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Abstract

Let U ⊂ R2 be an open subset, f : U → f(U) ⊂ R2 be an orien-
tation reversing homeomorphism and let 0 ∈ U be an isolated, as a
periodic orbit, fixed point. The main theorem of this paper says that
if the fixed point indices iR2(f, 0) = iR2(f2, 0) = 1 then there exists an
orientation preserving dissipative homeomorphism ϕ : R2 → R2 such
that f2 = ϕ in a small neighborhood of 0 and {0} is a global attractor
for ϕ. As a corollary we have that for orientation reversing planar
homeomorphisms a fixed point, which is an isolated fixed point for f2,
is asymptotically stable if and only if it is stable. We also present an
application to periodic differential equations with symmetries where
orientation reversing homeomorphisms appear naturally .

1. Introduction.

Let U ⊂ R2 be an open set with 0 ∈ U . Let f : U ⊂ R2 → f(U) ⊂ R2

be a homeomorphism. Let 0 ∈ U be a fixed point of f which is isolated as a
periodic point, i.e. there exists a neighborhood V ⊂ U such that p ∈ V and
Fix(f) ∩ V = Per(f) ∩ V = {0}. The fixed point index of the iterates of f
at 0, iR2(fm, 0), is a well defined integer sequence which provides important
information about the local dynamical behavior of f around 0. There are
results in both directions: bounds (or explicit computation) for the fixed
point index from dynamical properties of f (see for example [20], [10], [18],
[13], [29], [33]) and, conversely, how the knowledge of the fixed point index
is used to describe the dynamics locally (see for instance [21], [28], [31],
[32]). In the abundant literature about this topic one observes that the
authors restrict themselves to the orientation preserving case and the most
interesting dynamical consequences are obtained when iR2(fm, 0) 6= 1 for
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some m ∈ Z. Probably the most relevant result for index 1 fixed points is
due to Ortega, in [25], where it is shown that for orientation preserving and
area contracting diffeomorphisms, iR2(f, 0) = iR2(f2, 0) = 1, stability and
asymptotic stability of {0} are equivalent conditions. This theorem is not
true for homeomorphisms ([1]).

In this paper we investigate the dynamical behavior near fixed points of
index 1 in the orientation reversing case. The main theorem of this article
is the following:

Theorem 1. Let f : U ⊂ R2 → f(U) ⊂ R2 be an orientation revers-
ing homeomorphism, with Fix(f) = Fix(f2) = {0}. Then, if iR2(f, 0) =
iR2(f2, 0) = 1, there exists an orientation preserving dissipative homeomor-
phism ϕ : R2 → R2 such that for a small enough neighborhood of 0, V0 ⊂ U ,
ϕ|V0 = f2|V0 and {0} is a global attractor for ϕ.

As a corollary we have that for orientation reversing planar homeomor-
phisms a fixed point, which is an isolated fixed point for f2, is asymptotically
stable whenever it is stable.

The paper is organized as follows: in the next section we present the pre-
liminary definitions and techniques of prime ends and Conley index theories
needed for the computations of the fixed point index. Section 3 is dedicated
to the proof of Theorem 1 and in the last section we offer an application of our
results to periodic differential equations with symmetries where orientation
reversing homeomorphisms appear naturally.

The reader is referred to the text of [5], [11], [14] and [24] for information
about the fixed point index theory.

2. Preliminary definitions and local results.

Given A ⊂ B ⊂ N , cl(A), clB(A), int(A), intB(A), ∂(A) and ∂B(A) will
denote the closure of A, the closure of A in B, the interior of A, the interior
of A in B, the boundary of A and the boundary of A in B respectively.

Let U ⊂ R2 be an open set. By a (local) semi-dynamical system or a
local homeomorphism we mean a continuous one-to-one map f : U → R2.
A function σ : Z → R2 is said to be a solution to f through x in N ⊂ U if
f(σ(i)) = σ(i + 1) for all i ∈ Z, σ(0) = x and σ(i) ∈ N for all i ∈ Z. The
invariant part of N , Inv(N, f), is defined as the set of all x ∈ N that admit
a solution to f through x in N . Inv+(N, f) (resp. Inv−(N, f)) will denote
the set of all x ∈ N such that f j(x) ∈ N for every j ∈ N (resp. f−j(x) is
well defined and belongs to N for every j ∈ N).

A set K ⊂ U is invariant if f(K) = K and positively invariant if f(K) ⊂
K. An invariant compact set K is isolated with respect to f if there exists a
compact neighborhood N of K such that Inv(N, f) = K. The neighborhood
N is called an isolating neighborhood of K.
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Special cases of isolating neighborhoods are isolating blocks. A compact
set N ⊂ U is an isolating block if f(N) ∩N ∩ f−1(N) ⊂ int(N).

Finally recall that given a homeomorphism f : U → f(U) and x ∈ U ,
the omega limit of x, ωf (x), is the set of all limit points of the subsequences
of {fm(x)}m∈N.

A fixed point p is a local attractor if there exists a neighborhood V ⊂ U
of p such that for every x ∈ V , the omega limit ωf (x) = {p}. The region of
attraction of {p} is the set A(p) = {x ∈ U : ωf (x) = {p}}. When U = R2

and f : R2 → R2 is a homeomorphism, we say that p is a global attractor if
A(p) = R2.

The fixed point p is said to be Lyapunov stable or simply stable, if there
exists a basis of neighborhoods of p formed by positively invariant sets. The
fixed point p is asymptotically stable if it is a stable attractor. Analogously
a fixed point is a repeller if it is asymptotically stable for f−1.

A homeomorphism f : R2 → R2 is said to be dissipative if the infinity
point is a repeller. Equivalently, there exists a positively invariant compact
set M ⊂ R2 such that for every x ∈ R2 there exists m = m(x) ∈ N with
fm(x) ∈M .

2.1. Prime ends theory.

A Jordan curve γ is a non-self-intersecting continuous loop in the plane.
Every Jordan curve decompose the plain into two components. A Jordan
domain is the bounded component of the complement of a Jordan curve.

Let B ⊂ C be the unit open disc and let f : B → G ⊂ C ∪ {∞} be a
conformal mapping. The problem whether f admits an extension to cl(B) =
B ∪S1, by defining f(z) = limx→z f(x) for z ∈ S1, has a topological answer.
Indeed, f admits and extension if and only if ∂(G) is locally connected.
The problem whether f has an injective extension has also an answer of
topological nature: f has an injective extension if and only if ∂(G) is a Jordan
curve (Carathéodory’s Theorem, see [27]). If ∂(G) is locally connected but
not a Jordan curve there are points of ∂(G) that have several pre-images. The
situation becomes much more complicated if ∂(G) is not locally connected.
Carathéodory introduced the notion of prime end to describe this setting.
The points z ∈ S1 correspond one-to-one to the prime ends of G and the
limit f(z) exists if and only if the prime end has only one point (Prime End
Theorem, see [27]).

In order to make this paper as self-contained as possible we will recall
here the main definitions of the theory of ends that we will need. The reader
is referred to the text of [22] and [27] for detailed expositions with different
approaches of this theory.

Let G ⊂ R2 be a simply connected open domain containing the point at
infinity such that ∂(G) contains more than one point. Then ∂(G) is bounded.
A cross-cut is a simple arc, C, lying in G, except in the end points, with
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different extremities. If C is a cross-cut of G then G \ C has exactly two
components A1 and A2 such that G∩∂(A1) = G∩∂(A2) = C\{ end points }.

0

G

∂(G)

C

A1

A2

Figure 1

A sequence {Cn} of mutually disjoint cross-cuts and such that each Cn
separates Cn−1 and Cn+1 is called a chain. A chain of cross-cuts induces a
nested chain of domains (bounded by each Cn) . . . Dn+1 ⊂ Dn . . . . Each
chain of cross-cut defines an end. Two chains of cross-cuts, {Cn} and {C ′n},
are equivalent if for any n ∈ N there is m(n) such that Dm ⊂ D′n and
D′m ⊂ Dn for every m > m(n). Equivalent chains of cross-cuts are said to
induce the same end. If P and Q are ends represented by chains of cross-
cuts {C(P )n} and {C(Q)n} such that for every n, D(P )m ⊂ D(Q)n for
m > m(n) we say that P divides Q. A prime end P is an end which can not
be divided by any other.

Let P be a prime end. The set of points of P is the intersection E =⋂
n∈N cl(D(P )n) where {D(P )n} is the sequence of domains bounded by any

sequence of cross-cuts representing P . A principal point of P is a limit point
of a chain of cross-cuts representing P tending to a point. The set HP ⊂ E
of principal points of a prime end P is a continuum (compact connected set)
(see [6] or [7] for details).

Each chain of cross-cuts inducing a prime end P determines a basis of
neighborhoods of P . We obtain in this way a topology in the set of prime
ends of G. More precisely, if P is the set of prime ends of G and G∗ is the
disjoint union of G and P, we can introduce a topology in G∗ in such a way
that it becomes homeomorphic to the closed disc and the boundary being
composed by the prime ends. It is enough to define a basis of neighborhoods
of a prime end P ∈ P. Given the sequence of domains {D(P )n}, we produce
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a basis of neighborhoods {Un} of P in G∗. Each Un is composed by the
points in D(P )n and by the prime ends Q such that D(Q)m ⊂ D(P )n for m
large enough.

A point y ∈ ∂(G) is accessible if there exists an arc γ : [0, 1] ⊂ cl(G) such
that γ(1) = y and γ([0, 1)) ⊂ G. Each accessible point determines a prime
end.

0

G

∂(G)

Chains of cross-cuts defining prime ends P and Q

P

Q

G

Prime ends P and Q in the set of prime ends, P, of G

Figure 2

If S2 is the 2-sphere R2 ∪ {∞} and ∞ ∈ D ⊂ S2 is a simply connected
open domain, the natural compactification, due to Carathéodory, see [6], of
D obtained by attaching to G a set homeomorphic to the one-dimensional
sphere S1 is called the prime ends compactification of G. We identify R2 = C
and we consider a conformal homeomorphism g : G→ S2\B (where B is the
disc B = {z ∈ C : |z| ≤ 1}). Now a one-dimensional sphere S1 is attached
to G using g. Each point of S1 corresponds to a prime end of G.

2.2. Conley index tools.

The next definition is based in the notion of filtration introduced by
J.Franks and D.Richeson, in [12], and it is the key for the direct computation
of the fixed point index of any iteration of any homeomorphism of the plane.

Definition 1. Let f : U ⊂ R2 → R2 be a local homeomorphism. Suppose
that L ⊂ N is a compact pair contained in the interior of U . The pair
(N,L) is said to be a strong filtration pair for f provided N and L are each
the closure of their interiors and

1) N and ∂(N \ L) are homeomorphic to a disc and S1 respectively.
2) cl(N \ L) is an isolating neighborhood.
3) f(cl(N \ L)) ⊂ int(N) (i.e. L is a neighborhood of N− in N).
4) For any component Li of L, ∂N (Li) is an arc and there exists a topolog-

ical disc Bi such that ∂N (Li) ⊂ Bi ⊂ Li, Bi∩N− 6= ∅ and f(Bi)∩cl(N \L) =
∅.
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Figure 3

Next theorem is one of the more important results of [30] and asserts the
existence of strong filtration pairs.

Theorem 2. [30]. Let f : U ⊂ R2 → R2 be a local homeomorphism. Let
p ∈ U be a non-repeller fixed point of f such that {p} is an isolated invariant
set. Then there exists a strong filtration pair for f , (N,L), with {p} =
Inv(cl(N \ L), f).

The following theorem is a generalization of a result of Le Calvez and
Yoccoz in [20] which is proved in [30] or [31] using Conley index techniques.

Theorem 3. [30]. Let f : U ⊂ R2 → f(U) ⊂ R2 be a homeomor-
phism. Suppose that there exists a strong filtration pair, (N,L), for f and
let K = Inv(cl(N \ L), f). Then, there are an AR (an absolute retract for
metric spaces), D0, containing a neighborhood V ⊂ R2 of K, a finite subset
{q1, . . . , qm} ⊂ D0 and a map f : D0 → D0 such that f |V = f |V and for
every k ∈ N, Fix((f)k) ⊂ K ∪ {q1, . . . , qm}.

Moreover,
a) If f preserves the orientation, then

iR2(fk,K) =

{
1− rq if k ∈ rN
1 if k /∈ rN

where k ∈ N, q is the number of periodic orbits of f in {q1, . . . , qm} and r is
their period.

b) If f reverses the orientation, then

iR2(fk,K) =

{
1− δ if k odd
1− δ − 2q if k even
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where δ ∈ {0, 1, 2} and q are the number of fixed points and period two orbits
of f in {q1, . . . , qm} respectively.

Definition 2. Under the setting of the above theorem, the integer r (r = 2
if f is orientation reversing) is called the period of the strong filtration pair
(N,L).

Example 1. Let us consider the homeomorphism f of Figure 3 and the
homeomorphisms g, s : R2 → R2 which are a π/2-rotation and a symmetry
with respect to {x = y} respectively. Let D0 be the quotient space obtained
from N by identifying each Li to a point qi. The orientation preserving
homeomorphism g ◦ f has associated a strong filtration pair (N,L) (see
Figure 3). The induced map g ◦ f : D0 → D0 has q = 1 periodic orbits of
period r = 4 in {qi}i (r = 4 is the period of the strong filtration pair). Then,

iR2((g ◦ f)k, 0) =

{
1− 4 if k ∈ 4N
1 if k /∈ 4N

On the other hand, the orientation reversing homeomorphism s ◦ f has
associated a strong filtration pair (N,L) (see Figure 3) with q = 1 periodic
orbits of period 2 and δ = 2 fixed points for the induced map s ◦ f : D0 → D0.
Then

iR2((s ◦ f)k, 0) =

{
1− δ = −1 if k odd
1− δ − 2q = −3 if k even

Remark 1. Let θ = {p1, . . . , ps} be the biggest subset of {q1, . . . , qm} on
which f̄ acts as a permutation. Notice that the number s does not depend
on the filtration but on the germ of the homeomorphism. Moreover, if f is
orientation preserving, s = qr and the numbers {q, r} depend on the germ of
f . In the same way, if f is orientation reversing, s = δ+ 2q and the numbers
{δ, q} depend on the germ of f .

This is an essential idea for computations we will use in the forthcoming
results.

2.3. Computation of the index.

Let U ⊂ R2 be an open set with 0 ∈ U . Let f : R2 → R2 be an
orientation reversing homeomorphism with Fix(f |U ) = Fix(f2|U ) = 0 and
such that iR2(f, 0) = iR2(f2, 0) = 1.

There are two situations:
Case i) {0} is an isolated invariant set.
Case ii) {0} is not an isolated invariant set.
In case i), by Theorems 2 and 3 above, we can select a strong filtration

pair (N,L) with N a disc and L = ∅. Then {0} is asymptotically stable.
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Given an asymptotically stable fixed point p, the region of attraction, A(p),
is an open and simply connected subset of the plane. A classical result
due to Kerékjártó, see [16] and [3], says that the restriction of f to A(p) is
topologically conjugate to one of the following maps in C,

z 7→ 1

2
z or z 7→ 1

2
z.

Notice that this alternative depends on whether f preserves or reverses the
orientation.

The study of case ii) needs previous work which we expose here. Suppose
that {0} is not an isolated invariant set. Since the space of components of
Inv(cl(J), f) is zero-dimensional, there exists a Jordan domain J , cl(J) ⊂ U ,
with 0 ∈ J and such that the connected component of K = Inv(cl(J), f)
which contains the fixed point 0, K0, intersects the boundary of J . One has
that K0 does not decompose the plane. Moreover, by the following theorem
due to K. Kuperberg [17], 0 ∈ ∂(K0).

Theorem 4. [17]. Let h be an orientation reversing homeomorphism of the
plane onto itself. If X is a plane continuum invariant under h, then h has a
fixed point in X. Furthermore, if at least one of the bounded complementary
domains of X is invariant under h, then h has at least two fixed points in
X.

Let f̄ : S2 → S2 be the extended homeomorphism of f to S2. The
Carathéodory’s prime ends compactification of S2 \ K0 is a disc (obtained
by gluing a copy of S1 to S2 \K0) which we call D. The homeomorphism
f̄ |S2\K0

: S2\K0 → S2\K0 can be extended to a homeomorphism f̂ : D → D.
Let us denote by ∂(D) the prime ends circle and consider P(K0∩∂(J)) to be
the set of prime ends obtained from the accessible points by arcs in S2\cl(J).

Since f̂ is orientation reversing, then f̂ |∂(D) has exactly two fixed points
and, eventually, 2-periodic orbits.
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0

K0

p1

p2

D
q11 q21

q12 q22

Accesible points by arcs on S2 \ cl(J)

P(K0 ∩ ∂(J))

J

Figure 4
It is not difficult to see that the sets Per(f̂ |∂(D)) and P(K0 ∩ ∂(J)) are

disjoint.
Notice that f̂ and the set of periodic prime ends depend on the Jordan

domain J such that K0 ∩ ∂(J) 6= ∅.
Our goal is to give a detailed description of the local dynamics of f in

a neighborhood of 0. Let us suppose first that Per(f̂ |∂(D)) is a finite set of
n = 2q + 2 points with q 2-periodic orbits {{q11, q21}, . . . , {q1q, q2q}} and 2
fixed points {p1, p2}.

Let us suppose that D ⊂ S2 and let us denote by f̂s : S2 → S2 the
homeomorphism obtained by pasting along ∂(D) a symmetric copy of f̂ :
D → D.

Lemma 1. [32] Given a fixed point pi of f̂ks |∂(D), k ∈ {1, 2}, (pi ∈ {p1, p2}
if k = 1 and pi ∈ {{q11, q21}, . . . , {q1q, q2q}} if k = 2), there is a pair (Ni, Li)
which is in one of the following two situations:

a) (Ni, Li) is a strong filtration pair for f̂ks : S2 → S2, in a neighborhood
of pi.

b) The pair (Ni, Li) has the properties 1), 2) and 3) of strong filtration
pairs with Li an annulus, ∂Ni(Li) ' S1 and Ni ⊂ int(f̂ks (Ni)).
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Definition 3. We are interested, for each fixed point pi of f̂s
k|∂(D), k ∈

{1, 2}, in the pairs (Ni∩D,Li∩D) = (N ′i , L
′
i) which we call strong filtration

pairs adapted to D for pi. Notice that the pair (N ′i , L
′
i) has the properties

of the strong filtration pairs for f̂k : D → D at each fixed point pi ∈
∂(D). Without loss of generality we can assume that each arc γi = ∂D(N ′i)
corresponds in J to an arc with two end points in K0.

There are three possible cases:

i) If Li = ∅, then f̂k(N ′i) ⊂ intD(N ′i) and we say that pi is asymptotically
stable for f̂k.

ii) If ∂Ni(Li) ' S1, then N ′i ⊂ intD(f̂k(N ′i)) and we say that pi is repeller
for f̂k.

iii) If (Ni, Li) is a strong filtration pair for f̂s
k
at pi, Li 6= ∅, we say that

pi is a NAR point (non-attractor/repeller) for f̂k.

S1S2

U1

Li ∩D

Li ∩D

case i)

case ii)

pi

pi

pi

case iii)

Figure 5

Remark 2. We shall make computations from indices of homeomorphisms
defined in semi-discs. We will use an extension of Dancer’s techniques ([9]).
Given a fixed point, pi, for f̂s

k|∂(D), k ∈ {1, 2}, and given a strong filtration
pair, (Ni, Li), if Li has mi connected components Li =

⋃mi
j=1 L

j
i , after iden-

tification to points we obtain the biggest permutation, θ(pi), for the induced

map f̂s
k

: Ni/∼ → Ni/∼, k ∈ {1, 2}. The set Ni/∼ is the quotient space
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obtained from Ni by identifying each Lji to a point. We select the compo-
nents of Li, {Lji}sij=1, associated to the points of the permutation θ(pi). Let
us observe that:

• If pi is periodic of period 2 for f̂ , iS2(f̂s
2
, pi) = 1 − qiri = 1 − qi, and

si = qiri = qi. Each point of θ(pi) is a fixed point for f̂s
2
.

• If pi is a fixed point for f̂ , iS2(f̂s, pi) = 1− δi − 2qi, and si = δi + 2qi
with δi ∈ {0, 2}. Each periodic orbit of θ(pi) is a fixed point or a
periodic orbit of period 2 for f̂s (δi fixed points and qi orbits of period
2).

We take from this family {Lji}sij=1 the components which are contained
in D \ ∂(D) and we call them exit components for f̂k at pi. If a component
Lji of the family {Lji}sij=1 intersects ∂(D), then we call to Lji ∩D boundary
exit component for f̂k at pi (see figure 5, case iii)).

Definition 4. Given a Jordan domain J , a set of strong filtration pairs
adapted to D is a finite collection of pairs {(Ni ∩D,Li ∩D)}i associated to
the family {pi}i of fixed points of f̂s

k|∂(D), k ∈ {1, 2}.

Let us observe that this set depends on the choice of J and, if Per(f̂ |∂(D))
is not finite, on the choice of a set I ⊂ ∂(D) such that, after an adequate
identification (see Lemma 2), transforms Per(f̂ |∂(D)) in a finite set.

Lemma 2. If Per(f̂ |∂(D)) is not a finite set of points, we can select a finite
and disjoint union I = I1 ∪ · · · ∪ In, of closed arcs of ∂(D), with f̂(I) = I,
such that:

i) Per(f̂ |∂(D)) ⊂ I and P(K0 ∩ ∂(J)) ∩ I = ∅.

ii) If we identify each component of I to a point we obtain a new disc which
we call D again. If f̂ : D → D is the new induced homeomorphism we
have that Per(f̂ |∂(D)) is a finite set and the construction of the strong
filtration pairs adapted to D is also valid.

Proof. Since Per(f̂ |∂(D)) is a compact set contained in ∂(D) \P(K0∩∂(J)),
there exists a finite family of open intervals V =

⋃m
i=1 Vi ⊂ ∂(D) \ P(K0 ∩

∂(J)) such that Per(f̂ |∂(D)) ⊂ V and Vi ∩ Per(f̂ |∂(D)) 6= ∅ for all i =
1, . . . ,m. We select M =

⋃m
i=1Mi a finite and disjoint union of closed

intervals (perhaps points) withMi ⊂ Vi for all i = 1, . . . ,m in such a way that
the end-points of each Mi = [ai, bi] are the extreme points of Per(f̂ |∂(D)) ∩
Vi. Then I = M ∩ f̂−1(M) is the set we are looking for. The only non-
trivial fact we must to prove is that f̂(I) = I. In fact, given d ∈ I, let
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[d1, d2] ⊂ ∂(D) be the closed interval (perhaps a point) which contains d
with [d1, d2] ∩ Per(f̂ |∂(D)) = {d1, d2}. Since d ∈ I, then [d1, d2] ⊂ I and
f̂([d1, d2]) ⊂ Mj for some j = 1, . . . ,m. On the other hand, f̂2([d1, d2]) =

[d1, d2]. Consequently, f̂(d) ∈M∩ f̂−1(M) = I, that is, f̂(I) ⊂ I. Moreover,
since f̂(d) ∈ I, f̂([d1, d2]) ⊂ I and there exists d0 ∈ f̂([d1, d2]) ⊂ I such that
f̂(d0) = d, then I ⊂ f̂(I).

Example 2. Let us consider the dynamical system of Figure 6 with
K0 = Inv(cl(J), f). The dynamics of f̂ in D is given in Figure 7a. The
new homeomorphism f̂ obtained after identification of the components of
I = I1 ∪ I2 to points p1 and p2 appears in Figure 7b and has a repelling
petal in p1 and an unstable branch in p2. Let us observe that the choice of
the invariant intervals which contain the fixed prime ends, I = I1 ∪ I2 is not
unique. We can select I with an arbitrary family of intervals which give us
a different dynamic for f̂ and a different set of fixed and periodic points in
∂(D) for the identification map.

0

J

K0

Figure 6
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I2I1 p2p1

Figure 7bFigure 7a

Figure 7

Remark 3. From now onwards we will suppose that, after identification
if necessary, Per(f̂ |∂(D)) is a finite set of two fixed points {p1, p2} and q
periodic orbits of period 2, {q1j , q2j}j . Moreover, the last lemma, in order
to simplify computations, permit us suppose that Per(f̂ |∂(D)) = {p1, p2}.

Theorem 5. (Poincaré formula. Orientation reversing case, [32].)
Let f : U ⊂ R2 → f(U) ⊂ R2 be an orientation reversing local home-

omorphism with 0 a fixed point which is not an isolated invariant set but
isolated as periodic orbit. Let us select a Jordan domain J such that 0 ∈
J ⊂ cl(J) ⊂ U , with K0 ∩ ∂(J) 6= ∅ (K0 is the connected component of
K = Inv(cl(J), f) which contains 0), and let {(Ni ∩D,Li ∩D)}i be a set of
strong filtration pairs adapted to D, the Carathéodory’s compactification of
S2\K0. Then there exist u0, u′0, r0, r

′
0 ∈ N with u′0 ≤ u0, r′0 ≤ r0, u′0+r′0 ≤ 2

such that

iR2(fk, 0) =

{
1− u0 + r0 if k even
1− u′0 − r′0 if k odd

The dynamical meaning is the following: there are u0 exit components
for f̂2 at the periodic points of ∂(D) (only fixed points if we consider the
identification of Remark 3). Moreover, u′0 ≤ 2 of the components are exit
components for f̂ at u′0 fixed points for f̂ . These u′0 exit components are
invariant for f̂ after identification to points. In the same way there are r0
fixed points for f̂2 in ∂(D) which are repeller for f̂2 at D and r′0 ≤ 2 of them
are repeller for f̂ at D.
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3. Proof of Theorem 1.

We must construct the map ϕ. Let us suppose, without loss of generality,
that f2 is defined in the closed ball U0 = B(0, 1) ⊂ U . We also suppose that
{0} is not a compact and isolated invariant set (the argument for the case
of {0} an isolated and invariant set is a consequence of the fact that f2 is
locally conjugated with g(x) = 1

2x).
Let J be a Jordan domain such that cl(J) ⊂ U0, 0 ∈ J and the con-

nected component of K = Inv(cl(J), f) which contains 0, K0, intersects the
boundary of J .

The Carathéodory’s prime ends compactification of U0 \ K0 is a disc
with a hole that we can assume to be D1 = {(x, y) : 1/4 ≤ x2 + y2 ≤
1} ⊂ D, with D the Carathéodory’s prime ends compactification of S2 \
K0. The homeomorphism f : U0 \K0 → f(U0) \K0 can be extended to a
homeomorphism f̂ : D1 → f̂(D1). Let us observe that the setD1\(U0\K0) =
∂(D) = C0, the circle of prime ends, is invariant for f̂ . We can suppose,
after identification if necessary, that Per(f̂ |C0) is a set of two fixed
points {p1, p2}.

We are going to see that there exists a fixed point of f̂ in C0 which is
asymptotically stable for f̂ in D. Let us consider an extension of f to a
homeomorphism of S2 , f : S2 → S2. Since iR2(f, 0) = 1, then iS2(f, U c) =
−1. On the other hand,

1 = iD(f̂ , D) = iS2(f, U c) + iD(f̂ , p1) + iD(f̂ , p2)

and iD(f̂ , pi) ∈ {0, 1} (if pi is a repeller, iD(f̂ , pi) = 0, if pi is asymptotically
stable, iD(f̂ , pi) = 1 and, if pi is a NAR point, iD(f̂ , pi) = 1 − δi with
δi ∈ {0, 1}). We deduce that iD(f̂ , p1) = iD(f̂ , p2) = 1. A consequence is
that pi can not be a repeller and, if pi is a NAR point, δi = 0.

If p1 and p2 are not asymptotically stable, then iD(f̂2, pi) ≤ −1 for
i = 1, 2 (iD(f̂2, pi) = 1 − δi − 2qi with δi = 0 and qi > 0). On the other
hand, since iD(f̂2, D) = 1 = iD(f̂2, U c),

iD(f̂2, p1) + iD(f̂2, p2) = 0,

but this is a contradiction. We conclude that pi is asymptotically stable for
some i ∈ {1, 2}.

Let us suppose, without loss of generality, that p2 is asymptotically stable
for f̂ with (N2, ∅) a strong filtration pair adapted to D for p2.

Let

Dε = {(x, y) : 1/4 ≤ x2 + y2 ≤ 1/4 + ε} ⊂ D1

Let us consider the arc l2 contained in the external boundary of Dε

(x2 + y2 = 1/4 + ε) such that l2 ∩ N2 are the end points of l2. We call
n2 ⊂ ∂D(N2) the arc joining the end points of l2 contained in N2. The loops

14



L = l2 ∪ n2 and C0

enclose a closed disc with a hole, V ⊂ D1. We select ε small enough such
that f̂2 and f̂4 are defined on V and f̂2(V ) ∪ f̂4(V ) ⊂ int(D1).

p2

l2

n2

C0 N2

D1

V

Figure 8
Our aim is to extend this map f̂2, defined in the set V , to D = {(x, y) :

1/4 ≤ x2 + y2 <∞}, in such a way that ∞ be a repeller point. Later, with
an adequate perturbation of the extension, we will obtain the map ϕ.

Step 1. Extension of f̂2.

The local dynamics of f̂2 on N2 is topologically conjugated with the
dynamics of h(x, y) = 1

2(x, y) on the semi-disc

{(x, y) : x2 + y2 ≤ 1, y ≥ 0}.
We suppose, without loss of generality, that p2 has the polar coordinates

(ρ, θ) = (1/4, 0) and the set N2 is such that d(p2, x) = δ, with 1 > δ > ε for
every x ∈ ∂D(N2).

There exists a closed arc, I ⊂ N2, with end points p2 and q ∈ ∂(N2)\C0,
positively invariant for f̂ . On the other hand, we can select two closed
arcs Ia, Ib ⊂ N2, with start point p2 and end points a, b ∈ ∂(N2) \ C0

respectively, with a, b close enough to the point q and such that f̂2(Ia) $ Ia
and f̂2(Ib) $ Ib. Let us assume, without loss of generality, that

I = {(ρ, θ) :
1

4
≥ ρ ≥ 1

4
+ δ, θ = 0}

and the polar coordinates of q, a and b are, respectively, q = (1/4 + δ, 0),
a = (ρ0,−θ0) ≈ q, b = (ρ0, θ0) ≈ q with ρ0, θ0 > 0.
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Let m = ab be the arc on ∂(N2) \ ∂(D) with end points a and b, and let
n = f̂2(m) be the arc with end points a0 = f̂2(a) and b0 = f̂2(b). We call
Iaa0 and Ibb0 the sub-arcs of Ia and Ib with end points {a, a0} and {b, b0}
respectively. We can construct a closed disc, D0, with boundary the union
of the four arcs m ∪ n ∪ Iaa0 ∪ Ibb0 .

In the same way we define the disc D1 with boundary the union of four
arcs m ∪ Iaa1 ∪ Ibb1 ∪ l. The arc Iaa1 is the segment joining a with the
point of polar coordinates a1 = (1,−θ0). In the same way, Ibb1 joins b with
b1 = (1, θ0). We have D0∩D1 = m. Finally, l is the arc of polar coordinates

l = {(ρ, θ) : ρ = 1, θ ∈ [−θ0, θ0]}
In the construction of V , we can suppose that ε > 0 is small enough in

such a way that f̂2(V ) ∩D0 = n and f̂2(V ) ∩D1 = ∅.
Let D2 be the disc

D2 = {(ρ, θ) : ρ ∈ [1, 2], θ ∈ [−θ0, θ0]}

a

b

a1

b1

a0

b0

p2

Ib

Ia

m ln

D1 D2

Ibb1

Iaa1

Iaa0

Ibb0

D0

θ0

−θ0

C0

Figure 9

We define two orientation preserving homeomorphisms g2 : D2 → D1

and g1 : D1 → D0 in such a way that:

• g2({2} × [−θ0, θ0]) = l, g2(l) = m, g2([1, 2] × {−θ0}) = Iaa1 and
g2([1, 2]× {θ0}) = Ibb1 .

• g1(l) = m, g1(m) = n, g1(Iaa1) = Iaa0 and g1(Ibb1) = Ibb0 .

Let

Ci = {(ρ, θ) : ρ ∈ [i− 1, i]}
for i ≥ 3.
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We define the orientation preserving map

g : V ∪D1 ∪D2 ∪
∞⋃

i=3

Ci → D

in the following way:

g(ρ, θ) =





(ρ− 1, θ) if (ρ, θ) ∈ Ci, i ≥ 3
g2(ρ, θ) if (ρ, θ) ∈ D2

g1(ρ, θ) if (ρ, θ) ∈ D1

f̂2(ρ, θ) if (ρ, θ) ∈ V

The loop

C = ∂D(V ) \m ∪ ([ρ0, 2]× {−θ0}) ∪ ([ρ0, 2]× {θ0}) ∪ ({2} × [θ0, 2π − θ0])

is the boundary of the disc F in which g must be extended. We extend the
orientation preserving map g to a homeomorphism g : D → D with ∞ a
repeller fixed point. The extended map is selected in such a way that

V ∪ f̂2(V ) ⊂ intD(Dγ) and Fix(g|Dγ\∂(D)) = ∅
where Dγ is homeomorphic to a small enough disco with a hole. The bound-
ary of Dγ is γ ∪m ∪ C0 with γ a closed arc with end points a and b, such
that:

1. γ ⊂ int(D1) ∩ F .

2. γ ∩ C = {a, b}.

a

b

p2

m

C0

ρ = 2F

C

γ

Dγ
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Figure 10

The two conditions above, V ∪ f̂2(V ) ⊂ intD(Dγ) and Fix(g|Dγ\∂(D)) =
∅, are obtained in an easy way: If the extended map g only satisfies the
condition V ∪ f̂2(V ) ⊂ intD(Dγ), with an adequate smaller ε > 0 in the
definition of V , we obtain a new set, which we also call V , where the map g
satisfies the two conditions.

If we consider the orientation preserving homeomorphism ϕ0 : S2 → S2,
induced by g, we have that

• ϕ0|V0 = f2|V0 for V0 ⊂ R2 the closed disc induced by V . Consequently,
iR2(ϕ0, V0) = 1.

• ϕ0 = g in S2 \ V0.

• The fixed point ∞ is a repeller for ϕ0. Then iS2(ϕ0,∞) = 1.

Step 2. Perturbation of the extension ϕ0 and construction of ϕ.

First of all, let us construct a family of sets that we need in this step.
Let U− and U+ be two small enough open tubular neighborhoods of the
segments [ρ0, 1] × {−θ0} and [ρ0, 1] × {θ0} respectively in such a way that
ϕ0(x) 6= x for every x ∈ U− ∪ U+. Let U θ0 be a small enough open tubular
neighborhood of the set {1} × [θ0, 2π − θ0], and let V θ0 be a small enough
open tubular neighborhood of the set [1/4, 1] × [θ0, 2π − θ0]. Let us call
W = int(Dγ) ∪ U− ∪ U+.

a

b

p2

γ

Dγ

ρ = 1

U−

U+

U θ0

ρ = 2

Figure 11

The sets U+, U−, U θ0 , V θ0 and W above have the following properties:
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Since ϕ0(F ) ⊂ [1/4, 1]× [0, 2π] and F ⊂ [1/4, 2]× [θ0, 2π − θ0] (in polar
coordinates), then

F ∩ ϕ0(F ) ⊂ V θ0 (1)

On the other hand, let x ∈ C ∩ V θ0 . If x /∈ U+ ∪ U−, then x ∈ int(Dγ).
Consequently,

C ∩ V θ0 ⊂W (2)

Let us suppose that x ∈ C. If x ∈ ∂D(V ) \m, then ϕ0(x) ∈ int(Dγ). If
x = (ρ,±θ0) with ρ ∈ [ρ0, 2], then ϕ0(x) ∈ U+ ∪U− ∪ int(Dγ). If x = (2, θ),
then ϕ0(x) ∈ U θ0 . Consequently,

ϕ0(C) ⊂ U θ0 ∪W (3)

Finally,

(U θ0 \W ) ∩ ϕ0(C) is an arc γ1 ⊂ F (4)

A consequence of the last observations of the Step 1 is that iR2(ϕ0, F ) =
0. Our aim is to apply a theorem of Schmitt (see [34]) to ϕ0 in order to get
rid of the fixed points of ϕ0|F . Schmitt’s theorem says that if F ∩ ϕ0(F ) is
a finite union of disjoint discs, F ∩ ϕ0(F ) =

⋃
i=1..k Fi, and iR2(ϕ0, Fi) = 0

for i = 1, . . . , k, it is possible to extend ϕ0|C to the closed disc F in such a
way that Fix(ϕ0|F ) = ∅. But F ∩ϕ0(F ) can not be a finite union of disjoint
discs. To avoid this problem, we take a slight modification of the map ϕ0 in
a closed disc Cε′ ⊂ int(D) which is a small enough tubular neighborhood of
C, (ε′ < ε). Let ϕ∗0 this homeomorphism in such a way that the properties
(1), (2), (3) and (4) above remains true and:

• ϕ0|S2\Cε′ = ϕ∗0|S2\Cε′ with Fix(ϕ∗0|Cε′ ) = ∅.

• C is transversal to ϕ∗0(C) with F ∩ ϕ∗0(F ) a finite union of disjoint
discs, F ∩ ϕ∗0(F ) =

⋃
i=1..k Fi.

We shall prove that iR2(ϕ∗0, Fi) = 0 for i = 1, . . . , k.
Let Fi be fixed. One has that Ci = ∂(Fi) is the alternate union of arcs

obtained from C and ϕ∗0(C), that is, Ci =
⋃ki
j=1(Gj ∪Hj) with Gj ⊂ C and

Hj ⊂ ϕ∗0(C) homeomorphic to closed intervals such that Gj ∩Hj is a point
and Hj ∩Gj+1 is a point.

If Fi ⊂ W , then for all x ∈ Fi ∩ (U+ ∪ U−) we have ϕ∗0(x) 6= x. On
the other hand, if x ∈ Fi ∩ (int(Dγ) \ Cε′), then ϕ∗0(x) = ϕ0(x) 6= x and if
x ∈ Fi ∩ int(Dγ) ∩ Cε′ , then ϕ∗0(x) 6= x. Consequently, iR2(ϕ∗0, Fi) = 0.

If Fi 6⊂ W , then Ci 6⊂ W and there exists x ∈ Ci \W . We have, by (1),
that x ∈ V θ0 and, since x ∈ Gj or x ∈ Hj it is only possible that x ∈ Hj
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because, if x ∈ Gj ⊂ C, then, by (2), x ∈ W , which is a contradiction.
Because of (3),

x ∈ Hj ⊂ ϕ∗0(C) ⊂ U θ0 ∪W
Since x /∈ W , we deduce that x ∈ U θ0 \W . By (4), (U θ0 \W ) ∩ ϕ∗0(C)

is an arc γ1, and x ∈ γ1. Moreover, γ1 ⊂ Ci ⊂ Fi which proves that Fi 6⊂W
exists and is unique. Let us call it F0. By the last three observations of the
Step 1 and, by the construction of ϕ∗0, we have that iR2(ϕ∗0, F ) = 0. On the
other hand, iR2(ϕ∗0, Fi) = 0 for every Fi ⊂W . Consequently, iR2(ϕ∗0, F0) = 0
and we are in the conditions of the theorem of Schmitt which permit us to
modify ϕ∗0 in F in order to obtain the homeomorphism ϕ : R2 → R2 we
are looking for. Let us remember that ϕ is dissipative, Fix(ϕ) = {0}, and
ϕ|W0 = f2|W0 with W0 a neighborhood of 0. It only remains to prove that
{0} is a global attractor for ϕ.

Step 3. {0} is a global attractor for ϕ.

Let us consider x ∈ R2 \ {0}. The theorem is proved if we see that
ωϕ(x) = 0. Let J be a small enough Jordan domain, 0 ∈ J , with x /∈
cl(J) and let ϕ̂ : D → D be the map induced by ϕ. The disc D is the
Carathéodory’s compactification of S2 \K0, with K0 the connected compo-
nent of Inv(cl(J), ϕ) which contains {0}. We consider a closed arc, Γ ⊂ D,
invariant for ϕ̂, with extreme points p2 and ∞, such that Γ ∩ ∂(D) = {p2}
and such that ϕk(y)→ p2 if k →∞ for all y ∈ Γ \ {∞}.

Let us take the universal covering E0 = {(x, y) : y ≥ 0} of B0 = D\{∞},
with covering map p : E0 → B0 and let us consider the homeomorphism
ϕE0 : E0 → E0 induced by ϕB0 : B0 → B0 (with ϕB0 = ϕ̂|B0) such that
p ◦ ϕE0 = ϕB0 ◦ p and such that sends each point in p−1(p2) to itself.

We will also work with the universal covering E = {(x, y) : y > 0} of
B = D \ (∂(D) ∪ {∞}), with covering map p : E → B as above, and the
homeomorphisms ϕE : E → E and ϕB : B → B.

We consider the sets

p−1(p2) =
⋃

i∈Z
ri ⊂ E0

p−1(Γ) =
⋃

i∈Z
Γri ⊂ E0

p−1(D \ Γ) =
⋃

i∈Z
∆ri ⊂ E0

with Γri and ∆ri the connected components of p−1(Γ) and p−1(D \ Γ) re-
spectively, and ri − ri−1 = 2π. The sets Γri and ∆ri are not bounded and
invariant for ϕE0 .

The omega-limit set of x for ϕB, ωϕB (x), is a closed subset of B, invariant
for ϕB. We claim that ωϕB (x) = ∅.
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Indeed, let us suppose that x ∈ D \ Γ (if x ∈ Γ, the proof is trivial). We
can select a closed arc Cx joining x with p2 ∈ ∂(D) and such that Cx\{p2} ⊂
D \ Γ. Let p−1(Cx) =

⋃
i∈ZCri , with Cri the connected components. Let

us observe that Cri \ {ri} ⊂ ∆ri . We take x0 ∈ p−1(x), r0 ∈ p−1(p2) and
the component Cr0 of p−1(Cx) joining the two points. As Cx is bounded,
there exists lx > 0 such that the projection on the coordinate y, Πy(z) is
less or equal to lx for all z ∈ p−1(Cx). On the other hand, as ∞ is a repeller
point for ϕ, the iterations by ϕE0 of x0 are bounded by a number mx > 0
which depends on x, that is, Πy(ϕE0

k(x0)) ≤ mx for every k ∈ N. Moreover,
we can select mx such that Πy(ϕE0

k(z)) ≤ mx for every z ∈ E0 such that
Πy(z) ≤ lx.

Since {y = mx}∩Γr0 6= ∅ and {y = mx}∩Γr1 6= ∅, it is easy to select two
points yr0 ∈ Γr0 ∩ {y = mx} and yr1 ∈ Γr1 ∩ {y = mx} and two closed arcs
γr0 ⊂ Γr0 , γr1 ⊂ Γr1 , homeomorphic to [0, 1], with extreme points {yr0 , r0}
and {yr1 , r1} respectively such that

(γr0 ∪ γr1) ∩ {y = mx} = {yr0 , yr1}
Since the sets ϕkE0

(Cr0\{r0}) stay in ∆r0 for all k ∈ Z and Πy(ϕ
k
E0

(Cr0)) ≤
mx for all k ∈ N, we obtain that ϕkE0

(Cr0) ⊂ R for all k ∈ N, where R ⊂ E0

is homeomorphic to a closed disc bounded by [r0, r1] ∪ [yr0 , yr1 ] ∪ γr0 ∪ γr1 .

∞

B0

p1 p2

r0 r1

E0

p

Γr0 Γr1

x Cx

Cr0

x0
lx

mx

γr0 γr1

yr0 yr1

R

Γ

Figure 12
Let rm < Πx(z) for all z ∈ γr0 and rn > Πx(z) for all z ∈ γr1 . The

rectangle [rm, rn] × (0,mx] contains the positive semi-orbit {ϕEk(x0)}k∈N.
If the omega-limit set ωϕE (x0) 6= ∅, by the Brouwer’s Lemma on translation
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arcs, there exists a fixed point x1 for ϕE in E and then p(x1) ∈ B is a fixed
point for ϕB which is a contradiction.

Since the last argument is valid for every small enough Jordan domain
J and ωϕ(x) ⊂ R2 is non-empty because ∞ is a repeller, we obtain that
{0} = ωϕ(x) for every x ∈ R2 which finishes the proof of the theorem.

�

Remark 4. The converse of the above theorem says that if there exists
the homeomorphism ϕ, then iR2(f2, 0) = 1 and iR2(f, 0) ∈ {−1, 1}.

Indeed, since iS2(ϕ, 0)+ iS2(ϕ,∞) = 2, then iR2(f2, 0) = 1. If 0 is stable,
we have iR2(f, 0) = 1. On the other hand, if 0 is not stable, iR2(f2, 0) = 1 =
1 − u0 + r0. The numbers u0 = r0 are the number of exit components and
repellers for f̂2 at the periodic points of ∂(D) respectively (see Theorem 5).
Moreover, iR2(f, 0) = 1 − u′0 − r′0 with 0 ≤ u′0 + r′0 ≤ 2. The number u′0
is the number of exit components for f̂ at the fixed points {p1, p2} which
give us fixed points, after identification to points, for the quotient map f̂ .
The number r′0 is the number of repeller fixed points of f̂ in ∂(D). Let us
see that u′0 + r′0 = 1 is not possible. In fact, if it is true, then there exists
a fixed point of ∂(D), for instance, p1, which is a repeller or NAR with an
exit component for f̂ which is invariant, after identification to points, for the
quotient map f̂ . The other fixed point, p2, can not be a repeller and has no
exit components as above. But in this situation it is impossible that u0 = r0
because one of them is odd and the other one is even. �

Let us see an example of the remark above with iR2(f, 0) = −1.
Example 4. Let us consider the dynamical system ϕ : S2 → S2 of the

picture.
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∞

p1

p2

q1 q2

ϕ : S2 → S2

f̂(p1) = p1

f̂(p2) = p2

f̂(q1) = q2

f̂(q2) = q1

i(f, 0) = 1− u′0 − r′0 = −1
i(f 2, 0) = 1− u0 + r0 = 1

Figure 13

It is clear that iR2(f, 0) = 1− u′0 − r′0 = 1− 0− 2 = −1.

Corollary 1. Let f : U ⊂ R2 → f(U) ⊂ R2 be an orientation reversing
homeomorphism with Fix(f) = Fix(f2) = {0}. Then, if {0} is stable, it is
asymptotically stable.

Proof. In fact, if {0} is stable, iR2(f, 0) = iR2(f2, 0) = 1 and, by the last
theorem, {0} is a global attractor for an extension ϕ : S2 → S2 of f2. Then,
{0} is asymptotically stable for ϕ and, consequently, it is asymptotically
stable for f .

4. An application to periodic differential equations with sym-
metries.

Now we show how orientation-reversing maps appear naturally in the
context of certain periodic differential equations with symmetries.
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Let S denote the symmetry S((x1, x2)) = (x1,−x2) and consider the
differential system

ẋ = F (t, x), x ∈ R2 (0.1)

where F : R× R2 → R2 satisfies

F (t+ π, S(x)) = S(F (t, x)), for each (t, x) ∈ R× R2.

We shall assume that the vector field F is continuous and that there is
global existence and uniqueness for the initial value problem. The solution
satisfying the initial condition x(t0) = x0 will be denoted by x(t; t0, x0) and
it is well defined for all t ∈ R.

Now we consider the maps

P1(x0) = x(π; 0, x0) and P2(x0) = x(2π;π, x0).

One has that
S ◦ P1 = P2 ◦ S.

In fact, if x(t) is a solution then S(x(t+ π)) is also a solution. Then

x(t; 0, S(x0)) = S(x(t+ π;π, x0)).

This implies that S ◦ P2 = P1 ◦ S.
From the symmetry of the vector field we have that the system is 2π-

periodic with respect to time and the Poincaré map P (x0) = x(2π; 0, x0)
satisfies

P = P2 ◦ P1 = P2 ◦ S ◦ S ◦ P1 = (S ◦ P1)
2.

It is well known that the maps P1, P2 and P preserve the orientation. Then,
P can be decompose as P = r ◦ r where r = S ◦ P1 reverses the orientation.

Corollary 2. Consider the system in the above conditions and assume in
addition that F is C1, F (t, 0) = 0 for all t and the trivial solution x = 0 is
isolated as 2π-periodic orbit and it is Lyapunov stable.

Then:
1) The trivial solution x = 0 is asymptotically stable.
2) If the system is dissipative, the trivial solution x = 0 is globally asymp-

totically stable if and only if there are no more 2π-periodic solutions.

Proof. Since iR2(r, 0) = iR2(r2, 0) = 1 (see [10] and [29]) the first assertion
is an immediate consequence of Corollary 1 applied to r.

In order to prove 2), let us assume that the trivial solution x = 0 is locally
asymptotically stable. That means that 0 is a local asymptotically stable
attractor for the Poincaré map P = r2. Let U be its basin of attraction. We
have that U 6= R2 is a simply connected open set such that ∂(U) 6= ∅. If U
is bounded, a result of Kuperberg (see [17]) implies that Fix(P )∩∂(U) 6= ∅.
Otherwise we apply Propositions 2 and 6 of [26] to get a fixed point of P = r2

in R2 \ U .
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