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1 Introduction

Rotation numbers can be assigned to attractors in two dimensions. This is
illustrated by the figures below

p1 p2

At an intuitive level we can say that the rotation number vanishes for p1

and must be a non-zero number (linked to the period of the closed orbit) for
p2. In this paper we analyze some properties of attractors with zero rotation
number.

The idea of associating a rotation number to an attractor has its origin
in the work by Birkhoff [5] and was fully developed by Cartwright and Lit-
tlewood in [10]. More recently Alligood and Yorke [2] have used these ideas
to explore fractal boundaries. Our approach has many points in common
with [2] but our goal is somehow different. We place the emphasis on results
about global attraction and their applicability to differential equations. To
be more precise, we consider an orientation-preserving homeomorphism of
the plane, denoted by h, and a fixed point p = h(p) that is asymptotically
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stable. The region of attraction

U = {q ∈ R2 : lim
n→+∞

hn(q) = p}

is an open and simply connected subset of R2. While this implies that
U is homeomorphic to the open unit disc the boundary of U can have a
complicated structure. Assuming that U 6= R2, Carathéodory’s theory of
prime ends associates a copy of S1 to the boundary of U and the map h
induces an orientation-preserving homeomorphism of S1. The corresponding
rotation number will be denoted by ρ = ρ(h, U). Our main result says that
if ρ = 0, h is dissipative and U is unbounded then there exists a fixed point
lying in R2 \ U . As a corollary one obtains a criterion for global attraction
when p is the unique fixed point. Dissipativity means that ∞ is a repeller
for h. The assumption on the unboundedness of the region of attraction
is satisfied as soon as h is area-contracting. These are typical assumptions
motivated by the theory of nonlinear oscillations.

For maps h coming from differential equations it is not easy to deter-
mine the rotation number. This fact was pointed out by Cartwright and
Littlewood when they were dealing with the forced Van der Pol equation
(see in particular section 7.1 of [10]). In order to make our result applicable
we obtain some criteria for the computation of the rotation number. From
here we derive consequences for orientation-reversing maps, extinction in
population dynamics or global attraction in nonlinear oscillators.

The paper is organized as follows. The main result is stated and proved in
Section 4, after two sections on preliminaries. Criteria for ρ = 0 are obtained
in Section 5. The last two sections, 6 and 7, are devoted to applications.

2 Asymptotic stability, prime ends and rotation
numbers

We work on the plane R2 and sometimes on the Riemann sphere S2 =
R2∪{∞}. The topological operations of closure, boundary and interior will
be denoted by cl(A), ∂A and int(A) and understood relative to the plane.
If these operations are taken with respect to the sphere, it will be explicitly
indicated in the notation. A set D contained in the plane or the sphere is a
(topological) disc if it is homeomorphic to

D = {z ∈ C : |z| ≤ 1}.
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The class of homeomorphisms of the plane is denoted by H. The notation
H+ will be employed for the subclass of orientation-preserving homeomor-
phisms. Similarly H− is employed for orientation-reversing maps in H.

Assume now that p is a fixed point of a map h ∈ H. We say that p
is stable if there exists a basis of positively invariant neighborhoods. This
means that there exists a sequence of open sets {Un} satisfying

Un+1 ⊂ Un,
⋂
n≥0

Un = {p}, h(Un) ⊂ Un.

The region of attraction of the fixed point p is defined as

U = {x ∈ R2 : lim
n→∞

hn(x) = p}

and it is an invariant set. The point p is called an attractor when it is
contained in the interior of U . A fixed point is asymptotically stable whenever
it is a stable attractor.

Given an asymptotically stable fixed point, the region of attraction is an
open and simply connected subset of the plane (see [4]). A classical result
due to Kerékjarto [16, 6] says that the restriction of h to U is topologically
conjugate to one of the following maps in C,

z 7→ 1
2
z or z 7→ 1

2
z.

Notice that this alternative depends on whether h belongs to H+ or to H−.
Extensions to higher dimensions of this result can be found in [13] and [14].

The above result shows that we must go to the boundary of the region of
attraction, ∂U or ∂S2U , to establish topological differences among asymp-
totically stable fixed points. The simplest instance occurs when U = R2

and the point is called globally asymptotically stable. When U 6= R2 and h is
orientation-preserving, it is possible to assign a rotation number to the fixed
point. To this end we must enter into Carathéodory’s theory of prime ends
applied to ∂S2U . We follow [23] and discuss briefly this theory. A crosscut
C of U is a Jordan arc in S2 that lies on U excepting for the two endpoints.
Notice that if U is unbounded one of the endpoints can be ∞. The com-
plement U \ C is split in two connected components. The next step is to
define a null-chain and for this purpose we fix a point x0 in U and consider
a sequence of crosscuts {Cn} with the following properties,

Cn ∩ Cm = ∅, diam Cn → 0 as n→∞ and Vn+1 ⊂ Vn,

where Vn is the component of U \ Cn not containing x0.
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In the previous conditions the diameter of Cn must be understood on the
Riemann sphere.

Two null-chains (Cn) and (C ′n) are equivalent if, given m,

Vn ⊂ V ′m, V ′n ⊂ Vm

for n large enough.
The space of prime ends P = P(U) is composed by the equivalence classes

of null-chains. The disjoint union U? = U ∪ P(U) becomes a topological
space in the natural way. The class of open sets contains the subsets of U?

determined by a crosscut and also the open subsets of U . Indeed U? is home-
omorphic to D and its boundary is precisely P. In Carathéodory’s approach
this homeomorphism was obtained as an extension of the conformal map
between int(D) and U given by Riemann’s theorem on conformal mappings.
After these definitions it is easy to extend h : U ∼= U to a homeomorphism
of U?. This homeomorphism will preserve the boundary and the restriction
to P will be denoted by h? : P → P. Since P is homeomorphic to S1, h?

is conjugate to a homeomorphism of the unit circle. This homeomorphism
is orientation preserving if and only if h ∈ H+. This is a consequence of
well known results in the theory of manifolds with boundary. The rotation
number is defined for orientation preserving homeomorphisms of S1. If it
interpreted as an angle rather than a number it becomes an invariant under
conjugacy. We will assume that rotation numbers are defined in T = R/Z
and denote by ρ(h, U) the rotation number of h?. To simplify the notation
we will identify ρ(h, U) with a number in the interval [0, 1[.

To illustrate the previous discussions we consider a flow in the plane as
indicated in the next figure.

U

−a a0

∞a

∞b

0
a−a

U∗

The origin is a local attractor while the equilibria a and −a are unstable. We
assume that this flow has been parameterized so that all solutions are defined
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in the whole real line and consider the homeomorphism h1 determined by the
time-1 map associated to this flow. The region of attraction U is the shaded
region and the space P can be identified to ∂U together with two prime ends
representing infinity from above and below, say∞a and∞b. To describe the
dynamics of h?1 we observe that it has four fixed points, the attractors a and
−a and the repellers ∞a and ∞b. This implies that ρ(h1, U) = 0. Consider
now a homeomorphism in H− obtained as the composition h2 = Sy ◦ h1,
where Sy is the symmetry with respect to the y-axis. The region of attraction
U does not change and so the space P remains the same. The dynamics of
h?2 is as follows, the fixed points ∞a and ∞b are repellers and {a,−a} is an
attracting 2-cycle. For h3 = Sx ◦ h1 there is a repelling 2-cycle {∞a,∞b}
and two attracting fixed points a and −a.

In the previous discussions the fixed point p could be replaced by an
invariant continuum K ⊂ R2 having trivial shape. We recall that a planar
continuum has trivial shape if and only if the complement does not decom-
pose the plane (see [8]). Indeed this more general situation can be reduced
to the case of fixed points. To do this it is sufficient to observe that the
quotient space R2/K is homeomorphic to R2 (see page 313 in [8]) and so
the induced map h : R2/K ∼= R2/K has a fixed point |K|. Moreover this
fixed point is asymptotically stable whenever K is a stable attractor.

Finally we observe that the construction of h? does not requires an
asymptotically stable fixed point. It is sufficient to start with an open and
simply connected subset of the plane which is proper and invariant under
h. For this reason we have chosen the notation ρ(h, U) instead of making
reference to the fixed point p.

3 Dissipative and area-contracting homeomorphisms

A map h ∈ H is called dissipative if there exists a compact set W ⊂ R2 that
is positively invariant and attracts uniformly all compact sets. This means
that h(W ) ⊂W and for each x ∈ R2

dist(hn(x),W )→ 0 as n→∞

uniformly on balls ||x|| ≤ r, r > 0.
This notion can be presented in several equivalent formulations and we

refer to [18, 21, 24] for more information on this class of mappings. Dissi-
pativity can be interpreted in terms of stability theory. To do this we first
extend h to S2 with h(∞) = ∞. Then ∞ becomes a fixed point under h
and the notions introduced in the previous section can be adapted. With
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some work it can be proven that the dissipativity of h is equivalent to the
asymptotic stability of ∞ with respect to h−1. As a consequence of this
observation we can deduce a result that will be useful later.

Lemma 1 Assume that h ∈ H is dissipative. Then there exists a sequence
of topological discs {Ln} in S2 satisfying

∞ ∈ intS2(Ln),
⋂
n

Ln = {∞}, Ln+1 ⊂ intS2(Ln)

and
Ln ⊂ intS2(h(Ln)).

Proof. The region of attraction of ∞ with respect to h−1 will be denoted
by R. This is an open set in S2 that is invariant under h. Moreover on this
set h−1 is topologically conjugate to z 7→ 1

2z or z 7→ 1
2z. In consequence the

restriction of h to R is conjugate to z 7→ 2z or to z 7→ 2z. For these maps
the discs |z| ≥ n satisfy the required conditions.�

A map h ∈ H is called area-contracting if the Lebesgue measure µ is
contracted under the action of h. This means that

µ(h(B)) < µ(B)

for each Borel set B of R2.
These maps have an important property: the measure of any invariant

Borel set is either zero or infinity. If U is the region of attraction of an
asymptotically stable fixed point, the measure must be infinite since we are
dealing with an open set. In particular the region U is always unbounded.

4 A fixed point theorem

In this section we prove the existence of a fixed point outside an invariant
region with zero rotation number.

Proposition 2 Assume that h ∈ H+ is dissipative and U is a simply con-
nected open subset of the plane that is unbounded and proper, ∅ 6= U $ R2.
In addition,

h(U) = U, ρ(h, U) = 0.

Then h has a fixed point in R2 \ U .
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The dissipativity of h is essential. This can be shown by considering the
translation h(x1, x2) = (x1 + 1, x2) and the set U = R×]0, 1[. This map
has no fixed points and the rotation number on U vanishes. To justify that
ρ(h, U) = 0 it is enough to describe the dynamics of h? and observe that it
has two fixed points.

∞l ∞rU∗U

The result by Barge and Gillette in [3] leads to a result similar to Proposi-
tion 2 but for bounded domains. The typical strategy of Complex Analysis
of extending results from bounded to unbounded domains by working on
the Riemann sphere is not applicable in this case. In the assumptions of
Proposition 2 the point of infinity is always a fixed point lying on ∂S2U .

It can happen that the fixed point found by Proposition 2 does not lie
on the boundary of U . As an example we can consider the time 1 map
associated to the van der Pol flow. The region U is determined by two
orbits emanating from infinity and attracted by the closed orbit. Assuming
that 1 is not a period of the closed orbit it is easy to verify that all the
assumptions of Proposition 2 hold and the only fixed point is the unstable
equilibrium.

U
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Before the proof we need some additional information on prime ends and
several preliminary results. Given a prime end p in P, a point x ∈ S2 is
a principal point of p if the prime end can be represented by a null-chain
(Cn) such that the sequence of sets Cn converges to x. The set of principal
points of p is denoted by Π(p). It is a non-empty continuum. From the
definitions it is clear that if h?(p) = p1 then h(Π(p)) = Π(p1). In particular
Π(p) is an invariant continuum if p is fixed under h?. Assume now that
γ is a crosscut of U with end points a, b lying in ∂S2U . We employ the
notation γ̇ = γ \ {a, b}. Also we denote by V one of the two components of
U \ γ. The set of all prime ends that can be represented by null-chains (Cn)
with Ċn ⊂ V determines an arc in P. To justify this assertion we employ
Proposition 2.14 and Theorem 2.15 in [22]. The closure of this arc will be
denoted by αV = p̂q and the end points p, q are such that Π(p) = {a} and
Π(q) = {b}. The simple structure of the principal sets in this case is a
consequence of Corollary 2.17 in [22]. This is also implied by Lemma 5.1 in
[2].

The Riemann conformal map extends to a homeomorphism between D
and U? and the pre-image of γ̇ is an open arc in int(D) ending at two different
points of the boundary. Translating this observation from the disc to U? we
observe that γ̇ ∪ {p, q} is an arc in U?.

We also make some remarks on accessible points. A point b ∈ ∂S2U is
accessible if there exists an arc β such that b is an end point and β \ {b}
is contained in U . In this case there exists a prime end pβ ∈ P such that
β? = (β \ {b}) ∪ {pβ} is an arc in U? and Π(pβ) = {b}. This is again a
consequence of the above mentioned results in [22]. Finally we recall that
accessible points are dense on the boundary of U .

Lemma 3 Assume that p ∈ P is fixed under h? and ∞ 6∈ Π(p). Then h has
a fixed point lying in R2 \ U .

Proof. The set Π(p) is a non-empty continuum contained in R2. If this
set has trivial shape we can apply the Cartwright-Littlewood Fixed Point
Theorem [10, 9] to deduce the existence of a fixed point lying in Π(p). Since
this set is contained in ∂U we have found the searched point. When Π(p)
has no trivial shape one decomposes S2 \ Π(p) in a family of connected
components {Ωλ}λ∈Λ with ⋃

λ∈Λ

Ωλ = S2 \Π(p).

The component containing∞ is denoted by Ωλ0 . U is a connected subset of
S2 \Π(p) and so it must be contained in some component, being unbounded
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this component is precisely Ωλ0 . The set

K = S2 \ Ωλ0

is non-empty and compact. Moreover it is invariant under h. This is so
because Ωλ0 is invariant. To prove that K is connected we observe that this
set can be expressed as

K =
⋃
λ 6=λ0

Ωλ ∪Π(p) =
⋃
λ 6=λ0

cl(Ωλ) ∪Π(p).

Thus K is a union of continua contained in a common disc and all of them
have non-empty intersection with Π(p). This implies that K is a continuum.
We know from its definition that K has trivial shape and so the Cartwright-
Littlewood Theorem is applicable. The fixed point lying on K is not in U
because K ∩ U = ∅.
Remark. The fixed point belongs to ∂U when h is area-contracting. Notice
that Π(p) must have trivial shape, for otherwise the components Ωλ with
λ 6= λ0 would be invariant open sets with positive (but finite) measure.

Lemma 4 Assume that γ is a crosscut of U satisfying

γ ∩ h(γ) = ∅

and let V be a component of U \γ such that U \V contains at least one fixed
point. Then one of the following alternatives holds

(i) h(V ) ⊂ V and h?(αV ) ⊂ α̇V
(ii) V ⊂ h(V ) and αV ⊂ h?(α̇V )

(iii) V ∩ h(V ) = ∅ and αV ∩ h?(α̇V ) = ∅.
Proof. We first notice that the arcs αV and h?(αV ) cannot have common
end points. That is,

{p, q} ∩ {p1, q1} = ∅ (1)

where αV = p̂q and h?(αV ) = p̂1q1. This will be proved by contradiction,
assuming that p = q1 (the other cases are analogous). Since q1 = h?(q) we
deduce that

{a} = Π(p) = Π(q1) = h(Π(q)) = {h(b)}.
But a = h(b) would imply that γ ∩ h(γ) 6= ∅. Once we know that (1) holds
we observe the following alternative for the positions of V and h(V ),

h(V ) ⊂ V, V ⊂ h(V ), V ∩ h(V ) = ∅.
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The proof of this trichotomy will require some work. Let W denote the
other component of U \ γ. We observe that W ∩h(W ) is non-empty since it
contains a fixed point. The set h(γ̇) is connected and so it must lie in one
of the components of U \ γ. We distinguish two cases:

• Case 1: h(γ̇) ⊂ V .

This implies that h(γ)∩W = ∅. The components of U \h(γ) are h(V )
and h(W ) and so the connected set W must lie in one of them. Since
we know that W ∩ h(W ) 6= ∅ we conclude that W ⊂ h(W ). Taking
complements with respect to U ,

h(V ) ∪ h(γ̇) ⊂ V ∪ γ̇.

Since h(V ) is open we deduce that h(V ) is contained in V and the first
alternative holds.

• Case 2: h(γ̇) ⊂W

Now h(γ) ∩ V = ∅ and so either V ⊂ h(V ) or V ⊂ h(W ). The
first inclusion is precisely the second alternative. From the inclusion
V ⊂ h(W ) we deduce that

V ∩ h(V ) ⊂ h(W ) ∩ h(V ) = ∅

and the third alternative holds.

Now the rest of the proof follows from the definition of αV . Assuming for
instance that h(V ) ⊂ V then h?(αV ) ⊂ αV , implying by (1) that h?(αV ) ⊂
α̇V . The other two cases are treated similarly.

Remark. The previous proof also applies to generalized crosscuts with the
same end points. By this we mean a set γ that is homeomorphic to S1 and
has a point a ∈ γ ∩ ∂S2U with γ \ {a} ⊂ U . Notice that in this case αV can
be a singleton, a proper arc or the whole space P.

Proof of Proposition 2. The homeomorphism h is dissipative and so it
has at least one fixed point. From now on we assume that

Fix(h) ⊂ U,

for otherwise the result is already proved. The dissipativity also implies that
Fix(h) is compact and so it is possible to find a topological disc D such that

Fix(h) ⊂ int(D) ⊂ D ⊂ U. (2)
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We also fix an arc Γ with the following properties:

Γ = ξ̂η, ξ ∈ Fix(h), η ∈ ∂U, Γ \ {η} ⊂ U. (3)

Since ρ(h, U) = 0 we know that h? has at least one fixed point. We dis-
tinguish two cases: a) ∞ is not a principal point of some fixed prime end,
b) ∞ is a principal point of each fixed prime end. In view of lemma 3 it is
clear that we can find a fixed point of h outside U in case a). The rest of
the proof will be devoted to showing that case b) cannot occur. We proceed
by absurd and assume that

∞ ∈ Π(p), for each p ∈ Fix(h?). (4)

Our goal is to arrive at a contradiction.
After an application of Lemma 1 we find a disc L in S2 with

D ∩ L = ∅, Γ ∩ L = ∅, ∞ ∈ intS2(L), L ⊂ intS2h(L).

The set U intersects both components of S2 \ ∂L and so

U ∩ ∂L 6= ∅.

We can apply Proposition 2.13 in [22] and deduce the existence of a family
of crosscuts {γλ}λ∈Λ, ∅ 6= Λ ⊂ N \ {0}, such that γλ ⊂ ∂L and U can be
expressed as a disjoint union

U = U0 ∪
⋃
λ∈Λ

Uλ ∪
⋃
λ∈Λ

γ̇λ,

where U0 is the component of U \ ∂L containing ξ and Uλ is a domain with

γ̇λ = U ∩ ∂Uλ ⊂ U ∩ ∂U0.

Each crosscut γλ splits U in two components and the proof of Proposition
2.13 in [22] shows that Uλ is precisely the component of U \γλ not containing
ξ. Then Uλ determines an arc αUλ

in P. From now on this arc will be simply
denoted by αλ.

The crosscuts in [22] are understood in a generalized sense and it can
happen that the two end points of γλ coincide. This is a rather exceptional
situation and when it occurs the set of indexes Λ must be a singleton. As
a hypothetical illustration of this situation the reader can consider U =
R2 \ ([0,∞[×{0}), ∂L = S1. It is important to observe that αλ is always a
proper arc in P, that is, αλ = p̂q with p 6= q. This is clear for a standard
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crosscut because p and q have different principal points. Next we prove that
it also holds for generalized crosscuts. In principle we know that αλ is a
connected set in P and so it is enough to prove that it contains more than
one point but not the whole circle. The point η is accessible through the arc
Γ defined in (3) and so we can find pΓ ∈ P with Π(pΓ) = {η} and such that
Γ? = (Γ \ {η})∪{pΓ} is an arc in U?. We claim that pΓ is not in αλ. Indeed
given any chain of crosscuts (Cn) defining pΓ we observe that Cn → {η}.
Therefore Cn ∩ L = ∅ for n large enough. From here we deduce that Ċn
is contained either in U0 or in another component Uλ. The definition of pΓ

implies that Γ̇ and Ċn must intersect. Since Γ \ {η} is contained in U0 we
deduce that Ċn ⊂ U0. Taking into account the definition of αλ we observe
that some open arc around pΓ does not intersect αλ. Now we know that
αλ 6= P. To prove that αλ is non-empty we observe that accessible points
are dense on the boundary of U . Taking accessible points in ∂S2U ∩ intS2(L)
one can construct infinitely many points in αλ.

We point out two additional properties of these arcs:
(i) the end points of αλ are not fixed under h?,
(ii) α̇λ ∩ α̇µ = ∅ if λ 6= µ.
The first property is a consequence of (4) since the principal points asso-
ciated to the end points of αλ belong to ∂L. The second property holds
because Uλ and Uµ are disjoint.

Next we observe that

h(γλ) ∩ γλ ⊂ h(∂L) ∩ ∂L = ∅

and so Lemma 4 and the remark after its proof are applicable. Thus one of
the alternatives h(Uλ) ⊂ Uλ, Uλ ⊂ h(Uλ) or Uλ ∩ h(Uλ) = ∅ holds. Also,
h?(αλ) ⊂ α̇λ, αλ ⊂ h?(α̇λ) or αλ ∩ h?(αλ) = ∅.

The next step is to prove that {α̇λ}λ∈Λ is an open covering of Fix(h?). To
this end we take p ∈ Fix(h?) and select a chain of crosscuts (Cn) determining
p and such that Cn → ∞. Here we are using that ∞ is a principal point
thanks to (4). For n large enough, Cn will be contained in intS2(L). The
connected set Ċn must be contained in some component of U \ ∂L. This
component cannot be U0 ⊂ S2 \ L. Let λ ∈ Λ be the index such that Ċn
is contained in Uλ. As noticed in [22] after Proposition 2.13, this index is
unique. We conclude from the definition of αλ that p belongs to this arc.
Moreover p cannot be an end point of αλ. Indeed ∞ ∈ Π(p) and the end
points of αλ have as unique principal points the end points of γλ.

Once we know that {α̇λ} is an open covering of the compact set Fix(h?),
we can extract a finite sub-covering {α̇λ}λ∈F . This sub-covering can be
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chosen so that every open arc contains at least one fixed point. This excludes
the possibility αλ ∩ h?(αλ) = ∅ and so we must have either h?(αλ) ⊂ α̇λ or
αλ ⊂ h?(α̇λ) for each λ ∈ F .

The rest of the proof is based on the theory of fixed point index on
polyhedra (see [12] or [15]). First we construct the double space DU? from
the disc U?. This space is obtained from two copies of U? by identifying the
boundaries. It is homeomorphic to S2 and can be split as

DU? = U+ ∪ U− ∪ P,

where P is the equator and the two hemispheres are composed by points
(x,+) and (x,−) with x ∈ U . Next we construct the homeomorphism
H : DU? → DU? defined as

H(x,±) = (h(x),±) if x ∈ U, H(p) = h?(p) if p ∈ P.

Since h is orientation preserving the same property holds for H. In conse-
quence the Lefschetz number of H is precisely 2, the Euler characteristic of
the sphere. The set of fixed points of H can be decomposed in three parts,
those lying on D+ = D × {+} or D− = D × {−} and those on the equator.
We are going to compute the corresponding fixed points indexes. First we
observe that, since h is dissipative, the index of h on large balls of the plane
is 1. In view of (2) also the index on D is 1. This implies that

i(H,D+) = i(H,D−) = 1. (5)

The fixed points on the equator are precisely the prime ends fixed under h?

and they are covered by the family of discs {∆λ}λ∈F , where each ∆λ is the
closure in DU? of U+

λ ∪ U−λ with U±λ = Uλ × {±}. We observe that these
discs contain the arc αλ and their boundary is composed by γ±λ and the end
points of αλ. Thus H does not have fixed points in the boundary of ∆λ and
one of the following conditions holds, either H(∆λ) ⊂ ∆λ or ∆λ ⊂ H(∆λ).
In any of the two cases one has,

i(H,∆λ) = 1. (6)

This is a consequence of Lemma 2.2.25 in [15] for the attracting case. For
the repelling case it is enough to observe that i(H,∆λ) = i(H−1,∆λ). As
a consequence of the properties (i) and (ii) of the family of arcs we deduce
that, for λ 6= µ, ∆λ and ∆µ can only intersect at their boundaries. Since
ξ ∈ D∩U0 and D is a connected subset of U \∂L we conclude that D ⊂ U0.
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In consequence D± is disjoint with ∆λ. This allows us to combine the
excision property with Hopf index theorem to conclude that

2 = χ(S2) = i(H,DU?) = i(H,D+) + i(H,D−) +
∑
λ∈F

i(H,∆λ).

Since the set of indexes F is non-empty we arrive at a contradiction with
(5) and (6).

In view of the remark after the proof of Lemma 3 the previous proof can
be modified to obtain a refinement for area-contracting maps.

Corollary 5 Assume that all the conditions of Proposition 2 holds. In ad-
dition h is area-contracting and there exists a topological disc D ⊂ U such
that

Fix(h) ∩ U ⊂ int(D) and i(h,D) = 1.

Then h has a fixed point lying on ∂U .

5 Computing the rotation number

To make Proposition 2 useful for applications we need some conditions on
h and U implying that the rotation number vanishes. We list some of these
conditions in the next result.

Proposition 6 Assume that h ∈ H+ and U = h(U) is a simply connected
open subset of the plane that is unbounded and proper, ∅ 6= U $ R2. Then

ρ(h, U) = 0

if any of the conditions below holds

(i) ∂U is connected and ∞ is accessible from U

(ii) h = r ◦ r with r ∈ H− and r(U) = U

(iii) There exists an arc γ ⊂ S2 having ∞ as one of the end points with
γ \ {∞} ⊂ U and h(γ) ⊂ γ
(iv) There exists a sector K = {ρeiθ : ρ ≥ 0, θ ∈ [Θ−,Θ+]}, Θ− < Θ+, and
a disc D = {|z| ≤ R} such that h(K \D) ⊂ K and K \D ⊂ U .

The condition (i) requires the accessibility of the point of infinity and this
is essential. Later we will construct an example where the boundary ∂U
is connected but the rotation number is 1

2 . We recall that ∞ is accessible
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from U when there is an arc γ in S2 having ∞ as one end point and such
that γ \ {∞} is contained in U . The condition (ii) can be illustrated with
the linear case. If h(x) = Ax then h = r2 with r(x) = Bx, detB < 0,
as soon as the matrix A has two positive eigenvalues with λ1 6= λ2. The
condition (iii) is inspired by the work of Alarcón, Gúıñez and Gutiérrez [1].
They introduced a similar assumption to get results on global asymptotic
stability. Positively invariant cones appear often in the theory of differential
equations and for this reason we have also stated condition (iv).

Before going to the proof of the proposition we present the example
linked to (i). We start with the system of differential equations in the plane

ẋ = φ(x), ẏ = ψ(x, y)

where φ and ψ are C∞ bounded functions satisfying

φ(x) = 0 if x ∈ A := { 1
n

: n ∈ Z, n 6= 0} ∪ {0}, xφ(x) > 0 otherwise

ψ(x, y) = 0 if (x, y) ∈ (R× {0}) ∪ (A× {1,−1}), yψ(x, y) > 0 otherwise.

The study of the phase portrait shows that K = (A×[−1, 1])∪([−1, 1]×{0})
is invariant under the flow {φt}t∈R. Next we compose the time one map with
the rotation of 180 degrees R : (x, y) 7→ (−x,−y). The map h1 = R ◦ φ1 is
orientation-preserving and can be extended to S2. The region V = S2 \K
is invariant under h1 and simply connected and so the rotation number
ρ(h1, V ) is defined. We claim that ρ(h1, V ) = 1

2 . To justify it we observe
that the points (1, 1) and (−1,−1) are a 2-cycle of h1 and there are unique
prime ends p± ∈ P(V ) with Π(p+) = {(1, 1)} and Π(p−) = {(−1,−1)}.
Hence p± is a 2-cycle for h?1. The domain V contains the point of infinity
and so it is not in the class considered by Proposition 6. This is easily solved
with the change of variables z 7→ 1

z , performed in the Riemann sphere. Now
the region U = {1

z : z ∈ V } is invariant under h(z) = 1/h1(1
z ) and we

observe that ∂U is homeomorphic to K \ {0}. The origin is not accessible
from V and the same property holds for ∞ and U .

We prepare the proof of Proposition 6 with some results on prime ends.

Lemma 7 Let U 6= R2 be open and simply connected. In addition it satisfies
the conditions

(a) ∞ is accessible from U

(b) R2 \ U is connected.

Then there exists a unique prime end p ∈ P with Π(p) = {∞}.
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The simplest example of a domain satisfying the conditions of the lemma is
U =]0,∞[×]0, 1[. In this case Π(p) is a singleton for every p ∈ P and the
correspondence between prime ends and principal points is a bijection from
P to ∂S2U . To construct a more sophisticated example we consider the curve

C : y = e1/x sin(
1
x

), x > 0.

After inflating this curve without creating self-intersections we obtain a do-
main U . Notice that U must become thinner as one approaches the line
x = 0. The arc C ∩ {x ≥ 1} connects U with ∞ and so (a) holds. The
condition (b) is also valid although R2 \U is not arc-wise connected. Finally
we observe that there are two prime ends p0 and p∞ having∞ as a principal
point, indeed Π(p0) = {x = 0} ∪ {∞} and Π(p∞) = {∞}.
Proof of Lemma 7. First of all we need some additional information on
the behavior of the Riemann conformal map from the open disc int(D) onto
U . We fix such a map and denote it by R. Given a continuous function
γ : [0, 1[→ U with γ(t) → a ∈ ∂S2U as t ↑ 1, then R−1(γ(t)) → ξ for some
ξ ∈ ∂D. This is a consequence of Proposition 2.14 in [22]. In the same
chapter of the book [22] there is a characterization of the prime ends for
which Π(p) is a singleton. Following Corollary 2.17 in [22] we assume that
ξ ∈ ∂D, p = R̂(ξ) and a ∈ ∂S2U . Here R̂ stands for the extension of the
Riemann map to D ∼= U?. The following statements are equivalent:

• Π(p) = {a}

• R(tξ)→ a as t ↑ 1

• R(Γ(t)) → a as t ↑ 1 for some continuous function Γ : [0, 1[→ int(D)
with Γ(t)→ ξ as t ↑ 1.

With this background we are ready to prove the Lemma. First we prove the
existence of such a prime end. From the condition (a) we find a continuous
function γ : [0, 1[→ U with γ(t) → ∞ as t ↑ 1. The limit of R−1(γ(t)) is
denoted by ξ ∈ ∂D and the prime end p = R̂(ξ) satisfies Π(p) = {∞}.
The uniqueness is proven by a contradiction argument. Assume that p1, p2 ∈
P, p1 6= p2 are such that Π(p1) = Π(p2) = {∞}. The pre-images ξ1 =
R̂−1(p1) and ξ2 = R̂−1(p2) are well defined and R(tξi) → ∞ as t ↑ 1. Let
r1 and r2 be the arcs in S2 parameterized by ri(t) = R(tξi). They share the
end points, R(0) and∞, and ṙ1∩ ṙ2 = ∅. In consequence J = r1∪r2∪{∞} is
a Jordan curve. Let V and W be the connected components of S2 \J . Since
J \ {∞} is contained in U , the set R2 \ U is disjoint with J . Hence it must
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lie in one of the components, say R2 \U ⊂ V . It is at this point that we have
applied the condition (b). Our interest will be in the other component W
that must be contained in U . The Jordan-Schonflies Theorem implies that
W ∪ J is a topological disc and so we can draw an arc σ in W ∪ J having
end points at R(0) and ∞ and touching r1 and r2 infinitely many times.
More precisely, we assume that σ(t) is a parameterization, σ(0) = R(0),
σ(1) = ∞ and σ(tn) ∈ r1, σ(sn) ∈ r2 for sequences tn and sn converging
to 1−. Let ξ3 ∈ ∂D be the limit of R−1 ◦ σ. We know that such a limit
exists since σ(t) → ∞ as t ↑ 1 and σ(t) ∈ W ∪ (J \ {∞}) ⊂ U if t ∈ [0, 1[.
The prime end p3 = R̂(ξ3) is such that σ(t) → p3 in U?. At the same time
the sequence σ(tn) is contained in r1 and converges to p1. This implies that
p1 = p3. The same reasoning applied to the sequence sn leads to p2 = p1,
the searched contradiction.

Remark. The condition (b) in the previous Lemma can be replaced by

(b?) ∂U is connected.

First we fix a point ξ in U and, given any x in R2 \ U , we denote by x? the
first point in the segment [x, ξ] lying in ∂U . To prove the connectedness of
R2 \U we show that any two points x1 and x2 in R2 \U can be joined by a
connected subset of R2 \ U . This set can be C = [x1, x

?
1] ∪ [x2, x

?
2] ∪ ∂U .

Proof of Proposition 6. As it is well known, the class of orientation-
preserving homeomorphisms of S1 having zero as rotation number coincides
with those having at least one fixed point. Next we prove that under every
assumption from (i) to (iv) there exists a fixed point of h?.

(i) In view of the above Remark and Lemma 7 we know that there is a
unique prime end with Π(p) = {∞}. The prime end h?(p) has the same
principal set and so by uniqueness we conclude that p is fixed.

(ii) Since U is invariant under h and r, these maps induce homeomorphisms
of P and they satisfy h? = r? ◦ r?. The extension to U? must be orientation-
reversing for r and orientation-preserving for h. The same properties are
valid for r? and h? as maps of P. It is well known that an orientation-
reversing homeomorphism of the unit circle has exactly two fixed points.
This result applies to r? and so h? will have at least two fixed points.

(iii) The arc γ is such that R−1 ◦γ is a path in D with limt↑1R−1 ◦γ(t) = ξ
for some ξ ∈ D. Since h(γ) is a sub-arc of γ ending at ∞ we deduce that
limt↑1R−1(h(γ(t))) = ξ. The prime end p = R̂(ξ) will be fixed under h?.
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(iv) First we recall some additional facts from the theory of prime ends.
They are extracted from the book [19]. Given a ∈ ∂S2U we consider the class
A(a, U) of arcs γ having a as one end point and such that γ\{a} ⊂ U . Every
arc in A(a, U) defines a prime end p in P. Indeed if γ(t) is a parameterization
with γ(1) = a, then limt↑1 γ(t) = p in U?. Two arcs γ1 and γ2 in A(a, U)
define the same prime end if there exists a third arc γ3 in A(a, U) and
sequences (xn) and (yn) of points in U satisfying

xn → a, yn → a, xn ∈ γ1 ∩ γ3, yn ∈ γ2 ∩ γ3.

These results can be proved following along the lines of the proof of Lemma
7. We are ready to apply these remarks to prove (iv). First we fix an angle
Θ ∈]Θ−,Θ+[. The continuity of h at ∞ = h(∞) implies the existence of
R1 > R with h(ρeiΘ) 6∈ D if ρ ≥ R1. The ray γ(t) = R1

1−te
iΘ is in the class

A(∞, U) and, from the assumption, we deduce that also h◦γ is in this class.
Indeed both arcs lie inside K \D ⊂ U . This allows us to construct an arc
γ3 in A(∞, U) to show the equivalence of γ and h ◦ γ. For example we can
take an arc in K \D bouncing infinitely many times between θ = Θ− and
θ = Θ+, Assume that p is the prime end defined by γ (and also by h ◦ γ).
Since γ(t) → p in U?, the continuity of the extension of h to U? implies
that h(γ(t)) → h?(p) in U?. Since both arcs define the same prime end we
conclude that p is fixed.

6 Orientation-reversing homeomorphisms

The rest of the paper will be devoted to find applications of Propositions 2
and 6 in different instances. This will lead to some novel results in stability
theory. We start with the condition (ii) of Proposition 6 that is very suitable
for the orientation reversing case. Throughout this section h is a map in
H−. The first result is a characterization of asymptotic stability in the global
sense.

Theorem 8 Assume that h ∈ H− is area-contracting and dissipative. In
addition p = h(p) is an asymptotically stable fixed point with region of at-
traction U ⊂ R2. The following conditions are equivalent

(i) U = R2

(ii) Fix(h2) = {p}.

Proof. We notice that when (i) holds all points are attracted by the point
p and so there are no other fixed points or two cycles. This shows the
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implication (i)⇒ (ii). To prove (ii)⇒ (i) we employ an indirect argument
and assume that U 6= R2. Since U is simply connected and unbounded it is
possible to apply Proposition 6 in the case (ii) to the map h2 ∈ H+. At this
point it must be observed that the regions of attraction of p for h and h2

coincide. The conclusion is that ρ(h2, U) vanishes. A classical result due to
Browder and Krasnoselskii [17] says that the index around an asymptotically
stable fixed point is 1. In particular, i(h2, D) = 1 for any small disc centered
at p. The region of attraction does not contain any recurrent point different
from p, in particular Fix(h2)∩U = {p} and so Corollary 5 is applicable. We
deduce that h2 must have a fixed point lying on ∂U and this is a conclusion
that is not compatible with the assumption (ii).

Remark. The previous proof leads to a stronger conclusion. If one assumes
that the conditions of the previous theorem hold and U 6= R2, then

Fix(h2) ∩ ∂U 6= ∅.

The study of orientation-reversing homeomorphisms of the plane has in-
terest in itself and recently has received a lot of attention, see [7]. Sometimes
the question arises as to whether this theory can be useful in the study of
differential equations. Some discussions in this direction for autonomous
systems can be found in [25]. For periodic equations the Poincaré map
plays a crucial role in the understanding of the dynamics, but this map is
always orientation-preserving (see [20] for more details). Next we show how
orientation-reversing maps do appear in the context of periodic differential
equations with symmetries. Let S denote the symmetry with respect to the
horizontal axis S(x1, x2) = (x1,−x2) and consider the differential system

ẋ = X(t, x), x ∈ R2 (7)

where X : R× R2 → R2 satisfies

X(t+ π, Sx) = SX(t, x), for each (t, x) ∈ R× R2.

We also assume that the vector field X is continuous and such that there is
global existence and uniqueness for the initial value problem. The solution
satisfying the initial condition x(t0) = ξ will be denoted by x(t; t0, ξ) and it
is well defined for all t ∈ R. We define the maps

P1(ξ) = x(π; 0, ξ) and P2(ξ) = x(2π;π, ξ).

They satisfy
S ◦ P1 = P2 ◦ S.
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Indeed we notice that if x(t) is a solution then Sx(t+ π) is also a solution.
Hence

x(t; 0, Sξ) = Sx(t+ π;π, ξ).

This implies that S ◦ P2 = P1 ◦ S and from here it is easy to arrive at the
above identity. The symmetry of the vector field implies that system (7) is
2π-periodic with respect to time and so the Poincaré map P (ξ) = x(2π; 0, ξ)
is the key to understand the dynamics of the equation. It satisfies

P = P2 ◦ P1 = P2 ◦ S ◦ S ◦ P1 = (S ◦ P1)2.

It is well known that the maps P1, P2 and P belong to H+. The previous
discussions show that P can be expressed as P = r◦r with r = S ◦P1 ∈ H−.

We present a consequence of Theorem 8. It employs the notion of dis-
sipativity for periodic differential equations. This notion is analyzed in [21]
and also in [27] with a different terminology. In particular it implies the
dissipativity of the Poincaré map.

Corollary 9 Consider the system (7) in the above conditions and assume
in addition that X is C1, X(t, 0) = 0 for all t, and the three conditions below
hold,

• System (7) is dissipative

• divxX(t, x) := ∂X1
∂x1

(t, x) + ∂X2
∂x2

(t, x) < 0 everywhere

• The linearized system

ẏ =
∂X

∂x
(t, 0)y

is asymptotically stable.

Then the trivial solution x = 0 is globally asymptotically stable if and only
if there are no more 2π-periodic solutions.

Proof. We apply the previous theorem to r = S ◦ P1. In view of the first
condition the map P is dissipative and so the same property must hold for
r. The Jacobi-Liouville formula together with the second condition imply
that P1 is area-contracting. Hence the same property is enjoyed by r. The
linearization principle and the third condition imply that the solution x = 0
is asymptotically stable for (7). This is equivalent to saying that p = 0 is
asymptotically stable as a fixed point of P . In consequence it has the same
property with respect to r and we can invoke the theorem.
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To illustrate the previous result consider the system

ẋ1 = −x1 + ψ(x2), ẋ2 = −x2 + λ(sin t)x1,

where ψ ∈ C1(R) is even and bounded, ψ(0) = ψ′(0) = 0 and λ ∈ R is
a parameter. The general conditions imposed to system (7), including the
symmetry, are satisfied in this case. To check the dissipativity one can
employ the Lyapunov function

V (x1, x2) = αx2
1 + βx2

2

with α and β positive numbers satisfying α > λ2

4 β. It satisfies

V̇ (x) ≤ −γV (x) whenever ||x|| ≥ R.

Here γ and R are positive numbers that can be determined. This is sufficient
to guarantee dissipativity. The divergence of the system is constant and
equal to −2 so that the second condition holds. It remains to study the
stability of the 2π-periodic linear system

ẏ1 = −y1, ẏ2 = −y2 + λ(sin t)y1.

It has the Floquet solution y(t) = col(0, e−t) and so the corresponding mul-
tiplier is µ1 = e−2π. The Jacobi-Liouville formula implies that the product
of the multipliers satisfies µ1µ2 = e−4π and so also µ2 = e−2π. This proves
the asymptotic stability of the linearized system.

The previous example has been prepared in order to fulfill the required
conditions but at least it shows that concrete results can be achieved with
this methodology.

7 Miscellaneous results in stability theory

In this Section we present applications of Proposition 6 in the cases (i), (iii)
and (iv).

7.1 Existence of periodic points

The next result deals with the region of attraction U of an asymptotically
stable fixed point. The conclusion is that we must expect periodic points
outside U if the boundary ∂U is not complicated. An interesting feature of
the proof is the use of Proposition 2 in a situation where the invariant set
is not a region of attraction.
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Theorem 10 Let h be a dissipative map in H having an asymptotically
stable fixed point p with unbounded region of attraction U 6= R2. In addition
assume that∞ is accessible from U and ∂U has a finite number of connected
components. Then h has a periodic orbit lying in R2 \ U .

Proof. Let C1, . . . , Cp be the components of ∂U . Since ∂S2U is connected
each component Ci must be unbounded. The homeomorphism h induces a
permutation on the finite set {C1, . . . , Cp} and so there exists some integer
1 ≤ N ≤ p! with hN (Ci) = Ci for each i. It is not restrictive to assume
that N is even. The set R2 \ C1 is open and we denote by V the connected
component containing U . We observe that V is simply connected. Otherwise
there should exist a Jordan curve γ ⊂ V not contractible to a point and this
would imply that C1 should be contained in the bounded component of R2\γ.
This is absurd since C1 is unbounded. The sets C1 and U are invariant under
hN and the same must happen to V . We intend to apply Proposition 6 in
the case (i) to the map hN ∈ H+ and the set V . To check the remaining
assumptions we notice that the boundary of V is ∂V = C1 and so it is
connected. Moreover, since∞ is accessible from U the same must hold with
respect to the larger set V . We can now conclude that ρ(hN , V ) = 0. Finally
we apply Proposition 2 in the same setting and conclude that hN has a fixed
point outside V . This is the searched periodic point and it is interesting to
observe that we have some control on the size of the period N in terms of
the number of connected components.

7.2 Invariant rays and population dynamics

An interesting characterization of global asymptotic stability was obtained
recently in [1].

Theorem 11 (Alarcón, Gúıñez, Gutiérrez). Assume that h ∈ H+ is dis-
sipative and p is an asymptotically stable fixed point of h. The following
conditions are equivalent,

(a) p is globally asymptotically stable

(b) Fix(h) = {p} and there exists an arc γ ⊂ S2 with end points at p and
∞ such that h(γ) = γ.

The proof in [1] is based in Brouwer’s theory of fixed point free homeomor-
phisms of the plane. Next we present an alternative proof based on the
theory of prime ends.
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Proof. (a) ⇒ (b) We observe that h is conjugate to a linear contraction.
This is a consequence of the results by Kerékjarto mentioned in Section 2.
For a linear contraction we can take the ray γ = ([0,∞[×{0}) ∪ {∞}.
(b)⇒ (a) By a contradiction argument we assume that the region of attrac-
tion U of p is not the whole plane. The restriction of h to γ is a homeo-
morphism of the arc fixing the end points. Since there are no fixed points
in the interior of the arc, every orbit must be attracted by an end point. As
the map is dissipative we conclude that p attracts all orbits in γ̇. In other
words, γ \ {∞} ⊂ U . In particular U is unbounded and all the conditions
required by the case (iii) of Proposition 6 are satisfied. Once we know the
rotation number vanishes we apply Proposition 2 and conclude that there
exists a second fixed point. This is not compatible with (b).

The previous result is applicable to systems with two populations. In
these systems the coordinate axes are invariant and they produce the invari-
ant ray. More precisely we consider the system

u̇ = uF (t, u, v), v̇ = vG(t, u, v), u, v ≥ 0, (8)

where F,G : R × R2 → R are of class C1 and 1-periodic in time. The
periodicity in time reflects the seasonal effects. For more ecological insight
we refer to [11]. We also assume that F and G are such that there is global
existence for the associated initial value problem on the first quadrant. We
think of u(t) and v(t) as the sizes of two species and say that there is
extinction for (8) if

u(t)→ 0, v(t)→ 0 as t→ +∞

for each solution (u(t), v(t)).
We shall assume that the system is dissipative and this is a very natural

assumption in population dynamics, particularly when logistic effects are
involved. We also employ the condition∫ 1

0
F (t, 0, 0)dt < 0,

∫ 1

0
G(t, 0, 0)dt < 0. (9)

This condition says that the averaged balance between birth and death is
negative when the populations are very small.

Theorem 12 Assume that the system (8) is dissipative and the condition
(9) holds. Then there is extinction if and only if u = v = 0 is the unique
1-periodic solution.
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Remark. The condition (9) is necessary to exclude cases where the origin
is an unstable attractor. We illustrate this situation in the following phase
portrait

0

Proof. System (8) has period T = 1 and the associated Poincaré map P is
an orientation-preserving homeomorphism of the first quadrant

R2
+ = {(u, v) ∈ R2 : u ≥ 0, v ≥ 0}.

The coordinate axes u = 0 and v = 0 are invariant under (8) and also under
the map P . This allows us to extend P to a homeomorphism h ∈ H+ by
successive reflections. The map h leaves invariant each quadrant and the
dynamics of P is reproduced. The global asymptotic stability for p = 0
implies the extinction for (8). We intend to apply Theorem 11 and to this
end we must verify that p = 0 is asymptotically stable. Going back to the
differential equations we observe that the linearized system at u = v = 0 is

ξ̇ = F (t, 0, 0)ξ, η̇ = G(t, 0, 0)η.

This system is uncoupled and can be easily integrated. The condition (9)
says that there is asymptotic stability. In consequence u = v = 0 is asymp-
totically stable with respect to the nonlinear system and so the fixed point
p = 0 is asymptotically stable for h. To check the condition (b) of the
Theorem it is enough to find an invariant ray. We can take the half line
γ : u ≥ 0, v = 0.
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7.3 Sectorial attraction in forced oscillators

Consider the equation
ẍ+ cẋ+ g(x) = p(t) (10)

where c > 0, g : R → R is locally Lipschitz-continuous and p is continuous
and 2π-periodic. In the terminology of Pliss [21] this equation is convergent
if it has a 2π-periodic solution that is globally asymptotically stable. We say
that the equation has the property of Σ-uniqueness it it has a unique 2π-
periodic solution and this solution is asymptotically stable. This property
is weaker than convergence but we want to show that they are equivalent as
soon as the solutions starting at some angular sector are attracted.

Let us assume that g has finite limits at ±∞ and

g(−∞) < p < g(+∞), (11)

where p = 1
2π

∫ 2π
0 p(t)dt is the mean value of p. This condition has a me-

chanical meaning, it says that the averaged force −g(x) + p points towards
the origin, at least in a neighborhood of infinity. In agreement with this
intuition it is known that (11) is sufficient to guarantee the dissipativity of
the first order system associated to (10). See [27] for more details, in partic-
ular pages 70 and 71. From now on ϕ(t) will denote the unique 2π-periodic
solution of (10). Given another solution x(t) we say that it is attracted by
ϕ if

|x(t)− ϕ(t)|+ |ẋ(t)− ϕ̇(t)| → 0 as t→ +∞.

Proposition 13 Assume that (11) holds and there is Σ-uniqueness for (10).
In addition there are positive numbers ρ and ε such that all the solutions
satisfying

x(0) ≥ ρ, |ẋ(0)| ≤ εx(0)

are attracted by ϕ. Then (10) is convergent.

Before proving this result we state a lemma on linear equations.

Lemma 14 Assume that h ∈ C[0, 2π] and x(t) is a solution of

ẍ+ cẋ = h(t).

Given r > 0 there exists R > 0 such that

|x(0)|+ |ẋ(0)| ≥ R ⇒ |x(t)|+ |ẋ(t)| ≥ r, t ∈ [0, 2π].

The number R only depends upon r, c and ||h||∞.
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The proof can be obtained using the formula of variation of constants.

Proof of Proposition 13. Since g is bounded all the solutions of (10) are
globally defined. Consider the planar set

K = {(x1, x2) ∈ R2 : |x2| ≤ εx1}.

We observe that if x(t) is a solution then

d

dt
(ẋ(t)± εx(t)) = −(c∓ ε)ẋ(t)− g(x(t)) + p(t).

Assuming ε < c we can find r > ρ such that if |x(t)| + |ẋ(t)| ≥ r and
(x(t), ẋ(t)) ∈ ∂K then (x(s), ẋ(s)) enters into K when s > t is close enough
to t. Next we apply the above Lemma with h = p − g ◦ x and find the
corresponding number R associated to r and ε. Notice that h depends on
the chosen solution x(t) but R only depends on ||g||∞ + ||p||∞. Now it is
standard to prove that the set K has the following invariance property: if
x(t) is a solution of (10) with |x(0)|+ |ẋ(0)| ≥ R and (x(0), ẋ(0)) ∈ K then
(x(t), ẋ(t)) ∈ K for each t ∈ [0, 2π]. With this information we consider the
system

ẋ1 = x2, ẋ2 = −g(x1)− cx2 + p(t)

and the associated Poincaré map for T = 2π, that will be denoted by P .
This map belongs to H+ and, since the divergence of the vector field is −c, it
is area-contracting. At this point it is convenient to observe that the vector
field is not necessarily smooth but the divergence is always well defined.
More details on this point can be found in [26]. Also we observe that the
condition (11) implies that P is dissipative. Now we can apply Proposition
6 in the case (iv) and Proposition 2 to complete the proof.
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