeed, (1) is immediate, (2) follows from (1) and the fact that every pre-
compact group is a subgroup of a compact group, and (3) holds since such a

K is complete, therefore f : G — K admits an extension to the completions
f:0G — K.

The Bohr compactification of G is uniquely determined by (1), (2) and (3),
and the Bohr topology of G is the topology induced by its Bohr compacti-
fication.

For the following theorem, see [53, Prop. 26.19).

Theorem 1.18 Kronecker’s Approximation Theorem

Let G be a MAP group and x : G — T a (possibly discontinuous) character.
For every finite number of elements g1, ...,9: € G and for every e > 0 there
exists a continuous character £ € G" such that

lIx(g:) —&(g0)|| <&, foreveryi=1,...,t.

This result simply expresses the fact that a topological group G is dense in
its Bohr compactification. For reader’s convenience, we give a sketch of the
proof in the case when G is discrete.

Proof. We want to show that G” is dense in Hom(G, T) with the topology
of pointwise convergence. Indeed, otherwise G/ is a proper closed subgroup
in the compact group Hom(G,T) C TS. Thus there exists a non-trivial
character x : Hom(G, T) — T such that x(G") = 0. Now, (G,79)"" = G by
the Pontryagin duality Theorem (see § 1.3.2), then y can be identified with
a non-null element of G; write x € G with abuse of notation. Now, £(x) =0
for every £ € G" (i.e., G" does not separate x and 0), and this contradicts
the fact that G is MAP. So the theorem is proved. QED

We will often make use of the following interpretations of Theorem 1.18.

Corollary 1.19 Let E be a finite subset of (G,7). Fixr z € G\ E, and
suppose that there exists a (non-necessarily continuous) character x : G — T
such that x(E) C Int(T4) and x(z) € T\Ty. Then there exists a continuous
X' € E” such that X'(E) C Int(T4) and x'(z) € T\ T.
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Corollary 1.20 Let I1,...,Z; C T be open intervals. For every indepen-
dent (over Z) irrational aq,...,oq € T there exists an integer n such that
na; € Z; for everyi=1,...,t.
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Chapter 2

The Bohr topology

In this chapter we study the Bohr topology in two concrete instances. In
§ 2.1 we focus on the class of bounded groups; the considerations that we
present here will be used in § 3. In § 2.2 we study the case of the group of
integers. In particular, we deduce from Lemma 2.3 several results that will
be applied in § 5 and § 6 for the study of quasi-convexity.

2.1 The Bohr topology on bounded groups

Recall that every infinite bounded abelian group has the form @;_, V5 |
for certain integers m; > 0 and cardinals k; (see § 1.1). For this reason, the
study of the Bohr topology of the bounded abelian groups can be restricted
on the groups V¢ .
It is clear that the homomorphisms VF — Z,, suffice to describe the Bohr
topology of V%, and a typical neighborhood of 0 in (V%) is a finite-index
subgroup of V¥ . So, in this case the Bohr topology coincides with the
pro-finite topology. See [38, 40, 59, 43] for more details on (V¥ )#.

In § 3 we study several aspects concerning Bohr-homeomorphisms and
Bohr-embeddings, with special care on bounded abelian groups.

2.2 The topological group Z#

By definition of the Bohr topology, a typical member of a base of Z# is of
the form

Uar,...,ae) ={n€Z:|nail| <e,...,||no| <e}.

Such a set is called a Bohr set. In particular, a subbase of Z is given by
the collection of Bohr sets {W }aeT, Wwhere

Wo=U(x;1/4) ={n € Z |naec Ty}
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for every a € T. Equivalently, W, = x5 (T4 ), where x, is the character of
Z defined by x : 1 - a € T.

Observe that a finite intersection of W, ’s gives arbitrary small U(«,¢€).
Indeed,

Lemma 2.1 Fizm >1 and o € T. Then U(a;1/4m) = (21 Wha-
This is a trivial consequence of the following

Fact 2.2 (Lemma 6.3,[5]) For every x € T, ||z|| < 1/4m if and only if
kx € Ty for everyk=1,...,m.

The following lemma expresses the fact that the W,’s posses, roughly
speaking, a high level of independence. It is Lemma 2.1 in [15]; nevertheless,
we offer a shorter and more complete proof.

Lemma 2.3 ([15], Lemma 2.1) Let ai,...,a; € T be independent (over
Z), and let m € N. If

t

([ Wea, =U(n, ... o451/4m) € Wy (2.1)
i=1k=1

for some B €T, then 8 = 22:1 k;o; with k; € 7 such that Zle |ki| <m.

Proof. Let H = (ay,...,c4). We show first that 5 € H. Assume for a
contradiction that § ¢ H. Choose z € T \ T4 such that:

e z=1/2+7Z, if ()N H =0;
e tz =0, if t is the smallest positive integer such that t3 € H.

There exists a (discontinuous) character ¢ : T — T such that ¥ (a;) = 0 for
i=1,2,...,t and () = z. By Corollary 1.19, there exists a continuous
character n € Z = T’ such that nka; € Ty for i = 1,2,...,t and k =
1,2,...,m, and also n3 ¢ T,. Then n € U(a,...,oq;1/4m), but n & W,
a contradiction. Hence 8 € H.

So B = Yt , kia; with k; € Z. To prove that S i_, k| < m, argue
by contradiction. Let T,, := {z € T : ||z|| < 1/4m} (see § 5.3) and C =
Ty, X...x Ty, (t-times). Consider the continuous homomorphism h : T: - T
defined by h(z1,...,2;) = >, kjzi. We intend to show that h(Int(C)) &
Ty. Indeed, if h(Int(C)) C T4 then by closedness of Ty also h(C) C
T,. Now, for every 1 < i < t, take z; = ﬁ + Z if k; > 0 and z;
— & +Z in the other case. Then (z1,...,2) € C but h(z1,...,2) ¢ T4, a
contradiction. This claim produces a point (z1,...,2:) € Int(C) such that
h(z1,...,2t) € T4+. Consider the (discontinuous) character ¢ : T — T such
that ¢(a;) = 2; (hence, ¥(ka;) = kz; € Int(T4) for k = 1,2,...,m) and
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also ¢Y(3) = >, kiz; € T\ T4. By Corollary 1.19 there exists n € Z such
that nka; € T4 for kK =1,2,...,mand i = 1,2,...,¢, while ng € T\ T,.
This contradicts our assumption (2.1). QED

Corollary 2.4 If ay...a4 € T are independent, then for 3 € T
t
ﬂWai CWg <= [ ==aq; forsomeic{l,2,... t}.
i=1

Another corollary of Lemma 2.3:

Corollary 2.5 If a € T is irrational, then for m € N and 8 € T

kaQQWg <— [ =+ka, for some k€ {1,2,...,m}.
k=1

We observe here that the previous corollary may fail if we consider an in-
tersection of W,,’s where the «;’s are not all consecutive multiples of one of
them. En example is the following one. Consider o € T such that « is irra-
tional. Then Who N W3 N Wiq € W, (this can be deduced from Example
6.11 and Lemma 5.20) but a ¢ {+2«, £3«, +4a}.

Remark 2.6 Note that this is a strong property of independence: if an
elementary quasi-convex set W3 contains a finite intersection (2, W, of
elementary quasi-convex sets, then it contains (actually coincides with) one
of them. More generally, if (" W,, C ﬂj.:l Wg,, then {f,...,8:} C
{£a1,...,£a;}. This holds true when the elements a,...,q; are either
independent, or all consecutive multiples of one of them (i.e., {a1,...,a;} =
{041, 20[1, e ,tal}).

The following can be deduced from Corollary 2.5:

Corollary 2.7 For o, € T\ {0} the following properties are equivalent:
(a) B = +ta;
(b) Wa € Wp;
(c) Wg S Wa;
(d) Wq =Ws.

Proof. According to the Corollary 2.5, (b) is equivalent to (a) when « ¢
Q/Z. Now assume that a € Q/Z. Suppose (b) holds. Write a = 2+Z, with
a,b coprime positive integers, 0 < b < a. Then aZ C W, hence aZ C Wy
by our assumption (b). Since T, contains no non-trivial subgroups, a3 = 0.
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Since a has period precisely a, this implies § = ka for some k € Z. If
k # £1, choose an element z € T \ T4 such that az = 0. Now define a
(discontinuous) character ¢ : T — T such that (o) = 0 and ¥(5) = z.
Apply Corollary 1.19 and find a continuous character n € Z = T” such that
na € Ty and nfB ¢ Ty. Therefore, n € W, and n ¢ Wg, a contradiction.
Hence k = +1. This proves that (b) is equivalent to (a). Analogously one
can prove that (a) is equivalent to (¢) as well. This shows that (a) < (b)
& (¢) & (d) as (d) coincides with the conjunction of (b) and (¢). QED

2.2.1 Description of W,

First, consider the case in which « is rational. It is easy to see that the set
Wy is periodic if and only if « is rational. Let us consider some examples.

Example 2.8 We identify Wy, with W, y7. Then:
[ ] W1/2 = QZ,
o Wy3 =3L;

W1/4 = {0, ]., 3} + 4Z,

Wl/5 = {07 17 4} + 5Z7

In the general case, W, can be described as follows. Let a € T \ {0}.
1
Define a, = a := [m} > 1 and, for every integer n, k, := [m_—“] Then

(x|
Theorem 2.9 states that a controls the structure of W, in the following
sense: W, consists of blocks of integers J,, with cardinality a or a 4+ 1, and
the length of every gap between two blocks J, and J,4+1 can be a — 1, a or

a—+1.

Theorem 2.9 Let a € T\ {0}. Then Wo = U,cz Jn, where, for every
n € 7,

g _ {kn —a,kp —a+1,... ky}, if(kn—a)HaH—njLiZO;
"\ {kn—a+ 1Lk —a+2,... k,}, otherwise.

Moreover, if L, is the gap between J,, and J,+1, then |L,| € {a—1,a,a+1}.

Proof. Fix a # 0 in T and consider the character x, : Z — T which takes
1 to . By definition,

11 n—j n+j
L= (T =y =2, = 7\ — 4 4
W=t = (|3 +2) = U <[HaH’ ol
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n—1 n+z
— 4
Define I, [ CIRRICIE

I, = J, for every n € Z.
1 _1
Fix n. Start noting that k,, € I,, (indeed, k,, > H H —-1= n+|4|a‘||‘a” > ﬁaﬁ).

Moreover, k, —a+ 1 belongs to I, too (and, consequently, {k, —a+1,k, —
a+2,...,k,} C1I,). To see it, it is sufficient to show that (k, —a + 1) is

] N Z for every integer n. We want to show that

1
close enough to ﬁ;—ﬂ‘, and this is true according to the following calculation:

n —+ n+ 4
4 —(kp—a+1)= Lkt ky— (b —a+1) <
[l [l
1 n+i n-1
<l+ky,—(kn—a+1)=14+a—-1=a< = 4 _ 4.
o 20ledl Aledl ]
Now, k, —a € I, if and only if k, —a > Tlllilil’ that is to say (k, —a)||a|| —

n+% > 0. This proves that J,, C I,,. For the converse, let b € I,,. Of course,
b < k,, by definition of k,. Now, k, —a — 1 does not belong to I,, (because

) 1
Tt = (b —a—1)> Tt - T|Z|| +a+ 1> gue), therefore b > kn —

Ifb>k,—a+1thenbde J,. Ifb:kn—a,thenk‘n—azﬁ;
beI,), thus (k:n—a)||o<||—n—|—%>()andb€<]

1 1
To conclude, note that L, = (n+4 i )ﬂZ (2||a|| +< nry ))ﬁZ

[Tedl > Tlell Talt» Tal
Therefore |Ly| < |J,|. Moreover, {k, +1,...,k, +a — 1} C L,, (it follows
from the fact that k: +1 € L by definition of k,, and k, + a — 1 <

ﬁ _1 _ ntd B
Tolt * ey —1 = 1<|| H)then\L\>a 1. QED

Tadl

N

(because

The following example shows that a — 1 is actually a possible value for
|Ly| (and therefore there is no ”symmetry” between the cardinality of the
blocks J,, and of the gaps Ly,).

Example 2.10 Take o such that ||a|| = 4= for a certain integer m. Then
() =24y, < T, a=2m, |J,| =a+1 and |L,| = a—1 for every n.

In the more complex case, namely when o € T is irrational, there are

other interesting ways to describe W,, for example using continuous frac-
tions.
First, let us note that there is a natural relation between the expansion in
continuous fractions of an irrational o and W, (observe that we identify W,
with W,47). Recall that for « € R\ Q, its expansion in continued fractions
is given by integers ag, a1 ... such that

a = [ag;ay,az,...] =ay + ———
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where ag > 0 and a; > 0 for every ¢ > 1. Define two increasing sequences
(pn)n and (gn)n in the following recursive way:

p2=0, pa1=1, pi=api-1+pi—o for i>0;
p2=1 ¢1=0, ¢ =aq-1+qg—2 for i>0.

Then (Z—”) is a sequence of rational numbers — called the sequence of
"/n

convergence of @ — such that

_ P

lag; a1, ..., an]
gn

Now, it is well-known (for example, see [57]) that for every n > 0 we have
lagn — pn| < 1/¢n. Now, recalling that (gy), is increasing, take ngy such
that 1/gn, < 1/4. Then {g, | no < n} € W,. Furthermore, it has
been proved in [15, Theorem 1*] that there exists mg such that the set
{rg, | 1 <r <apy1,mp < n} is contained in W,.

Continued fractions are also involved in more sophisticated descriptions

of W,. We are not going to enter into details, but we point out that this is
related to a more general class of sets that includes the W,’s, namely the
class of Hartman sets. Here we give a brief description.
Let C' be a compact monothetic group. A subset M C C' is said to be a
continuity set if its topological boundary has Haar measure equal to 0. For
example, every open subset of T is a continuity set for being a countable
union of disjoint open intervals.

Now, let g € C be such that (g) = C and define the translation T'by T : z —
x + g, for every x € C (observe that the hypothesis @ = (' is equivalent to
say that T is an ergodic translation). Then H = {k € Z | T*(0¢) € M} is a
Hartman set. Of course, to see that any elementary quasi-convex set of Z is
a Hartman set just take C =T, M =T, and T : 2 — = + a.

Given a Hartman set H, we can define a Hartman sequence ag = (ar)3> _ .
Z — {0,1} setting ap = 1 if k € H and a; = 0 otherwise. Hartman sets
and Hartman sequences (that are a generalization of Sturmian sequences)
are connected to various areas as stochastic, number theory, ergodic theory
and abstract harmonic analysis. For more details on Hartman sequences,

see [68, 70, 82].



Chapter 3

Homeomorphisms in the
Bohr topology

A pair of abelian groups G and H are said to be Bohr-homeomorphic if G#
and H# are homeomorphic as topological spaces ([36, 37]). Clearly, Bohr-
homeomorphic groups have the same cardinality, and isomorphic abelian
groups are always Bohr-homeomorphic.

The following natural question was proposed by E. K. van Douwen
(Question 80, [79]):

Question 3.1 Are abelian groups of the same cardinality always Bohr-ho-
meomorphic?

The problem was answered negatively by Kunen ([59]) and independently
by Dikranjan-Watson ([43]). The counterexamples will be discussed below.

Towards the positive direction of van Douwen’s problem, Kunen and
Hart established the following

Fact 3.2 ([51], Lemma 3.3.3) FEvery infinite abelian group is Bohr-ho-
meomorphic to its subgroups of finite index.

They introduced the notion of almost isomorphism as follows: two bounded
abelian groups G and H are almost isomorphic if they have isomorphic finite
index subgroups. Obviously, Fact 3.2 implies that

Corollary 3.3 Almost isomorphic abelian groups are always Bohr-homeo-
morphic.

The following example by Comfort, Hernandez and Trigos-Arrieta shows
that Bohr-homeomorphic groups need not be almost isomorphic.

Example 3.4 ([25]) Q and Q/Z x Z are Bohr-homeomorphic.
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3.0.2 Embeddings in the Bohr topology

In every pair of groups, known to provide a negative solution to van Dou-
wen’s homeomorphism problem, one of the groups is not even embeddable
into the other under the Bohr topology. This motivates the study of the
more general question of embeddings in the Bohr topology.

An important step in the embedding problem for the Bohr topology was
achieved by Givens and Kunen ([47]). Making use of chromatic numbers of
hypergraphs, they proved the following theorem characterizing those abelian
groups that admit a topological embedding into the group (Vg)#, for an
infinite cardinal k and a prime number p:

Theorem 3.5 ([47], Corollary 1.4) Fiz a cardinal k > w, let G be an
abelian group of cardinality k and let p be a prime number. Then the fol-
lowing properties are equivalent:

1. G is homeomorphic to a subset of (VZ)#;
2. G and Vj are Bohr-homeomorphic;

3. G and V are almost isomorphic.

In the same paper it is also proved that if there exists a topological space
embedding G* — H# and H is a bounded abelian group, then also G must
be bounded ([47], Theorem 5.1).

The above results compared to the original van Douwen’s homeomor-
phism problem justify the following notion ([36, 37]):

Definition 3.6 Two abelian groups G, H are said to be weakly Bohr-homeo-
morphic if there exist topological space embeddings G* — H# and H#* —
G7.

In order to provide instances when two groups are weakly Bohr-homeo-
morphic, we need also the following:

Definition 3.7 We say that two abelian groups G and H are weakly isomor-
phic if each one of these groups has a finite-index subgroup that is isomorphic
to a subgroup of the other.

The next lemma trivially follows from Fact 3.2 and from the fact that
the Bohr topology is functorial.

Lemma 3.8 Weakly isomorphic abelian groups are weakly Bohr-homeomor-
phic.
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According to Example 3.4, the converse implication fails (Q and Q/Z x Z
are Bohr-homeomorphic, and yet these groups are not weakly isomorphic).
For a bounded group G, we denote by exp(G) the exponent of G (i.e.,
the smallest positive integer k with kG = 0). The essential order eo(G) of G
is the smallest positive integer m with mG finite ([47]). Then, G = F x H,
with eo(H) = exp(H) = m and F finite.
The following result is Theorem 5.3 in [47]. It gave a complete solution of
the embedding problem in the case of countable bounded abelian groups:

Theorem 3.9 [47] For countably infinite bounded abelian groups G and H,
there exists an embedding G* — H? if and only if eo(G)|eo( H).

Observe that in § 3.4.2 we deduce this theorem from a more general result.

It is not clear whether a similar simple criterion for the existence of a
continuous injective map G# — H7 can be formulated in terms of eo(G)
and eo(H) (see Question 3.66).

3.0.3 Main results

The non-homeomorphism results from [59, 43| are based on interesting tech-
niques of partition of functions defined over the set of n-tuples of w into V7
(see Theorem 3.29 for details).

In [43] the authors present a theorem concerning partition of functions
defined over the set of four-tuples of a sufficiently large cardinal x into V§.
This was pushed further on in [38] and [40] to a more general situation;
in this framework the first idea of the “Straightening Theorem” (Theorem
3.10) was born (see also [36, 37]). We need the following definitions before
we formulate our main theorem.

If k is a cardinal and A C k, we denote by [A]" the set of all the subsets
of A with n elements, where n is a positive integer. For every m € w
greater than 1, denote by B[, the canonical base of the group V7. We will
often consider x naturally embedded in V7, via the map which enumerates
the elements of Bf,. Also [k]"™ embeds in V%  for every positive integer n:
to see it, fix n and write an element a € [k|" as a = (ai,...,a,) (where
a; < az < ...<ay), and consider the embedding L,&"T)n : [k]" — VI defined
by L,(;}%l(a) =ar+ax+...+ an.

Briefly, we prove that every continuous function f between two bounded
abelian groups G* and H¥ coincides with a homomorphism when restricted
to an infinite subset of the domain:

Theorem 3.10 (Straightening Theorem) Let J be a bounded abelian
group, m > 1 and 7 : (V¥)# — J# a continuous function with 7(0) = 0.
Then there exist an infinite subset A C w and a homomorphism ¢ : V¥, — J
such that
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and, consequently,
#([A™) € J[m].

Moreover, if w is an embedding then ¢ can be chosen to be a monomorphism.

As an immediate corollary of Theorem 3.10, one can see that there exists
no injective continuous functions from (Vg)# into (V‘;)# when p and ¢ are
distinct prime numbers (see Corollary 3.17 for a more precise result). This
fact, established first in [59], answers negatively Question 3.1.

It must be emphasized that Theorem 3.10 depends strongly on the do-
main V¥ of the function we want to “straighten”. Indeed, according to
Example 3.4, there exists a topological embedding j : (Q/Z)# — Q¥, even
if it is easily seen that it can coincide with the restriction of a homomor-
phism ¢ : Q/Z — Z to a non-empty subset A of Q/Z only if A is a singleton
(as j is injective while ¢ is necessarily the zero homomorphism).

In § 3.1 we list some definitions and basic properties that will be useful
further. In § 3.2 we introduce and study (homogeneous) derived forms and
normal forms. In Proposition 3.27 we study the continuity of functions in
normal form with respect to the Bohr topology, and in Proposition 3.28
we characterize the continuous homogeneous derived 1-ary forms. We also
make use of the following fundamental result by Kunen ([59], see Theorem
3.29): given a function w defined over the l-tuples of w into Vi, there exists
a restriction of the domain on which w is in normal form. These results
are essential ingredients of the proof of Theorem 3.10, which is the object
of § 3.3.

In § 3.4 we give several applications. According to Theorem 3.9, two
countably infinite bounded abelian groups G and H are weakly Bohr-ho-
meomorphic if and only if eo(G) = eo(H) (see also Theorem 3.12 for further
comments). This motivates the following algebraic condition for bounded
abelian groups G, H presenting a further weakening of the notion of “weak
isomorphism”:

(B) eo(G) = eo(H) and 1,(G) = rp(H) for all p with max{r,(G),r,(H)} >

w. -
The relation between (B) and the previously introduced notions is the fol-
lowing:
almost isomorphic = weakly isomorphic = weakly Bohr-homeomorphic =
= (B)=eo(G)=co(H).

The first and the last implications are trivial, the second is Lemma 3.8, the
third one is proved in Theorem 3.16. Note that the last implication is not
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invertible in the uncountable case (e.g., the pair G = V§ xV5*, H = V¢ x V3!
satisfies eo(G) = eo(H ) but does not satisfy (B)).

Our aim is to establish conditions that imply the validity of the converses
of some of the above implications. That will lead, in particular, to a complete
classification (up to (weak) Bohr homeomorphism) of the bounded abelian
groups in terms of their essential order in the case of countable bounded
abelian groups (see Lemma 3.11 and Theorem 3.12) and the groups of the
form V¥ (see Corollary 3.17).

The next lemma entails that the invariant eo(G) alone allows for a
complete classification (up to weak isomorphism) of all countable bounded
abelian groups (the proof can be found in §3.4).

Lemma 3.11 Let G and H be countable bounded abelian groups. Then G
is weakly isomorphic to H if and only if eo(G) = eo(H).

This lemma gives the equivalence (a) <= (c) in the next theorem,
providing a more complete result:

Theorem 3.12 For countable bounded abelian groups G and H, the follow-
ing properties are equivalent:

(a) G and H are weakly isomorphic;
(b) G and H are weakly Bohr-homeomorphic;

(c) eo(G) = eo(H).

The implication (a) = (b) follows from Lemma 3.8; (b) = (c) follows
from Theorem 3.9.

The following result (see § 3.4.2 for the proof) shows how Theorem 3.10
can be used to relate the p-rank of the domain and codomain of Bohr-
continuous functions.

Corollary 3.13 Let f : G* — H¥ be a continuous injective function
between abelian groups. If H is bounded and ry(G) is infinite for a certain
prime p, then rp(H) > rp(G).

As an immediate corollary we obtain

Corollary 3.14 If p and q are distinct prime numbers, then there is no
continuous injective map (V;‘jl)# — (V) x V‘;l)#.

This answers negatively the question proposed by Givens and Kunen ([47,
§ 6]) on the existence of a topological embedding of (V§")# into (V¥ x V§1)#.
Here is another immediate consequence of corollary 3.13:
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Corollary 3.15 If G and H are bounded abelian groups and there exist
continuous injective maps G* — H* and H¥ — G¥, then rp(G) =
rp(H) for every prime p such that at least one of the cardinals r,(G), rp(H)
s infinite.

Theorem 3.16 If there exists an embedding G* — H7¥, then eo(G)|eo(H )
and mp(G) < rp(H) if rp(G) is infinite. In particular, weakly Bohr-homeo-
morphic abelian groups G and H satisfy condition (B).

The proof of this theorem can be found in § 3.4.2.

Theorem 3.10 implies a stronger version of [47, Theorem 5.1], namely,
Bohr-homeomorphisms preserve the property of having non-trivial p-torsion
elements, for every prime p (Corollary 3.41).

We show that VI and V[, are not weakly Bohr-homeomorphic where &
is any infinite cardinal and n # m (see Corollary 3.17). This implies that
the invariant eo(G), along with the cardinality |G|, allows for a complete
classification, up to Bohr-homeomorphism, of all infinite abelian groups of
the form V7

Corollary 3.17 The following properties are equivalent:
(1) V& and VE  are Bohr-homeomorphic;

(2) V& and V%, are weakly Bohr-homeomorphic;
(3) V& and VE  are isomorphic as topological groups;

(4) n=m

The implications (4) — (3) — (1) — (2) are trivial. The implication (2)
— (4) follows from Lemma 3.37 (or can be directly obtained from Theorem
3.12).

The groups V! are almost homogeneous (see §3.4 for the definition) of
a very specific form. Nevertheless, Corollary 3.17 remains true also for the
larger class of all almost homogeneous groups (see Corollary 3.42).

In the next diagram we collect all the implications — those with solid
arrows are always valid, the ones with dotted arrows are valid in some spe-
cific class of abelian groups indicated explicitly on the diagram ((countable)
bounded groups). All items but "eo(G) = eo(H)” are equivalent for almost
homogeneous bounded groups (Corollary 3.42).

— 7 countable bounded -~
weakly iso. N
N
N
almost iso. w.Bohr-homeom. — — > (B) = eo(G)=eo(H)

\ / pounded

Bohr-homeom.
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We also discuss applications of Theorem 3.10 to the theory of Bohr-
continuous retracts and cross sections, giving a characterization of the es-
sential ccs-subgroups of bounded abelian groups (Theorem 3.55) and offer-
ing a contribution for the solution of van Douwen’s question about retract
subgroups in the Bohr topology.

The last section of this chapter is dedicated to questions and open prob-
lems related mainly to the possibility of inverting the implications in the
above diagram.

3.1 Preliminaries

3.1.1 Independence

We start by defining independence for various objects related to an abelian
group H: subsets, families of subgroups, (families of) maps into H.

Definition 3.18 Let H be an abelian group.

(a) A family {H;}icr of subgroups of H is independent if their sum is
direct.

(b) A subset M of H is independent if the family {(z) | x € M} of (cyclic)
subgroups of H is independent.

(¢) Let f: I — H be an injective map, where I is a non-empty set, and
m € N.

- f is said to be independent if the set {f(s) | s € I} C H is
independent;
- f is said to be normalized of period m (briefly, m-normalized ) if

o(f(i)) =m for everyi € I.

When f is normalized of period m we write shortly o( f) = m.
One can extend the idea of independency also to the case of a finite
family F = {f;};es of injective functions f; : I; — H, j € J, as follows:

- F is independent if the set {f;(s) | s € I;, j € J} is independent;

- F is weakly independent if the family of subgroups {(f;(I;)) | j € J}
is independent.

In particular, the functions f; of an independent family F are independent
and pairwise distinct, while both these properties may fail if the family F
is only weakly independent.

Remark 3.19 We observe the following.
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(a) Let H={h1,...,ht} be a family of functions hy : I — H. Then:

— if hq,..., h; are independent, then H is independent if and only
if the family {(hx(I)) | k = 1,...,t} of subgroups of H is inde-
pendent;

— a linear combination h = cith1 + ... 4+ ¢phm : I — H is in-
dependent whenever H is independent and not all ¢;h; are zero.
Moreover, if h; is m;-normalized for every i, then for every a € I
the period of h(a) is the least common multiple n of the peri-
ods o(cxhi(a))’s and thus it does not depend on a; therefore h is
n-normalized.

(b) Let hi,he : I — V5. be maps such that hy is p™-normalized and
independent while ha(I) C pVim. Then hy + hg is p™-normalized and
independent.

3.1.2 The spaces Dﬁ{ffn

Throughout this chapter, for m|n and A C k with k a certain infinite car-
dinal, the set [A]™ U {0} will be equipped with a topology depending on m.
The space obtained in this way will be denoted by DXZZR. All points of [A]"

are isolated, while the filter of neighborhoods of 0 in Dgn?n has as a base the
collection of the sets

Vi (I) = {0}U{(a1,...,an) € [A]" - |[;N(a1,...,an)| = 0 Vji=1,...,t},

where Z = {11, ..., I;} runs over all finite partitions of A.
It turn out that this topology on [A]™ U {0} is induced by the canonical
embedding Lffzn c [A"uU{0} — ( a ‘)#. Actually, for any independent

m-normalized map h : A — V‘n‘f}', the map A, : [A]" U {0} — (Vln’?')#,

defined by A, (0) = 0 and
An(a) = h(ar) + ...+ h(ay)

for every a = (ai,...,an) € [A]", induces an embedding of Dg?n in (V'/,?')#.
For further use, extend the definition of Ap for h = 0 putting >\0 =0.

See [47] for a nice alternative definition of a class of topologies of [A]™ U
{0} which makes use of “chromatic numbers”. The above topology corre-
sponds, in the notation of [47], to the vector b= (1,1,...,1) € Z(m)".

More details on Df:zn, as well as many examples, can be found in [38].
For the sake of completeness we include two topological properties of the
map A, which were presented in a similar way in [47, Lemma 3.3, Lemma
3.5] in the case kK = w.
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Lemma 3.20 Let h : k — V% be an independent s-normalized function
and let m,n be positive integers such that m|n. Then:

(1) A\p: D,(ﬂ)n — (VE)# s continuous <= s|m;
(2) Ap is an embedding <= m = s.

Proof. Observe that, since h is independent and s-normalized, the image
h(k) generates a subgroup H of V¥ which is isomorphic to V%. By (a) of
Proposition 1.9, the subgroup topology of H = V¥ coincides with its Bohr
topology. Therefore, we can replace H by the whole group V#. Furthermore,
we can suppose — up to an automorphism of V¥ — that the image of h is
precisely the canonical base BJ, of V£. So h coincides with the embedding
Lﬁfl of k into V£. Therefore A, is the immersion L,({ng

(1) Assume that s|m and note that the map f : V& — V% defined by
f(xz) = (m/s)x is a homomorphism, hence it is continuous in the Bohr
topology. Therefore, the continuity of Ap follows easily from the definition

of the topology of DEJ% and the following commutative diagram:

(n)
:Lm,m
Dlinm an

)

N

Vi
Let us suppose now that A : D(ﬁ% — (V%)# is continuous and check
that s/m. Assume n > m. Choose a partition of x into two infinite sets
k = I; U Iy and pick a net x4 = (a1,...,an) € [[1]™ such that 4 — 0 in
D,gm,% Analogously, take another net yg = (apmy1,...,a,) € [I2]"~™ which

converges to 0 in Dgf,ﬁm). So we have a net zq = x4 + ygq converging to 0 in

D,S’},%l, and by the continuity of A\j also Ap(z4) converges to 0 in V%. Using
the fact that h is independent, build a character x : (h(I1) U h(l2)) — Zs
defined by
[ 1, on h(l);
X= { 0, on h(Iy).

Now, x(An(zq)) = x(An(zq)) = m for every d, and from the continuity of x
it turns out that m — 0 in Z,. Hence s|m.

If n = m then repeat the same proof with Iy = k (I2 = 0) and x4 = z4.

(2) Suppose that Ay, : D,({"T)n — (V%)# is an embedding. Since s|m and m|n,

we have s|n, so by the definition of the topology of fos) we can consider it

as naturally embedded in V¥ with DSQ = /\h(Dg}m). Hence we can consider
the composition g : D,({ng — ”m)# of the inverse map )\}:1 : D,({"s) — D,S”,L
(

and the embedding L,({nr)n : D,.f,)n «— (VE)#. Its continuity, granted by the
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fact that \j is an embedding, yields m|s by item (7). Therefore, m = s.
QED

3.2 Normal forms and their continuity

The definition of normal forms follows the line of [59]. For the sake of
completeness we give here all details.

Let A be a subset of an infinite cardinal x and let [ > r be positive
integers. For every I = {i1,...,i,} € [I|" define the restriction pr:

pr: (AN — [A]s pr(a) = a [1=(ai,, ... a;,)

for any o = (ay, ..., a) € [A].

Fix I € [l]". For a function w : [A]" — H defined from [A]" into an
abelian group H, we define the simple r-ary derived form of w (related to

I) as follows:
oD : (A — H,

o) = w opy.

In other words, we set w!(a) = w(a [;) for every a € [A]'. Note that,
apart from trivial cases, w and @) have different domains (the arity of wd)
is always bigger or equal to the arity of w) but the images w(!)([A])) and
w([A]") always coincide.

A homogeneous derived r-ary form of w is a linear combination of simple de-
rived r-ary forms of w. More precisely, put s = (i) and let [[|" ={[1,...,Is}
list the family of all r-element subsets of I. If ¢ = (¢1,...,¢s) € Z°, we denote
by w. the homogeneous derived r-ary form of w related to c:

e =Y ;o) [A]' — H.
j=1

Example 3.21 Ifc¢ = (0,...,0,1,0,...,0), where 1 appears at the jth po-
sition, w. coincides with the simple derived form wdi) .

Definition 3.22 For a finite family W = {ws, ..., w,} of functions, where

w; @ [A]"" — H for every i = 1,2,...,n, and for | > max{r; : i =
1,2,...,n}, a derived form of W is a sum of homogeneous derived forms of
wj:

W = ZZU\EQ: [A]l — H,
=1

) !
where ¢ € Z(W‘).
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Adopting the terminology from [59], we say that a map f : [A]' — H

is in mormal form if f coincides with W for some independent family of

. l
functions W = {wy, ..., w,} and coefficients ¢’ € 7.+) as in Definition 3.22.
We call the forms w;.i homogeneous components of f (relative to w;).

Remark 3.23 If W = {wy,...,w,} is an independent family of functions,

where w; : [A]"" — H, then for every ¢! € Z<"li) the family {wi,1, ..., Wpen }
is weakly independent. In particular, if f : [A]! — H is in normal form
with respect to an independent family, then f is the sum of the members of
a weakly independent family of functions.

3.2.1 Continuity

In order to be able to discuss continuity of r-forms, we extend them by
sending 0 to 0 (since their original domain [A]" is discrete). The extended
in this way forms will be called extended forms, and we shall keep the same
notation for them to avoid heavy notations.

Example 3.24 Let h : A — H be a map (i.e., a I-ary form) and ¢ =
(1,...,1), for somel > 1. Then the extended derived form h, : {0}U[A]' —
——

l
H coincides with \y,.

The following technical facts will be fundamental in proving Proposition
3.27 and Proposition 3.28.

Lemma 3.25 Let X be a topological space, let H be an abelian group and
let {w1,...,wy} be a weakly independent family of functions w; : X — H.
Then w = wy + ... +w, : X — H¥ is continuous if and only if every
w; : X — H# is continuous.

Proof. It suffices to prove that every w; : X — H# is continuous whenever
w: X — H?# is continuous. Denote by H; the subgroup of H generated by
w;(X). Then our hypothesis implies that the sum Hy = Hy + ...+ H, is
direct. Let p; : Hy — H; be the canonical projection. Then p; : H# — Hﬁé
is continuous and the composition p; o w coincides with w;. Since HgéE and
HZ# are topological subgroups of H#, this proves that also w; : X — H# is
continuous. QED

Corollary 3.26 Let H be an abelian group and let Hy, Hi be subgroups of
H with HyN Hy = {0}. If, forv =0,1, {h} : d € I} is a net in H, such
that the net {h?l + h}i :d € I} converges to 0 in H7, then also h% converges
to 0 in H* for v =0,1.
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Proof. The hypothesis Hy N H; = {0} implies that {r9,hl} is weakly
independent. Now Lemma 3.25 applies. QED

The following proposition follows from Remark 3.23 and Lemma 3.25.

Proposition 3.27 Let m|l, m > 1 and let A C w be an infinite set. Let f :

DX?m — H7% be in normal form w.r.t. the independent family of functions
W =A{wi,...,w,}, where w; : [A]"" — H, i =1,2,...,n, and max{r; : i =
1,2,...,n} <. Then the following properties are equivalent:

1. f: Dg)m — H7 s continuous;

)

,m

2. for every i = 1,...,n, the homogeneous component /wvici : DX —

H# of f is continuous.

The next proposition characterizes the continuous extended homoge-
neous derived l-ary forms. It is shown that they are of the form A, when
restricted to an appropriate subset.

Proposition 3.28 Let H be a bounded abelian group and let T : w — H be
an independent normalized function. Let [, m be positive integers with mll

and 1 < m <. If the extended homogeneous derived form T, : fo)m — H#
is continuous for some ¢ = (c1,...,¢;) € Z', then there exist an infinite
subset A C w and a normalized independent function h : A — H[m] such
that 5:2 [[A}l: )\h r[A]l .

Proof. Let ¢ =), ¢;. We prove first the following

Claim 1. There exists an infinite set A C w such that ¢7(a) = 0 for every
ae A

Proof of Claim 1. Let t be the period of 7. If t divides ¢ = ), ¢;, then there
is nothing to prove. Assume now that t does not divide c. It suffices to show
that the set A" = {y € w |c17(y) + ...+ ¢7(7) # 0} is finite. Assume A’ is
infinite.

We can build a character ¢ : (7(y) | v € A’) — T with the property
&(r(y)) = a # 0 for a certain a € T of period t and for all v € A’. Our
hypothesis yields ca # 0. Note that if 73 < ... <~ in A’ then

T, ) =& (eir(n)) + ...+ E(ar(n)) =ca #0

in T. Extend ¢ to a character &€ : H — T. Now, if (y1,...,%)q =
(Y1,--.,) is a net in DX? . which converges to 0 in (V¥)#, then we have
that 7.(y1,...,m) — 0in H* and ca = &(7e(11,...,%)) — 0in T (by the

continuity of £). This leads to a contradiction. The claim is proved.
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Now we continue the proof of the proposition. Let My,..., M, be all the
q= (Tln) subsets of {1,...,l} of cardinality m and let N; = {1,...,1} \ M;
for i = 1,...,q. We are going to show that there exists an infinite subset
A C w such that

Z ¢ | 7(v) =0 foralli=1,...,¢q andforallye A.  (3.1)
JEM;

For the initial step ¢ = 1, let us consider a partition A’UA” of w into infinite
sets. Let yg be a net in Dg,nzn such that y; — 0, and take zg — 0 in

DX;:’:}. Then x4 := yq + 24 is a net Dg)m that converges to 0 and, by

continuity, 7e(za) = > e 67(V) + Xjen, ¢7() — 0 in H#. Now,
use Corollary 3.26 to get > ;) ¢;7(y;) — 0. Since we chose the net yg
arbitrarily, we deduce that the map Zje M, 67 1s continuous and Claim 1
shows that ./, ¢;7(y) = 0 for every 7 in a certain infinite subset A; C A
Suppose now we have a set A, C w such that ZjeMu ¢;T(y) = 0 for every
v € A, where u = 1,...,r and r is fixed between 1 and g — 1 (start picking
Ag C A; infinite and go on choosing A, contained in A,_1). The case r + 1
follows considering a partition A U A” of A, in a similar way as the case
i = 1. This concludes the induction and proves (3.1).

To ¢;7(v) (y € Aand j =1,...,1) apply the following claim to conclude
that h = c;7 = ... = g7 and mh(y) = 0 for every v € A.

Claim 2. Let H be an abelian group and m,l positive integers with m|l
and m <l. For xq,...,x; in H such that Zie[ x; = 0 for every subset I C
{1,...,1} with |I| =m, there exists a € H|m| such that xt1 = ... = x; = a.

So we have proved that o(h(y)) divides m (not necessarily equals m). We
can further restrict, since there are only finitely many divisors of m, to get
an infinite subset A such that o(h(7)) is constant.

QED

3.3 Proof of the Straightening Theorem

We start with a partition result of Kunen:

Theorem 3.29 (Lemma 3.3, [59]) Let p be a prime number and I > 1.
Ifr: [w)! — V5, then there exists an infinite subset A of w such that w Ayt
s in normal form.

The next step consists in imposing continuity on the extended function
7. According to Proposition 3.27, 7 [j4= >y Wi from Theorem 3.29
is continuous if and only if each factor wj.: is continuous. By Proposition
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3.30, for every i € {1,...,n} such that w; has arity strictly greater than
1 the corresponding homogeneous derived form wj.: vanishes when further
restricted to a smaller subset.

Proposition 3.30 Let r be an integer strictly greater than 1, and let T :
[w]" — Vi be a normalized independent function, where p is prime. Let
l,m be positive integers with m > 1, 1 > r, m|l and let s = (i) For any
c=(c1,...,cs) € Z°, the extended homogeneous derived form T : Dé,l,)m —
(V;;’)# is continuous if and only if T, = 0.

Proof. Assume that 7. is continuous. Let S = {I; € [l]" | ¢;7 # 0} and
suppose S # ). From a direct application of Lemma 4.3 of [59], we get a set
D C [w]" such that for every finite partition K of w there exists K; € K which
contains y1 < ... <~ with the property (y¢,,...,7,) € D for precisely one
element (¢1,...,t,) € S C[l]".
Since the period of 7(3) does not depend on (3, choose an element a # 0
on the circle such that o(a) = o(7(3)); consequently, cja # 0 in T for every
J such that I; € S. Moreover, recalling that the set {7(3) | 5 € [w]"} is
independent, we can find a character f : Vi’ — T such that f(7(3)) = a
for every B € D and f(7(8)) =01if 5 ¢ D.
Let us consider the map

h=for,:DV —T.

w,m

The map h is continuous as a composition of continuous functions. By
definition,

ha) = f(Fl@) = F | Doerlaln) | = eif(r(a ).
j=1

IjES

Since |S| < oo and f takes only values 0 and a on the image of 7, it follows
that the image of h in T is finite. In particular, {0} is an open set in
the image of h. Therefore there exists a partition Ky of w such that the
neighborhood V,,(Ky) is sent to 0 by h. Choose now K; € Ky such that for
some ¥ = (v1,...,7) with 1 < ... < 7 in K; there exists precisely one
element I, = (t1,...,t,) € S with (v,...,%,) € D. Now,

s

h(y) = fG0) =1 D ar(v 1) | =cjpa

=1

by definition of f. On the other hand, v € V,,(Ko) as m|l, thus cja =
h(y) = 0. This contradicts the choice of a € T. QED

Note that here one can have m = [ (compare with Proposition 3.28).
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In the following theorem we employ all the tools developed until now to
prove that A\ is a typical continuous map 7 : D}f%) — J#. Here 2 can be
replaced by any integer [ > 1.

Theorem 3.31 Let m > 1. For every continuous function m : D&%%) —
J# with ©(0) = 0 and J any bounded abelian group there exists an infinite

subset A C w such that

where h : A — J is an s-normalized independent function with s|m (so,
m([A]?™) C J[s]) or h = 0.

If m is an embedding then m = s.

The proof closely follows the proof of [47, Lemma 4.10]. Our choice to
present a complete proof is motivated by the fact that the topology of fo%)
we consider here, as well as the “typical” form )\, are different from their

counterparts in [47].

Proof. Let us consider first the case in which J = V7, for a prime p, a fixed
r € N and a cardinal x > w. We proceed inductively on r. Note that the
image of 7 is countable, so actually we can suppose without loss of generality
that J = V.

If » = 1 we apply Theorem 3.29 and we express m — restricted to some
infinite set [A']*™ C [w]*™ — in normal form w.r.t. a certain independent
family of functions W = {wi,...,w,}. Combining Proposition 3.27 and
Proposition 3.30, and taking into account the hypothesis 7(0) = 0, we get
that the only non-zero summands in the expression of m [[472m are the
homogeneous derived form of the w;’s with arity 1, say o1,...,0, (where
u < n). Thus we have that:

T r[A/]27rL: g1 + e +UU

Now, Proposition 3.28 applies to each summand o; to get an infinite subset
A; of A’ such that o; [ pem) = Ap,, where h; : A; — V3 is independent
A;m

p-normalized (or identicall}l/ zero). Without loss of generality, we can choose

A" DAy DA D... 2 A, = A. Thus the map 7 coincides with > 7 | A\, =

Ap on Df:?, where we set h = > | hj : A — V5. By virtue of Remark

~Y

3.19, his either independent p-normalized or zero. Let us note that (h(A)) =
VILAl = V) in the non-trivial case.

Let us suppose now that the theorem is true when the codomain is V¥,
fort = 1,...,r and let us check it in the case J & V;)r+1~ We denote by ¢
the canonical homomorphism J — J/pJ. Following the case r = 1 there

exists an infinite set A C w and a function h : A — J/pJ = V} such that

the restriction of p o7 : Dg%) — J/pJ to [A]*™ coincides with \j,. Let us
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note that if o : J/pJ — J is a section of ¢ (i.e., p oo = id [;/,s), then
h' =ooh: A — Jis independent and p""!-normalized (it follows from
the fact that J[p"] = pJ).

)

o

AL J/pT =VE_Zs g

hl

Consider now Ap : Df;? — J. Then ¢ o Ay = Ap, and we get (¢ o

) [ pem = (poAp) [ pem), therefore o(m—Apr) [ pzm)= 0; in other words, the
A,m Am Am

image of Df;:b) under 73 = 7 — Ay is contained in pJ = V.. Applying our

inductive hypothesis to m1 we get an infinite A; C A such that m [[4,)2m=

Any [[ay)2m, where hy : Ay — pJ is normalized independent. Thus

(2m) It follows from Remark 3.19

Ai,m”
that hy + k' is p"1-normalized and independent.

In the general case, J can be expressed as a finite direct sum of p-groups
being a bounded abelian group. More precisely (see §1.1), J = @;-, J;,
where each J; is of the form Vzk for certain p, k and k (which depend on

coincides with Ay, + A\py = Ap, 47 on D

i). The function 7 : D&%%) — J is the sum of n functions m; = p; o7 :
fo%) — J; where p; : J — J; is the canonical projection. Each m; is
continuous as a composition of continuous functions. Arguing as before we
get an infinite subset A; C A such that m; [[4,2m=0o0r m; [[4,2m= Ap; [[a,2m
with h; : A; — J; independent for every i = 1,...,n. Moreover, we can
choose the sets A; in order to have A1 D A D ... D A,,. Setting A = A,, we
obtain an infinite subset of w such that the properties of the n functions ;
hold simultaneously. The function h = h1+...+ h, : A — J is normalized
and independent by Remark 3.19. With the set A and the function h we
are done as A\, = Ap 4. +h,. To check that s = o(h) divides m just note
that the range of 7 is (h(A)) = V¥ and that A\, [Dan): Dfi:nn) — VY is
continuous since it coincides with m erm)’ so Lemma 3.20 implies that s|m.
Again Lemma 3.20 assures that if 7 is an embedding then m = s. QED

A simple lemma before proving our main result.

Lemma 3.32 In (V5)”, with m > 1, we have that [k]' C [k]+™ for every
positive integer [.

Proof. Just observe that for every z = (ay,...,a;) € [x] and for every net
(b1,...,bm)a = (b1,...,by) converging to 0 in [k]™ with a; < b;, we have
that (al, NN ,al,bl, e ,bm) — I. QED

Now we derive Theorem 3.10 from Theorem 3.31.
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Proof of Theorem 3.10. We first show that there exist an infinite A C w

and a homomorphism ¢ : (A) — J such that 7 [[ajzm= € [[a)2m. As already

noted in Lemma 3.20, the set Dg%) embeds into the group V¥ . For this
reason we can apply Theorem 3.31 to the restriction of 7 to DS?Jmn) and

we find an infinite subset A C w and a map h : A — J independent s-
A Am ’

the case h = 0 just choose ¢ to be the null homoinorphism. Suppose h is not
identically zero. Then h(A) generates a subgroup H < J isomorphic to LA|.
Now, since h is independent, we can take the homomorphism ¢; : (A) — J

simply as the unique extension of h (and \p,)

normalized or zero such that 7 |

51 [[A}Zm: )\h r[A}Qm: ™ [[A]Qm . (32)

Since (A) is a direct summand of V¥ we can extend ¢; to ¢ : V¥, — J.
Note that £ is Bohr-continuous being a homomorphism. Clearly ¢ coincides
with ¢; on [A]*™ C Vi, therefore £ |(gzm= 7 [[g2m by (3.2). Since the
closure of [A]*™ in (V¥)# contains [A]™ by Lemma 3.32 and since both m
and ¢ are continuous, we conclude that they coincide also on [A]™.

If 7 is an embedding then s = m by Theorem 3.31. Hence h(A) is an
independent set consisting of elements of order s = m. Thus ¢; : (A) —
H = V¥ . defined as above, is an isomorphism. If H has infinite index in
J[m], then we find a subgroup L = H of J[m| with LN H = {0}. This allows
us to build an injective extension ¢ of ¢; by sending a complement of the
subgroup (A) into L. If H has finite index in J[m], we can first replace A
by a smaller subset Ay of w with infinite complement. Then the respective
subgroup Hy = (h(A1)) of J has infinite index as a subgroup of J[m] and
we continue the argument as in the previous case. QED

3.4 Applications

As already pointed out, the interest in Theorem 3.10 is related to Ques-
tion 3.1 proposed by van Douwen. Kunen’s counterexample ([59]), which is
essentially based on Theorem 3.29, shows that there exists no injective con-
tinuous functions from (V;j)# into (V‘;)# in the special case in which p and
q are distinct prime numbers. On the other hand, Dikranjan and Watson
([43]) worked with an extra hypothesis on the cardinality of the domain to
get their counterexample.

3.4.1 Cardinal invariants and weak Bohr-homeomorphisms

Recall that a bounded abelian group G is homogeneous if for every prime
p its p-primary subgroup G has the form V., for some m € N and some
cardinal k. It is easy to see that every bounded group of square-free order is
homogeneous.
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A general approach in set-theoretic topology is to study appropriate in-
variants (most often, cardinal ones) that allow for an easy solution of the
homeomorphism problem. Sometimes certain collections of appropriate car-
dinal invariants permit a complete solution of the homeomorphism problem,
in other cases one obtains only necessary conditions. In the sequel we are in-
terested in (weak) Bohr-homeomorphisms. An easy complete set of cardinal
invariants giving a sufficient condition for Bohr-homeomorphism is the set
of all Ulm-Kaplansky invariants. Recall that, according to Priifer’s theorem,
the set of Ulm-Kaplansky invariants determines any bounded abelian group
up to algebraic isomorphism (see §1.1), hence up to Bohr-homeomorphism.
Our aim is to find less rigid sufficient conditions that turn out to be also nec-
essary in certain cases. (For example, the finite Ulm-Kaplansky invariants
obviously play no role, since the set of infinite Ulm-Kaplansky invariants de-
termines the group up to almost isomorphism (so Bohr-homeomorphism).)

Definition 3.33 A bounded abelian group G is almost homogeneous if, for
every prime p such that G, is non-trivial, at most one of the Ulm-Kaplansky
invariants of G\ is infinite.

It is clear that G is almost homogeneous, whenever G is almost isomorphic
to a homogeneous group.

Remark 3.34 The following holds:

(a) It is easy to see that every bounded group of square-free essential order
is almost homogeneous.

(b) For bounded group G of square-free order, the Ulm-Kaplansky invari-
ants of G are precisely the cardinals 7,(G).

(c) Every bounded abelian group G is almost isomorphic to a bounded
one in which every non-zero Ulm-Kaplansky invariant is infinite.

(d) A bounded group G with eo(G) = m contains a subgroup isomorphic
to V¥ .

In the next theorem we give a convenient (from algebraic point of view)
characterization of weak isomorphisms.

Theorem 3.35 Two bounded abelian groups G, H are weakly isomorphic if
and only if they satisfy the following condition:

(A) |mG| = |mH| whenever m € N and max{|mG|, | mH|} > w.

Proof. Let G; and H; be finite-index subgroups of G and H respectively,
such that G is isomorphic to a subgroup of H and Hj is isomorphic to a
subgroup of G. If mG is infinite for some m, then also mG; is infinite and



3.4 Applications 41

|mG1| = |mG|. Since mG1 is isomorphic to a subgroup of mH, we conclude
that also mH is infinite and |mG| = |mG1| < |mH]|. Analogously, we get
|mH| < |mG)|. Hence, |mH| = |mG| whenever at least one of these cardinals
is infinite. This proves that (A) holds.

Now assume that (A) holds. Since we need to prove that each one of
these groups has a finite-index subgroup that is isomorphic to a subgroup of
the other, it is not restrictive to assume, passing to a finite index subgroup,
that exp(G) = eo(G) and exp(H) = eo(H). Consider first the case when
both groups are bounded p-groups and let G = V3! & V;% D...P V;;;. Our
first aim is to prove that the leading Ulm-Kaplansky invariants of G and H
coincide. Indeed, p" = eo(G) and k, = |p" 1G], so (A) yields eo(H) = p"
as well. Hence from [p" 'H| = |[p"~'G| we deduce that

H=V)}a. oVileVywih A, =p" H =k,  (3.3)

Similarly, since it is clear that [p'G| = max{kii1,...kn} for every i =
0,1,2,...,n— 1, we have

max{Kit1,...#n} = [P'G| = |p'H| = max{\is1,... \n}. (3.4)

We shall assume without loss of generality that all Ulm-Kaplansky invariants
of G and H are infinite. For i = 0,1,2,...,n — 1 let

n—i n _ )\nfi n
Gi=ViTi®..oVyand Hi=V 5 ®...0Vy
Since G = Gy,—1 and H = H,,_1, it suffices to prove (arguing by induction

on i) that G; embeds in H; and H; embeds in G;. For ¢ = 0 this follows
from (3.3). Assume ¢ < n and G; embeds in H;. Then

Gip1 =Voool @ Gy and Hyyy = V)ioiol @ H;. (3.5)
If kpoi—1 < max{kn_i,...,kn} = max{\,_4,...,A\n}, then V*7=I=! is iso-

morphic to a subgroup of G; that embeds in H; by hypothesis. Since all
Ulm-Kaplansky invariants are infinite, H; = H; & H;. Therefore, G;;1 em-
beds actually in the subgroup H; of H;y.

If Kpoi—1 > max{rp—i,...,kn} = max{A,—i,..., Ay}, then also A\,_;—1 >
max{Ap_i,..., A} by (3.4). So (3.4) yields fp—i—1 = Ap—i—1. Now (3.5)
implies that G;+1 embeds into H; 1.

The general case easily follows from the local one by taking appropriate
subgroups of the form G’ = mG, where exp(G) = mp¥, m is coprime to p
and p is prime. Then the subgroup G’ coincides with the p-primary part of
G, so the above argument applies to G’ and mH. QED

Clearly, almost isomorphism implies weak isomorphism. Now we shall
see in more detail the precise relation between these two notions and (B).
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Lemma 3.36 For bounded abelian groups G and H :
(a) if G and H are weakly isomorphic, then they satisfy condition (B);

(b) if G and H are countable, then they are weakly isomorphic if and only
if they satisfy condition (B);

(c) if G and H are almost homogeneous, then the following properties are
equivalent:

— G and H are weakly isomorphic;
— G and H satisfy condition (B);

— G and H are almost isomorphic.

Proof. (a) Assume G and Hare weakly isomorphic. Then the equality
eo(G) = eo(H) follows directly from the definition of essential order. Fix a
prime p such that r,(G) is infinite. Write eo(G) = eo(H) = p™m, where m
is coprime to p. Then the subgroup mG (mH) coincides with the p-torsion
part of G (respectively, H). Therefore, r,(G) = r,(mG) = |mG| = |mH]| is
infinite. Hence,

rp(H) = rp(mH) = |mH| = [mG| = rp(G).

This proves (B).

(b) Assume now that G and H are countable and satisfy (B). To prove
that they are weakly isomorphic we shall assume that all non-zero Ulm-
Kaplansky invariants of these groups are infinite (see remark 3.34). Fix a
prime p and write eo(G) = eo(H) = p™m, where m is coprime to p. Since
the p-torsion part of G (H) coincides with mG (resp., with mH), it follows
that the leading Ulm-Kaplansky invariants of mG and mH coincide with
w, i.e., they contain both V' = V. as a direct summand. Since V' = V",
it follows that mG and mH are weakly isomorphic. Since these are the
p-torsion parts of G and H for an arbitrary prime p, we deduce that G and
H are weakly isomorphic.

(¢) Now assume that G and H are almost homogeneous groups satisfying
(B). In order to prove (c), it suffices to check that G and H are almost
isomorphic. Since almost isomorphism is a transitive property, and since
almost homogeneous groups are almost isomorphic to homogeneous ones,
we can assume that G and H are homogeneous. By Remark 3.34, we can
assume that the Ulm-Kaplansky invariants of both groups are either zero
or infinite. Since our hypothesis gives r,(G) = r,(H) = £, for every prime
p, this entails that the p-primary subgroups of G and H are isomorphic to
some V;fj. Hence, G and H are almost isomorphic. QED

The implication proved in (a) should be compared to the following chain of
implications

w. isomorphic == w. Bohr-homeomorphic = (B)
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that holds according to Theorem 3.12 (in the case of countable bounded
groups) and Theorem 3.16.

Now we are in position to prove Lemma 3.11:

Proof of Lemma 3.11. We have to prove that if G and H are count-
able bounded abelian groups, then G is weakly isomorphic to H if and only
if eo(G) = eo(H). Since eo(G) = eo(H) is a part of (B), it suffices to see
that this condition alone implies (B), so that (b) of the above lemma applies.
Indeed, it is easy to see that r,(G) is infinite iff pleo(G). Since G, H are
countable, eo(G) = eo(H) yields that r,(G) = r,(H) whenever at least one
of these cardinals is infinite. QED

3.4.2 Classification up to (weak) Bohr-homeomorphisms

Here we involve the Bohr topology.
Lemma 3.37 If there exists an embedding (V¥)# — H¥, then m|eo(H).

Proof. By Theorem 3.10, there exists an injective homomorphism [ : V¥ —
H. It remains to note that if n = eo(H ), then nH is finite, so nVy, must
be finite as well being isomorphic to a subgroup of the finite group nH, via
the homomorphism [. This is possible only if m|n. QED

Lemma 3.37 provides a direct proof of Theorem 3.9 from the introduction
of this chapter:

Proof of Theorem 3.9 We have to prove that for countably infinite
bounded abelian groups G and H, there exists an embedding G#* — H# iff
eo(G)|eo(H). Let m = eo(G) and n = eo(H). By Lemma 3.11, G and H are
weakly isomorphic (hence, weakly Bohr-homeomorphic by Lemma 3.8) to,
respectively, V¢ and V¥. Therefore, G# — H# iff (V¥)# < (V¥)#. Since
eo(V¥) = m and eo(V¥) = n, Lemma 3.37 implies that (V¥)# «— (V¥)# if
and only if m|n, i.e., eo(G)|eo(H). QED

Our next aim is to relax the embeddings with respect to the Bohr topo-
logy to injective (or finitely many-to-one) continuous maps Bohr topology.
The next lemma is a corollary of Theorem 3.10:

Lemma 3.38 Let f : (V¥)# — J# be a continuous function, where J is
an abelian group and m = eo(.J). If n{ml for everyl (i.e., n has a divisor
coprime to m), then there exists an infinite subset B C V¥ such that f [p
18 constant.
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Proof. We can assume wlog that J is countable. Indeed, let J; be the
subgroup of J generated by the image of f. Then J; is countable and
my = eo(J1) divides m, so we can replace J by J; and m by m;.

Our hypothesis implies that n = ning, where n; > 1 and n; is coprime
with m. The composition g of f with the embedding j : (V¥ )# — (V¥)#
defined by j(z) = ng - for all z € Vi , gives a continuous function g :
(Ve )# — J*.

V‘U #4>J#

Since the only linear maps V%l — J are the constant ones, by Theorem
3.10 there exists an infinite A C w such that the restriction of g to [A]™ is
constant. Now just note that j is injective, therefore f is constant on the
set B = j([A]™) C V¥. QED

Remark 3.39 It may happen that f | is injective for every A C k.

(
DAmm

Note that the set B in the above corollary has the form B = ng - fo;)l.
One can state Lemma 3.38 also in a contrapositive form:

Corollary 3.40 Let J be an abelian group with eo(J) = m. If there exists a
continuous finitely many-to-one (in particular, injective) map f : (VO)# —
J#, then n divides some power of m.

Now we can prove Corollary 3.13:

Proof of Corollary 3.13. Let p be a prime. We have to prove that
rp(H) > 1,(G), if there exists a continuous injective function f : G# —
H#, where G, H are abelian groups, H is bounded and 7,(G) is infinite. Let
# =1p(G) > w. Then G contains a direct sum V; = P, _,. Vi, where V; =V
for every i < k. Apply Theorem 3.10 to each V; to get for every ¢ < k an
infinite set A; of V; such that f(A;) C Hl[p|. Since f is injective, the sets
f(A;) are pairwise disjoint, hence we conclude |H([p]| > |, 4i| > . QED

As a consequence of Corollary 3.13 we want to emphasize that if there
exists a continuous injective map (Vg)# — H7#, then r,(H) > k and, con-
sequently, H contains a copy of Vi (this entails the existence of an injective
homomorphism [ : Vi — H ). For uncountable k this argument cannot be
extended to arbitrary m in place of the prime p even if f : G# — H#
is an embedding. However, we know that the existence of an embedding
(Ve)# — H# yields m|eo(H) by Lemma 3.37.
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Let us prove Theorem 3.16 now.

Proof of Theorem 3.16. We have to prove that if G# — H# is an
embedding, then eo(G)leo(H) and 7,(G) < r,(H) if rp(G) is infinite. Let
m = eo(G). By item (3) of Remark 3.34, G contains a subgroup isomorphic
to V¥ . So there exists an embedding (V¥ )# — H#. Therefore, m|eo(H) by
Lemma 3.37. For the inequality r,(G) < r,(H) apply Corollary 3.13. QED

It was shown in [47] that the property of being bounded is preserved by
Bohr-homeomorphism. Corollary 3.13 states that the property of possessing
infinitely many p-torsion elements is preserved by weak Bohr-homeomor-
phism. The following corollary settles the weaker property of having non-
trivial p-torsion elements at all.

Corollary 3.41 Let G and H be infinite abelian groups such that one of
them is bounded. If G* and H" are weakly Bohr-homeomorphic for some
infinite cardinal K, then rp(G)® = r,(H)"* for every prime p. In particular,
p(G) > 0 <= rp(H) > 0 (i.e., G is p-torsion free if and only if H is
p-torsion free).

Proof. According to [47, Theorem 5.1], both groups are bounded. Now
fix any prime p and apply Theorem 3.16 to G* and H" to get r,(G)" =
rp(G®) = rp(H") = rp(H)". QED

It follows immediately from Remark 3.34 (a) and Lemma3.36 (¢) that
for groups of square-free essential order, (B) implies almost isomorphism,
hence both weak isomorphism and Bohr-homeomorphism. Hence all five
properties ((B), weak isomorphism, almost isomorphism and (weak) Bohr-
homeomorphism), coincide for bounded abelian groups of square-free essen-
tial order. Let us see that this remains true for the larger class of all almost
homogeneous bounded abelian groups.

Corollary 3.42 For almost homogeneous bounded abelian groups G and H ,
TFAE:

(a) G and H are almost isomorphic;

(b) G and H are weakly isomorphic;

(¢) G and H are Bohr-homeomorphic.

(d) G and H are weakly Bohr-homeomorphic;
(e) G and H satisfy (B).

Proof. Statements (a), (b) and (e) are equivalent by (¢) of Lemma 3.36.
The implication (a) — (c¢) is Corollary 3.3, (¢) — (d) is trivial and (d) —
(e) follows from Theorem 3.16. QED
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In Corollary 3.17 it is shown that Bohr-homeomorphism and weak Bohr-
homeomorphism coincide for groups of the form V% . It is not clear if this is
true in general, as already pointed out in [47, § 6] (see also § 3.5). Corollary
3.42 gives a partial answer to this question.

We do not know whether (a) in the last corollary can be weakened to:
there exist continuous injective maps G#* — H? and H* — G¥ (see
§ 3.5 for a more specific question).

3.4.3 Retracts and ccs-subgroups

We conclude this chapter by discussing how Theorem 3.10 can be employed
in the study of retracts and continuous cross sections in the Bohr topology
(see Definition 3.48 below).

Recall the following questions of van Douwen ([77]):

Question 3.43 (Question 81, [79]) Is it true that every countable sub-
group H of an abelian group G¥# is a retract of G#?

This question is still open. As a matter of fact, the following more general
question was answered negatively by Gladdines in 1995 ([48]):

Question 3.44 (Question 82, [79]) Is it true that every countable closed
subset of G is a retract of G¥ ?

)

Actually, Gladdines’ counterexample shows that DL(U%Q is not a retract of

(V3)*.
The space D )2 has very interesting properties. In fact, consider the
2)

following lemma which states that D5 can be Bohr-embedded in every
abelian group G (see [46] and [47, § 3] for more results in this line).

(2

W,

Lemma 3.45 ([38], Proposition 3.3) Let G be a bounded abelian group
and let f : w — G be a function. Consider the map piy DLQ)Q — G defined

by pr(u,v) = f(u) — f(v) for every (u,v) € [w)* and ug(0) = 0. Then:

2

w,)2 — G7 is continuous;

1. py:D,
2. if f is independent, puy is an embedding.

Givens proved in [46] that every abelian group G possesses a closed
countable subset F' which is not a Bohr-retract of G. One can prove that F
is always homeomorphic to Dg)Z, so Givens’ result largely extends Gladdines’
one. Here we employ Theorem 3.10 and the previous lemma to get a brief
proof of the fact that D?) is not a Bohr-retract of G, for every bounded

w,2
abelian group G:
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Corollary 3.46 Let G be any bounded abelian group. Then there exists an
embedding Dg)z — G# that makes Dg% a closed subspace of G# which is
not a retract.

Proof. Let m be the essential order of G and let p be a prime number that
divides m. Then, as a corollary of Remark 3.34 (d), (V;’)# embeds into G#
as a closed subgroup. Hence it suffices to work with V" instead of G. For

simplicity, we write G = V7 from now on. Let h := LS}; tw — V' be the

canonical map. Then pup, : P (V;j)# is an embedding by Lemma 3.45.

w,2
Consider the subset X = uh(fo)Q) of G. Arguing as in [38, Lemma 2.5] one
can easily prove that X is closed in G. Assume that there exists a Bohr-
continuous retraction r : G — X. Take a prime ¢ # p and an independent
function k : w — (Vfl’)#. By Lemma 3.45, g : DL(U%)Q — (V‘;)# is an
embedding and the composition v = u o u,:l X — (V;")# is an injective
continuous map. Moreover, 7 :=vor : G¥ — (Vf;)# is a continuous map
with 7(0) = 0.
7
VRN

*T>X

G

W\L / Tﬂh
p 2

Vi <D

By Lemma 3.38 applied to m o4 o pup (i denotes the inclusion of X in G),
there exists an infinite subset A C w such that (m oo up) [(42)= 0, thus
T [un((4)2)= 0. The contradiction follows from the fact that r coincides with
the identity on s, ([A]?), so v Lun((A412)= T [, (42)= 0 while v is injective.
QED

Remark 3.47 Note that if G = V¥ where m > 2, then for no infinite

subset A of w the restriction on [A]? of the function p : D&Q)Q — G7 defined
in Lemma 3.45 can be of the form A, (as py, is continuous, whereas \;, can
be continuous only if m = 2, see (1) of Lemma 3.20). This fact does not
contradict Theorem 3.31 since the theorem applies in the case of functions

defined over ng) with m > 1.

We recall the following:

Definition 3.48 [25] If H is a subgroup of an abelian group G, then H
is said to be a ccs-subgroup of G7 if there exists a continuous map ® :
(G/H)* — G¥ such that ®(0) = 0 and T o & = idg,pr, where 7 denotes
the canonical projection m : G — G /H (i.e., ® is a continuous cross section
of m with ®(0) =0).
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Observe that if ® : (G/H)# — G# is an arbitrary continuous map such
that m o ® = idg, g, one can always suppose that ®(0) = 0. Indeed, if
®(0) # 0 then one compose ® with the translation by —®(0) in G to define a
new continuous map @' : (G/H)#* — G# by oH > &' (z) := ®(zH) — ®(0)
which is now a continuous cross section of .

It is easy to see that the property of being a ccs-subgroup is stronger
than being a retract in the following sense: if H is a ccs-subgroup of G,
then using a continuous cross section ® : (G/H)* — G* one defines a
retraction r : G — H by letting r(z) = x — ®(7(x)), where 7 : G — G/H
denotes the canonical projection. Note that this retraction is partially linear
in the sense r(z + h) =r(x) + h=r(x) + r(h) for every x € G and h € H.

Here we recall some examples and basic properties from [25] and [39].

Lemma 3.49 Let G be an abelian group and let H < G.
(a) If H has finite indez in G, then H is a ccs-subgroup of G.
(b) If H is a direct summand of G, then H is a ccs-subgroup of G.

(c) Let K be a subgroup of H. If K is ccs in H and H is ccs in G, then
K is cssin G (i.e., the property of being a ccs-subgroup is transitive).

(d) Let K be a subgroup of H. If K is ccs in G and H/K s ccs in G/ K,
then H is css in G.

Example 3.50 For every abelian group G, the finitely generated subgroups
of G are ccs-subgroups. More generally, (a), (b) and (c) of the above lemma
imply that every subgroup H of G that is a sum of a finitely generated sub-
group and a divisible subgroup is always a ccs-subgroup.

Example 3.51 For every prime p, the subgroup pV;‘j2 =V, of V;’Q is not a
ccs-subgroup of V;Q.

Both examples originally appeared in [25], the second one with a rather
involved proof (consisting of the entire [25, §5]) developing in detail Kunen’s
approach of normal forms in the case of VZQ. We will deduce Example 3.51
directly from Corollary 3.54.

The next lemma shows that to resolve van Douwen’s problem one can
restrict only to essential subgroups.

Lemma 3.52 If there exists an abelian group G and a subgroup H that is
not a retract of G¥, then this pair can be chosen also with the property H
essential in G.

Proof. Assume G is an abelian group and H is a subgroup of G that is not
a retract of G#. Let D be the divisible hull of G. Then H¥ is a topological
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subgroup of D# and certainly H cannot be a retract of D#. Now let D,
be the divisible hull of H in D. Then H is an essential subgroup of Dj.
Since D; is divisible, there exists a subgroup L of D such that D = D & L.
The desired pair is D; and H. Indeed, assume 7 : DfE — H is a retraction.
Composing with the continuous projection p : D# — Dfé we get a retraction
D# — H, a contradiction. QED

Our goal now is to characterize the essential ccs-subgroups of bounded
abelian groups. We start with a technical fact.

Claim 3.53 Let p be a prime number and let G be a bounded abelian p-
group. If H is an essential ccs-subgroup of G, then [G : H] is finite.

Proof. Our hypothesis means that H > G[p]. Assume that [G : H] is
infinite. Since G is a bounded p-group, G/H is a bounded p-group as well, so
G/H contains a copy of Vi by (d) of Remark 3.34. Now, let 7: G — G/H
be the canonical projection and ® : (G/H)#* — G¥ a continuous cross
section. Applying Theorem 3.10 to the restriction of ® to V' we find an
infinite set A C w such that ®([A]’) C Glp] < H. So ® takes the infinite
set B = [A]P to G[p] while 7 vanishes on G[p] < H. This proves that the
composition 7 o ® vanishes on B. On the other hand, m o ® coincides with
the identity since ® is a section of 7, and this yields a contradiction. QED

As a straightforward corollary, we obtain now the following

Corollary 3.54 If G is a bounded p-group such that pG is infinite, then
G|p] is not a ccs-subgroup of G.

Proof. Take H = GJp]. Then H obviously contains G[p| and [G : H] is
infinite since pG = G/ H is infinite. Now Claim 3.53 applies. QED

Since pVZQ =Vy
a ccs-subgroup of V;z (see Example 3.51 above). More precisely, for kK = w
this is [25, Theorem 35], for arbitrary « this is [25, Remark 36].
Combining Claim 3.53 and Lemma 3.49, we can prove in the next theo-
rem that an essential subgroup of a bounded abelian group is “almost never”

a ccs-subgroup.

is infinite, this corollary immediately implies that Vi is not

Theorem 3.55 An essential subgroup H of a bounded abelian group G is a
ces-subgroup of G if and only if |G : H| is finite.

Proof. If [G : H] < oo then H is a ccs-subgroup of G by Lemma 3.49 (a).
Conversely, suppose that H is a ccs-subgroup of G. Write G as the direct
sum of its p-components: G = Gp, © ... & G)p,, for some prime numbers
Pis-.-,pk. Then H = H, @ ...® Hp, . By hypothesis, H is essential in G,
i.e., H contains Soc(G) = @,cp Glp] = Glp] © ... ® Glpx], so Hy, > G[pi]
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for every @« = 1,...,k. Since H is ccs in G, every H,, is a ccs-subgroup of
Gp, ([39]), so we can apply Claim 3.53 to Hp, < Gj,. We deduce that Hp,
has finite index in G, for every i and, hence, [G : H] < co. QED

Note that if G in the above theorem is not bounded then the result can fail
to be true.

Example 3.56 According to Example 3.50 the essential subgroup Z of Q
is a ccs-subgroup of Q although Z has infinite index in Q.

3.5 Questions

We saw that the invariant eo(G), along with |G|, provides for a complete
classification, up to weak Bohr-homeomorphism, of all countable bounded
abelian groups. The situation is similar for almost homogeneous bounded
groups (but here one needs to take also the p-ranks). For non-almost-
homogeneous bounded groups the situation changes completely even for
the simplest uncountable bounded abelian group of essential order 4. In-
deed, G = V3* and H = V5! x VY are not weakly isomorphic, because
w1 = |2G| > |2H| = w. However, we do not know whether these groups are
weakly Bohr-homeomorphic:

Question 3.57 Can (V§")# be homeomorphically embedded into (V4' x
Vi)

Here is the question in the most general form:

Question 3.58 Given a cardinal K > w, an integer s > 1 and a prime
number p, are V5. and Vi X Vi weakly Bohr-homeomorphic? Can this
depend on p?

Let us see that a positive answer to Question 3.58 for all prime p implies
that bounded abelian groups G and H are weakly Bohr-homeomorphic if
and only if (B) holds. Indeed, for infinite p-groups G, H of size k with
eo(G) = eo(H) = p*, (B) yields an algebraic embedding of V} x V. into G
and H, where k = r,(G) = rp(H). Hence a positive answer to Question 3.58
entails an embedding of (VZS)# in G# and H#. Since G and H are obviously
isomorphic to subgroups of V7, this proves that both G and H are separately
weakly Bohr-homeomorphic to V.

A positive answer to the next question is equivalent to the strongest
negative answer to Question 3.58.

Question 3.59 Assume that p is a prime number, s > 1 is an integer,
Kk and X are infinite cardinals such that (Vgs)# can be homeomorphically
embedded into (V’;S_1 X V;\s)#. Must the inequality A > k hold?
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A positive answer to Question 3.59 obviously gives a negative answer to
Question 3.58 (hence to Question 3.57 as well, just take Kk = w; > w = A,
p=2and s=2).

A positive answer to the following stronger form of Question 3.59 is
equivalent to the fact that weak Bohr-homeomorphism coincides with weak
isomorphism for bounded abelian groups.

Question 3.60 Assume that p is a prime number, n > s > 1 are integers,
K,k and X are infinite cardinals such that (V5)# can be homeomorphically

embedded into (V’;;_l X V;‘n)#. Must the inequality X > K hold?

Note that in the above question only the case k < K’ is relevant (since the
conclusion easily follows from Corollary 3.13 when x > «’). Moreover, n can
be replaced by s in Question 3.60 if the answer to the following question is
positive:

Question 3.61 Assume that p is a prime number, s > 1 is an integer and
K is an infinite cardinal such that (Vgs)# can be homeomorphically embedded
into H#. Can (V£,)# be homeomorphically embedded also into H [p*]# ?

For s = 1 the answer is positive.
The countable groups V{ and V§ x V{ are obviously weakly isomorphic,
hence weakly Bohr-homeomorphic (see the discussion above).

Question 3.62 (a) ([59]) Are V§ and V§ x V{ Bohr-homeomorphic?

(b) Are weakly Bohr-homeomorphic bounded groups always Bohr-homeo-
morphic?

Question 3.63 Suppose that G and H are bounded abelian groups such that
G# homeomorphically embeds into H*. Does G contain a subgroup of finite
index that is isomorphic to a subgroup of H ?

Note that a positive answer to this question would obviously imply that weak
Bohr-homeomorphism coincides with weak isomorphism. Hence a positive
answer to this question would imply a positive answer to Question 3.59.

The following question involving the stronger version of Bohr-homeo-
morphism was already considered:

Question 3.64 ([59]) Are Bohr-homeomorphic bounded abelian groups al-
most isomorphic?

We do not know whether the weaker assumption of Corollary 3.40 already
implies that n|m even in the simplest situations like the following one:
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Question 3.65 Does there exist a continuous injective (finitely many-to-
one) map (V§)# —s (V)#?

The conclusion of Corollary 3.15 is precisely the second part of the con-
dition (B). We are not aware if the first part of (B) holds true as well:

Question 3.66 Does the existence of continuous injective maps G#* —s
H# and H?* — G¥ yield eo(G) = eo(H)?

We do not know whether the embeddings in the ”"weakly Bohr-homeo-
morphic” version of Corollary 3.17 can be replaced by ”continuous injec-
tions”, see Question 3.65 or the general

Question 3.67 If f : (V) — (VE)¥ is continuous and injective, is it
true that nlm?

Question 3.68 For distinct primes p and q, does there exist a continuous
map (Vg)# — (V;")# with infinite image? What about p =2 and ¢ = 3¢

For subgroups H, K of an abelian group G let H =* K if H N K has
finite index in H + K. When G is torsion, H =* K iff there exists a finite
subgroup F of G such that H+F = K+ F. In particular, H =* K whenever
H and K are finite.

Let us see first that if H =" K and H is a ccs subgroup of G, then also
K is a ccs subgroup of G. Since H N K is a ccs subgroup of H (having finite
index), it is a ccs subgroup of G by (¢) of Lemma 3.49. Now K contains a
finite-index subgroup (namely, H N K) that is ccs in G. Then also K is ccs
in G by Lemma 3.49 (d). So we obtain: Let G be an abelian group and let
H be a subgroup. If H =" L for some direct summand L of G, then H is a
ccs-subgroup of G.

We expect that the following conjecture holds true (note that it holds for
essential subgroups, according to Theorem 3.55, as a finite index subgroup
H of G obviously satisfies H =* G).

Conjecture 3.69 For every bounded abelian group G and a subgroup H of
G, the following properties are equivalent:

1. H is ccs-subgroup of G;
2. H =" B for some direct summand B of G.

Note that this problem leads somehow far form the original van Douwen’s
problem, where the subgroup H in question can be assumed to be essential
(so that Theorem 3.55 works). The next question can easily be reduced to
the case of essential subgroup H.

Question 3.70 Can “bounded abelian” be replaced by “divisible torsion” in
Conjecture 3.697



Chapter 4

The weak U-topology on
abelian groups

A topological group G is said to be w-narrow if for every open neighborhood
V' of O¢ there exists a countable subset A of G such that AV = G. In the
literature, w-narrow groups are also known as w-bounded groups, but we
prefer the former term in order to avoid ambiguity since “w-bounded” has
several different meanings in general topology and the theory of groups (see
Definition 8.41).

The class of w-narrow groups is pretty wide. For instance, it includes the
classes of Lindelof topological groups, of separable topological groups and of
precompact topological groups. The reason for this wideness is the stability
of w-narrow groups with respect to all basic operations (see, for example,
[50] or [71]). Indeed,

Proposition 4.1 The class of w-narrow topological groups has the following
properties:

a) A continuous homomorphic image of an w-narrow topological group is
w-narrow.

b) The topological product of an arbitrary family of w-narrow topological
groups is W-narrow.

c) A subgroup of an w-narrow topological group is w-narrow.

d) If G is a topological group and H is a dense subgroup of G such that
H is w-narrow, then G is w-narrow.

e) Let N be a closed invariant subgroup of a topological group G. If both
N and the quotient group G/N are w-narrow, so is G.

As a matter of fact, w-narrow groups are characterized precisely as the
subgroups of topological products of second-countable topological groups
(see [50] or [71, Theorem 3.4]):
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Proposition 4.2 A topological group G is w-narrow if and only if there
exists a family {H; | i € I} of second-countable topological groups such that
G is topologically isomorphic to a subgroup of [[;c; Hi.

Proposition 4.2 implies that the original topology of G is determined by
a certain family of continuous homomorphisms of G to second-countable
topological groups.

It is proved in [69] that there exists a universal second-countable abelian
group, that is, a second-countable topological abelian group U such that
every second-countable topological abelian group H is topologically isomor-
phic to a subgroup of U. Moreover, we can suppose that U is divisible by
means of the following proposition:

Proposition 4.3 ([9], Corollary 3) Let K be a second-countable topolog-
ical abelian group. Then there exists a second-countable divisible abelian
group D containing K as a subgroup.

Given a topological abelian group (G, 7), we consider on G the initial
topology Ty(G) with respect to U. We write (G, 7¢) or simply G* to denote
(G, Ty(@)). Then, a topological group G is w-narrow if and only if G = G*.
If the starting group G is discrete, we denote (G,Ty(G)) by (G, m(G)) or
simply by G&. Then, 77(G) is the initial topology with respect to the family
of all homomorphisms g: G — U, hence it is the mazimal w-narrow topology
on G.

It is clear that the topological group G* is w-narrow and also that 74 is finer
than the Bohr topology. In particular, since G# is Hausdorff, then G" is
Hausdorff as well (see Proposition 4.9).

4.1 Elementary properties of Ty(G)

Remark 4.4 Let G be a topological abelian group, and let H be an w-
narrow group. If f : G — H is a continuous homomorphism, then f : G* —
H is continuous.

Proof. It follows from Proposition 1.7 2) since H coincides with H*. QED

Remark 4.5 The functor Ty is ideal.

Proof. Let us fix an epimorphism f: G — H, for some topological abelian
groups G, H. We need to show that f: G¥ — H? is open. Indeed, let
K = kerf C G. Consider the quotient homomorphism ¢: G¥ — Gi/Ki and
the canonical (algebraic) isomorphism i: G*/K* — H*. Then f = ioq. Since
f : G¥ — H?% is continuous by Remark 4.4 and ¢ is open, i is continuous.
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Further, since G*/K* is w-narrow as a continuous image of the w-narrow
group G*, the homomorphism i~': H¥ — G* /K 1 is continuous by Remark
4.4. Therefore, ¢ is a topological isomorphism and f is open. QED

Proposition 4.6 Let H be a subgroup of a topological abelian group G.
Then:

1) H* is a topological subgroup of G*;
2) GY/H? is topologically isomorphic to (G/H)?.

Proof. 1) It follows from Proposition 1.9 (a) jointly with the fact that U
can be assumed to be divisible.
2) This is a consequence of Remark 4.5 and Proposition 1.6 (d). QED

Proposition 4.7 Let G be an abstract abelian group.
a) if G* is discrete, then |G| < w.

b) Let H < G. Then Int(H) # 0 <= H is open in G} = [G : H] is
countable.

Proof. a) It is obvious that a discrete w-narrow group is countable.

b) The first equivalence is well-known. Now, suppose that H is open in G*.
This is equivalent to say that (G/H)! is discrete (using Proposition 4.6),
and this implies [G : H] <w by a). QED

Proposition 4.8 Let G be an abelian group. Then GO is discrete if and
only if |G| < w.

Proof. If GH is discrete, then G is countable by a) of Proposition 4.7. The
other implication is clear by the definition of .
QED

Proposition 4.9 For every abelian group G, G2 is Hausdorff. In particu-
lar, every subgroup of G5 is closed.

Proof. Since G# is Hausdorff and the identity map of G- onto G¥# is a
continuous isomorphism, G5 is Hausdorff as well. The other statement is a
consequence of Proposition 1.9 (b). QED

Clearly, the maximal w-narrow topologies shares all the general proper-
ties described in § 1.3.1 with the Bohr topology. On the other hand, in the
next three results we present some basic differences between G5 and G#.
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Corollary 4.10 Let G be an arbitrary abelian group. Then every countable
subgroup of GU is closed and discrete in GV.

Proof. Let H be a countable subgroup of G. By Proposition 4.6, GH
induces on H the maximal w-narrow topology. According to Proposition
4.8, the maximal w-narrow group topology on a countable group is discrete,
and H is closed according to Lemma 1.4. QED

Corollary 4.11 Every countable subset of G= is closed and discrete in G5.

Proof. Take a countable subset £ of G. Then the subgroup (E) of GH
generated by F is closed and discrete in GH, by Corollary 4.10. In particular,
E C (E) is closed and discrete. QED

Corollary 4.10 and Corollary 4.11 fail to hold for the Bohr topology. Indeed,
by a theorem of Protasov in [66], every infinite precompact topological group
contains a countable non-closed subset. One cannot extend the proposition
below to the groups of the form G# either.

Proposition 4.12 Every countable subset E of a topological abelian group
GH is C-embedded in G©.

Proof. Let f be a real-valued function on F. By Corollary 4.11, E is discrete
and f is automatically continuous. Consider the identity map ify: H — H <
D, where H denotes the subgroup of G generated by E and D is the discrete
divisible hull of H. There exists a homomorphic extension j: GZ — D of
if, and j is continuous since D is countable and discrete (hence, second-
countable). For every x € D, set G, = j~(z). Then {G, | * € D} is a
partition of GH into clopen (i.e., closed and open) subsets such that every
G contains at most one element of E. Define a function f: GH — R by
setting f(y) = f(e) if y € Gy and e € EN Gy, and f(y) =0 if y € G, and
G,.NE = (. Then f is a continuous extension of f, and we are done. QED

We finish this section with a remark about product of groups. From
Proposition 1.6 (a) we know that:

Proposition 4.13 Let G1,...,G, be abelian groups. Then Gj{ X ... X Gfb
is topologically isomorphic to (G x ... x Gp)*.

It is natural to ask whether Proposition 4.13 extends to infinite product.
The answer is negative, as the following example shows:

Example 4.14 Take G = ZY. Then GV contains ZN = Dy Z as a closed
discrete subgroup, by Corollary 4.10, while ZM is dense in (Z9)N. This
implies that (ZM)M is not topologically isomorphic to (ZF)N. In fact, we
have shown that the topology of (ZN)Y is strictly finer than the topology
of (ZP)N, since the identity isomorphism i: (ZN)2 — (Z9)N is evidently
continuous and not open.
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4.2 Specific properties of the maximal w-narrow
topology

We show here that, for an uncountable abelian group G, the correspond-
ing topological group G is neither a P-space, nor a Baire space, nor R-
factorizable (see Definition 4.18).

We start with the following fact:

Proposition 4.15 If G is an abelian group, then all compact subsets of G5
are finite. Hence, G is locally compact if and only if it is countable.

Proof. Take a compact subset K of GH. To prove that K is finite, take
any countable subset A of K. By Corollary 4.11, A is closed so, as a closed
subset of K, it must be also compact. Therefore A is finite. This proves
that K is finite as well.

If G is countable, then the group G is discrete by Proposition 4.8 and,
hence, locally compact. Conversely, if G is locally compact, we can take an
open neighborhood U of the neutral element in G with compact closure,
say K. Since the group GH is w-narrow, we can cover it with a countable
family of translations of U and of K. Since K is finite, the group G is also
countable. QED

Lemma 4.16 The inequality w(GD) < w holds for every abelian group G
with |G| < 2¢.

Proof. It is well known (see the equivalence of (b) and (c) of [26, The-
orem 4.6]) that (G#) < w whenever |G| < 2¥. Since i: GP — G# is
continuous, 1(GP) < (G#) < w. QED

Theorem 4.17 Let G be an uncountable abelian group. Then G is not a
P-group.

Proof. First suppose that |G| < 2“. By Lemma 4.16, we can find a count-
able family ~ of open subsets of GZ such that (v = {0g}. Since GY is
not discrete by Proposition 4.8, this immediately implies that GH is not a
P-group.

If |G| > 2¥, take a subgroup H of G such that |H| = 2. The claim
just proved implies that HO is not a P-group. By Proposition 4.6, H-
is a topological subgroup of GH, and the property of being a P-group is
preserved under taking subgroups. So GU is not a P-group. QED

Recall the following definition.
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Definition 4.18 A topological group G is called R-factorizable ([72, 75])
if for every continuous real-valued function f on G, one can find a second-
countable group K, a continuous homomorphism p: G — K, and a continu-
ous real-valued function h on K such that f = hop.

¢—L-r

| P
Ty
K

The class of R-factorizable groups contains — among others — all precom-
pact groups, all Lindelof groups, arbitrary subgroups of o-compact groups
([73]), and it is properly contained in the class of w-narrow groups. During
quite a long period of time, only “sporadic” examples of w-narrow non R-
factorizable groups were known (see [71, Example 5.14]). The next theorem
implies that groups with this combination of properties exist in abundance.

Theorem 4.19 The topological group G5 is not R-factorizable, for every
uncountable abelian group G.

Proof. First we construct an abelian group H of cardinality N; which
is a homomorphic image of G. To this aim, identify G with its image
i(G) € D, where D is the divisible hull of G and i: G < D is the natu-
ral monomorphism. Then G is an essential subgroup of the direct sum D =2
Qr(P)) xD,pep Z(p>°)"»(P)) (see § 1.1). Choose wy summands {L, | a < wi}
of the direct sum D and define L to be the direct sum P, La- It is clear
that |L| = ®;. Consider the natural projection p: D — L. The image
H = p(G) is an essential subgroup of L, therefore it contains a maximal
independent set M of independent elements of L. Since r(L) = |L| = ¥y,
we have that |M| = N; and hence |H| = N;.

For every = € L distinct from the neutral element 0y, denote by supp(z)
the minimal set A C w; such that x € @{L, | a € A}. We also put
supp(0r) = 0. Let us equip L with the w-box topology. A base of such a
topology is generated by the family

B={z+Uy|z€eLl, a<uw},

where U, = {x € L | supp(x) N = (}} is an open subgroup of L. With this
topology, L becomes a Lindel6f P-group (see [24, Corollary 2.5]). Hence H,
being a subgroup of L, is an w-narrow P-group. In addition, we have that
w(H) < w(L) = Vy. Therefore, if H is not closed in L, it is not Lindelof,
and it follows from [74, Lemma 3.3] that it is not R-factorizable. In its turn,
this implies that G is not R-factorizable either, since H is a continuous
homomorphic image of G ([74, Theorem 3.1]).

If H is closed in L, we can construct a topology 77, on H which is finer
than the w-box topology 7 induced from L and such that (H,7y) is still
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an w-narrow P-group but no more Lindel6f. To this purpose, we need the
following claim.

Claim. Let F' be the discrete group Q © @,cp Z(p™). Then there exists a
discontinuous homomorphism h: H — F.

Proof of the claim. Let {C, | o < w1} be a local base at the neutral
element of H. It suffices to construct a homomorphism h: H — F and a set
{zq | @ < w1} such that z, € Cy and h(z,) # Op, for each o < w;. Indeed,
h will not be continuous since for every open neighborhood U of Og, h(U)
is not contained in the open set {Of}.

Pick an element zg € Cy distinct from Oz. Suppose that for some a < wq,
we have constructed an independent set X, = {23 | f < a} C H such
that zg € Cpg, for every 8 < «a. Then it is possible to pick an element
Zo € Cat1 \ (Xa), and the set {z3 | B < a} is independent.

Let X = {x, | @ € w1}. Define a function f: X — F by setting f(zq) = Yas,
where y,, is any element of F' distinct from Oz. Since X is independent and
F' is divisible, there exists a homomorphism h: H — F that extends f. The
claim is proved.

To finish the proof of the theorem, consider a finer group topology 77,
on H obtained by declaring K = ker(h) to be open in H. In other words,
71 is the upper bound of the topologies 77 and 7%, where 7* is the coarsest
topology on H that makes the homomorphism h: H — F' to be continuous.
Then (H, 7y ) is a topological group of weight ®; which is also a P-group.
Note that [H : K] < |F| < w implies that 77, is an w-narrow group topology.

We claim that the group H' = (H, 7;) is not Lindel6f. Indeed, if H' were
Lindelof, then the identity homomorphism i: H' — H would be open, since
both groups are P-spaces (see [75, Lemma 2.4]). Clearly, this is impossible
since the topology 7}, is strictly finer than 7.

It follows from [74, Theorem 3.1] that if a P-group 7' is a continuous
homomorphic image of an R-factorizable group, then T is R-factorizable as
well. Since H’ is an w-narrow P-group and the restriction of p to G is a
continuous homomorphism of G5 to H’ (see Remark 4.4), we conclude that
the group G& cannot be R-factorizable. QED

Theorem 4.20 If G is an uncountable abelian group, then GV is a first
category space.

Proof. Let us consider G as a subgroup of its divisible hull D = D(G)
QUr(P) x D, cr Z(p>)r(P)) . We can rewrite D as the direct sum of groups
L, with o < k = |D|, where each L, is isomorphic either to Q or Z(p),
for some prime p. Take a countable partition {A; | i € w} of the set k,
where |A;| = & for each i € w, and put B, = |J;_; A;. Then |B,| =k and
By, C Bpy1, for every n € w. Consider the subgroups G,, = G N @aeBn L,
of G, n € w. From Proposition 4.9 it follows that every G,, is closed in GU.
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In addition, the index of every G, in G is uncountable. Indeed, using the
fact that G is essential in D, one can easily see that the family {x+G,, | z €
Lo, a € k\ By} of cosets of G,, in G has cardinality &, i.e., [G : G,] = k.
According to Proposition 4.7 b), this implies that, for every n, the closed
subgroups G, have empty interior in GH. To finish the proof it suffices to
note that G = J;,_, Gn. QED

4.3 Problems

If G is MAP, then Gt and, consequently, G* are Hausdorff. Nevertheless, a
precise characterization of those topological group G such that G¥ is Haus-
dorff is missing.

Problem 4.21 Give a characterization of those topological Hausdorff abe-
lian groups G such that G* is Hausdorff.

Observe that we can suppose that G is metrizable in the previous problem.
Indeed, fix 2 # 0g in G. Since G is Hausdorff, there exists Vy € Ng(0) such
that ¢ V. By induction, construct a sequence {V,}22, of open neigh-
borhood of Og such that V,, is symmetric and V,, + V,, C V,,_1 for every
n > 1. Then H := (2, V,, < G. Consider the quotient ¢ : G — G/H.
Then {¢q(V},) }n is the base of a metrizable topology ¢ on G/H such that o
is weaker then the quotient topology of G/H. Now, observe that ¢(z) and
q(0) = H are separated in G/H.

In what follows G and H denote abelian groups.
Since the group GU is w-narrow, it follows from [71, Theorem 4.29] that
¢(GY) < 2¢, where ¢(GP) is the cellularity of G&. This suggests the follow-
ing:

Problem 4.22 Is it true that ¢(GP) = min{|G|, 2%} ?

It is known that the tightness of G# is countable, for an arbitrary abelian
group G (see [3, Chapter 9]). On the other hand, from Corollary 4.10 it
follows that the tightness of G is uncountable, for each uncountable group

G.
Problem 4.23 Is there any upper bound for the tightness of G2?

It is easy to verify that the weight and character of an w-narrow topologi-
cal group coincide (see [71, Proposition 4.1]). We do not know whether these
cardinal invariants of G can be calculated only in terms of the cardinality

of G:
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Problem 4.24 Suppose that G and H are groups and |G| = |H|. Does
the equality w(GP) = w(HD) hold? If so, what is the exact expression for
w(GP) in terms of |G| ?

It was proved in [76] that G# is normal if and only if G is uncountable.
So we ask:

Problem 4.25 Characterize the abelian groups G such that GB is normal.

Problem 4.26 Characterize the abelian groups G such that:
a) GH is paracompact;
b) G is zero-dimensional;
c) GH carries a linear topology.

Problem 4.27 Find out which algebraic properties of groups G and H en-
sure the existence of a topological isomorphism (or homeomorphism) between
two (uncountable) groups GO and HS.

More concretely, on the same line of van Douwen’s Question 3.1,

Question 4.28 If G and H are uncountable and of the same cardinality,
are G5 and HY topologically isomorphic?

Concerning the relation with Bohr-retractions:

Problem 4.29 Let H be an uncountable subset of G. If r: G — H is a
Bohr-retraction, is r: G2 — HY continuous? Conversely, if r: G5 — HU
is a continuous retraction, is r: G* — H# continuous?

The same question can be formulated considering a subgroup H < G and a
cross section ¢: G/H — G.

Problem 4.30 Let G be an arbitrary abelian group.
a) Is G complete?
b) Is GP realcompact?

¢) Is G2 Dieudonné complete?
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Chapter 5

Quasi-convexity

5.1 Basic facts on quasi-convexity

Let us recall some known properties of quasi-convex sets. See also [5] and
[19].

It follows from the definition that every quasi-convex set F C G is nec-
essarily symmetric (i.e., —e € E, for every e € F) and closed in G. In
particular, note that:

Remark 5.1 If G is compact and F C G is quasi-convex, then E is com-
pact.

From the definition of quasi-convexity, it is also clear that:

Fact 5.2 Given G, the intersection of an arbitrary family of quasi-convex
subsets of G is still a quasi-convex subset of G.

Fact 5.3 Consider a group G and a subset E of G. If T and 7' are two
topologies on G such that (G,7)" = (G,7")", then Qe (E) = Quam(E).

By the definition of the Bohr topology, (G,7)" = (G,77)" for every topo-
logical group (G, 7). Hence the previous corollary applies for the pair of
topologies 7, 7T, for every MAP topology 7. In particular, one can reduce
the computation of the quasi-convex hull in MAP groups to the case of pre-
compact topologies. Consider also the following more precise remark:

Remark 5.4 Let (G, 7) be a non-necessarily precompact nor MAP group.
Consider the subgroup N := {0} (known as the von Neumann kernel), where
the closure is taken with respect to 77, and the quotient ¢ : G — G/N.
Then G/N, equipped withe the Bohr modification of the quotient topology,
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is MAP and precompact, and every character y € G can be factorized as
follows:

G —%G/N

&L
| X
X \

T

In particular, Qg(E) = ¢ " (Qa/n(q(E))) for every E C G. Therefore, the
computation of the quasi-convex hull can be reduced to the case of precompact
groups. We will often use this fact in what follows.

Now fix G and let us consider two group topologies 7, 7" on G such that
7 > 7. Then Qg1 (E) C Qg (E) for every E C G (see Corollary 5.6).
The proof of this fact is based on the following:

Lemma 5.5 If f: G — H is a continuous homomorphism of abelian topo-
logical groups and E C G, then f(Qa(E)) C Qu(f(E)).

Proof. Let x € G and assume that f(x) € Qu(f(E)). There exists a
continuous character x : H — T such that x(f(F)) C T4 while x(f(x)) ¢
T,. Now, the character £ = y o f : G — T obviously witnesses = ¢ Qg (FE).
This proves (Qa(E)) € Qu(f(E)). QED

Corollary 5.6 If 7 > 7’ are two topologies on a group G, then for every
E C G we have

Qe (E) C Q. (E).

Proof. Just observe that the identity map id : (G, 7) — (G, 7’) is continuous
and apply Lemma 5.5. QED

More consequences of Lemma 5.5 are the following ones.
Corollary 5.7 Consider a family {G; | i € I} of topological abelian groups
and let E; C G; for every i € I. FEquip G := [[,G; with the product
topology or a finer one, and put E := [[, E;. Then we have that Qg(E) C
IL; Qa, (Ei).-
Proof. Apply Lemma 5.5 to the projections. QED

In particular this proves that:
Corollary 5.8 The product of quasi-convex sets is still quasi-convexz.

Proof. If E; are quasi-convex, then [[, E; C Qa(I; £i) C 1], Qa,(E:) =
L Ei, and this implies [[, E; = Qa([[; £i). QED



5.2 Quasi-convexity of subgroups 65

Let us see that in general we do not have equality in Corollary 5.7 (see
also [19, § 4.2]). With Theorem 0.5 in mind, it is easy to find an exam-
ple: take any MAP group G and E; = FEy = {z}, for 0 # = € G. Then

QG(El X EQ) = QG({(x7$)}> = {(0,0),i($,1‘)} - {Ovix} X {Ovix} =
Qa(Er) x Qa(Er).

Another corollary of Lemma 5.5:

Corollary 5.9 If f : G — H is a continuous homomorphism and E C H
is quasi-convez, then f~1(E) is quasi-convez in G.

Proof. By Lemma 5.5, f(Qc(f~(E))) € Qu(E) = B, then Qa(f~\(E))
f1(E). QED

5.2 Quasi-convexity of subgroups

If H is a subgroup of G, then clearly x(H) C T if and only if x(H) = {0},
for every x : G — T. In other words, the polar of H coincides with the
annihilator of H (which is denoted by H'). This easy observation permits
to give the following characterization of quasi-convex subgroups.

Proposition 5.10 A subgroup H of a topological group G is quasi-convex
in G if and only if G/H is MAP.

A subgroup H < G such that G/H is MAP is called dually closed. So, H is
quasi-convex in G if and only if H is dually closed in G.

Moreover, it is well-known that dually closed subgroups are exactly the
closed subgroups in the Bohr topology:

Proposition 5.11 For H < G, H is dually closed iff H is closed in G™.

As a consequence, every dually closed subgroup is closed. Let us summarize
what we have seen so far in the following lemma.

Lemma 5.12 If H < G, then:

H is quasi-convex

/

His closed in GT H is dually closed

M

H s closed
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In general, the implication “H is dually closed” = “H is closed” is not an
equivalence, even in MAP abelian groups. For examples of discrete (hence,
closed by Lemma 1.4) subgroups of MAP abelian groups that are dense
in the Bohr topology (hence, not dually closed, according to Proposition
5.11) see Banaszczyk [11, Remark 5.5], Hooper [55] and Higasikawa [54].
Nevertheless, in some cases the equivalence holds:

Remark 5.13 For finite subgroups, for subgroups of precompact groups
and of locally compact groups, it is true that “closed <= dually closed”.

Another class of subgroups of topological groups that is crucial when
dealing with quasi-convexity is the class of dually embedded subgroups, that
is defined as follows:

Definition 5.14 A subgroup H of a topological group G is dually embed-
ded if each continuous character x of H can be extended to a continuous
character X of G.

G
N ~
X
AN
N
H T> T
Example 5.15 In locally compact groups and in precompact abelian groups,
every subgroup is dually embedded.

Lemma 5.16 Let H be a dually embedded subgroup of a topological abelian
group G. Then Qu(E) = HNQg(E) for every subset E of H.

Proof. By definition, Qg (F) C H. To check that Qy(E) C Qa(FE),
apply Lemma 5.5 with the inclusion i : H — G. Conversely, suppose = €
(HNQg(F))\ Qu(E). Then there exists x € H" such that x(F) C T+
and x(z) ¢ T4. Now just extend (by the dual embeddeness of H) x to a
continuous character of G and we find that * ¢ Qg(E), a contradiction.
QED

Corollary 5.17 Let H be a dually embedded subgroup of G, and let E C H.
Then E is quasi-convez in H if and only if E is quasi-convex in G.

Another consequence of Lemma 5.16 is that when H contains Qg (F) we
get Qa(E) = Qu(F), as formulated in the following corollary.

Corollary 5.18 Let E C H < G be such that Qg(E) C H. Then Qy(E) =
Qa(E).



5.3 Elementary quasi-convex subsets 67

Proof. Since H™ is dually embedded in G by Example 5.15, we apply
Lemma 5.16 and we get Qy+(E) = HNQg+(E). Now use Fact 5.3 and the
hypothesis Qg (F) C H to conclude that Qn(E) = Qg(E). QED

In particular, this is a useful tool in the case in which F is finite since, by
Theorem 0.4, Q¢(E) C (E). So:

Corollary 5.19 Let £ C G with E finite. Then Qg(E) = Qc(E).

5.3 Elementary quasi-convex subsets

Given G, recall that an elementary quasi-convex subset of G is of the form
X~ 1(T), for some y € G".
For example, the elementary quasi-convex sets of Z are the sets W, intro-
duced and studied in § 2.2. Observe that every set W, is the polar of the
singleton {a}:

Wa = {a}>7

which is equivalent to say W, = {a}<, according to Example 1.14.
Although we have already analyzed several properties of the W,’s in § 2.2,
now we want to stress their more significant aspect with respect to quasi-
convexity.

It is clear that for every pair of elements o, 8 € T, W, € Wy if and only
if 8 € Qr(a). More generally,

Lemma 5.20 For every ai,...,04,0 € T, ﬂ§:1 Wa, € Wg if and only if
BeQr{a,...,au}).

We already shown in Lemma 2.3 that this result can be strengthen whenever
ai,...,oz are independent.

By means of Lemma 5.20, we can offer a more precise version of Corollary
2.7 that involves the calculation of the quasi-convex hull of singletons.

Corollary 5.21 For a, 3 € T\ {0} the following properties are equivalent:
(a) B = ta;
(b) a € Qr(p);
(¢) B € Qr(e);
(d) Wa ©Wg;
(¢) W5 C Waj;

(f) Wa = Wﬂ'
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The elementary quasi-convex subsets of Z will play a prominent role in
the study of the (especially, finite) quasi-convex subsets of T, as we will
show in the following sections. This should not surprise the reader because
it simply expresses the fact that T" = Z and Z" = T. Actually, this gives
also a motivation to study the elementary quasi-convex sets of T, which
already appeared implicitly in § 2.2. Their relevance will be clear in some
of the next sections, namely § 5.4 and §6.2 (more concretely, see the proofs
of Theorem 6.12 and Theorem 6.13 in §6.2.1).

For every integer m > 1, put T,, := [_ﬁ7 ﬁ

] € T. In particular,
T+:T12T222Tn2Tn+12

The proof of the following lemma can be deduced from Fact 2.2 (see also
[5, 19]).

Lemma 5.22 For every m > 1, (Ty,)” = {0, £1,...,£m}.

Every set T, is a connected quasi-convex neighborhood of 0 € T. More-
over, it turns out that every (non-trivial) connected quasi-convex neighbor-
hood of Ot is precisely of this form ([5]). For reader’s convenience, we in-
clude here a brief proof of this fact. Let N be a non-trivial connected
quasi-convex neighborhood of 0. For being homeomorphic to a real interval
(and symmetric and closed), it must have the form {z € T : ||z|| < r}, for
a certain r € (0,1/2). One easily verifies that r has to be smaller or equal
to 1/4. Let k be the greatest integer such that x < ﬁ. Just note that
N* ={n€Z:|n| <k} =T}, therefore N = N* = T* =T}

The elementary quasi-convex sets of T have the form V,, = {n}* = {x €
Tt |nx € Ty}, Then V,, =J; L + T,

i=1n

5.4 qc-dense subsets

Given a non quasi-convex subset £ C @, it can happen that the quasi-convex
hull Q¢ (E) of E is the biggest possible, i.e., Qg(F) = G. In this case we
say that E is qc-dense in G. Here we give a more precise formulation.

Definition 5.23 Given a topological group G and a quasi-convex subset K,
a subset H C K is said to be qc-dense in K if Qg(H) = K.

Obviously, dense sets are qc-dense. Now we shall see an example of a tiny
compact (far from being dense) subset of T that is gc-dense.

Example 5.24 The set {+£27" |n >0} = {0} U{+2-"*D | n >0} C T is
compact and gc-dense in T.
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The compactness is clear, while the qc-density is a direct consequence of the
following claim.

Claim 5.25 Put K := {0} U {£2- ) | n > 0}. Then K> = {0}

Proof. Fix 0 # y € T" = Z. We need to show that there exists x € K such
that x(z) ¢ T.

Write y = 25 - m, where k > 0 and m is odd, and take z = 2=+ ¢ K.
Then x(z) = F =1 1/2 + Z, hence x(z) ¢ T4. So K* = {0}. QED

Now let us consider K, ., = {0} U {22+ | n > ng} C Tyng-1 for
some fixed ng > 1. Then we have:

Proposition 5.26 K s compact and qc-dense in Tong—1.

n)nZno

Proof. Observe first that K, is compact since 9—(n+1) _, 0,
For the qc-dense property, it suffices to show that

K(Dn)nZnO = (T2n071>b.
Since K(n)n>n0 C Tyng-1, it is clear that K(Dn) o2 (Tgno-1)". So, using
= n7n0
Lemma 5.22, we only need to show that K7 C {0,41,... 42m0" 1}

(n)n>n0

Indeed, fix z > 2™~ and let us show that there exists z € K (M) nng

that zz ¢ T,. Let £ be (uniquely determined) such that 2¢ < z < 2¢+1
(observe that ¢ > ng — 1 since z > 2"0~1). Put z := 2@%; then z € K.,

such

since £ +2 > ng + 1. Now, 1 < 22 < 1, s0 zz ¢ T and we are done.
QED

Example 5.27 The set K := {0} U {£3~(*D) | n. > 0} is compact and
gc-dense in T.

Proof. The compactness is clear, so it suffices to show that K* = {0}.
To this end, fix 0 # x € T" = Z and write x = 3¥ - m, where & > 0 and
3t m. Now, for z = 3=*+D ¢ K we have x(z) = % =1 *£1/3 + Z, hence
x(x) ¢ T4. Therefore K* = {0}. QED

The next result shows that the image of a qc-dense set by means of a
continuous epimorphism is still qc-dense:

Corollary 5.28 Let f : G — H be continuous epimorphism of abelian topo-
logical groups, and let E be gc-dense in G. Then f(FE) is qc-dense in H.

Proof. Just apply Lemma 5.5. QED
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5.5 Unconditional quasi-convexity and potential
quasi-convexity

In [64] Markov introduced the following notion:

Definition 5.29 For a group G, a subset H of G is said to be uncondition-
ally closed in G if it is closed in every Hausdorff group topology on G.

Example 5.30 For every group G and for every n > 1, G[n| = {x €
G | nx =0} < G is unconditionally closed.

More precisely, every infinite unconditionally closed subgroup of G is of
this form, as established by Perel’'man (according to Markov [64]). Here we
present a stronger result from [42].

Theorem 5.31 Let G be an infinite abelian group. Then, for a subgroup H
of G, the following properties are equivalent:

(1) there exists n > 0 such that H = G|n];
(2) H is unconditionally closed in G;

(8) H is closed in every precompact group topology on G.

We introduced here a new notion of quasi-convexity inspired by Defini-
tion 5.29 and Theorem 5.31.

Definition 5.32 Let G be an abelian group. A subset E of G is uncondi-
tionally quasi-convex in G if E is quasi-convex in every MAP topology on

G.

Observe that this is equivalent to ask it only for precompact group topologies
(see Remark 5.4).

Example 5.33 According to Theorem 0.5, A, is unconditionally quasi-
convez for every group G and every x € G.

We include here a result that gives a necessary condition for uncon-
ditional quasi-convexity in Z. We will apply this lemma in the following
sections.

Lemma 5.34 Let E C Z. If E is unconditionally quasi-convex in Z, then
for every z € Z\ E there exists x : Z — T such that x(E) C Ty, x(z) ¢ T+
and x(1) € T is irrational.



5.5 Unconditional q.c. and potential q.c. 71

Proof. Consider the MAP topology 7, induce on Z by the embedding
Xa:1—aeT\Q/Z. Fix z € Z\ E. Since E is unconditionally quasi-
convex in Z, there exists £ € (Z,7,)" such that y separates z and E. We
want to show that £(1) is irrational. By the definition of the topology,
(Z,7,)" = TN 2 7Z, so that £ has the form & = kx, for some integer k, i.e.,
€ = Xka- Therefore, £(1) = ka is irrational. QED

More properties about unconditionally quasi-convex subsets of Z will
be studied in § 6.3. In the following section we show that unconditional
closedness and unconditional quasi-convexity coincide for subgroups.

5.5.1 Unconditionally quasi-convex subgroups

In light of what we considered in § 5.2, we are in position to prove the equiv-
alence between unconditional closedness and unconditional quasi-convexity
for subgroups.

Theorem 5.35 Let G be an infinite abelian group. Then, for a subgroup H
of G, the following properties are equivalent:

(1) H is unconditionally closed in G;

(2) H is unconditionally quasi-convex in G.

Proof. Let H be an unconditionally closed subgroup of GG. In particular, it
is closed in every precompact topology. So, by Lemma 5.11, it is also dually
closed, i.e., quasi-convex, in every precompact topology. The converse fol-
lows from the fact that if H is quasi-convex (in some precompact topology),
then H is (dually closed, hence) closed by Lemma 5.12. This shows that if H
is unconditionally quasi-convex in G, then it is closed in every precompact
group topology on G. Now we apply Theorem 5.31 and we conclude. QED

Observe that the previous result, jointly with Theorem 5.31, gives a complete
algebraic description of the unconditionally quasi-convex subgroups.

5.5.2 Potential quasi-convexity

Markov also defined in [64] the potentially dense subsets of a group G as
those subsets of G that are dense for some Hausdorff topology on G. We
re-interpret this notion of potentiality in our framework as follows:

Definition 5.36 A subset E of an abelian group G is said to be potentially
quasi-convex in G if there exists a MAP topology T on G such that E is
quasi-convez in (G, ).
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Remark 5.37 It is clear that “Unconditional quasi-convexity” implies “po-
tential quasi-convexity”. Actually these two notions coincide in the case of
finite subgroups. This follows from the fact that, by Theorem 0.4 (1), every
finite subgroup H of a MAP group G is quasi-convex.

This equivalence does not hold, in general, for finite subsets, as we will show
in Example 5.40.

Note also that the notion of potential quasi-convexity is equivalent to
ask quasi-convexity with respect to the discrete topology, namely:

Remark 5.38 Let £ C GG. Then F is potentially quasi-convex in G if and
only if E is quasi-convex in (G, 7).

Proof. One implication is clear since the discrete topology is MAP. Con-
versely, if F is potentially quasi-convex then it is also quasi-convex in (G, 74)
by Corollary 5.6. QED

In particular, we deduce that the potential quasi-convexity admits a de-
scription in algebraic terms. We will see in Theorem 6.33 that also the
unconditional quasi-convexity of finite sets admits an algebraic characteri-
zation.

Before formulating Example 5.40, let us consider the following claim.

Claim 5.39 Let a be in T. Then, the following properties are equivalent:
e o,3a € Ty, and 2a ¢ T ;
o flall = 4.

Indeed, if ||a|| = % then it is clear that o300 € Ty, and 2a = 1 +Z ¢ T,
Conversely, suppose that a € T4 and 2o ¢ Ty. Then a € (% + Z,i +
Z)U[-3+Z,—% + 7). Wiog, suppose that o € (% + Z, % + Z). Therefore
3a € (% +7Z, % +Z]. In particular, 3o € Ty implies o = %—i—Z and the claim
s proved.

Example 5.40 Toke E = {0,£1,4+3} C Z. It is potentially quasi-convex
i Z but not unconditionally quasi-convex.

Proof. Observe that by Claim 5.39 there exists a (unique, up to sign)
homomorphism x : Z — T such that x(1),x(3) € T4+ and x(2) ¢ Ty,
namely y : 1 — « with ||o|| = %. This shows that E is potentially quasi-
convex in Z. On the other hand, it also proves that F is not unconditional
quasi-convex in 7Z, according to Lemma 5.34. QED

The previous example is crucial to understand the essence of finite uncon-
ditionally quasi-convex sets. Indeed, the proof of the already mentioned
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Theorem 6.33 will be based on the idea of Example 5.40.

More examples of potentially quasi-convex subsets of Z will be considered
in the next chapter. Indeed, we will discuss several quasi-convex subsets of
T that are contained in a cyclic group (see Corollary 6.1, Corollary 6.3,
Theorem 6.12, Theorem 6.13, among others). Then the following remark
applies:

Remark 5.41 Let E = {0,%eq,...,+ej,...} CZ. If
aFE ={0,teiq, ..., teja,. ..}

is quasi-convex in (a) < T, for some a € T, then E is potentially quasi-
convex in Z.

Proof. Just observe that E = x;'(aF), where X, : Z — T is defined by
1 — a, so E is quasi-convex in Z equipped with the initial topology with
relation to x,. QED

5.6 Int-quasi-convex sets

Consider the following definition ([14]):

Definition 5.42 Let G be a topological abelian group. We say that E C G
is Int-quasi-convex in G if for every e € G\ E there exists x € G" such that

V(E) C Int(Ty) = (=1,2) and x(e) ¢ T+

Clearly, every Int-quasi-convex set is also quasi-convex.
Consider also the following:

Definition 5.43 A subset E of an abelian group G is potentially Int-quasi-
convex in G if there exists a MAP topology T on G such that E is Int-quasi-
convez in (G, ).

Similarly to what happens with potential quasi-convexity (see Remark 5.38),
a subset ¥ C G is potentially Int-quasi-convex in G if and only if E is Int-
quasi-convex in (G, 7q).

Let us consider E = {0,+1,+3}. Then F is potentially quasi-convex in
Z by Example 5.40. On the other hand, for every topology 7 on Z, E is not
Int-quasi-convex in (Z, 1), according to the following example.

Example 5.44 The set E = {0,+1,43} is not Int-quasi-convez in (Z,T),
for every topology T on Z. Indeed, according to Claim 5.39, there no exists
a homomorphism x : Z — T such that x(1), x(3) € Int(T4) and x(2) ¢ T4.
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In particular, this is an example of quasi-convex set that is not Int-quasi-
convex. Nevertheless, there are many subsets of T that are quasi-convex and
Int-quasi-convex in T. Before giving an example (namely, Example 5.46),
let us consider an additional definition and some remarks.

Let £ C G. Analogously to the quasi-convex hull, we can also define
the Int-quasi-conver hull Qg (E) of E in G as the intersection of all the
Int-quasi-convex subsets of G that contain F.

The following proposition is the counterpart of Theorem 0.4 (1) for the
Int-quasi-convexity.

Proposition 5.45 Let E be a finite subset of a MAP group G. Then
Qa(E) C (E).

Proof. Fix y € G\ (E). There exists a (possibly discontinuous) homomor-
phism x : G — T such that x(E) = {0} and ||x(y)|| > 3. By Corollary
1.19, we can find a continuous ¢ that approximates x in the following sense:
|€(e)|| < % for every e € E and [|£(y)|| > 1. Hence we are done. QED

Example 5.46 Let E be a quasi-conver set in T contained in Z,, < T, for
some natural number m such that 41 m. Then E is Int-quasi-convex in Ly, .

Proof. According to Proposition 5.45, it suffices to show that for every
z € (E) \ E there exists a continuous character x such that x(E) C Int(Ty)
and x(z) ¢ T+. So, fixsuch a z. If E = {0} then it is trivial, so suppose that
E # {0}. Since F is quasi-convex, we can find a continuous character x that
separates E and z. Now just observe that the image of (E) in T by means
of any homomorphism Z,, — T does not contain i + Z (and, consequently,
—%+17Z), in particular x(E) C Int(T4) and we are done. QED

Clearly, this can be generalized as follows:

Lemma 5.47 If E C T is such that ENZ(2°) C {0, + Z}, then E is
quasi-convex in T if and only if E is Int-quasi-convexz.

Theorem 5.48 Let E be a finite subset of Z. Then the following properties
are equivalent:

(a) E is unconditionally quasi-convex in 7Z;

(b) E is potentially Int-quasi-convez in Z.

Proof. (a) = (b) Since FE is unconditionally quasi-convex, then, in
particular, F is quasi-convex in Z equipped with the 5-adic topology 75.
Therefore, for every z € Z \ E, every character of (Z,75) that separates E
and z is such that x(E) C Int(T4), i.e., E is Int-quasi-convex in (Z, 75).
This yields (b).
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(b) = (a) Fix a MAP topology p on Z, and let z € Z\ E. We need to show
that we can find a u-continuous character that separates E and z. Since F is
potentially Int-quasi-convex in Z, there exists an algebraic homomorphism
X : Z — T such that x(F) C Int(T4) and x(z) ¢ T4. Now apply Corollary
1.19 (possible since E is finite) to find a p-continuous approximation of y,
i.e., there exists £ € (Z, u)" such that {(F) C Int(T4) and £(z) ¢ T+. QED

In § 6.3 we will prove a stronger result, namely Theorem 6.33.

5.7 Problems

We already commented in § 5.1 that, in general, there is no equality between
Qac(E1 X E2) and Qg (E1) X Qa(E2). We propose the following:

Problem 5.49 Give sufficient conditions on a pair of sets Ey, Es C G in
order to guarantee the equality Qa(E1 X F2) = Q(E1) X Qa(Es).

Lemma 5.47 gives a sufficient condition on a subset E of T that assures
the equivalence between “quasi-convexity” and “Int-quasi-convexity” for FE.
Nevertheless, the following general problem is open:

Problem 5.50 Characterize those (finite) quasi-convex sets that are also
Int-quasi-conver.
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Chapter 6

Finite quasi-convex sets

In this chapter we switch to the case of finite quasi-convex sets. We start in
§ 6.1 with the subsets of the torus group T; we offer many relevant examples
that underline how the properties of the sets W, proved in § 2.2 and §5.3
can be used to obtain quasi-convex subsets of T.

In § 6.2 we study in detail those quasi-convex subsets of T that are contained
in a cyclic subgroup () < T; Lemma 6.8 offers a characterization of such
sets. Theorem 6.9, which is based on Theorem 2.9, describes the structure
of the quasi-convex subsets of () < T, with () = Z, in terms of “blocks”
and “gaps” of multiples of a. Several consequences of this new description
are commented. We deal with the case o(a) < oo in §6.2.2.

In § 6.3 we give a characterization of the finite unconditional quasi-convex
subsets of Z (Theorem 6.33) involving the notion of Int-quasi-convexity in-
troduced in § 5.6 and the new notion of S-potential quasi-convexity (see
Definition 6.28).

6.1 Finite quasi-convex sets of T

Throughout this section, we will deal with several examples of finite subsets
E of T that are contained in some cyclic subgroup (a) < T, so it is extremely
important to recall that the computation of their quasi-convex hulls can be
done equivalently with respect to (E) < (a) or T (see Corollary 5.19).

Corollary 6.1 For every a € T, the set A, = {0, +a} is quasi-conver in
T.

Proof. Apply Corollary 5.21. QED

Corollary 6.2 If ay...aq € T are independent, then the set E = A,, U
. UA,, ={0,ta1,...,ta} is quasi-convex in T.



78 Finite quasi-convex sets

Proof. Assume € Qr(F). This is equivalent to £ C {8}> = W3. As
E” = (%, Wa,, the latter property is equivalent to § € E, according to
Corollary 2.4. QED

For x € G and k € N, let
E,n :={0,+z, £2z,..., tnx}.
Clearly, E, 1 = A, for every x.

Corollary 6.3 For every irrational o € T and n € N, the set E, , 15 quasi-
convez.

Proof. It is clear that Qr(Ean) = Qr({a,2¢,...,na}). Assume that
B € Qr({o,2a,...,na}). Since {a,2¢,...,nat” = {ia}> =), Wia and
Wg = {8}, we conclude that (1), Wio € W3. According to Corollary 2.5,
for irrational « this yields 3 = +ia for some i = 1,2,...,n, ie., 8 € Eqnp.
QED

The next result shows that, in some cases, the sum of quasi-convex sets
is still quasi-convex. Hence we can use finite quasi-convex sets contained in
cyclic groups (as Corollary 6.1 and Corollary 6.3) to get quasi-convex subsets
of T. In particular, it is a tool to easily construct examples of quasi-convex
sets of T that are not contained in a cyclic group.

Theorem 6.4 Let ay,ao,...,a; € T be independent. If Q; C () is finite
and quasi-convex in {(o;) (or, equivalently, inT), then E = Q1+ Q2+ ..+ Q¢
18 quasi-convex in T.

Proof. Since F is finite, by Corollary 5.19 we have to show that F =
Qr) (E). Therefore it is sufficient to consider v = riay +...+rap € (E)\ E
and show that there exists a character x € E” such that x(v) ¢ T+.

By the choice of 7, there exists an index j € {1,...,t} such that rja; ¢ Q.
Wlog, we can suppose that j = 1. Let 0 < q&i) <L < qq(fi) be integer
numbers, for ¢ = 1,...,¢, such that @; = {0, iqgi)ai, . j:q&?ai}, and set
M = hr_réaxt{qu), |rn|}. Since @ is quasi-convex, there exists an integer

= lp such that loqi(l)oq € Ty for every i = 1,...,u; and loria; ¢ T.

Choose 0 < ¢ < 1/4 such that (possible since «; is irrational)

Ji = (loqi(l)al —8,l0g e +6) C Ty, i=1,...,u,

Jr = (lo?“loél —9,lgriaq + 5) g T,

and define I1 = (l0a1 — % lpay + ﬁ) and [, = (O, %) forh=2,...,t.

u17

By Corollary 1.20, there exists an integer kg such that kooa; € I; for i =
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1,...,t (thus koEqs, v C (—%, %) for every h = 2,...,t). Then, for every

1 =1,...,u1, we get ko(qfl)al + Eoy it + ...+ Eo, ) € Ji. This proves
that kg € E”. On the other hand, ko(riaq + Eaym + - ..+ Eq, 1) € Jr, and
this implies koy € J» € T4. QED

6.1.1 Some examples

As an application of Theorem 6.4, we get:

Example 6.5 Let a;y,...,ay € T be independent. Then:
o Ay + ...+ Aq, is quasi-convex in T;

o for every ki,.... ks € N, the set By g, + ...+ Eq, 1k, 15 quasi-convex
in T.

For x € G and k € N, let
Uz ={0, £z, £nz}.

Clearly, Ux71 = Ax and Ux72 = E%Q.
For further use, put also

Fypn :={0,£2z, £na},

for every n > 2. Then F , = Uy, ,/2 whenever n is even.
The hypothesis of linear independence in Theorem 6.4 seems to be nec-
essary:

Example 6.6 Take o € T be irrational.

o Q1 = Ay ={0,xa} and Q2 = Uy s = {0, *a, £5a} are quasi-convex
in T but Q1 + Q2 is not quasi-convex;

o Q1 =Ey2 =10+, £2a} and Q2 = Aso = {0, 6} are quasi-convex
T, but Q1 4+ Q2 is not quasi-convex;

o ) =Uyq = {0, xa, £4a} is quasi-convex in T but Q+ Q is not quasi-
convetz.

A direct verification of these facts is possible. In any case, we will consider
again this example in § 6.2 (see Example 6.14).
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6.2 Quasi-convex sets in cyclic subgroups of T

It follows from the definition of quasi-convexity that for every a € T, W, -a =
(a) N'T is quasi-convex in (). Similarly, we also have that

for every oo € T and for every subset A of Z,

( ﬂ Wna> - Is quasi-convex in (a). (6.1)

neA

This observation can be pushed forward to easily generate finite quasi-convex
sets in a cyclic group. Indeed,

if a € T is irrational and k is a positive integer, then

( ﬂ Wna> ~aN E, 1, is finite and quasi-convex in («), (6.2)
neA

for every subset A of Z.

With these simple tools we are able to show some interesting examples.

Example 6.7 Let o € T be irrational.

(1) The sets Uy = {0, ta, +4a} and Ug = {0, +a, £8a} are quasi-convex
in T. Indeed, by Corollary 1.20 we can find a positive integer n such
that |[nc|| € (2 + ., 3). Then Uy = Eqa N (Wya) - . On the other
hand, Ug = Eq 8 N (Whia M Whya) - @, where ny and ny are such that
In1al| € (5, 5 + 25) and |In2al| € (5 — 53§ — 56)-

(2) The set F3 = {0,+2c, £3a} is quasi-conver. To see it, take n such
that |[nal] € (2,3 + 51). Then F3 = Eq30 (Wha) - a.

Both these examples will be generalized in Theorem 6.12 and Theorem 6.13.

The following easy lemma states that every quasi-convex subset @ of («)
admits one of the two representations (6.1) or (6.2), depending on whether
@ is finite or not.

Lemma 6.8 Let o € T\ {0}, and let Q C {(«) be quasi-convez in (). Then
there exists a set A C Z such that Q = ((,,c4 Wha) - . Moreover,

1) if « is rational, then A can be taken finite;

2) if a is irrational and Q is finite, then there exists a finite A’ C A and
an integer k > 0 such that Q = ((,ca Whna) - aN Eq .
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Proof. The main assertion is trivial: just take A = Q".

Suppose that « is rational. Wlog, we can suppose a = % + Z, for some
m > 1. Then just take A = Q" N{0,1,...,m —1}. So 1) is clear. To check
2), note that (,c 4 Wha is not finite, then we need to intersect it with £,
(which is quasi-convex by Corollary 6.3), where k is the greater integer such
that £ka € Q. QED

It is clear now that the elementary quasi-convex sets of Z determine the
structure of any quasi-convex set contained in a cyclic group. The following
theorem gives an explicit description of this phenomenon.

Given « € T irrational, we will say that Q C («) contains a block of length
n (with 0 < n < o(«)) if there exists k € Z such that

{ka,(k+1Da,...,(k+n—1)a} CQ
and that @ has a gap of length | (with [ > 0) if there exists k € Z such that
{ka,(k+1a,...,(k+1—1)a}NQ = 0.

Theorem 6.9 Let o € T be irrational, and let Q C {(«) be quasi-conver in
(). If there exists an integer m > 2 such that Q) contains a block of length
m+ 1, then:

(1) the minimum length of every gap of @ is m — 1;
(2) Ear € Q, where r = 7 if m is even and r = mTfl if m is odd.
Proof. For our hypothesis, the set W, contains {k,k + 1,...,k + m} for

every n € A = @ (see Lemma 6.8). Therefore a,, = > m, and

2||na
from Theorem 2.9 we deduce that the length of the gaps of| |evtlelry Wi is at
least m — 1. This proves (1).

To check (2), observe that |[na|| < o since anq > m for every n € A. If
m = 2r, it easily implies that {0, +1,...,4+r} is contained in W,,, for every
n € A and, therefore, E,, C Q. The case when m is odd is similar. QED

It should be observed that this theorem implies that the quasi-convex sets
that do not contain « are slim in the sense that they contain only small
blocks of length 1 or 2. Indeed,

Corollary 6.10 Let o € T be irrational. If Q is quasi-conver in (o) and
(k— Do, ka, (k+ 1)a € Q for some integer k, then o € Q.

Example 6.11 If a € T is irrational, then o € Qr({2«, 3a, 4a}).
The following theorems generalize Example 6.7:

Theorem 6.12 The set U, i, = {0, a, £ka} is quasi-convex in T, for ev-
ery irrational o € T and every k # 3;
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Theorem 6.13 The set F,;, = {0,+2«, £ka} is quasi-convex in T, for
every irrational o € T and every k # 6.

We deal with the proof of both these theorems in §6.2.1.
Now compare the following example with Theorem 6.4 and Example 6.6.

Example 6.14 Let a € T be irrational.

e From Corollary 6.1 and Theorem 6.12 we deduce that the sets Q1 =
{0, £a} and Q2 = {0, +a, £5a} are quasi-convex in T. On the other
hand, the sum Q1 + Q2 = {0, £, +2a, +4a, £5, £6a} contains the
block Eq 2 = {—2a, —,0,a, 2a} of length 5 and it has a gap of length
1, therefore it cannot be quasi-convexr by Theorem 6.9.

e The sets, Q1 = {0, o, 22a} and Q2 = {0,+6a} are quasi-convex in
T by, respectively, Corollary 6.3 and Corollary 6.1, but Q1 + Q2 =
{0, +a, +2a, +4av, £50, £6c, £7cr, £8a} is not quasi-convez since it
contains the block Eq 2 = {—2a, —a, 0, a, 2a} and it has a gap of length
1.

e The set Q = {0,%+a,+4a} is quasi-conver in T by Theorem 6.12.
However, the sum

Q+ Q ={0,+a, +2a, £33, +4a, £, £8a}

is not quasi-convex since it contains a block E,5 of length 11 and it
has a gap of length 2.

Actually, Lo i = {0, £a, £2¢, £3a, +40, £5a, £ka} is not quasi-convex for
every 7 < k < 15 by Theorem 6.9 (7). This fact and its natural generaliza-
tion will motivate the definition of the sets R, in § 6.2.2. We anticipate
here that from Corollary 6.26 we will deduce, for example, that also L, 15
is not quasi-convex since « is irrational.

On the other hand, {0, £a, +2c, +3«, +4a, +5a, +16a} is quasi-convex, and
more generally

{0, +a, +2a, £3cv, +4a, £5a, £16¢, ..., £(16 + k)a}

is quasi-convex for every 0 < k < 11. Indeed, every character x such that

x(a) € (2% — ﬁ, %) makes the job for every k.

6.2.1 Proof of Theorem 6.12 and Theorem 6.13
As a consequence of Claim 5.39, we deduce:

Example 6.15 The set Uy 3 = {0, +a,+3a} is quasi-conver in T if and
only if ||ma|| = %, for a certain integer m.
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In particular, Uy 3 = {0, £a, £3a} is not quasi-convex in any infinite sub-
group (a) < T.

If £ # 3 then Theorem 6.12 states that U, is quasi-convex in T for
every irrational o € T. Let us prove this result.

Proof of Theorem 6.12. First note that for & = 1,2 it has been
proved in Corollary 6.1 and Corollary 6.3, so we can suppose k > 4. Since
Uai € Eo and E, ), is quasi-convex by Corollary 6.3, it suffices to see that
for every 1 < m < k there exists n € E” such that nma ¢ T,. To this end,
define Z,, .= ((T\ V;u) NTy) x Ty) C T2, where V,, = {zx € T | nz € T}
for every positive integer n are the elementary quasi-convex sets of T (see
§5.3). Fix 2 < m < k. It is easy to see that the interval A := (71, 2) is
contained in (T \ V,,,) N T4, therefore we have W,,, := A x T C Z,,,.

Now, let N be the closed subgroup of T? consisting of all pairs of the form
(z,kz), where z € T. By Corollary 1.20, the cyclic subgroup («, ka) is dense
in N. Therefore, it suffices to show that N intersects the interior of W,
(indeed, if (z, kz) € Int(W,,), then z, kz € T4 while mz ¢ T, ; by Corollary
1.20 take n such that z can be approximated by na and we are done).

To prove it we use the representation of T? as a quotient of the unit square
S = [0,1] x [-1/4,3/4] in the plane with the usual identifications of the
opposite sides. Let s := [i], so that s < k/4m and

4m

k
8> 1. (6.3)

Consider the line L in R? determined by the graph of the linear function
f(x) = kx — s. Its image in T2 is precisely the subgroup N. Let a; =
(s/k,0),a2 = ((s +1)/k,0) € S. Consider the translates L; of L passing
through the points a; (i = 1,2), i.e., corresponding to the linear functions
fi(z) = kx — s and fo(z) = kx — s — 1, respectively. Let I'; be the segment
of L; restricted to S. It suffices to prove that I'y U 'y meets Int(W,,). To
this end we consider two cases.

(i) fi(1/4m) = k/4m —s < 1/4. As 0 < fi1(1/4m) < 1/4, I'1 intersects
the left side {1/4m} x [-1/4,1/4] of W,,, in an internal point. Therefore, I';
intersects Int(WW,,).

(il) fi(1/4m) > 1/4 (e, s < E2). Then f1(3/4m) > 3/4, or equiv-
alently s < 32‘% (as k > m entails 3’1‘% > 'Z_—Ter > s). This proves
f2(3/4m) = f1(3/4m) —1 > —1/4. On the other hand, f2(1/4m) < 0 by
(6.3). Therefore the points (1/4m,0) and (3/4m,—1/4) remain in different
half planes w.r.t. the segment I'g, thus I's intersects Int(W,,).

For the case m = 2, just take W3 := A’ x T4 C Zy, where A’ :=
(1/8,1/4). Define s,a;, L;,T;, f; as above. If fi1(1/8) < 1/4 then we con-
clude as in (i). Suppose therefore that fi(1/8) > 1/4,1ie. s < %. Ifk=4
then s = 0 and (1/4,0) € 'y, so 'y meets W9 in an internal point. If k > 4,
then 222 > 222 > 5 This implies that fo(1/4) > —1/4, while f,(1/8) < 0
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by (6.3). Thus the points (1/8,0) and (1/4,—1/4) remain in different half
planes w.r.t. the segment I'y, and I'y intersects Int(W;). The theorem is
proved.

Proof of Theorem 6.13. If £k = 1,2,3,4 it follows, respectively, from
Corollary 6.3, Corollary 6.1, Example 6.7 (1) and Corollary 6.3. So suppose
that £ > 5 (and k # 6). Since F,; C E,k and E, is quasi-convex by
Corollary 6.3, it suffices to see that we can separate [, ; from m, for every
1<m<k,m#2.

Let N be the closed subgroup of T? consisting of all pairs of the form
(z,kz), where z € T. It follows by Corollary 1.20 that (a, ka) is dense
in N. Therefore it is sufficient to show that /N meets the interior of Z5 ,, :=
((T\ Vi) NVa) x Ty) for every m € {1,...,k—1}\ {2} (the sets V,,, are the
elementary quasi-convex sets of T; see § 5.3).

Fix m € {3,...,k — 1} \ {4}. There exists an integer ¢ > 1 such that the
interval A? := (ﬁ, %12) is contained in (T \ T;,,) N T%. Indeed, if m > 6 we
can take ¢ = 1 (because ;= < %, thus (&, ) C [0,4] € Tb); if m = 3
and m = 5 take £ = 5 and ¢ = 9 respectively. Choose such an ¢ and let
Wom =Wy, =AY x Ty C Zo .

We use the representation of T? as a quotient of the unit square S =
[0,1] x [-1/4,3/4] in the plane with the usual identifications of the opposite
sides. Define s := [&], so that s < ¢k/4m and

am

— — 1. A4
5> (6.4)

Consider the line L in R? determined by the graph of the linear function
f(x) = kx — 5. Its image in T2 is precisely the subgroup N. Let a; =
(s/k,0),a2 = ((s +1)/k,0) € S. Consider the translates L; of L passing
through the points a; (i = 1,2), i.e., corresponding to the linear functions
fi(x) = kx — s and fo(x) = kx — s — 1, respectively. Let I'; be the segment
of L; restricted to S. It suffices to prove that I'y U 'y meets Int(W,).

(1) If f1(¢/4m) < 1/4 then I'1 intersects internally the segment {¢/4m} x
[—1/4,1/4]. Thus T'; intersects Int(W,,).

(ii) If f1(¢/4m) > 1/4 (ie., s < elfl;mm), then I'y meets W), in an internal
point. To check it, note that fa(¢/4m) < 0 by (6.4) and that fo((¢+2)/4m) >
—1/4(& s < (”22%) according to the following calculation: MH&# >
th=m > 5. Therefore the points (¢/4m,0) and ((¢+ 2)/4m, —1/4) remain in
different half planes w.r.t. the segment I'g, thus I's intersects Int(W,,).

For the case m = 1, take A’ := (1/4,3/8) and W, := A’ x Ty C Zy;.

Now, s = [%], a;, Li, Ty, f; are as before.
If f1(1/4) < 1/4 it is clear that we have finished. Suppose that fi(1/4) > 1/4
(i.e., s < E71). Then (since k > 5) f2(3/8) > —1/4, or equivalently s < %T_G
(because % > k21 > 5), and this, together with the fact that fo(1/4) < 0
by definition of s, assures that I'; meets the interior of Wj.
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If m = 4, take A” := (1/16,1/8)U(3/8,7/16) and W} := A" xT; C Z 4.

Now define s := [£], a; = ((s+i—1)/k,0),f; = kz—s—(i—1) fori = 1,2,3
and L;,I'; similarly to what we did before.
If f1(1/16) < 1/4 we are done. Suppose f1(1/16) > 1/4(& s < 1%4)_ If k>
8, then we can do the same as in (ii): fo(1/8) > —1/4,1i.e. s < % (because
% > % > s) and f2(1/16) < 0 by (6.4). The same idea still holds when
k =7 (because f2(1/16) = —9/16 < 0 and f»(1/8) = —1/8 > —1/4) and
when k = 8 (f2(1/16) = —1/2 < 0 and fo(1/8) = 0 > —1/4). If k = 5 just
note that (2/5,0) € I's N Int(W}).

6.2.2 (Quasi-convex sets in finite cyclic groups

In Corollary 6.3 we have shown that E;; C (z) is quasi-convex in T and,
equivalently (by Corollary 5.19), in (z), for every irrational x € T. On the
other hand, the equality E; ; = Q) (Eyk) is not guaranteed in the case in
which z is rational. Here we deal with the quasi-convexity of the sets of
the form Eﬁ,k - <ﬁ +7Z) = Ly < T, with m,k > 1. Again, recall that

QT(E%’,C) = Q(%A-Z)(E%,k) by Corollary 5.19.
For every m > 1, put a,, := ﬁ + Z. Observe first that

Fact 6.16 E,,, om = (oun); in particular, Eq,, om 15 quasi-convez in ().

So, we will assume k < 2m. Now let us see that E, , i is qc-dense in ()
whenever m < k < 2m.

Lemma 6.17 If m < k < 2m, then Q,,.)(Ea,, k) = (Qm)-

Proof. Fix m < k < 2m and put F := E, ;. It suffices to show that
E” = {0}. Indeed, suppose that x € E”. Then, by Fact 2.2, x(a;,) € Tg.
Now just note that Ty N () = {0} by our choice of k; this implies that
x =0. QED

Now fix £ < m and let us characterize the quasi-convex hull of E,, 1.
Since k < m, there exist ¢ > 1 and 0 < r < k such that m = gk + 7.

Theorem 6.18 Fizk < m andletq> 1,0 <r < k be such that m = qk+r.
Then Q(am)(Eam,k) = Eam,[m/q]-

Proof. We want to calculate (E,,, )°°. Observe that (a,;,)" = (am), so
every X € (qy) is of the form x5 = s-id(,,,) : ¥ +— sz. Now, if x5 € (Eq,, k)",
then % € T, for every i € {1,...,k}, therefore — by Lemma 5.22 —
o < ﬁ, which is equivalent to s < 7t = ¢ + . Now, 7 < 1, so we have
Xs € (Bank)” = s <q, ie, (Eqnk)” =1{xs | 0 < s < q}. This yields
(Eap k)™ = (am) NNI_, Vs, where the Vy’s are the elementary quasi-convex
subsets of T (see §5.3), hence (E,,, )" = {ﬁ : ||ﬁ|\ < 4—1q} = {ﬁ :

1] < 23 ={a ¢ 1] < [2]} = Bayfmsq- QED
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Corollary 6.19 Ifm,k are such that m = gk+r withq>1 and 0 < r < k,
then E,,, i is quasi-convez in (ouy) if and only if ¢ > r.

Proof. This follows from Theorem 6.18 since k = [m/q] if and only if ¢ > r.
QED

This immediately yields the following
Corollary 6.20 If k|m, then E,,,  is quasi-convez in ().

Example 6.21 The set Eﬁﬂ 18 quasi-convex in <ﬁ +Z) < T if and only
if m # 3.

Indeed, if m =1 then Ei? = (1 4+ Z) is quasi-convex (see also Fact 6.16).
Suppose now that m > 2. Write m = 2q +r with ¢ > 1 and r € {0,1}. By
Corollary 6.19, Ei? is quasi-convex if and only if g £ 1 # r, i.e., m # 3.

Example 6.22 The set E1_ 4 is quasi-convez in (g + Z) < T if and only
4am’
if m ¢ {2,4,5,8}.
Indeed, if m =1 then Eﬁﬁ = (;& + Z) is quasi-convez (see also Fact 6.16).
= C = (L
If m = 2, then Eﬁ,:& C Q<ﬁ+z)(Eﬁ,3) (17 T 7Z) by Lemma 6.17. Now
suppose m > 3 and write m = 3q+r with ¢ > 1 and r € {0,1,2}. Then, by
Corollary 6.19, E 1 4 is not quasi-convez if r =1 and ¢ = 1 (i.e., m = 4)
am’
and if r =2 and either g =1 (i.e., m=15) or q=2 (i.e., m =38).

Example 6.23 Letm > 1. Then Eﬁ,mfl 18 quasi-convez in <ﬁ +Z)<T
if and only if m = 2.

Indeed, if m = 2 then E%’l = A% is quasi-convex by Theorem 0.5 (or,
equivalently, by Corollary 6.20). Now suppose m > 3 and write m = q(m —
1)+ 7. Then g =1 =1, hence Eﬁ,m—l is not quasi-convex by Corollary
6.19.

Example 6.24 Letm > 2. Then E 1 ., is quasi-convez in <ﬁ +7Z)<T
if and only if m € {3,4}. "

Indeed, if m = 3 then ET1271 = A% is quasi-convex by Theorem 0.5. If
m =4, then m — 2 = 2|4 and ET1672 is quasi-convez by Corollary 6.20. Now

suppose m > 5 and write m = q(m — 2) + r. Then necessarily ¢ = 1 and
r =2, hence E% m—1 18 not quasi-convex by Corollary 6.19.

In order to discuss more examples of quasi-convex subsets of T, let us
consider a set of the form E, s U {£ta}, for some a € T and t > s. If
s <t < 3s then Qr(Eq kU {£ta}) = Qr(Fa3s), according to Theorem 6.9
(1). This motivates the following notation:

Ry s = Eq s U{£3s/a}.



6.3 Unconditional quasi-convexity for finite subsets of Z 87

Lemma 6.25 Let o € T and s > 1. If R, is quasi-convex in T, then
lnal| = & for some n > 1.

Proof. Suppose that R, s is quasi-convex in T. In particular, there exists
n such that {0,1,...,s,3z} C Wy,. Since Rys 2 Equs, from Theorem
2.9 we deduce that a,, = [#} € {2s,2s + 1}. If apo = 2s + 1, then

2[[na|

1 1 1 :
25+ 1 < g $ 2542 = 5oy llnal| < sEs7T) Otherwise
1 1 1 : :
25 < gan S 25+ 1 = g S lnal| < £;. Now just observe that if

|Inc|| < & then 3s ¢ Wy and we are done. QED

Corollary 6.26 If o € T is irrational, then R, s is not quasi-convex in T,
for every s > 1.

Lemma 6.27 Let m > 3 and s > 1. If 3s|m, then R_1

1S quast-convex
mn T.

4ms’

Proof. Put a = ﬁ. Since Ry s € Fo3s and F, 3, is quasi-convex by

Corollary 6.20, it suffices to separate those elements of T of the form ﬁ +Z
with s < £ < 3s. To this aim, let us consider the character x,, : * — mx
of (a+Z). Then xm(Ra,s) C Ty since Xm(Ea,s) = {0,+4,..., 5} C Ty
and (3 +2Z) = 3+ Z € Ty, and L < ||x(3%; + Z)|| < 2 for every
s << 3s. QED

6.3 Unconditional quasi-convexity for finite sub-
sets of Z

Theorem 0.5 offers a nice example of an unconditionally quasi-convex finite
set. On the other hand, there are simple examples of finite sets, some of
them contained in Z, that are not unconditionally quasi-convex (see Example
5.40).

In this section we characterize the finite unconditionally quasi-convex
subsets of Z. To this aim, let us introduce a new notion of quasi-convexity
for subsets of Z which is weaker then potential Int-quasi-convexity.

Definition 6.28 For a subset E C Z, we say that E is S-potentially quasi-
convex in Z if for every z € Z \ E, there exists x : Z — T such that the
following conditions hold:

X(E) € Ty and x(z) ¢ T4; (S-pot a)

1
if x(e1) = E—I—Zfor some 0 <e €F,

then x(e) # 2 +7Z for every 0 < e € E. (S-pot b)



88 Finite quasi-convex sets

Lemma 6.29 If E is S-potentially quasi-convex in Z, then it is potentially
quasi-convez (in particular, E is symmetric).

Proof. This is a consequence of (S-pot a), according to Remark 5.38. QED

Observe that every potentially Int-quasi-convex in E C Z is S-potentially
quasi-convex, as announced in the following lemma.

Lemma 6.30 Let E be a potentially Int-quasi-convexr subset of Z. Then E
is S-potentially quasi-convex.

Proof. By our hypothesis, for every z € Z ¢ E there exists a homomorphism
X : Z — T such that x(E) C Int(T+) and x(z) ¢ T+. Therefore (S-pot a)
holds and (S-pot b) plays no role in this case. QED

Here we discuss some examples.

Example 6.31 For every k > 1, Ey;, = {0,%1,...,+k} is S-potentially
quasi-convex in Z.

Indeed, fix z € Z\ E. Then (S-pot a) holds according to Corollary 6.3
combined with Remark 5.41. Now, (S-pot b) holds as a consequence of the
following more general fact:

Claim. For every x : Z — T such that x(E1y) C T, if x(e) =  + Z for
some e € By, then e = £k.

To see it, suppose that x(e) = i +7Z for some e # *k (in particular, e+ 1 €
Ei1); wlog, assume e > 0. Since x(1),...,x(k) € T4, [[x(1)|| < & < &
according to Lemma 5.22. Therefore x(e + 1) = x(e) + x(1) ¢ T+ and this
contradicts the fact that x(Ey ) C T4.

Now, the claim implies that if x(e1) = % +7Z for some e1 € Ey,, then there
no exists e € Eyy such that e # —ey and x(e) = 3 + Z. This finishes the
example.

Example 6.32 Ifk ¢ 3+4Z, then Uy j, = {0, £1, £k} is S-potentially quasi-
convez in Z.

Indeed, fix z € Z\ E. Then (S-pot a) holds according to Theorem 6.12 com-
bined with Remark 5.41. Now, (S-pot b) holds according to the following:

Claim. Fiz x :7Z — T. Suppose that one of the following two properties
holds:

e X(1) =3 +Z and x(k) = 3 + Z;

o x(1)=2+7Z and x(k) = 1 + Z.
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Then k € 3+ 47.

We observe that Example 6.32 does not characterize those sets of the form
Uy i that are S-potentially quasi-convex (see also Conjecture 6.42). Indeed,
let us consider £ = Uy 7. Then Example 6.32 does not apply, but E is S-
potentially quasi-convex since every z ¢ F can be separated from E by the
characters x7,x9 : Z — T, x7:n 2 +Z and x9 : n — g + Z.

According to Remark 5.37, Theorem 5.48, Lemma 6.29 and Lemma 6.30,
the following diagram holds:

potential Int-q.c.

finite sets \

unc. q.c. S—pot. q.c.
pot. qg.c.
The next theorem states that “unconditional q.c.”, “S-potential q.c.” and

“potential Int-q.c.” actually coincide for finite subsets.

Theorem 6.33 Let E C Z be finite. Then the following properties are
equivalent:

a) E is unconditionally quasi-convex in Z;
Y

(b) E is potentially Int-quasi-convez in Z;

(c) E is S-potentially quasi-convex in Z.

Recall that {x}; denotes the fractional part of x, for every x € R, and that
X : Z — R (with x(1) € [0, 1)) is the natural lifting of x, for every x : Z — T
(see Lemma 1.2).

Proof. The equivalence (a) <= (b) is Theorem 5.48, while (b)) = (¢)
is Lemma 6.30. Let us show that (¢) = (b).

Suppose that E is S-potentially quasi-convex (in particular, E is symmet-
ric). Fix z € Z\ E. We can suppose wlog that z > 0. According to (S-pot a),
there exists a (not necessarily continuous) x : Z — T such that x(E) C T

and x(z) ¢ T,.

[case 1] Suppose that x(e) # 1 + Z for every e € E, ie., x(E) C Int(T).
Then E is Int-quasi-convex in (Z, 74) and we are done.

[case 2] Suppose now that there exists e; € E such that y(e;) = % +7Z, ie.,

{X(e1)} = 1/4. We suppose wlog that e; > 0.
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Put By :={e € E | e > 0,0 < {x(e)}y <1/4}, E| :={e € E|e >
0,{x(e)}s > 3/4} and Ey := {e € E | e > 0,{Xx(e)}; = 0}. Since x(E) C
T, it is clear that if 0 < e € E then either e € Ey, e € E| or e € Ey (i.e.,
E;, E|, Ey is a partition of the subset of all the strictly positive elements of
E). Moreover, according to (S-pot b), {x(e)}¢ # 3/4 for every e € E such
that e > 0, therefore E| = {e € E'| e > 0,{X(e)}; > 3/4}.

Put

51 = min{{¥(e)}; | e € By}

and

P min{{x(e)}; — 3 |e€ E|} if E| # 0
b 1/4 if £ = 0;
Observe that:
e §; > 0, because {x(e)}s > 0 for every e € E; and FEj is finite;

e §; > 0, because {x(e)}s —3/4 > 0 for every e € E| and E| is finite
(here we use (S-pot b)).

Also recall that 1/4 < {x(2)}; < 3/4 since x(z) ¢ T4. So
§ = min{67, 8y, {X(=)}; — 1/4.3/4— {{(2)}} > 0
and we can choose &’ such that
0<e <é.
In particular, observe that &’ < ¢, and this suffices to state that
e <{X(y)}s for every y € {z} UE, UE). (6.5)

Define € : Z — T by £(1) = x(1) — ¢/N, where N := max{|y| : y €
{2z} U E} and € is such that 0 < e < ¢’ and {X(1)}; — /N > 0. We claim
that

£(F) C Tot(T) (6.6)

and
€(2) & Ts- (6.7)

In order to prove (6.6) and (6.7), we need some additional considerations.
Observe fist that to prove (6.6) it suffices to show that {(e) € Int(Ty) for
every 0 < e € E. Now, for every n € N, we have:

£(n) = X(n) — ne/N. (6.8)

Fix y € {2} UE; U E|, then ye/N < ¢, so (6.8) implies

X(y) —e < &(y) < X(). (6.9)
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Let us show that this implies

Xl —e < W)l <{IXW)}s- (6.10)
Indeed, according to (6.5), we have that ye/N < e < {X(y)}, therefore

X)) = [X(y) — ] = [X(v)] = [X(y) — ve/N],

and this coincides with [{(y)] by (6.8). This permits to rewrite (6.9) in terms
of fractional parts as follows:

{(X(y) — e}y < {€W)}y < {XW)}s-

Moreover, = < {%(y)} also implies {%(y) — c}s = {X()}s — &, and this
proves (6.10).

Now we are in position to prove (6.6). Fix e > 0. Then — as already noted
— e € Fy UE| U Ey. We consider three cases.

e Suppose that e € Ey. Then {x(e)}s < 1/4, and from (6.10) we deduce

[€(e)}s < {X(e)}s < 1/4. Then (e) € Int(T,).

e Suppose that e € E|. Then, by our choice of ¢, ¢ < & < § <) <
{X(e)}¢ —3/4, in particular {x(e)}; — e > 3/4. Then from (6.10) we

get {{(e)}r > {X(e)}y — e > 3/4. Therefore £(e) € T.

e Suppose that e € Ey. Then x(e) =: ¢ € Zy = {1,2,...} by definition
of Ey. By (6.8), £(e) = £ —es/N. Now, ee/N < e < § < 1/4, so
{&(e)}y={l—ec/N}y=1—ec/N > 3/4. Hence, &(e) € Int(T).

Now we prove (6.7). We have € < {x(2)}r —1/4, s0 {x(2)}s —e > 1/4.

Then from (6.10) we deduce 1/4 < {x(2)}s —¢ < {g(z)}f <{x(2)}r < 3/4,
in particular £(z) ¢ T..

So we have proved (6.6) and (6.7). Then E is Int-quasi-convex in (Z, 74)

and we are done. QED

Applying Theorem 6.33 to Example 6.31 and Example 6.32, we deduce:

Example 6.34 For every k > 1, Ey, = {0,%1,...,+k} is unconditionally
quasi-convex in 7.

Example 6.35 If k ¢ 3+ 4Z, then Uy = {0,£1, %k} is unconditionally
quasi-convex in 7.

Observe that as a consequence of Theorem 6.33 we get that S-potential
quasi-convexity and potential quasi-convexity are not equivalent. Indeed,
according to Example 5.40, {0,+1, +£3} is potentially quasi-convex but not
S-potentially quasi-convex.

The next result extends Theorem 6.33 to any group G that possesses a
non-torsion element.
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Theorem 6.36 Let E be a finite subset of Z. Then E is S-potentially quasi-
convez in Z if and only if tE = {ze | e € E} is unconditionally quasi-convex
in every MAP group G with a non-torsion element x.

Proof. Suppose that E is S-potentially quasi-convex in Z. Hence, by The-
orem 6.33, E is unconditionally quasi-convex in Z. Now, fix G and = € G
non-torsion. Then zE is unconditionally quasi-convex in (x) = Z, hence in
G according to Corollary 5.19 (since E is finite). The converse is trivial.
QED

In particular, from Example 6.34 we deduce that E,; is unconditionally
quasi-convex in every infinite cyclic group (x). If (x) is finite, then the only
Hausdorff topology on (z) is the discrete one, so it is obsolete to speak about
“unconditional quasi-convexity” in (x).

The following result describes for which finite cyclic groups all sets F, j are
quasi-convex.

Proposition 6.37 Let G be a group and x € G a torsion element. Then
E, 1 is quasi-convex in G for every k € N iff o(x) < 5.

Proof. Assume that d = o(x) > 5. Pick k in such a way that E, j contains
— roughly speaking — more than the half of the elements of (z), but still
E. # (z) (e.g., k= % —1 when d is odd, k = % — 1 otherwise). It is clear
now that the polar of E, j is trivial, hence Qg (Ey k) = ().

Conversely, suppose that o(xz) < 5. Then for every k > 1, the set E, ) coin-
cides with the cyclic subgroup (), hence E, j, is quasi-convex (see Remark
5.37). On the other hand, the quasi-convexity of E,; was established in
Theorem 0.5 for arbitrary elements z. QED

6.4 Problems

Concerning a possible generalization of Theorem 6.12 and Theorem 6.13:

Conjecture 6.38 It has been conjectured in [14] that for every irrational
a € T the set {0, £ra, £sa} is quasi-convex if and only if s # 3r. This would
give a complete characterization of the five element quasi-convex subsets of
T that are contained in an infinite cyclic group.

Lemma 6.27 gives a partial answer to the following

Problem 6.39 Characterize for which o € Q/Z and s > 1 the set Ry s is
quasi-convez in ().

More problems on the same line are:
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Problem 6.40 Characterize for which a € Q/Z and s > 1 the set Uy s is
quasi-convez in ().

Problem 6.41 Characterize for which a € Q/Z and s > 2 the set Fy s is
quasi-convez in ().

We also propose the following

Conjecture 6.42 For every k # 3, Uy i, is unconditionally quasi-convex in
7.

Recall that this is equivalent to say that Uj ; is S-potentially quasi-convex
or potentially Int-quasi-convex by Theorem 6.33. If Conjecture 6.42 is true,
this would clearly generalize Example 6.35.
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Chapter 7

Countably infinite
quasi-convex sets

Here we compute the quasi-convex hull of some converging to 0 sequences in
T. More specifically, in Theorem 7.2 we establish that under mild conditions
the range of a sequence of negative powers of 2 is quasi-convex in T. It is
convenient to fix the following notation before formulating the result.

Notation 7.1 For a sequence a = (ap)n put
Ky :={0}u{£27@*) | n e N} CT.

Theorem 7.2 Let a = (ay,), be a sequence of positive integers, and suppose
that ap+1 — an > 1 for everyn € N. Then K, is quasi-convez in T.

Observe that in Theorem 7.2 we suppose ag > 0 (that is, % ¢ K,). If we
add the term % to K, then the quasi-convexity of K, granted by Theorem
7.2 is lost in a substantial way. Indeed,

Theorem 7.3 Let a = (ay), be a sequence of integers such that ag = 0 and
that an41 — an > 1 for every n € N. Then the quasi-convex hull Qr(K,) of
K, is given by:

QT(KQ) = KQU (1/2 + Kg)-

From the subtle difference between Theorem 7.2 and Theorem 7.3, one
realizes how delicate is the property of quasi-convexity. Along this chapter
the reader may also observe how different is to work with quasi-convex sets
— which requires hard calculations — from the relatively easy manipula-
tions in convex sets.

Note that the lacunarity condition a,41 —ay, > 1 for every n € N cannot
be omitted in Theorem 7.2. In fact, we have already observed in Exam-
ple 5.24 that if a, = n for every n € N, then we obtain a sequence which
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behaves in the opposite way (see also the more general Proposition 5.26):
Qr(K,) = T whenever a, :=n for every n € N. In this example, every pair
of members of a consists of adjacent integers (i.e., ap+1 = a, + 1 for every
n); what we get is a qc-dense set K,. We conjecture that if a contains even
finitely many pairs of adjacent members, then K, is not quasi-convex (see
Conjecture 7.46).

As a matter of fact, the sets considered in Theorem 7.2 are in the 2-
torsion part of T. Thus it is not surprising that this result admits a coun-
terpart in Z endowed with the 2-adic topology, namely:

Theorem 7.4 Fiz a sequence a = (ay)y of positive integers such that a,+1—
an > 1 for every n € N. Then {0} U {£2%~1 | n € N} is quasi-convez in Z
equipped with the 2-adic topology.

We will deal with this in [29].
Finally, our motivation to study quasi-convex subsets was to close some open
problems left in [23] (see also § 8). More details are given in § 7.5.

7.1 Representation via binary blocks

We introduce some additional notation and we fix the background in order
to make the exposition of this chapter self-contained.
For every x € [0,1) there exists a unique sequence (b;)7°; such that

$:Z§1%=%+...+%+..., and (b;); verifies

e b; € {0,1} for every i;

e there exist infinitely many 0’s in (b;);.

Fact 7.5 Let x # 0 be in T. We take as binary coordinates of x the se-
quence (b;); corresponding to the unique representative r of x belonging to
the fundamental domain [0, 1).

As a consequence, we have that every 0 # = € T is uniquely determined by
intervals [n;, m;] of non-negative integers n; < m; such that n;y; > m; for
every j and:

e b; =1 for every i € (nj, m;|, and
e b; =0 for every i € (mj,nj41].

So one can describe any z € T \ {0} in terms of “blocks”: = = x; + x2 +
...+x;+..., where each block z; is of the form ﬁ—kﬁ%—...—kﬁ =

2%]—2%] Wewillsaythatablock:v:Qn%—i-...—i—%nis:
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o degenerate if n+1=m, ie., x = ﬁ? otherwise we will call it non-
degenerate;

e initial if n =0, i.e. x:%%—...—i—%n.

For b € {0,1} let b* := 1 — b (i.e., b — b* is the unique non-identical
involution of {0,1}). Now we can extend this involution to an involution
x — x* of [0,1) putting z* := (b)), where (b;) were the binary coordinates of
x € [0,1). It induces a self-map of T that is precisely the involution x — —z,
since  + * = 0 in T. This simple observation leads to the following:

Remark 7.6 Write © = 1 + 22 + ... + 2+ + ..., and denote by g; the “gap”
between x; and x;11, for every i. Then g} are proper blocks, and z* =
g7 + g5 + .... is the decomposition of 2* = —z in blocks.

In particular, every initial block is the opposite of a degenerate block: % +
...—1—2%:1—2%5 —2%.

Observe that the number of blocks for an element z can be finite. Ac-
tually, this property characterizes the Priifer group Z(2°).

Example 7.7 For anyx € T, x € Z(2%) if and only if x is given by a finite
number of binary coordinates, and this is equivalent to say that x is a finite
sum of blocks.

In our exposition the characters &, € T" — defined by x — 2* . x for
all x € T, for every non-negative integer £k — will play a prominent role.
In particular observe that £y is the identity character: &y(z) = x for every
z € T. Since every integer n # 0 can be written uniquely as m-2"2(") where
v2(n) is the biggest non-negative integer k such that 2¥|n and m > 1 is odd,
the characters m&; describe all non-trivial characters of T. Hence

T = |J +mA, (7.1)
me2Z+1

where A := {2¥ | k € N}.

7.1.1 Characters and blocks

Here we show some examples about how our convention about the block
structure of the elements of T fits with our description of the characters.
According to (7.1), we focus on the characters in A.

Example 7.8 Let = be a degenerate block: © = ﬁ, for some n € N.
Then, for k € N, & (x) € T+ if and only if k # n.
Indeed,

1 1
gk(x) =&k <2n+1> = ont1-k’



98 Countably infinite quasi-convex sets

hence §(x) € Ty <= n+1—-k+#1 < k#n.
In particular, from Remark 7.6 it follows that if x is an initial block, namely
x:%+...+2im, then & (z) € T4 if and only if k # m — 1.

Letz =%+ 8% +... + %= + 5 4 Dt 4 2 4 Then
by ba br—1 b br41 k42 _
(@) = o1 + 5% T+ groik T ogEok ToEriok T Rtk T =1
ez
_ bprr | b
=1 gt e

This trivial observation suggests the following notation: for m € N, put
tm(T) == 0%, g—’;. We say that t,,(x) is the m-tail of x. Then

Remark 7.9 For every m > 1 and every z € T, &,(x) =1 &En(tms1())-

Corollary 7.10 Let x be in Z(2*°), and write x = ...+ 55, for somem > 1.
Then &i(x) =1 0 for every k > m.

Proof. Just note that &, (z) = Qm%m = 0 and that tx(z) = 0 for every
k>m+1. QED

Example 7.11 Let x be a non-degenerate block: © = Qn% + ...+ 2%, for
some 0 <n <m—1. Then &(x) € Ty if and only if k #n—1,m — 1.
Indeed, let us show the necessity. Since x is non-degenerate, i.e. n+2 < m,

- 1 1 1 . 1
Enfl(l’) " on+1—(n—1) + on+2—(n—1) et W N 272

1
+ ﬁ +e
with € € [0,3), hence &—1(z) & T. Moreover, &n1(2) = &m—1(tm(z)) =
% ¢ Ty. Now we show the sufficiency. Fix k # n—1,m — 1 and let us
prove that &x(z) € T4. If k > m then we are done by Corollary 7.10. If
n <k <m-—2, then &(z) = &t (z) = 5 + 55 + ¢ withe € [0,1). If
kE<n—2,thenn+1—k>3 and &(x) = 2—11—}—21%—{— with i > 3, i.e.,
Eu(w) € [g5 + 31, 1)-

7.2 Quasi-convex subsets of T generated by con-
vergent sequences

In this section we give a proof of Theorem 7.2, namely we show that K,
is quasi-convex in T whenever ag > 0 and an41 — a, > 1 for every n € N.
We observe that a direct computation of Qr(K,) seems really involved. So,

in order to give a neat and short proof of the theorem, we introduce some
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notation, preliminary results and even examples which will smooth out the
way.

Fix a sequence a = (ay), of non-negative integers. Recall from § 7.1
that A = {2F | k € N} is sufficient to describe the whole dual group T (see
(7.1)). In particular, we can describe K}, by means of AN K},. To this aim,
let us consider the following notation. N

Notation 7.12 For every positive odd integer m, let J,, denote the set of
all non-negative integers k such that m&y, € Kj

I = {k € N| m¢g, € K2},

Although Jp, clearly depends on a, we prefer not to use heavy notation since
no confusion will be possible.

Then ANK} = {2% | k € J1}; more generally, mANK}, = {m2" | k € J;,}
for every odd m. This suggests that it is significant to describe the sets of
the form J,,. Let us give here a characterization for m =1, 3.

Claim 7.13 The following properties hold:
1. i={keN|k#ap, YVneN} =N\ {a, | neN};
2. Js={keN|k#a,—1,i=0,2, Vn e N}.
Proof. Let z = 2-(@*+1 be in K,. Then, by Example 7.8, & (z) € Ty if

and only if k& # a,. This proves 1.
For 2. just observe that

3 an

3r(0) = o €Te = ant1-k#1,3 k;&{ a2
QED

Observe that if m > 3 then J,,, can be empty, as the following example

shows:

Example 7.14 Consider the sequence a defined by a, := 2n for every n €
N. Then Js = 0.

Proof. Note that:

1
5
5§k(2_(2n+1)) = W = ’]T+ <~— 2n + 1-— ]f ;é 3 <~
4

2n
<~ k#< 2n—2
2n—3
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Since 2-(2n+1) ¢ K, for every n, in particular we get that k € Js if and only
if k # 2n,2n — 3 for every n € N, i.e., J5; = (. QED

We denote by M the set of all (positive odd) integers m such that J,,, # 0.
Observe that Claim 7.13 implies that J; contains J3 for every a. The
following more general property holds:

Lemma 7.15 For everym e M, J; 2 J,.

Proof. Fix m € M, and fix k € N. According to Claim 7.13, we need to
show that if m&y(x) € Ty for every x = 2~ (ant1) ¢ K,, then k # a,, for
every n € N. Indeed, we have that

m

mgk(ﬂf) € T+ — W

A5 = antl-k#1 < k#an

QED

Now that we have managed to describe K;; by means of the J,’s, we
want to push it further to get a factorization of Qr(kK,) as an intersection
of some “simpler” quasi-convex sets. For every m € M, put

Qm:= () (m&) " (T4) CT.
k€Jm
It is clear that every @, is quasi-convex (by definition) and that
Qr(Kq) = ﬂ Qm- (7.2)
meM

We anticipate here that the proof of Theorem 7.2 consists in proving the
equality Qr(K,) = Q1 N Q3. Obviously, this simplifies a lot the calculation
of Qr(K,). For this reason, it will be crucial to characterize those elements
of T\ {0} that are in Q1. We dedicate the entire § 7.2.1 to this.

7.2.1 The characterization of (),

Throughout this section, a = (a, ), is an increasing sequence of non-negative
integers. Observe that in some cases we will suppose a stronger hypothesis
on a, namely the lacunarity condition a,11 — a, > 1 for every n € N.

We give some examples of elements of Q.

Example 7.16 The following properties are equivalent:
% € Ql;'
(2) % € KQ;

(3) apg = 0.
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Indeed, (2) <= (3) follows from the definition of K,. The implication
(2) = (1) is obvious since K, C Q1. Now suppose that (1) holds and let us
show (3). Since &(3) = 4 ¢ Ty, we have that 0 ¢ Jy, i.e., 0 € {a,, | n € N}.

Clearly, this is equivalent to say that ag = 0 and we are done.

Example 7.17 Let x be a degenerate block: © = 2h1+1. Then x € Q1 if and
only if h = ay,, for some m € N.

Indeed, by the definition of Q1, x € Q1 <= &k(x) € T4 for every k € Jy,
hence, by Example 7.8, x € Q1 <= h # k for every k € Jq, i.e., h €
{an | n € N} according to Claim 7.13.

Since Q1 is symmetric, by Remark 7.6 we also have that if x is an initial
block, namely x = % +...+ 2%, then x € Q1 if and only if m = ap, + 1 for
some h € N.

For every m € N, we will say that d,,, := W% is a degenerate admissible
block and that
1 1 1 1

imi==+o5+...+5—+

9 22 e 9am 72am+1 =1 —dm

is an initial admissible block. Therefore, K, = {dy, | m € N} U {i,, | m €
N} u{0}.

Observe that if ag = 0, then dy = ig = % and this is the only block that is
simultaneously degenerate admissible and initial admissible.

Example 7.18 Let x be a non-degenerate block: © = TL% + ...+ 2%, for
some 0 <n<m—1. Thenx € Q1 if and only if n =ay+1 and m = ap+1
for some g,f € N,

Indeed, v € Q1 <= &i(x) € Q1 for every k € J1, and this is equivalent to
n—1,m—1¢€{a, | n €N} by Example 7.11, i.e., there exist g,¢ € N such
that n = ag+1 and m = ap + 1.

For every n < m € N, put

1 1 1 1

Cn7m = 2an+2 + 2an+3 +.t 2am + 2am+1

=d, — dp.
We will call ¢, ., an admissible block.

Remark 7.19 Observe that an admissible block ¢, ,, is degenerate if and
only if ap, = apy1 = ap +1,s0 m = n+1and ¢ = dp, € Ky In
particular, if ap4+1 — a, > 1 for every n € N then every admissible block is
non-degenerate.

In the next result we characterize those z € (1 that consist precisely of
one block. This is a consequence of Example 7.17 and Example 7.18.
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Corollary 7.20 Suppose that © = Qn% + # +...+ 2%,1 Then x € Q1 if
and only if one of these three possibilities holds:

e x is degenerate admissible;
o 1z is initial admissible;

e 1 is non-degenerate admissible.

Proof. =: Suppose that x € Q1. If x is degenerate, i.e. n+ 1 = m,
then z is degenerate admissible by Example 7.17. So suppose that z is non-
degenerate, i.e., n+1 < m. If n = 0, then x is an initial admissible block by
Example 7.17, otherwise x is a non-degenerate admissible block by Example
7.18.

<: This is Example 7.17 and Example 7.18, respectively. QED

Now we deal with the case when = € Q1 consists of more than one block.
We first introduce the following claims that describe general properties of

Q1-

Claim 1. Suppose that x € Q1. Let h be any positive integer such that
by, = 1 and bp41 = 0. Then h = ap + 1 for some ¢ € N. In particular, if
r=x1+... € Q1 andxlz%, then ag = 0.

Indeed, if h # ay + 1 for all £, then h — 1 € J; by Claim 7.13. Now,

1 by, 1
En—1(z) =1 &1 (tn(2)) = Enmr (2,z +0+ QTE + .. > =15 +e
with € € [0, ). Therefore &,_1(z) ¢ T4, but this contradicts the fact that
x € Q1. Hence, h is of the desired form.
Note that if 1 = % (i.e., h = 1), then 1 = ay + 1 for some ¢ € N implies
ay = 0, and this is possible only if £ = 0.

Roughly speaking, Claim 1 states that the last summand of every block of
T € @1 is of the form W% On the other hand, Claim 2 describes the first
summand of every non-degenerate block of x € Q1.

Claim 2. Suppose that © € Q1. Let h > 2 be such that b,_; = 0,0, =1
and byy1 = 1. Then h = a4 + 2, for some g € N.
Indeed, suppose that h # a4 + 2 for every g € N. Then h — 2 € Ji, and

1 1 b
En—2(x) =1 Ep2(th-1(2)) = En—2 <0 +or e t 22% +. ) =1

11
Sl tgte
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with ¢ € [0, %) Therefore &,_o ¢ T4 and this contradicts our assumption
WS Ql-

For the third claim we impose on g the assumption a,+1 — a, > 1 for every
n € N. It states that if x =21 +... +x; +xj41 + ... € Q1 is such that z;
is degenerate, for some j > 1, then z; is admissible and x;1; = 0 for every
i > 1 (in particular, x € Z(2%)). In other words, every degenerate block
r € Q1 is admissible and terminal.

Claim 3. Suppose that a,11—a, > 1foreveryn € N. Let z = 21+... € Q1
be such that = contains a degenerate block x;, for some j > 1. Then z; is
admissible and z;1; = 0 for every ¢ > 1.

Indeed, write x; = 2,1% for some h € N. Then h = ay + 1 for some ¢ € N by

Claim 1. Now, write ,,(x) = 0+ 2%% +0+ 22‘212 +.... Then:
1 by, bn 1
€ay1(T) = Eqpi(ta,(z)) =1 R 2—12 + 2—23 to.= e

with € € [0,3). Observe that ag — 1 € J; by Claim 7.13, hence z € Qy if
and only if ¢ = 0, i.e., z;1; = 0 for every ¢ > 1.

In the next lemma we give necessary condition on the first block of every

x € Q.

Lemma 7.21 Letx =x1+xo+.... If x € Q1, then x1 can have one of the
following three forms:

e 11 is an initial admissible block;
e 11 is a non-degenerate admissible block;

e 11 is a degenerate admissible block.

Proof. Suppose that x € @1, and write 1 = Qn% + Qn% 4+ ...+ 2% By
Claim 1, there exists £ € N such that m = ay + 1. If n = 0, then z; is an
initial admissible block. So assume n > 0. If n4+1 = m then z is degenerate
admissible. Otherwise, we can apply Claim 2 to get n = a4 + 1 for some
g € N such that g < £, therefore 21 = ¢4, is a non-degenerate admissible
block. QED

Corollary 7.22 Assume that an+1 — an > 1 for every n € N, and let x =
r1t+xzo+.... If x € Q1, then x1 is either initial admissible or non-degenerate
admissible.
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Proof. We only have to note that x; cannot be degenerate admissible.
Indeed, in this case Claim 3 applies and, in particular, o = 0 — a contra-
diction. QED

The counterpart of Corollary 7.22 for “internal” blocks is the following.

Lemma 7.23 Assume that any1 — an > 1 for every n € N, and let © =
1+ 22+ ... be in Q1. Consider a block x; with j > 2 such that x;41 # 0.
Then x; is a non-degenerate admissible block.

Proof. Write z; = 2,1% + Qn% +...+ 2% By Claim 1, there exists £ € N
such that m = ay+ 1. Now observe that x is non-degenerate, i.e., n+1 < m;
indeed, otherwise Claim 3 would imply z;11 = 0, a contradiction. So we
can apply Claim 2 to get n + 1 = a4 + 2 for some g € N, with g < £ since
n +1 < m. In other words, z = ¢, is a non-degenerate admissible block.
QED

If x € Q1 is a finite sum of blocks, then the last block admits two forms,
as the following lemma states.

Lemma 7.24 Lett > 1, and let x = x1 + ... + x¢ be in Q1. Then xy is
either degenerate admissible or non-degenerate admissible.

Proof. Write x; = Qn% + Qn% +...+ 2%1 According to Claim 1, m = ay+1
for some ¢ € N. Now, suppose that z; is degenerate, i.e., n +1 = m. Then
x¢ is degenerate admissible. If z; is non-degenerate (i.e., n + 1 < m), then
there exists g € N such that n +1 = a4 + 2 by Claim 2. Observe that g </
because n + 1 < m, hence x = ¢, is a non-degenerate admissible block.
QED

Now we give a complete characterization of those x € ()1 that are a sum
of infinitely many blocks.

Proposition 7.25 (Infinite sum of blocks) Assume that an11 —an > 1
for everyn € N, and let xt = x1 +x2+.... Then x € Q1 if and only if:

e 11 is either an initial admissible block or a non-degenerate admissible
block;

e x; is a non-degenerate admissible block, for every j > 2.

Proof. The necessity follows from Corollary 7.22 and Lemma 7.23. So let
us verify the sufficiency.

Suppose that x7 is an initial admissible block, and write x1 = i, for some
¢ € N. Moreover, write x; = ¢, f; for every j > 2. In order to show that
x € @1, fix k € J;. We have to show that & (z) € T4. According to Claim
713, k # {a¢,ae,,ap,, Qey, ag,, . ..} We distinguish two cases:
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(-) k “hits” a block, i.e., k < ag or ae; < k < ay, for some j > 1. In
this case & (z) contains the term 3 + 1 and eventually a sum e of a

geometric progression whose greatest term is é, so € € 0, i);

(-) k falls in a “gap”, i.e., ay < k < ae, or ay;, <k < ae,,, for some j > 1,
then & (x) is a sum of a geometric progression whose greatest term is
1, therefore & (z) € [0, §).

The situation is resumed as follows:

(2) =1 %4—&—1—& %fk<agoraej<k<afjforsomejZl; .
) if ag <k <ae orayp <k<ae,, for some j > 1;

with 6,¢ € [0, 7). Therefore, & (z) € Ty.

Now suppose that x; is a non-degenerate admissible block: z1 = ¢4 . Fix
k € Jp. Then again we distinguish whether k hits a block or k falls in a gap,
hence & (x) admits two possibilities:

fk(w)—l{ %-F%—l—e? ifag <k <aporae <k<ag,j=>1

4] itk <ag,ap <k <ae orap, <k <ae,,,j=>1;

with 6,e € [0, 1). Therefore, & (z) € T+. QED

If z € @ is formed by a finite number of blocks (i.e., z € Z(2%), see
Example 7.7), then x can be characterized as follows.

Proposition 7.26 (Finite sum of blocks) Assume that ap+1 — an > 1
for everyn € N, and let x = x1 + ...+ x¢. Then x € Q1 if and only if

e 11 is either an initial admissible block or a non-degenerate admissible
block;

e x; is a non-degenerate admissible block, for every j # 1,t;

e 1, is either a degenerate admissible block or a non-degenerate admis-
sible block.

Proof. The necessity follows from Corollary 7.22, Lemma 7.23 and Lemma
7.24. So let us show the sufficiency.

For every 1 < j <{, write zj = c¢; f;.

[case 1] Suppose that z; is an initial admissible block and that z; is a
degenerate admissible block. Write 1 = iy and oy = dp. Fix k € J;. If
k > ap+1 then & (x¢) = 0 by Corollary 7.10. So suppose that k < ap,—1. We

distinguish whether k hits a block, (i.e., k < ay, ae;, <k < af,...,a¢,_, <
k <ay_,)orkfallsin a gap (ie., ay < k < ey, af, < k < Gey,...,a5,_, <
k < ap). Then:

en(z) = %%—%—1—5 ifk<ap,a, <k<ap,... 0, <k<ayp ;
0 ifag <k <ae,ap <k<ae,...,af,_, <k <ap;
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with d,e € [0, 1), and &(z) € T4.

[case 2] Suppose that x; is an initial admissible block and that z; is a non-
degenerate block. Write 1 = iy and @y = ¢cpq. Fix k € J1. If bk > aq + 1
then & (z;) = 0 by Corollary 7.10. So suppose that k < ag — 1. Then:

exlz) = %—1—%4—5 itk <ap ae <k<agp,...,ap <k <ag;
o 1) ifag <k <ae,ap <k <aey,...,a5_, <k <ap;

with d,e € [0, 1), and &(z) € T4.

[case 3] Suppose that z; is a non-degenerate admissible block and that x; is
a degenerate admissible block. Write 1 = ¢4 and z; = dj,. Fix k € J;. If
k > ap + 1 then & (z;) = 0 by Corollary 7.10. So suppose that k < aj, — 1.
Then:

1,1 .
fk(ﬂ?) El { §+ 4 +57

if, respectively, ay < k < ay, ae, <k <ay,...,ae_, <k <ay_, or k <ayg,
ag <k <ae,...,ae,_, <k<ap, with 6, € [0,1). Hence, &(z) € T
[case 4] Suppose that z1 and z; are non-degenerate admissible blocks. Write
r1 = cgp and vy = cpq. Fix k€ Ji. If k > aq + 1 then §(x;) = 0 by
Corollary 7.10. So suppose that kK < aqy — 1. Then:

£u(z) =1 %—l—%—i—s ifag <k <ap ae, <k<ap,...,ap <k <ag;
o 6 itk <ag, ap <k <ae,...,a,, <k<ap;

with 6,e € [0,1), and &,(z) € T,. QED

7.2.2 Proofs of Theorem 7.2 and Theorem 7.3
Claim 7.27 Let x be a non-degenerate admissible block. Then x ¢ Q3.
Proof. Write x = ¢ ¢, for some g < £ € N. Then

1 1 9
35@9—1(33):3(23+24+...) =g T3

with £ € [0,4;). This implies that 3,(z) ¢ T4. Since ag — 1 € J3, we
conclude x ¢ Q3 by Claim 7.13. QED

Lemma 7.28 Letxz = x1+... be in Q1NQ3 such that 1 is not a degenerate
block. Then x € K,.
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Proof. According to Proposition 7.25 and Proposition 7.26, z; is either
initial admissible (non-degenerate by our hypothesis) or non-degenerate ad-
missible. Hence, one has either x1 =iy or 1 = ¢4 . In both cases,

38ap-1(x) = 38ay—1(ta,()) =1 3 (; + % + 5> = % + 3e,

with € € [0,%). Since ag — 1 € J3 (and = € Q3), ¢ = 0, ie., x = x7.

Then, according to Claim 7.27, x is necessarily an initial admissible block.
In particular, x € K,. QED

Now we are in position to prove Theorem 7.2.
Proof of Theorem 7.2. It is clear from (7.2) that
Kq € Qr(Ke) € Q1N Q3.
To prove that K, = Q7(K,) we need to verify that
K, 2 Q1NQs.

Fixx =214 ... € Q1N Q3. According to Proposition 7.25 and Proposition
7.26, 1 is either initial admissible (necessarily non-degenerate, by Claim 1)
or non-degenerate admissible. Hence we apply Lemma 7.28 to deduce that
x € K, and we are done.

Now we are going to prove Theorem 7.3. First consider the following
example.

Example 7.29 Ifag =0, then % + %ﬁ € Q1 for every n € N.

Proof. Fix k € J;. Then 21%,@ € 7Z since k # 0, and, hence, {(z) =
i + gertir =1 gt € T4 since k # a,. QED

We show now that if ag = 0, then % + 2%% € @, for every n € N and
every m € M, i.e., % + K, C Qr(K,). This will prove Theorem 7.3 stating
that Qr(K,) is precisely the union of K, and 5 + K.

Proof of Theorem 7.3. We have to prove that Qr(K,) = K,U(1/2+K,).

D: Clearly, K, C Q1(K,), so we only need to show that 1/2+K, C Qr(K,).
To this aim, fix x € 1/2 4+ K,. Since Qr(K,) is symmetric, we can assume
wlog that z = %—i— 2%% for some h € N (because %— 2%% = —(% + 2ah%))
According to (7.2), it suffices to show that m&(z) C T for every m&;, € K.
So, fix mé&, € K*, i.e., m € Jp,. Then k € J,,, € J; = N\ {a, | n € N} (see

Lemma 7.15 and Claim 7.13), in particular & > 0, so sior € Z and
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m m
mé () = 9Tk T antik

It remains to observe that W% € m&k(K,) C T4 by the choice of m&.

D: By (7.2), it suffices to prove that Q1 N Q3 € K, U (1/2 4+ K,). So, fix
0#x2€Q1Ns.

If z; is a non-degenerate block, then z € K, by Lemma 7.28. So, suppose
that z; is degenerate. Then, according to Proposition 7.25 and Proposition
7.26, x is initial admissible and degenerate, i.e. x1 = % If x = 21 then we
are clearly done. So we assume x = x1 + xo + ... with 9 # 0. We want
to show that xy is a degenerate block. Indeed, observe that x; = 2%% by
Claim 1. Now, suppose that xs is non-degenerate and write 2 = ¢y m =
Qan% + ..+ W#H Then a, +2 > a1 + 2 > ap + 3 by the lacunarity
assumption on a. This implies that b,, = b,,+1 = 0. Now,

38ay—1(2) = 38, -1(ta, () =

= 3¢ (...+O+0+2%1+2+...+2am1+1+...) = 2—1—35,

with € € [0, é), therefore 3¢ (x) ¢ T.. Since a,, — 1 € J3 by Claim 7.13, this
contradicts the fact that ¢ Q3.

So we have shown that z = % + z9 + ... with o degenerate. Now, from
Proposition 7.25 and Proposition 7.26 it is clear that x cannot be the sum
of more than two (necessarily degenerate) blocks, i.e. © = % + xo (with a9
degenerate). To conclude, just observe that xy is degenerate admissible by
Lemma 7.24.

7.3 Possible generalizations

We give some tips to indicate how one can extend our new technique of
factorization of the quasi-convex hull to more general contexts.

7.3.1 The general setting of factorization

Here is briefly the idea of factorization of the quasi-convex hull in the case
of a (necessarily torsion) locally finite precompact abelian group (G, 7) such
that the dual is (algebraically) Z (recall that, as far as the computation
of the quasi-convex hull is concerned, the assumption that the topology is
precompact is irrelevant; see Remark 5.4).

As every locally cyclic group, G is countable and has a sequence (g;,) of
generators such that (g,) < (g, + 1) for all n € N. For brevity, call G,, the
finite cyclic group (gn), so that

Go<Gi<...<Gp<... (7.3)
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and this chain of subgroups of G has as union G. For n € N:

e let ¢, be the positive generator of G+ < Z = G, and

e put g, := ’Gn+1’/|Gn|-

Then (¢,) = Gy < Z and (), Gi- = 0. Therefore, for every non-zero n € Z
there exists a uniquely determined & such that n € ((x) \ (Cx+1). Therefore,
n = m(, and g /|m, otherwise n € ((x+1), a contradiction. Now let
A ={{; | k € N}. This gives a partition

A= J{ma [ m far}. (7.4)
k=0

In case all g coincide with some ¢ (i.e., (, is a geometric progression with
ratio (p), then (7.4) simplifies to

A= U{mck |m Jq} = [ mA. (7.5)
mld

In case ¢ = p is prime, (7.5) can be written also as
A= ] mA (7.6)
(m,p)=1

The partition (7.6) (or, more generally, (7.3)) allows for a partition of any
polar set K”, for a subset K of G, as K” = {J,, ;=1 K” NmA. In order to
ease notation, we introduce the set J,, := {k € N | m(, € K*}. Clearly, this
is the inverse image of the part K” NmA of the polar K* under the bijection
N — mA given by k +— m(j. At this point we define

Qm = (K" NmA)* = {m. | m¢, € K*}°.

It turns out that for certain m one has J,, = N (this occurs precisely when
K* C mA). Then @, = (mA). Note that this set does not depend
on K at all. The sets of the form (mA)? are certainly quasi-convex and
N, {(mA)? | K* C mA} always contains the quasi-convex hull Qg (K) of K.

7.3.2 The triadic case

We give without proof the following result, which is clearly the counterpart
of Theorem 7.2 in the triadic case.

Theorem 7.30 Let a = (ay), be a sequence of positive integers, and sup-
pose that any+1 — an > 2 for every n € N. Put

Ka3:={0}u{x37@*) | neN} CT.

Then K43 is quasi-convez in T.
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Note that the lacunarity condition a,11 —a, > 2 for every n € N cannot
be omitted neither in Theorem 7.30. In fact, if a,, = n for every n € N, then
we obtain a sequence which behaves in the opposite way: see Example 5.27.

Consider the characters n, € T defined by  — 3.z for all z € T,
for every nonnegative integer k. Since every integer n # 0 can be written
uniquely as m - 3"3(" where v3(n) is the biggest nonnegative integer k such
that 3%|n and m > 1 has the form m = 3k =+ 1, the characters mé&;, describe
all non-trivial characters of T. Hence

™= |J #+mr (7.7)
me3Z+1

where T' := {3* | k € N} (compare the previous formula with (7.1)).

It is clear that we can consider the counterpart of the sets J;’s and Q;’s;
use the notation J; (for i € 3Z £ 1) and Q;.
In the triadic case it is impossible to obtain the quasi-convex hull of K, 3
as a finite intersection of sets of the form Q; (like in the proof of Theorem
7.2). In any case, it is possible to have a “blockwise” description of Q; and
Q1 N Q9 similarly to what we did in § 7.2.1. The proof of Theorem 7.30 is
based on a useful technique that produces characters from the polar of K, 3
necessary to eliminate specific elements z € Q1 N Q2 that do not belong to

K, 3.
7.4 Applications
Let 0 € K CT. For every m > 1, put
Wy :=W(K,Ty,) ={2€Z|2(K) CTp}.
Remark 7.31 Observe that:
W1 =K (h Wh)r = K dW,=(K+...+ K)S;
e W, (hence, (W7) Qr(K)) an (K+...+ K)

o Wyhi1 CW,, for every n > 1.

It turns out that {W,, | m > 1} is a base of neighborhood at 0 of a
metrizable group topology on Z. Denote this topology by v

Remark 7.32 The following holds:
1. If 0 € K C K/, then v < vg-.

2. For every 0 € K C T, vk = 7g.(k)- In particular, we can restrict the
study of the topologies vx to those subsets of T that are quasi-convex.

Proposition 7.33 For every 0 € K C T, we have:
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(1) If either K is infinite or K ¢ Q/Z (i.e., K contains an irrational
a € T), then vx is Hausdorff;

(2) vk is locally quasi-convex.

Proof. (1) It suffices to show that [, W,, = {0}. So, fix z € ), W; then
z(K) C Ty, for every m. Since (,, Ty, = {0}, 2(K) = {0}, and this yields
z = 0 by our hypothesis on K.

(2) It follows from the definition of the W,,,’s, since every polar set is quasi-
convex. QED

It is easy to produce examples in which v is discrete.
Example 7.34 If K =T or K =Ty, for some m > 1, then vx is discrete.

Proof. If K = T, then clearly W,, = {0} for every m > 1. In the case
K = T,,, for some fixed m > 1, observe that, for example, Ws,, = {0}.
QED

The conditions on K in the previous example are not necessary, as we show
below.

Example 7.35 We have that:

(1) If K = K,, where a is the sequence defined by a, = n for every n > 0
(see also Example 5.24), then v is discrete.

(2) If K = K,, where a is the sequence defined by a, = 2n for everyn > 0,
then vi s discrete.

Proof. (1) It follows from the fact that W; = K", and this coincides with
{0} according to Claim 5.25.

(2) Observe that K + K D {0} U {£2=(*D | n > 0}, therefore Wy C
({0} U {£2=*D | n > 0})” = {0}, according to Claim 5.25. QED

The previous example can be generalized as follows:

Proposition 7.36 Let a be a sequence of nonnegative integers such that a
contains an arithmetic progression. Then vk, is discrete.

Proof. Put K := K,. By our hypothesis on a, it is possible to find m > 1
such that K +...+ K D {0} U {#2="*D | n > 0}, s0 (K +...+ K)* C
— ——

m times m times

({0} U {£2=*tD | n > 0})> = {0} by Claim 5.25. QED

On the other hand, a weak hypothesis on the asymptotic behavior of the
sequence g guarantees that VK, 18 not discrete.
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Notation 7.37 From now on, a will be a sequence (ay,), of positive integers
such that apt1—ayn /00, K := K4 and G := (Z,vk). Put also ky, := 2antl

Proposition 7.38 The sequence (kp)nen converges to 0 in G.

Proof. Fix m > 1. By our assumption on ¢ it is possible to find n,, such
that a,11 —ap, > m+ 1 for every n > ny,. Now, we claim that k; € Wy, for
every j > np,. Indeed, fix j > n,, and x = k% € K. Then

2aj+1 1

kjm = 2as+1 ~ 9as—a; "

1
2aj+17aj —

Now, if j > s, then, clearly, kjo =1 0. If j < s, then kjz <
l <L QED

7o T S I

So, G possesses a non-trivial convergent sequence, hence:
Corollary 7.39 The group G is not discrete.

Our aim now is to characterize the converging sequences in vx. We
first show that every yx-converging sequence is also mo-converging, where 7o
denotes the 2-adic topology on Z.

Lemma 7.40 Let (¢;); be a sequence in Z. Then:
U — 0 wrt yg = £; — 0 w.r.t 7.

In particular, vk is finer then the 2-adic topology o and, hence, G D
7(2%°).

Proof. Let us suppose that ¢; — 0 in g, i.e.,
for every m there exists jo s.t. £;(K) C Ty, V j > Jjo. (7.8)

We need to show that for every m > 1 there exists jo such that k,,|¢; for
every j > jo. So, fix m € N. By (7.8), we can find a jo such that ¢;(K) € Ty, ,
for every j > jo. In particular, this implies that

b ook 4

ok

S e,
o ko o S0

Since, obviously, km,f—:n =, 0, this means that the finite cyclic group <,f—il>
(of order k) is contained in T, and this is possible only if If—; =10, ie.,
km|l; and we are done. QED

Now we give a characterization of the converging sequences in G. Ac-
cording to Lemma 7.40, every ~,-converging sequence (¢;); is necessarily
converging w.r.t. . So, fix a sequence (¢;); in G such that ¢; — 0 w.r.t.
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75. Fix n € N and let j, be the smallest index such that k,|¢; for every
J > jn. Observe that (j,), is an increasing sequence. For every n > 0, put

M _{ {jnajn+17"‘7jn+1_l} ifjn<jn+1

e {]n} if Jn = Jn+1
and
My :={1,2,...,51 —1}.
Put also
Sp = max b eT.
JEMy knt1

Note that the family {M,, | n € N} covers the set of indices {j € N | j > 1}.

Theorem 7.41 For {; — 0 in 72, the following are equivalent:
(1) Ej — 0 n G,'
(2) sp, — 0 in T.

Proof. (1) = (2): Let us suppose that s, - 0, and let us show that
Kj -+ 0, i.e.

there exists m such that V jo 37 > jo with £;(K) € T, (7.9)

By our assumption on s,, we can find m > 0 such that s, > ﬁ for infinitely
many n’s. So, given jy, we can pzick n such that s, > ﬁ and also M,, 3 j
for some j > jg. In particular, ﬁ ¢ T,, with j > jo and (7.9) holds.

(2)<=(1): Now assume s, — 0 and let us show that (7.8) holds. Fix

m € N. By our hypothesis, we can find an index ng such that

1
< 7.10
Sn > am ( )
for every n > ng. Now, put jo := max M,,, and fix /; with 7 > jo. So,
¢; € M, for some n > ng. Then

m
gjm € tjm - Tr,, -1,

and this is contained, according to (7.10), into mT,, = Ty. Therefore,

¢;(K) C T,, and we are done. QED

Example 7.42 In Proposition 7.38 we proved that for £, := ky, £, — 0 in

G. Let us see that s, — 0.

First observe that jp, is simply equal to n, so M, = {n} for every n. Now,
ey, 20nt1 1

kn—f—l - 2an41+1 - 2ant1—an

Sp —

for every n, therefore s, — 0 since we have assumed that ap+1 — ap, / 00.
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The last result of this section states that vx is not precompact whenever
K is an infinite subset of T. Observe that it was wrongly affirmed in [17,
I1, Exercise 2, page 24] that every non-discrete group topology on Z must
be totally bounded. The author is obliged to V. Tarieladze for letting him
know the historical background of this fact.

Proposition 7.43 For every infinite 0 € K C T, v is not precompact.

Proof. Put G := (Z,vk). Fix K C T. Since K* € Ny(G), it is well
known that K™ is compact in G (see also Fact 8.15). Now, suppose that
G is precompact. Since G is also metrizable, we have that G = (G)" by
[5, 22], where G denotes the completion of G; consequently, G" is discrete.
Therefore, K™ is necessarily finite. The contradiction follows from the fact

that K™ contains the infinite set K. QED

Remark 7.44 It is not hard to prove that |(Z,vx)"| = ¢ (a proof is given
in [7]). In particular, this shows that (Z,yx)" # (Z,72)", where T2 denotes
the 2-adic topology.

7.5 Additional remarks and open problems

Remark 7.45 We observe that if a = (ay), is a sequence of positive inte-
gers such that a,4+1—a, > 1 for every n, then every subsequence of a verifies
the same condition. Therefore, Theorem 7.2 implies that every symmetric
closed subset of K, that contains Or is still quasi-convex in T, i.e., K, is
hereditarily quasi-convex in T.

We have already commented at the beginning of this chapter that the
lacunarity condition a,4+1 — a, > 1 in Theorem 7.2 appears to be necessary.
Actually one can conjecture that it cannot be essentially improved in the
following sense:

Conjecture 7.46 Let a = (ay) be such that ay > 0, and suppose that a
contains (infinitely many) adjacent pairs (ap,an+y1) (i-€., Gpt1 = ap + 1),
then K, is not quasi-convex in T.

The version in brackets admits possibly a positive answer, but maybe even
the presence of a single adjacent pair is enough to ruin quasi-convexity.

In Theorem 7.30 we suppose ag > 0 (i.e., + ¢ Kg3). We conjecture
that, analogously to the dyadic case, if we add the term % to Kg, then the
quasi-convexity of K, is lost.
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Conjecture 7.47 Let a = (an)n be a sequence of integers such that ag =0
and an41 — an > 2 for every n € N. Then the quasi-convez hull Qr(Ky3) of
K, 3 is given by:

QT(K%:”) = Kq3U (1/3+ Kg,i’)) U(2/3 + KQ,S)-
Towards another generalization of Theorem 7.2, we propose:

Problem 7.48 Characterize for which sequences of natural numbers (cp)n,
such that x, = 5% — 0 in T the set {0} U {z, | n € N} is quasi-conver.

Problem 7.49 Characterize for which sequences x,, — 0 of T the set {0} U
{xz, | n € N} is quasi-convex in T.

Moreover,

Question 7.50 Is it true that every symmetric sequence x,, — 0 in T (or at
least in Z(2°°)) possesses a subsequence xy, such that K :={0}U{zy, |n €
N} is quasi-convex?

A positive answer to the weaker version in brackets of the previous question
would imply that the 2-adic topology T on Z is Mackey (in the sense of
Definition 8.6). Indeed, since locally quasi-convex compatible topologies T
on (Z, ) can be obtained as topologies of uniform convergence on the sets
of a family & of quasi-convex compact subsets of the dual (see § 8.1.1), for
any non-precompact such topology 7 on Z the family & will contain at least
one infinite quasi-convex compact set C. Since the dual of (Z, 12) is Z(2°°)
equipped with the topology induced by T, one can use the positive answer to
Questions 7.50 to claim that C' will certainly contain a sequence converging
to 0 that forms, along with 0, a quasi-convex subset K of C'. Now, yx < T,
so 7 cannot be compatible with 7 by Remark 7.44. Thus, m is Mackey.

In Proposition 7.36 we showed a sufficient condition on @ in order to
get vk, discrete: namely, a contains an arithmetic progression. On the
other hand, in Corollary 7.39 we have shown that if a = (a,), is such that
Gn41 — apn /" 00, then vg, is not discrete. Clearly, there is a gap between
these two situations. So we propose the following

Problem 7.51 Give a complete description of the discreteness of vk, de-
pending on a. For example, is the condition any1 — an /" 00 also necessary
to get vk, discrete?
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Chapter 8

The Mackey topology for
abelian groups

8.1 The definition of the Mackey topology

We recall here very briefly the definition of the Mackey topology of a locally
convex vector space and the most substantial result, the Mackey-Arens The-
orem, in order to have a guiding line for similar notions in topological groups.
We first fix the notation and facts on locally convex spaces needed for this
aim.

For a topological vector space E, denote by E* the vector space of all
continuous linear forms on FE, also called the dual space of E. We denote
by o(E, E*) the weak topology on E, that is, the smallest topology on E
which makes continuous the elements of £*. Dually, the topology denoted
by o(E*, FE) in E* is the weakest topology that makes continuous the linear
forms obtained by evaluation on points of F, provided E is identified with
a subspace of E**.

The Mackey topology for a locally convex space E is the topology of
uniform convergence on the family & of all the o(E*, E)-compact convex
and circled! subsets of E*. It is usually denoted by 7(E, E*). The Mackey-
Arens Theorem states that (see, for example, [67, Chapter III, 3.2]) if E is
a locally convex space, then:

1) (E,7(E,E*))* = E*, and

2) The topology T(E, E*) is the finest among all the locally convex topolo-
gies on B whose dual is again E*.

We prefer the following (equivalent) formulation of the Mackey-Arens
Theorem which fits better our purpose:

LGiven a vector space E, a subset C' C F is called circled if \C' C C for every X such
that [A| <1
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Theorem 8.1 Let E be a locally convex space. Then:

1) there exists a topology T(E, E*) which is the finest among all the locally
convex topologies on E whose dual is again E*;

2) 7(E, E*) is characterized as the topology of uniform convergence on
the family & of all the o(E*, E)-compact convezx and circled subsets of
E*.

The Mackey topology for abelian groups in its full generality was intro-
duced in [23]. Here we obtain several advances. First we give the definitions
and needed results of [23] which support our work.

The notion of linear system in the context of vector spaces admits an
analogue for groups, namely the dual pairing of groups which is defined as
follows. If G is an abelian group and H < Hom(G,T), we will say that
(G, H) is a dual pair of groups (or dual pairing). It is obvious that G always
separates the points of H. If H separates the points of G, then we say that
the dual pairing is separating.

Example 8.2 If G is a topological group, then there exists a standard dual
pairing for G, namely (G,G"). Clearly, G is MAP if and only if (G,G") is

a separating dual pairing.

Given a dual pairing (G, H), (G, H) denotes the initial topology on G
with respect to H and o(H, G) denotes the topology on G” of pointwise con-
vergence on the elements of G. Clearly, (G, (G, G")) has the same meaning
as GT, but in the context of dualities this notation is more appropriated.
Observe that o(G, H) is Hausdorff whenever (G, H) is a separating pair.

Remark 8.3 For a dual pairing (G, H), it has been proved in [27] that
(G,0(G,H))" = H (see also [23, Theorem 3.7]). In particular, every dual
pairing (G, H) can be considered as a pair of the form (G,G"): in fact, one
can take the topological group G = (G,0(G, H)) and G" = (G,0o(G, H))" =
H.

For this reason we will always consider dual pairings of the form (G, G").

Definition 8.4 Let G be a topological group. A group topology v on G is
said to be compatible for G or with (G, G") if (G,v)" = G".

Clearly, for a topological group G we have that o(G,G") is compatible for
G. Furthermore, o(G,G") is the minimum of the set of all compatible
topologies for G. As we will see later, there are some instances for which
o(G,G") is the only compatible topology (see § 8.3).

The major open question faced in this chapter is whether, for a MAP
group (i, there exists a maximum in the set of all locally quasi-convex com-
patible topologies for G. We formulate it as follows:
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Problem 8.5 ([23]) For a MAP group G, is there a mazimum element in
the family of all the topologies that are locally quasi-convex and compatible
for G?

In analogy with the vector space theory, the maximum element should be
called the Mackey topology for GG. Formally, let us define:

Definition 8.6 Let G be a MAP topological group. The Mackey topology
7(G,G") s the finest locally quasi-convex topology on G compatible with
(G,G"), provided it exists.

If the Mackey topology of G exists, then we will say that G is pre-Mackey
(observe that this notion is different from the definition of “pre-Mackey
group” given in [23]).

Let us show that we can restrict the study of the Mackey topology to
the class of locally quasi-convex groups. Given a MAP group G, we consider
on G the weak topology 7r,gc with respect to the class LQC (i.e., it is the
topology induced on G by the family of all continuous homomorphisms from
G to all locally quasi-convex groups). Observe that such a topology exists
since LQC is closed under products and subgroups, and 77g¢ is the finest
locally quasi-convex topology on G which is coarser then the original one
(see § 1.3.1). Obviously, a topology 7 on G is locally quasi-convex if and
only if 7 = 11 0c.

Remark 8.7 Let (G, 7) be a MAP group. Since (G, G") is locally quasi-
convex, o(G,G") < 1rgoc < 7. Consequently, T7gc is compatible with
(G,G").

Denote (G, mr.gc) by Grgc. What is interesting now is that, by means
of the previous remark, G is pre-Mackey if and only if G ¢ is pre-Mackey,
and 7(G,G") coincides with 7(Grgc, (Groc)”). For this reason we can
restrict to the class of locally quasi-convex groups; in particular, Problem
8.5 can be reformulated as follows:

Problem 8.8 Is it true that every locally quasi-convex group is pre-Mackey?

In the next definition we call a locally quasi-convex group G a Mackey
group if it carries the Mackey topology:

Definition 8.9 A locally quasi-convex group (G,v) is a Mackey group if v
coincides with the Mackey topology 7(G,G").

Clearly, a Mackey group (G,v) is characterized by the property that if 7
is another locally quasi-convex topology on G with the same dual group as
(G,v), then 7 < v.
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Observe that the definition of (pre-)Mackey group is inspired by 1) of

Theorem 8.1. However, the explicit definition given in item 2) of the same
theorem by means of uniform convergence on a family of subsets of the dual
could also be imitated for groups. We deal with both these points of view
in the next section.
We anticipate here that in § 8.2 we will present a class of groups (namely,
the class of Arens groups) for which a precise counterpart of Theorem 8.1
holds (see Remark 8.26 and Definition 8.27). Nevertheless, we will show in
Theorem 8.61 that there are groups that admit the Mackey topology but
the counterpart of item 2) of Theorem 8.1 fails. This permits to claim that
the Mackey-Arens Theorem 8.1 cannot be completely imitated in the class
of topological groups. Essentially, this is due to the fact that the o(G", G)-
compact and quasi-convex subsets of G" do not play the same role as the
o(E*, E)-compact convex circled subsets of E*.

8.1.1 The topologies 7,(G,G") and 7,.(G,G")

The topologies mentioned in the title were introduced in [23]. They are the
natural candidates to be the Mackey topology for a group G.

Definition 8.10 ([23]) The topology 74(G,G") is the least upper bound of
the family of all locally quasi-convex topologies on G compatible with (G, G").

So, if (G, 7) il a locally quasi-convex group, then 7 < 7,(G,G").
By the definition of supremum topology, (G, 74(G, G")) can be embedded
in a product of locally quasi-convex groups, as we state now:

Fact 8.11 If {r; | i € I} denotes the family of all locally quasi-convex
topologies on a group G that are compatible with the dual pairing (G,G"),
then (G, 74(G,G")) — [l;c;(G,7i) by means of the diagonal mapping.

This yields the following:

Corollary 8.12 ([23]) For every topological group G, 74(G,G") is a locally
quasi-conver topology.

It is clear that if 74(G, G") is compatible with (G, G"), then 74(G,G") =
7(G,G"). More precisely:

Theorem 8.13 ([23]) A topological group G is pre-Mackey if and only if
74(G, G") is a compatible topology for G. In such case, the Mackey topology
7(G,G") coincides with 74(G, G").

We now deal with the possibility of describing the Mackey topology of a
locally quasi-convex group G by uniform convergence on a certain family of
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subsets of the dual G, as done in the context of locally convex spaces (see
Theorem 8.1). To this aim, it will be convenient to recall the definition of
equicontinuous subset of the dual group G”. Observe that this notion comes
from the context of uniform spaces, but for homomorphisms of topological
groups it can be formulated as follows:

Definition 8.14 Let G be a topological group. A subset M C G is equicon-
tinuous if there exists V € Ng(0) such that M C V®.

Note that U” is equicontinuous for all U € Ng(0). Moreover, for future
purpose let us fix the following:

Fact 8.15 The following properties hold:

1) For every U € Ng(0), U” is o(G", G)-compact. In particular, every
equicontinuous subset M C G" is relatively o(G", G)-compact.

2) If M C G" is equicontinuous, o(G",G) M= Teo M-

Consequently, for every U € Ng(0), U™ is Teo-compact.

Given a topological group G, if & is a family of non-empty subsets
of G", then we can consider the G-topology 76(G,G") on G, namely the
topology of uniform convergence on the sets A € &. For instance, the
smallest compatible topology for GG is given by uniform convergence on the
family of all finite subsets of G*:

Example 8.16 For a topological group G, o(G,G") = T5ny, where F(G")
denotes the family of all the finite subsets of G™.

It follows from the definition that 7¢(G,G") is a locally quasi-convex
topology on G, for every family &. The converse also holds, that is, any
locally quasi-convex topology on a group G is an &-topology in G for a
certain family & (see Corollary 8.22); this will be deduced from the fact
that the topology Trgc is an G-topology.

Fact 8.17 Given two families G1, &9 we have:
[ ’Lf 61 - 62, then 76, (G, G/\) < T@Z(G, G/\),‘
e if S is cofinal in Sy, then 76,(G,G") < 76, (G,G").

Remark 8.18 It has been observed in [23] that if & verifies the following
properties:

a) for By, By € G, there exists Bz € & such that By U By C Bs;
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b) for B € & and n € N, there exists A € &, such that B™ = {y™;y €
B} C A;

then {BY| B € &} is a base of neighborhoods of O¢ in 7¢(G, G").
A family & that verifies a) and b) is called well-directed.

We are interested in some concrete G-topologies, namely, those given by
the following families:

Notation 8.19 For a locally quasi-convex group G':
e &, denotes the family of all the equicontinuous subsets of G";

e G, denotes the family of all (G, G)-compact quasi-convez subsets

of GM.
Moreover, put &g := G, N GSyc.
Clearly, 69 C &.. Moreover:

Lemma 8.20 ([23]) The family Sq is a cofinal subfamily of &.. Conse-
quently, 7s,(G,G") = 16,(G,G").

Proof. Fix an equicontinuous subset M C G”. Then there exists V €
Ng(0) such that M C V>. Now, V> C G" is equicontinuous and quasi-
convex in o(G", G). Moreover, V" is o(G", G)-compact by Fact 8.15 1).
The last assertion follows from Fact 8.17. QED

The topology 7 := 7e, (G, G") is a locally quasi-convex compatible topology
for (G, 7) which is coarser than 7 and it is called the locally quasi-convex
modification of T. It turns out that 7, is the finest among all locally quasi-
convex compatible topologies coarser than 7, so it coincides with 77,gc. For
historical reasons, we maintain the notation ..

From our considerations on the topology 77.9c, we deduce:

Proposition 8.21 Let (G, T) be a topological group. Then:

(1) o(G,G") < 7. < 7. In particular, T, is a compatible topology for
(G,7);

(2) (G,7) is locally quasi-convex if and only if T = Te;

Corollary 8.22 Let (G, 1) be a locally quasi-convex group. Then T is the
topology of uniform convergence on the equicontinuous subsets of G".

Proof. Just observe that 7 = 7. by Proposition 8.21 (2) and use the defi-
nition of 7.. QED

Now we deal with the topology 74.(G, G").
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Lemma 8.23 For every topological group (G,T):
1) Te < ch(G7 G/\);'

2) 14(G,G") is finer than any other locally quasi-convex compatible to-
pology.

Proof. Item 1) follows from 7.2 Fact 8.17 and Lemma 8.20. For 2), take a
locally quasi-convex compatible topology v on G. Then v = v, by Corollary
8.22. Now apply 1). QED

The picture is as follows (see also [23, Proposition 3.13]):

Proposition 8.24 ([23]) Let (G,7) be a locally quasi-convex topological
group. Then:

o(G,G") <1 < 15(G,G") < 74e(G, GM).

Proof. The fact that o(G,G") < 7 < 7,(G,G") is clear. To prove that
74(G, G") < 74(G, G"), use Lemma 8.23 2) and recall that 7,(G, G") is the
least upper bound of the family of all locally quasi-convex topologies on G
compatible with (G,G"). QED

In particular, if 7,.(G,G") is compatible, then 7,(G, G") is compatible as
well and these two topologies coincide. More precisely,

Corollary 8.25 If 7,.(G,G") is compatible with (G,G"), then the Mackey
topology of G exists and it coincides with 74.(G,G").

Proof. Since 7,(G,G") is compatible and locally quasi-convex, clearly
T4e(G, G") < 14(G, G™). Hence 74.(G,G") = 74(G, G"), according to Propo-
sition 8.24. In particular, 7,(G, G") is compatible and, hence, 7,(G,G") =
7(G,G") by Theorem 8.13. QED

In § 8.3.1 we will show that the converse implication does not hold in general.
Indeed, we prove in Theorem 8.61 the existence of a class of locally quasi-
convex groups G such that every G is a Mackey group but 74.(G, G") is not
compatible for every G.

By means of Corollary 8.25, it is important to note that:

Remark 8.26 The class of those locally quasi-convex groups G such that
7q4c(G, G) is compatible is precisely the class of groups for which the coun-
terpart of Theorem 8.1 holds.

Since Arens was the first who described the Mackey topology as an &-
topology, we give the following definition.

Definition 8.27 A locally quasi-convex group G such that 7,(G,G") is
compatible with (G, G") is said to be an Arens group.
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Observe that the property “being an Arens group” is actually a property
of the dual pair (G,G") in the following sense. Given (G,v), consider the
family {7; | i € I} of all the topologies that are compatible with (G,G").
Then (G, v) is Arens if and only if (G, 7;) is Arens for every i € I.

Corollary 8.25 states that if G is an Arens group, then 7,.(G,G") is its
Mackey topology. In particular,

Remark 8.28 Every Arens group is pre-Mackey.

If the topology 74.(G, G") coincides with the original topology of G, then
we say that G is strongly Mackey:

Definition 8.29 A locally quasi-convez group (G, T) is strongly Mackey if
Tqe(G,G") = 7.

By means of Corollary 8.25, we easily deduce the following:

Remark 8.30 A group G is strongly Mackey if and only if it is Mackey and
Arens.

Given a MAP group, so far we have the following implications:

Strongly Mackey

T

Arens

Mackey

T

pre-Mackey

Both the implications starting from “Strongly Mackey” cannot be inverted:
indeed, there are plenty of Arens groups that are not Mackey (hence, nor
strongly Mackey). For instance, consider a group of the form G#. Then
T4c(G, G™) is discrete (since G" is compact, so it is an element of &4 which
polar is trivial) and, hence, it is compatible with (G,G"). So, 74.(G,G") is
the Mackey topology by Corollary 8.25, but it does not coincide with the
topology of G#.
In § 8.3.1 we present an example of a precompact group G in which

o(G,G") = 74(G, G") =7(G,G") < Tqe(G, G"), (8.1)

and 7,.(G,G") is discrete and not compatible with (G,G") (see Theorem
8.61). In particular, this shows that a Mackey group need not be Arens.
According to Theorem 8.13, the first equality in (8.1) for an arbitrary MAP
group G imposes that G is pre-Mackey. Moreover, if GG is locally quasi-
convex, then G is necessarily precompact.
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8.2 The class of g-barrelled groups

The notion of g-barrelled group was introduced in [23]. Our interest on
this class of groups stems from the fact that every locally quasi-convex g-
barrelled group is strongly Mackey (see Theorem 8.34). However, they do
not exhaust the class. Indeed, in Theorem 8.62 we deal with a class of
strongly Mackey groups which are not g-barrelled.

Definition 8.31 ([23]) A topological group (G,T) is g-barrelled if every
o(G", G)-compact subset of G" is equicontinuous.

In other words, for a g-barrelled group we have that &,. = &g. Then,
Lemma 8.20 immediately yields

Proposition 8.32 If G is g-barrelled, then 74.(G,G") = .
As a consequence of Proposition 8.32 and Proposition 8.21 (1), we obtain

Corollary 8.33 FEwvery locally quasi-convexr g-barrelled group is an Arens
group.

In the next result we show a stronger property.

Theorem 8.34 If G is a locally quasi-convex g-barrelled group, then G is
strongly Mackey.

Proof. Let v denote the topology of G. Since (G, v) is locally quasi-convex,

v = v, by Proposition 8.21 (2). Hence, v = 7,.(G,G") by Proposition 8.32.
QED

Let us update our diagram of implications:

LQC g-barrelled

Strongly Mackey

T

Arens

Mackey

S

pre-Mackey
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As a matter of fact, the implication “strongly Mackey — g-barrelled”
does not hold in general. In order to give an example (see Theorem 8.62),
we need to develop some additional properties of locally quasi-convex g-
barrelled groups.

Let us prove that every locally quasi-convex g-barrelled group is a dual
group, namely:

Proposition 8.35 Let G be a locally quasi-convex g-barrelled group. Then
G is topologically isomorphic to (G",a(G",G))".

Proof. Put X := (G",0(G",G)). Since the continuous characters on X
are evaluations on points of G, X’ can be algebraically identified with G.
In order to check that this identification is also topological, we must see
that any zero-neighborhood in G corresponds to a zero-neighborhood in the
compact open topology 7., in X and conversely.

Fix a quasi-convex V € Ng(0). Then by Fact 8.15 1), V* is a o(G", G)-
compact subset of G, and so (V*)" is a neighborhood of zero in the compact
open topology of X”*. Observe now that by the identification above men-
tioned, (V*)> = (V*)! = V. Thus, V € Nxn(0).

Conversely, if W C X" is a 7.,-neighborhood of zero, then W O L” for some
o(G", G)-compact subset L of G". Since G is g-barrelled, L is equicontinu-
ous and this means that L9 is a neighborhood of zero in the original topology
of G. Observe now that L”> and L? may be identified (since X" = G), there-
fore W is a neighborhood of zero in the original topology of G. QED

Corollary 8.36 ([6], Proposition 5.3) If G is a countable locally quasi-
convex g-barrelled group, then G is discrete.

Proof. Put X := (G",0(G",G)). Clearly, X < T¢ and hence X is
metrizable (since G'is countable). Let X denote the Bohr-completion of X.
Then X and X have the same dual group by [5, 22], therefore X” is discrete.
By Proposition 8.35, G is discrete as well. QED

The following result collects all the subclasses of g-barrelled groups
known so far:

Theorem 8.37 ([23]) The class of g-barrelled groups includes:
e all metrizable hereditarily Baire groups;
e all separable Baire groups;

e all Cech-complete groups.

Corollary 8.38 Fvery complete metrizable group and every locally compact
(in particular, compact) group is g-barrelled.
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Observe that all the groups that appear in the previous theorem are uncount-
able. This property may be necessary for every g-barrelled group. Indeed,
in Corollary 8.36 we showed that if G is countable and locally quasi-convex,
then it is not g-barrelled unless it is discrete. See also Question 8.83.

One of the main results of this section consists in showing the existence
of a new class of g-barrelled groups (see Remark 8.48). Before proving this
result, let us point out a big class of abelian groups which are not g-barrelled.
To this aim, consider the following proposition.

Lemma 8.39 If G is a topological locally quasi-convexr group such that
(G,0(G,G")) is g-barrelled, then G = (G,0(G,G")) is precompact.

Proof. It is clear since (G,o(G,G")) is Mackey by Theorem 8.34 and
Remark 8.30, hence o(G,G") is the only locally quasi-convex compatible
topology on G. QED

In particular, for a topological locally quasi-convex group G which is not pre-
compact, (G,o(G,G")) is not g-barrelled. Nevertheless, there are examples
of (necessarily precompact) groups such that (G,o(G,G")) is g-barrelled
(for instance, every compact group; see Corollary 8.38). In the next result
we give a characterization of this fact by means of a simple condition on the
o(G", G)-compact subsets of G".

Theorem 8.40 Let (G, T) be a topological abelian group. Then the following
assertions are equivalent:

1) Any o(G", G)-compact subset of G" is finite;

2) The group (G,o(G,G")) is g-barrelled.

Proof. 1) = 2): This is clear since every finite subsets of G" is equicon-
tinuous with respect to any group topology of G, in particular with respect
to o(G, GM).

2) = 1): Take any K C G" which is o(G”", G)-compact. By 2) there is
a zero-neighborhood U in (G, o(G,G")) such that U C K<. In particular,
there exists a finite subset ' C G” such that F'* C U (according to Example
8.16). Thus, F* C K<, and this implies that (K<)> C (F9)*. Since G" is
MAP, we deduce from Theorem 0.4 (2) that (F'¥)> is finite and, consequently,
K C (K9)> C (F9)" is also finite. QED

We introduce now a class of groups which happens to be precompact and
g-barrelled, therefore satisfying 2) (and, equivalently, 1)) of Theorem 8.40.

Definition 8.41 An abelian topological group G is w-bounded if every coun-
table subset of G is contained in a compact subgroup of G.
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Clearly, every compact group is w-bounded. If IC, €2 and CK denote respec-
tively the classes of compact, w-bounded and countably compact abelian
groups, the following relationships hold among these classes:

KcQcckKk

Fact 8.42 a) Every w-bounded group is pseudocompact and, hence, pre-
compact;

b) any separable w-bounded topological group must be compact.
Let us give an example of a group which is w-bounded non-compact.

Example 8.43 Let {(K;,7;) | i € I} be a family of compact groups with
[I| > ¢, and consider the X-product ¥ := {x € [[;c; Ki : | supp x| < w}
equipped with the topology induced from [[;c; Ki. Then ¥ is w-bounded and
non-compact.

The main result about w-bounded groups is the following one.
Theorem 8.44 If G is w-bounded, then G is g-barrelled.

The proof of Theorem 8.44 consists on several steps. So let us consider the
following auxiliary results.

Lemma 8.45 Let G be a MAP topological group and let N < G be a com-
pact subgroup. Then the Bohr topology of the quotient group G”/N+* is
precisely the quotient topology of (G, o(G",G)) with respect to N+.

Proof. For brevity, let us write X := G" and X, := (X,0(X,G)).

Since N is compact, N+ is open in X and (X/N+)" = (N+)+ ([12]), where
the second annihilator is taken in G". Let us see now that (N+)* may
be identified with N. Denote by ¢ : N — G the inclusion mapping. Its
dual " : G — N’ is continuous and onto since N is dually embedded in
G ([21]), and it induces a continuous isomorphism G /N+ = N/ which, in
fact, is a topological isomorphism since both are discrete. Taking duals, we
get (GN/NH)N = N™M = N (the last isomorphism is due to compactness
of N). Now, (X/Nt)" = (N1)! together with (X/N1)N = N yield the
identification of N with (N1)L.

Next, we check that X,/N+ admits the same continuous characters as
X/N+. By the definition of a quotient topology, a homomorphism  :
X,/N+ — T is continuous if and only if xp is continuous where p : X, —
X, /N is the canonical projection. Now, if sp is a continuous character in
X, it must be the evaluation on a point, say x € G. On the other hand, kp
is null in N, thus z € N.
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To finish the proof take into account that X, /N L is precompact, as a quo-
tient of the precompact group X,. Hence, its topology is determined by its
continuous characters. QED

With the same assumptions and notation as in the previous lemma we
obtain:

Corollary 8.46 The compact subsets of X,/N* are finite.

Proof. Indeed, by the previous lemma the quotient topology of X, /N~
coincides with the Bohr topology of the discrete quotient group X/N+, i.e.,
X, /N+ = (X/NL)#. By [49], all compact sets of (X/N+)# are finite. QED

In the next proposition, we assume that G is w-bounded. Note that such
a group is necessarily precompact (see a) of Fact 8.42) and, hence, MAP.
We denote by T the completion of G (observe that T" is compact). Then the
dual group X = G’ is algebraically isomorphic to the discrete group T”.
Note that since the group G is precompact, its topology coincides with the
weak topology (G, X). In other words, (G,o(G, X)) = G, so we shall also
simply write G most often.

Proposition 8.47 If the group G is w-bounded, then the compact subsets
of X, are finite.

Proof. Assume for a contradiction that K is an infinite compact set in X,
and fix a countably infinite subset D of K. Let L denote the countable
subgroup of X generated by D, and consider the annihilator L+ of L in T.
Then Lt is a compact subgroup of T such that L" is isomorphic to 7'/L".
Since L is countable, T'/L* is metrizable, hence separable (being compact).
Let S be a dense countable subgroup of 7'/ L*. By the pseudocompactness
of G, we can claim that G meets every Gs-subset of T'. Since T /Ll is
metrizable, the subgroup L+ is a Gs-subset of T (as well as all its cosets).
This means that G meets every coset =+ L*. In other words, the restriction
of the quotient map ¢ : T — T/L* to G is still surjective. In particular,
we can find a countable subset S; of G such that ¢(S1) = S. Now exploit
the w-boundedness of GG to find a compact subgroup N of G containing 5.
Clearly, N contains the closure S;. Then ¢(N) D S = T/L*. This means
that N + L+ = T. Now taking once again the annihilators we get

0=T+=(N+LH*=N'nZHt=N'nL. (8.2)

Let 7 : X — X/N* be the quotient homomorphism. By (8.2), the restriction
of r on L is injective, in particular r(K) is infinite.

So far no topology on X was involved. The annihilator N+ is closed in X,
so we can consider on X/N+ the quotient topology. By Corollary 8.46, the
set (K) must be finite, and we get a contradiction. QED
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Now we are in position to prove Theorem 8.44.

Proof of Theorem 8.44. Observe that G is precompact by a) of Fact
8.42, so G carries the weak topology o(G, G"). Now recall Proposition 8.47
and apply Theorem 8.40. The theorem is proved.

It is important to note that:

Remark 8.48 The class of w-bounded noncompact groups is a class of g-
barrelled groups that was not known before.

Indeed, the only known classes of g-barrelled groups are those mentioned in
Theorem 8.37. Now just consider the following

Proposition 8.49 An w-bounded non-compact group is not metrizable, nor
separable and neither Cech-complete.

Proof. Let G € Q\ K. Recall that for every metrizable group, compactness
and numerably compactness coincide. In particular, G is not metrizable
since it is numerably compact but not compact. Moreover, GG is not separa-
ble according to Fact 8.42 b). The fact that G is not Cech-complete follows
from a) of Fact 8.42 jointly with the following claim.

Claim. Every pseudocompact Cech-complete group is compact.

Let us prove the claim. Fix a pseudocompact Cech-complete group G. By
definition, G is Cech-complete if and only if it is a Gs-set of its Stone-Cech
compactification. Since G is pseudocompact, its Stone-Cech compactifica-
tion coincides with its compact completion K and G is Gs-dense in K (i.e.,
G hits every non-empty Gs-set of K). Assume for a contradiction that G
is not compact. Then G is a proper subgroup of K, therefore there exists
a coset G of G in K that is (obviously) disjoint with G. This contradicts
the Gs-density of G, since G (as a translate of G) is a Gs-set of K. The
claim is proved. QED

To conclude this section, let us present an important consequence of
Proposition 8.32.

Theorem 8.50 Given a topological group G, then there exists at most one
locally quasi-conver compatible topology T such that (G,T) is g-barrelled.
In particular, there is at most one locally quasi-convex compatible topology
which is in the union of the following classes of topological groups: metrizable
hereditarily Baire, separable Baire, Cech-complete and w-bounded.

Proof. Suppose that there exists 7 such that (G, 1) is locally quasi-convex
and g-barrelled. Then (G, ) is strongly Mackey by Theorem 8.34, hence
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7 = 74c(G,G"). Since the topology 7,.(G,G") is the same for every locally
quasi-convex topology which is compatible with 7, this implies that 7 is the
only topology on GG with this combination of properties.

The last assertion of the theorem follows from Theorem 8.37 and Theorem
8.44. QED

8.3 On the set of LQC compatible topologies for
a topological group

[On the set of LQC compatible topologies for a top. grp.]

Let GG be a topological group. Consider all the topologies on G compat-
ible with (G,G"). It is natural to ask how they are related to each other.
Clearly, all the compatible topologies on G have the same Bohr topology.
Thus, we can claim that there is a minimum in the class of all compatible
topologies, which happens to be locally quasi-convex. It is not clear under
which conditions on a MAP group G the locally quasi-convex compatible
topologies will form a chain, or even a lattice.

Fact 8.51 If G is a pre-Mackey group, then the family of locally quasi-
convexr compatible topologies on G is a complete lattice, having the weak
topology (i.e., the Bohr topology) as bottom element and the Mackey topology
as top element.

We are going to study some families of topological groups for which the
only locally quasi-convex compatible topology is the Bohr topology.

Definition 8.52 A locally quasi-convexr group G is said to be ULQC if G
admits only one locally quasi-convex compatible topology, namely o(G,G").

Remark 8.53 If G is ULQC, then G is precompact and Mackey. Moreover,
if G is precompact, then G is Mackey if and only if G is ULQC.

Examples of ULQC groups can be found in the class of w-bounded groups.
Indeed, every w-bounded is precompact by Fact 8.42 a), and it is also g-
barrelled by Theorem 8.44. Now recall that every locally quasi-convex (in
particular, every precompact) g-barrelled group is strongly Mackey by The-
orem 8.34, hence Mackey. Now apply Remark 8.53.

In the next section we show another class of ULQC groups. Moreover,
we show that the topology 74.(G,G") can either coincide with o(G,G")
(in particular, G is strongly Mackey; see Theorem 8.62) or not (indeed,
74c(G,G") can be even discrete and non-compatible; see Theorem 8.61).
From this we deduce that in the class of precompact groups, the property
of possessing only one compatible topology does not imply “being an Arens
group” and, hence, “being strongly Mackey” (compare with Remark 8.53).
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8.3.1 Another class of ULQC groups

We define a class of topological groups (which we have called BTM-groups
inspired by [16]) by some conditions on their dual groups. It turns out that
every locally quasi-convex BTM group is ULQC (Corollary 8.59). In partic-
ular, in this class we obtain examples of strongly Mackey groups which are
not g-barrelled (Theorem 8.61) and of Mackey groups that are not strongly
Mackey (Theorem 8.62).

Definition 8.54 A MAP topological group G is a BTM-group if:
1. there exists an integer m > 2 such that my = 1 for every x € G*;
2. |G < c.

Example 8.55 Let G := @ | Zn, where {n;}3>, is a bounded sequence
of positive integers. FEquip G with the topology p induced from the product
;21 Zy,. Then (G, p) is a BTM-group.

Indeed, this is clear since G is dense in the metrizable group [[p-y Zn,,
therefore G = ([ 1oy Zn,)" = G.

We show that if G is BTM, then (G, G") is the only locally quasi-convex
compatible topology on G. To this aim, we first show that every BTM group
is precompact. This will implies that a locally quasi-convex BTM group is
ULQC.

Consider the following auxiliary result:

Proposition 8.56 Let G be a topological BTM-group. Then, for every U €
Ng(0) we have that U> C G is finite.

Some notation is now convenient: put (4,B) = {x € G" | x(4) C B} for
nonempty subsets A C G and B C G".

Proof. Fix U € Ny(G). We will prove that U is contained in a o(G", G)-

compact subgroup of G*, which must be finite.

Assume that o(G") = m. Fix a positive integer ng such that ng > m/4

and let V' € Ny(G) be such that V4+V +...+V CU. If x € (V,Ty,),
no times

then x(V) = {0}. Indeed, o(x) = m and x(V) C Z(m) N Ty,. Now observe

that Z(m) N Ty, = {0} by our choice of ng. Thus, (V,T,,) is the subgroup

V+ C G", which clearly is o(G", G)-compact. Since any non-finite compact

group must have cardinality at least ¢ and G” is countable, we obtain that

(V,T,,) is finite.

We show now that U™ is contained in (V,T,,). Take z € V, and observe

that

hz € U for every h € {1,2,...,np}. (8.3)
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Let x € U”. By (8.3) we get that x(hz) = hx(z) € T4 for every h €
{1,...,n0}, in particular x(z) € T,, according to Lemma 5.22. Therefore
x € (V,Tp,). So we have proved that U” C (V,T,,), in particular U” is
finite. QED

Here we show some consequences.

Proposition 8.57 Let (G, 7) be a locally quasi-convexr BTM-group. Then
7 =0(G,G") and G is precompact.

Proof. Let U be a quasi-convex T-neighborhood of 0. By Proposition 8.56,
U” is finite, therefore (U”)? = U is a neighborhood of 0 in (G, o (G, G")).
QED

This permits to characterize those BTM groups that are locally quasi-
convex:

Theorem 8.58 For a topological abelian group G, the following properties
are equivalent:

(a) G is a locally quasi-convex BTM group;

(b) G is bounded, precompact and w(G) < c.

Proof. Fix a topological group G, and let K denote the compact completion
of G.

(a) = (b) By Proposition 8.57, G is precompact. Then, G" = K"
as abstract abelian groups. As G” is bounded by hypothesis, also K" is
bounded, and K is bounded as well; so, G is obviously bounded. Finally,
|G| = |K"| = w(K), therefore the hypothesis |G"| < ¢ yields w(G) =
w(K) <.

(b) = (a) Assume that G is bounded. Then also K and, hence, K" are
bounded as well. As G = K”, we conclude that G is bounded. Finally,
|G" = |K" = w(K) = w(G) < ¢. So G is a BTM group. QED

Another consequence of Proposition 8.57 is the following one:

Corollary 8.59 Let G be a topological BTM-group. Then o(G,G") is the
unique locally quasi-convex compatible topology on G. In particular, it is the
Mackey topology of G.

Proof. Let v be a locally quasi-convex compatible topology in G and set
G, = (G,v). Then G" = CHom(G,,T), therefore G, is a BTM-group. So
Proposition 8.57 applies to G, and we are done.

The last assertion is Remark 8.53. QED

Proposition 8.57 and Corollary 8.59 immediately yield:
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Corollary 8.60 If G is BTM and locally quasi-convex, then G is ULQC.
In particular, G is precompact and Mackey.

The following result shows the existence of a class of ULQC groups
in which 7.(G,G") # o(G,G") (in fact, 74(G,G") is discrete and non-
compatible). In particular, this shows that a Mackey group is not neces-
sarily Arens and, hence, strongly Mackey. It is based on (and generalizes)
Example 4.2 in [16].

Theorem 8.61 Let G = @y | Zy,, where {ni}32, is a bounded sequence
of odd integers with ny > 3. If G is endowed with the topology induced by
the product topology in [[32 Zn,, then the following assertions hold:

1) G is a precompact Mackey group;

2) T4 is discrete and non-compatible; in particular, G is not an Arens
group.

Proof. 1) Observe that G is a precompact BTM group by Example 8.55.
Moreover, G is locally quasi-convex, so Corollary 8.60 applies.

Now let us prove 2). Observe that (G, o(G,G")) = (G",0(G",G)). More-
over, the set K defined as K := {x € G : [supp(z)| < 1} is compact in G.
Let us consider the following:

Claim. Let Cy, C Zy,, then (K N @, Cr)* = @p_y Cr.

Define M := KNP, (T+NZy,) and My := KNPy, Vi, where, for any
k, Vi, = {0, £vi} and +uy, are the elements of Z,, C T with maximum norm
(ie., vp = "2’“71;1 for every k) and put Fy := Qg (M;) and Fy := Qg(Mas).

It is evident that F; and F5 are quasi-convex. Let us calculate the polars:
FY = M7, and this is equal — using the claim — to @(T+ N Z,,)" =
@{O,ié}; again by the claim, F3' = @V,’. We conclude noting that
+.- ¢ ViS, therefore F' N F3' = {0}.

Now let us show that F} and Fy are compact in (G, 0(G", G)). To this aim,
observe that G” coincides algebraically with H", where H := [[;, Zp,,
and o(G",G) = o(G",H) = o(H", H). Moreover, (G,o(G,G")) is dually
embedded in (H,o(H,H")), so

P = Qao(c.an) (M) = Qao(m,mny) (M)

and
By = Qao(a.an)(M2) = Qi o(m,mny) (Mz)
by Lemma 5.17. Now, M; is compact since K is compact and @y (T4 N

Ly, ) is closed in G; the same argument proves that My is compact as well.
The group (H,o(H, H")) has the quasi-convex property (briefly, qcp), i.e.,
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the quasi-convex hull of any compact subset is still compact (this follows
from Proposition 6.3.13 in [19]), therefore Fy, Fy are o(H, H")-compact in
H and, hence, they are compact in (G, o(G,G")) as well.

So we have found a pair Fy, F5 of o(G”, G)-compact and quasi-convex sub-
sets of G" such that Fy'N Fy = {0}, and this implies that 7,.(G,G") is
discrete.

To deduce that G is not Arens, observe that

(G7)" =D Zu, < [] Zow = (G70e(G.GM),
k=1 k=1

therefore 7,.(G,G") is non-compatible with 7 and 7 < 7,.(G,G"). QED

A slight modification of Theorem 8.61 gives an example of a class of
ULQC groups that are strongly Mackey but not g-barrelled.

Theorem 8.62 Let L = Zy or L =2 Z3. Put G := @, L equipped with the
topology induced from the product [[, L. Then:

o G is strongly Mackey;

o (G is not g-barrelled.

Proof. The fact that GG is not g-barrelled is a consequence of Corollary 8.36.
Now let us show that G is strongly Mackey.

Observe first that G has the same support as G, and the topology o(G", G)
on G coincides with the original topology of G. Now, let K be a o(G", G)-
compact quasi-convex subset of G**. Then K is a subgroup of G, according
to the following claim:

Claim. Let G be an abelian group of exponent 2 (or 3). Then every
quasi-convex subset of GG is a subgroup.
Indeed, observe that for every x € Hom(G, T) we have that x(G) < Zy <T
(respectively, x(G) < Z3 < T), so for every K C G it holds that x(K) C T4
iff x(K) = {0}.

Since G is countable and K is a o(G”, G)-compact subgroup of G", K is
finite. This yields 7,.(G,G") < o(G,G") (use Example 8.16). Now apply
Proposition 8.24 to deduce that 7,.(G,G") = (G, G"). To finish the proof,
recall that G is precompact by Example 8.55 and Proposition 8.57, therefore
its original topology coincides with o(G", G) = 74.(G,G"). QED

Now we are in position to give a complete diagram of implications, in-
cluding those forbidden implications that we have obtained in Theorem 8.61
and Theorem 8.62.
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8.4 A categorical approach to Mackey topologies

Following [13], we consider a general categorical approach to Mackey topolo-
gies. In particular, we prove a new and more complete version of the main
result of [13] (see Theorem 8.75). This is part of the bigger project [8].

For every full subcategory X of the category MAP of all the maximally
almost periodic groups, we will define the X-Mackey topology of G € X as
the finest X-topology on G among those X-topologies that have the same
dual group as G (see Definition 8.64). Then, the “classical” Mackey topology
of a topological group G is — roughly speaking — the X-Mackey topology
when X is the category LOC of all the locally quasi-convex groups.

The following full categories of MAP will also be relevant in the sequel:
LPK = {locally precompact groups}, PK = {precompact groups}, LI =
{locally compact groups} and K = {compact groups}.

For every full subcategory X of MAP such that T € X, we give the
following definition (which is somewhat more precise than Definition 8.4):

Definition 8.63 Let G € X, and let v be a topology on G such that (G,v) €
X. Then v is said to be compatible with (G,G") if (G,v)" = G".

Definition 8.64 A group G € X is X-pre-Mackey if there exists a X-
topology T such that:

(M1) T is compatible with (G,G");
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(M2) T >~ for every X-topology v which is compatible with (G,G").

A X-topology T that verifies (M1) and (M2) will be called the X-Mackey
topology of G. Moreover, G is said to be X-Mackey if its original topology
coincides with the X -Mackey topology.

We will write 7x (G, G") to denote the X-Mackey topology of (G, G"). We
also will simply write 7g if no confusion is possible. Clearly, for every X-
pre-Mackey (G,7), 7 < 74(G,G") (i.e., X-Mackey topology is always finer
then the original one).

Example 8.65 Here are some examples and non-examples.

(a) As shown in [23], given G € MAP the least upper bound of the family
of all compatible MAP group topologies on G meed not exist.

(b) It is well known that two locally compact group topologies on the same
underlying abelian group G have the same continuous characters if
and only if they coincide (this is a consequence of Glicksberg Theorem
[49]). The same property holds in the class of precompact topologies
([27]). This implies that if X = LIC or X = PK, then every G € X is
X -Mackey since they have only one compatible topology in X.

(c) Consider the group G = (R,0(R,R)). Then G is PK-Mackey by (b).
Moreover, G is also LQC-pre-Mackey; indeed, R equipped with the
usual topology T, is LOC-Mackey (by Theorem 8.37).

Analogously to what we did in § 8.1.1, we introduce another notion in
order to describe the X-Mackey topology.
Given G € X, let {m; | i € I} be the family of all the X-topologies on G
that are compatible with (G, G"). Put 7,(G,G") := sup{r; | i € I}. If no
confusion is possible, we will omit the upper index and we will simply write

74(G,G").

Remark 8.66 (1) Observe that, in general, (G, 7,5 (G,G")) ¢ X (for ex-
ample, if X = LPK).

(2) The topology TQX (G, G") coincides with the topology that the product
group [[;c;(G, 7;) induces on G via the diagonal map = — (z,z,...),
where {7; | ¢ € I} is the family of all compatible X-topologies on
G. Consequently, if X is closed under products and subgroups (e.g.,

X = £QC), then (G, 7,5(G,G")) € X for every (G,7) € X.

(3) The following property of monotonicity holds: if X is a subcategory
of Y, then 7.,¥(G,G") < 7Y(G,G").
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The topology TgX (G,G") is used to characterize the existence of the X-
Mackey topology whenever X is closed under products and subgroups, as
the following proposition states.

Proposition 8.67 Suppose that X is closed under products and subgroups,
and let G € X. Then G is X-pre-Mackey if and only if TQX(G, G") is com-
patible.

Proof. First observe that 7,(G,G") is a X-topology by Remark 8.66 (2).
So, clearly, if 7,(G,G") is compatible, then it coincides with the X-Mackey
topology of G (since every topology « which is compatible with (G, G") is
coarser then 74(G, G") by definition). Conversely, suppose that G is X-pre-
Mackey, i.e. the topology 7x(G,G") exists. Then 7x(G,G") necessarily
coincides with 7,(G, G"). Indeed, since 7x(G,G") is finer then every X-
topology on G which is compatible with G”, then 74(G,G") is also finer
then the supremum of all of them, i.e., 7,(G,G") < 74(G,G"). On the
other hand, 7x(G, G") is compatible with G" by definition, so 71 (G, G") is
coarser than the supremum of all compatible X-topologies, i.e., Tx (G, G") <
74(G,G"). Therefore, Tx(G,G") = 7,(G,G"). In particular, 7,(G,G") is
compatible with (G, G"). QED

As already observed in Remark 8.66 (1), if the hypothesis on X" in the
previous proposition does not hold, then TgX (G,G") can fail to be a X-
topology. But TgX(G, G") still can be compatible with G*. For example,
7EPR(G, GM) is compatible with (G, G") for every G € LPK.

The following property of coreflectivity of pre-Mackey groups in a cate-
gory X can be considered:

Definition 8.68 Let (G,7) and (H,~y) be two X-pre-Mackey groups in a
category X. We say that the pair G, H has the CR-property if whenever
f:(G,7) — (H,~) is a continuous homomorphism, then the corresponding
homomorphism uf : (G,17ar) — (H,Tgr) (algebraically coinciding with f)
in the following diagram

(H,7) (8.4)

(G, 16n) _nr (H,tgnr)
1 continuous.

Definition 8.69 Let X' be a full subcategory of the category MAP. We say
that X has a Mackey subcategory if:

(MS 1) every group in X is a X-pre-Mackey group;
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(MS 2) every pair (G,7) and (H,~) in X has the CR-property.

The above definition says that the full subcategory of X having for object
all X-Mackey groups is a coreflective subcategory of X.

An elegant characterization of the categories admitting a Mackey sub-
category is given in [13, Theorem 4.1].

Theorem 8.70 ([13]) Let X be a category that is closed under finite prod-
ucts. Let SPX denote the closure of X with respect to (infinite) products
and subobjects. Then TFAE:

(1) T is injective with respect to inclusions in X';
(2) T is injective with respect to inclusions in SPX;

(8) X admits a Mackey subcategory, i.e., p: X — Xpq is a coreflection.

The authors give in [13, 4.3 Examples| also an important example, namely
the category NUC of nuclear groups admits a Mackey subcategory, i.e., the
NUC-topology is a strong topology in NUC.

Remark 8.71 It is easy to see that the injectivity of the torus is inherited
by subobjects (this holds because, if K < H is dually embedded in H and
H < @G is dually embedded in G, then K is dually embedded in G), so
in principle it is not necessary to consider the closure of X with respects
to subobjects. By the equivalence between (1) and (2) in the previous
result, also the fact that X is not closed under taking infinite products is
irrelevant in the present framework. On the other hand, this hypothesis on
X is necessary to assure that every G € X is X-pre-Mackey (as already
commented before).

So the stronger categorical form of the problem of existence of a Mackey
topology for a topological group (G,7) € X (such that p: X — X is a
coreflection) is completely translated in global (categorical) terms, i.e. the
“Mackey problem” is equivalent to characterize those categories in which T
is an injective object.

8.4.1 New (more precise) version of Theorem 8.70

We offer a more complete version of Theorem 8.70 with the aim of clarifying
which is the role of the hypothesis “injectivity of T” on the category X in
order to assure the existence of a Mackey subcategory. Indeed, we show that
the injectivity of T € X is not necessary for the simpler condition “every
group in X’ is X-pre-Mackey”. Our motivating question is the following one:
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Question 8.72 It is well-known that T is not injective in LOC (for an
example of a pair H < G € LOC such that H is not dually embedded in G,
see [5, Remark 5.27]), so LOC does not admit a Mackey subcategory. But,
is it true (at least) that every G € LOC is LOC-pre-Mackey?

Remark 8.73 Since LQC does not admit a Mackey subcategory, we deduce
that the Mackey strong topology does not exist in LOC, even if the previous
question admits a positive answer. By means of Example 1.10, this repre-
sents a deep difference between £QC and the category of all locally convex
vector space.

We will prove that a weaker level of injectivity is sufficient to assure that
every G € X is X-pre-Mackey, provided X is closed under arbitrary prod-
ucts and subobjects (see Theorem 8.75).

For a category X, we say that the property (SUP) holds in X if
(SUP) for every G € X, T;Y(G, G") is compatible.

In particular, Proposition 8.67 can be reformulated as follows: If X is closed
under products and subgroups, then every group in X is X -pre-Mackey if and
only if (SUP) holds.

We consider also another instance of injectivity, which is motivated by

the following consideration. Take a homomorphism f : G — H and the
monomorphism j : G — H x G defined by j(g) = (f(g),g) for every g € G
(i.e., j is the “graph” of f). Then j(G) is a very special subgroup of H x G:
it is a direct summand of H x G, being H x {0g} its complement. Now
we consider the same situation for topological groups (G, 7), (H,7) and a
continuous homomorphism f : (G,7) — (H,7).
Let (G, 1), (H,~) be two objects in X'. Suppose that (H, ) is X-pre-Mackey,
and let 7y~ denote its X-Mackey topology. Let f : (G,7) — (H,~v) be a
continuous homomorphism, and let j : G — (H,7yn) X (G, T) be its graph.
Then we say that the property (GRAPH) holds if

(GRAPH) if j(G) is dually embedded in (H,7g5r) % (G, T).

Observe that if T is an injective object in X', then (SUP) and (GRAPH)
hold. While the second property is clear, the first one requires some expli-
cation.

Proposition 8.74 If T is injective in X, then (SUP) holds.

Proof. Let (G,7) € X, and consider the family {7; | i € I} of compatible
X-topologies on G. According to Remark 8.66 (2), TgX (G,G") coincides
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precisely with the topology p that the product group [[,(G, ;) induces on G
via the diagonal map x — (z,z,...). In particular, u > 7. We want to show
that p is compatible with (G, 7)". The inclusion (G, 7)" C (G, p)" is clear
since y is finer than 7, so let us check the other one. Fix x € (G, u)". By our
hypothesis, there exists an extension X € ([],(G, 7)) of x. Now, X is of the
form X = [];cp Xi © pi for some finite set F', where x; € (G,7)" = (G, 7)"
and p; : Hjel(G,Tj) — (G, ;) is the canonical projection. Now, ¥ [¢= X,
so x is a finite product of elements of (G, 7)" and, therefore, x € (G, 7)".
QED

Theorem 8.75 Let X' be a category which is closed under finite products.
Consider the following list of items:

(1) (SUP) holds in X;

(2) every object (G, 1) € X is X-pre-Mackey;

(8) (SUP) and (GRAPH) hold;

(4) T is injective with respect to inclusions in X;
(5) T is injective with respect to inclusions in SPX;

(6) X admits a Mackey subcategory.

Then we have that: -
L

(6) = (4) = (3) == (1) <> (2)

ﬂ
()

where the dotted arrows hold with the additional hypothesis that X s closed
under arbitrary products and subobjects.

Proof. (6) = (4): Let (G,7) be an object in X, and let (H,7 [x)
be a subobject (G,7) (i.e., (H,7 [g) is a topological subgroup of (G, 7)).
Put G" := (G,7)" and H" := (H,7 g)". Consider the inclusion map
t: H— G and the dual map /" : H® — G". Put C := /*(G") C H". We
want to show that C = H” (clearly, it suffices to show that H" C C).

In order to clarify the situation, we consider the following diagram:

(H’ TH/\) by coreflection (H’ TC) byCoreﬁect10n> (Ga TG’/\)
i : |
_ N
(H,7 lg) ———— (H,7 1) (G, 1)
(H,ou) (Hoc) - * = (Goan)

since CCH”"
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In the diagram above, like in the other ones that follow, “every arrow is
continuous” (solid arrows are used for maps that are continuous for some
more or less obvious reason, and dotted arrows are used to denote those
arrows that appear on some second stage).

We are interested in proving the existence of arrow I' in the diagram above.
To this aim, we first consider A (and A’, that will automatically follow from
A by our hypothesis).

A: just observe that for every y € G”, we have that y ot € C:

L

(HvaC) - (GaUGA) 4X>T

Xot

I': we have that

!

(H, Tc) L> (G,TgA)

|

(G,7)

and (H,7¢) — (H,7 ) follows recalling that (H,7 [g) is a subobject of
(G 7).

So we get that (with abuse of notation)
r X
(H,7¢) — (H,7 [g) —=T
X

for every xy € H", thus H" C (H,7¢)" = C and we are done.
(4) <= (5): Thisis (1) <= (2) of Theorem 8.70.
(4) = (3): This has already been discussed (see also Proposition 8.74).
(3) = (1): Trivial.

From now on, X will be a category which is closed under arbitrary prod-
ucts and subobjects.

<= (2): This is Proposition 8.67.
—

(1)
(3) (6): The existence of the X-Mackey topology is guaranteed by (1)
—

(2).
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[CR-property] Fix a pair of objects (G,7) and (H,v) in X, and put G" :=
(G,7)", H" := (H,~)". Consider a continuous homomorphism f : (G, 7) —
(H,~). We need to show that uf : (G,7gr) — (H,Tgr) is continuous (this
is the situation described in (8.4)).

Denote by p the topology that (H,7yr) x (G,7) € X induces on G via the
injective map

G — (H,tgr) x (G, 7)

defined by the formula g — (f(g),g). Obviously,
p>T. (8.5)

We claim that (G,p)" = G". Indeed, to see that (G,p)" C G", fix a
character x : (G,p) — T. Then, by (3), there exists a continuous ex-
tension x : (H,7gr) x (G,7) — T. Now, X [¢= x(z) is of the form
x(z) = X1(f(z)) - X2(z) for every z € G, with X1 € (H,7g~)" and X2 € G".
So it suffices to show that x; o f € G". Consider f": (H,v)" — G". Then
we have that Y1 0 f = fA(%1) € fA(H, rn)) = FA(H,)") € GM. The
other inclusion follows from (8.5).

From the compatibility of (G, p) we deduce that p < 7ga. Now just ob-
serve that f can be obtained as the composition of the following continuous
functions:

(G,p) - (H)TH/\) X (G’T) - (HaTH/\)
= (flz) , =) — f(2)

QED

8.5 Remarks and open problems

We have obtained some other results related to the Mackey topology which
are briefly collected in this section. Our aim is mainly illustrative, so many
results are leaved without proof.

We start with permanence properties with respect to subgroups, quotients
and products.

8.5.1 Permanence properties

Theorem 8.76 Let (G,7) be a topological group which contains an open
subgroup H. Then:

e (G,T) is a Mackey group if and only if (H,T [g) is a Mackey group;

o (G, 1) is g-barrelled if and only if (H,T [g) is g-barrelled.
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In this theorem the assumption that H is an open subgroup of G cannot
be weakened to “dually closed and dually embedded” subgroup. In fact,
take G := R x T, where the first factor is equipped with the Bohr topology
associated to the usual topology of R, say o(R,,R"), and the second factor
with the usual topology. Clearly {0} x T is a compact subgroup, therefore it
is g-barrelled by Corollary 8.38 and, hence, it carries the Mackey topology.
However, GG is not a Mackey group: the product of the usual topology of R
with the usual of T gives a locally quasi-convex compatible topology on G
which is strictly finer than the original one, with the same dual group.

As a matter of fact, dense subgroups do not determine the property of
“being a Mackey group”:

Theorem 8.77 Let G be the group {~ equipped with its Mackey topology
T(loo, 01), and let H < G be the dense subgroup co. Then the induced topology
T(loo, 1) ey on H is not Mackey. So, a dense subgroup of a Mackey group
is not necessarily a Mackey group.

The diversity between 7(fso, 1) [¢ and the norm topology 79 of ¢y can
be explained through the fact that there exist subsets of ¢j = ¢; that are
o(¢1, cp)-compact but not o(¢1, s )-compact. Take, for instance, the closed
unit ball B C ¢ (see [58, 20.9 (5), 22.4 (3)]).

We now study the converse situation, that is, whether a dense Mackey
subgroup implies that the whole group is Mackey.

Proposition 8.78 Let (G,7) be a locally quasi-convex group, and let H be
a dense finite-index subgroup of G. Suppose that T [ is the Mackey topology
of H. Then T is the Mackey topology of G.

We wonder if it is possible to remove the hypothesis “finite-index subgroup”
in Proposition 8.78:

Conjecture 8.79 Let H be a dense subgroup of (G, 7). Suppose that Ty is
the Mackey topology of H. Then T is the Mackey topology of G.

As far as quotient groups is concerned, a positive result is the following
one:

Theorem 8.80 Let G be a Mackey group. If H < G is a closed and dually
embedded, then the quotient topology on G/H is the corresponding Mackey
topology for G/H, provided it is locally quasi-convez.

Question 8.81 Is it possible to drop the assumption that H is dually em-
bedded in the previous theorem?
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Given an arbitrary family {G; | i € I} of topological groups, it can
be proved that if the product G := [[,.; G; is a Mackey group, then Gj
is Mackey for every ¢ € I. On the other hand, the problem of determining
whether the product of Mackey groups is again a Mackey group is still open,
even in the case of a finite product. So we propose the following;:

Problem 8.82 Let {G; | i € I} be a (finite) family of Mackey groups.
Determine under which conditions the group G := [[;c; Gi, equipped with
the product topology, is a Mackey group.

8.5.2 g-barrelled groups

As already observed in Corollary 8.36, every countable group G which is
locally quasi-convex and g-barrelled is necessarily discrete. We ask if the
hypothesis “locally quasi-convex” on G can be weakened to “MAP”. In
other words,

Question 8.83 Does there exist a MAP g-barrelled group which is countable
and non-discrete?

In Theorem 8.44 we show the every w-bounded group is g-barrelled. We
do not know whether it can be extended to the wider class of countably
compact groups, namely

Question 8.84 Is it true that every countably compact abelian group is g-
barrelled?

or even

Question 8.85 Is it true that every pseudocompact abelian group is g-bar-
relled?

Since pseudocompact groups are Baire, the previous question admits a par-
tial answer in the case of separable pseudocompact groups by means of
Theorem 8.37. For this reason, and also for the fact that compact groups
are g-barrelled (see Corollary 8.38), we propose the following more precise
formulation:

Question 8.86 Are non-separable non-compact pseudocompact groups g-
barrelled?

Moreover, since countably compact groups are hereditarily Baire (as every
closed subgroup of a countably compact group is still countably compact,
hence pseudocompact and consequently Baire), a positive answer to the
following question solves also Question 8.84:

Question 8.87 Must a hereditarily Baire group be g-barrelled?

Clearly, this is equivalent to ask whether the hypothesis “metrizable” can
be dropped in the first item of Theorem 8.37.
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8.5.3 G-groups

J. Galindo dealt in [45] with the problem of determining when a totally
bounded topology on a group G is the Bohr modification of a locally compact
topology on G (this is Question 1 in the above cited paper). We propose
the following definition:

Definition 8.88 A precompact group (H,T) is said to be a G-group if one
of the following properties holds:

e either H is compact, or

e there exists no locally compact topology 71 on H such that T1+ =T.

For example, let us show that every countable precompact abelian group is
a G-group.

Lemma 8.89 FEvery countable precompact abelian group is a G-group.

Proof. Suppose that H is a countable precompact abelian group. If H is
finite, then H is compact, so a G-group. Assume that H is infinite. Since
no locally compact abelian group can be countably infinite, H is necessarily
a G-group. QED

Proposition 8.90 Let H be a ULQC group. Then H is a G-group.

Proof. If H is compact then it is a G-group. So, let us suppose that it is not
compact. Let 71 be a locally compact topology (in particular, locally quasi-
convex) on H such that ;" = 7. Then (H,m)" = (H,7")" = (H,7)". By
our hypothesis, 71 = 7. In particular, 7 is locally compact (hence, complete)
and precompact, therefore it is compact and we get a contradiction. QED

From Remark 8.53, we immediately deduce that the class of precompact
Mackey groups is contained in the class of all G-groups:

Corollary 8.91 Fvery precompact Mackey group is a G-group.

Observe also that a precompact Arens non-Mackey group need not to be a
G-group. To see it, let us consider a locally compact non-compact abelian
group H. Then H' is precompact Arens and not Mackey. Indeed, H is
g-barrelled and locally quasi-convex, so it is strongly Mackey and, therefore
the original topology 7 of H coincides with 74.(H, H") = 7(H, H"). Now,
since H™ has the same dual group as H and H is Arens, H™ is Arens as well.
Since 7 # 7T, we obtain that H™' is not Mackey. To conclude, just observe
that the Bohr modification of a locally compact non-compact abelian group
is not a G-group.
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8.5.4 Miscellanea

In § 8.3 we discussed some example of topological groups that posses only
one locally quasi-convex compatible topology. In the more general situa-
tion of groups with many locally quasi-convex compatible topologies, we are
interested in knowing — roughly speaking — how many they are:

Question 8.92 Given a topological group G, which is the cardinality of the
family of all locally quasi-convez topologies on G that are compatible with

(G.G")?
Moreover,

Problem 8.93 [t is not clear under which conditions on a MAP group G
the locally quasi-convexr compatible topologies will form a chain, or even a
lattice.

Question 8.92 and Problem 8.93 can be formulated in a more general setting,
namely by dropping the assumption “locally quasi-convex”.

We present now two problems that may be considered the fundamental
questions of the Mackey topology for locally quasi-convex groups. As already
mentioned in Question 8.72, LOC does not admit a Mackey subcategory. So
we propose the following questions:

Question 8.94 Is it true that every locally quasi-convex group is LOC-pre-
Mackey?

Since LOC is closed under products and subgroups, the previous question is
equivalent to ask wether (SUP) holds in £OC by Theorem 8.75.

It can be shown that the precompact (hence, locally quasi-convex) 2-
adic topology 7o on Z is not an Arens topology. Indeed, the dual Z(2°)
of G := (Z,m) has an infinite compact quasi-convex set K (see § 7) that
gives rise to a locally quasi-convex topology vk on Z which is coarser than
T4¢(G, G™) and not compatible, so 74.(G, G") is not compatible either (see [7]
for details). Thus (Z, 72) is not Arens. This shows that the previous question
admits a negative answer if we replace “LOC-pre-Mackey” by “Arens”.

If Question 8.94 admits a positive answer, then necessarily there exists
a pair of LOC-pre-Mackey groups that does not verify the CR-property. So
we propose the following

Problem 8.95 Give an example of a pair of LOC-pre-Mackey groups that
does not verify the CR-property.

The following example offers a potential solution to both these problems.
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Example 8.96 Let (G,7) € LOC be the group lo equipped with the usual
norm topology. Then G is locally quasi-convex and g-barrelled by Corollary
8.38, hence LOC-Mackey. Let H be the discrete subgroup (e, | n € N) =
ZM) (to see that H is discrete just observe that H N By = {0}, where B; =
{z € G : ||z|| < 1} is the unitary ball). Then H is not dually embedded in
G by [5] (in particular, this shows that T is not injective in LQC).

Now, let C C H” the set of all the characters of H that admits a con-
tinuous extensions to G. Consider the group (H,o(H,C)). Observe that
(H,o(H,C))" = C (in particular, o(H,C) is not discrete).

Two possibilities can hold:

1. (H,o(H,C)) is not LOC-pre-Mackey;
2. (H,o(H,(C)) is LOC-pre-Mackey.

If 1. holds, then we have an example of group which is not LOC-pre-Mackey.
If 2. holds, then let us see that the property of coreflectivity does not hold.
Indeed, take the (continuous) inclusion v : (H,o(H,C)) — (G,o(G,G"),
and suppose that pe @ (H,uc) — (G,ugr) = (G,7) is continuous. Then
1=Y(By) = {0} is open in (H, puc), hence (H, pc) is discrete. But (H, uc)" =
(H,o(H,C))" =C C H" = (H, 74is¢)", s0 we get a contradiction. Therefore
e is not continuous and the CR-property does not hold.

So the solution of the following problem offers an important tip towards the
solution of Question 8.94 and Problem 8.95.

Problem 8.97 Solve the dichotomy 1. — 2. in the previous example.
To conclude, consider the following question.

Question 8.98 Is a locally quasi-conver metrizable group necessarily Mac-
key?

This is motivated by the well-known fact that every metrizable locally con-
vex vector space is a Mackey space. Observe that for complete metrizable
group, this question admits a positive answer according to Theorem 8.37.
A class of examples of metrizable non-complete Mackey groups is given in
Theorem 8.61.
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