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and Francisco R. RUIZ DEL PORTAL

Dept. Matemática Aplicada, E.T.S.I.Montes,

Universidad Politécnica,
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ABSTRACT

In this paper we construct many generalized ultrametrics in the sets of shape
morphisms between topological spaces. We recognize a topology in these sets
which is independent on the shape representation of the spaces. We also con-
struct valuations and semivaluations on groups of shape equivalences and on
n-th shape groups. With this paper we connect shape theory, for arbitrary
topological spaces, with the algebraic theory of generalized ultrametric spaces
developed by S.Priess-Crampe and P.Ribenboim among other authors.
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1. Introduction

In [19], [20], [21] and [22] the authors constructed and exploited a non Archimedean
metric (or ultrametric) in the set of pointed and unpointed shape morphisms between
compact metric spaces. In [6], this construction was extended, in the topological
setting, to the arbitrary case.

Independently on this fact, in [12], [13], [23], [24], [25], [26] and [27], it was devel-
oped the theory of the so called “Generalized ultrametric spaces”, a generalization of
the classic definition of ultrametric spaces.

The aim of this paper is, at the same time, to extend our techniques in [19] and [20]
and to provide of many topological examples the pure “algebraic” theory developed
mainly by S.Priess-Crampe and P.Ribenboim.
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We also obtain, in a natural way, semivaluations and valuations on the groups of
shape equivalences and nth-shape groups.

It has been proved that the pure algebraic study of the groups of equivalences or the
nth-shape groups, for arbitrary topological spaces, is not enough to obtain topological
information on the spaces, but if we consider the more rich structure of topological
groups, that we give on them, then it could be possible to reach better topological
information on the spaces, as we point out in [20], [21] and [22]. Since in the case of
good spaces as polyhedra, manifolds (more generally ANR’s), these topological groups
are discrete, the new information given by the conjunction of Algebra and Topology
reduces, in this case, to algebraic information on that groups and the history of
Algebraic Topology has proved that it is adequate to obtain topological or geometrical
information on these special spaces. In summary, we think that “if you want to obtain
topological information on general spaces on the line suggested by homotopy theory,
you must change homotopy by shape and you should consider the natural structure
of topological groups not only the algebraic ones”.

Information on shape theory can be found in [4], [8] and [16]. In this case we
recommend [16] for definitions and notations used herein.

2. Generalized ultrametric spaces of shape morphisms associ-
ated to HPol expansions

Let X, Y be topological spaces. Assume

Y = (Yµ, qµ,µ′ ,M)

to be an inverse system in HPol and let

q = {qµ}µ∈M : Y −→ Y

be an HPol-expansion of Y (see [16] for the basic definitions). We can suppose that
(M,≤) is a directed set. Denote by L(M) the set of all lower classes in M ordered
by inclusion. Let us recall that ∆ ⊂M is called a lower class if for every δ ∈ ∆ and
µ ∈M with µ ≤ δ, then µ ∈ ∆. From now on we consider the empty set ∅ as a lower
class. Moreover, given two lower classes ∆,∆′ ∈ L(M) we say that ∆ ≤ ∆′ if and
only if ∆ ⊃ ∆′.

Proposition 2.1. (L(M),≤) is a partially ordered set with a least element (we will
denote it by 0). Futhermore L(M)∗ = L(M)− {0} is downward directed.

Proof. The least element is just the lower class M .
Suppose now that ∆,∆′ ∈ L(M)∗ and define ∆′′ = ∆ ∪∆′. First of all let us see

that ∆′′ is a lower class. For a α′′ ∈ ∆′′, we imply that α′′ ∈ ∆ or α′′ ∈ ∆′. In any
case, if α ≤ α′′ it is α ∈ ∆ or α ∈ ∆′, and consequently ∆′′ is a lower class. Let
us prove now that ∆′′ ∈ L(M)∗; that is, ∆′′ 6= M . On the contrary, assume that
M = ∆′′ = ∆ ∪ ∆′. Since ∆,∆′ ∈ L(M)∗, it follows that ∆ 6= ∆ ∩ ∆′ 6= ∆′. Take
α ∈ ∆−∆′, α′ ∈ ∆′ −∆. Since M is a directed set, there exists an element α′′ ∈M
with α′′ ≥ α, α′. As α′′ ∈ ∆ or α′′ ∈ ∆′, it follows that α′ ∈ ∆ or α ∈ ∆′ which is a
contradiction. So, ∆′′ ∈ L(M)∗.
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The basic definition of (generalized) ultrametric we are going to use here is:

Definition 2.2. (see [12], page 25). Let X be a set and (Γ,≤) be a partial ordered
set with a least element 0. An ultrametric on X is a map d : X ×X −→ Γ such that
for x, y ∈ X, γ ∈ Γ, it satisfies:

1) d(x, y) = 0 iff x = y.

2) d(x, y) = d(y, x).

3) if d(x, y) ≤ γ and d(y, z) ≤ γ, then d(x, z) ≤ γ.

Now we can prove:

Theorem 2.3. Let X, Y be topological spaces. Assume that Y = (Yµ, qµ,µ′ ,M) is an
inverse system in HPol and let q = {qµ} : Y −→ Y be an HPol-expansion of Y . Let
Sh(X,Y ) be the set of all shape morphisms from X to Y . For α, β ∈ Sh(X,Y ) the
formula

d(α, β) = {µ ∈M | qµ ◦ α = qµ ◦ β (in the shape category)}

defines an ultrametric

d : Sh(X,Y )× Sh(X,Y ) −→ (L(M),≤).

Proof. Consider α = (αµ)µ∈M , β = (βµ)µ∈M as representations of the corresponding
shape morphisms (see [16]). If µ, µ′ ∈ M , µ ≤ µ′, we have the following equalities in
homotopy:

αµ = qµ,µ′ ◦ αµ′ and βµ = qµ,µ′ ◦ βµ′ .

Moreover αµ = qµ ◦ α, βµ = qµ ◦ β, where the compositions are within the shape
category. Now, it is very easy to check that d(α, β) ∈ L(M) and 1), 2) and 3) in
Definition 2.2 (using the transitive property of the homotopy relation for the proof of
3)).

In order to connect this construction with our first paper ([19]) on ultrametrics
and shape, we have the following result whose proof is straightforward:

Proposition 2.4. Let (Q, ρ) be the Hilbert cube with a fixed metric ρ. Suppose Y ⊂ Q
is a closed subset and, for each real number ε > 0 take

Yε = B(Y, ε) = {q ∈ Q | ρ(Y, q) < ε} .

Given ε′ > ε > 0, define qε,ε′ : Yε −→ Yε′ and qε : Y −→ Yε as the correspond-
ing inclusions. Assume the reverse usual order in R+ and denote by (R+)−1 the
corresponding ordered set. Finally consider the inverse system

Y = (Yε, qε,ε′ , (R+)−1)

and the HPol-expansion
q = {qε}ε∈R+ : Y −→ Y .

Then the generalized ultrametric d constructed in Theorem 2.3 (for this HPol-expansion)
is just the complete non-Archimedean metric constructed in [19].

3 ——————————
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3. The canonical and the intrinsic topologies

Using the same idea as in [12] (page 34) we have:

Proposition 3.1. Let X, Y be topological spaces. Assume that Y = (Yµ, qµ,µ′ ,M)
is an inverse system in HPol and that q : Y −→ Y is an HPol-expansion. For every
∆ ∈ L(M)∗ and α ∈ Sh(X,Y ) consider

B∆(α) = {β ∈ Sh(X,Y ) | d(α, β) ≤ ∆}.

Then the family
{B∆(α) | α ∈ Sh(X,Y ),∆ ∈ L(M)∗}

is a base for a topology in Sh(X,Y ) which is completely regular Haussdorf and zero-
dimensional. We call (as in [12]) this topology the canonical topology induced by the
ultrametric d.

One of the main trouble to use this topology to obtain information related to
shape theory is the fact that it depends, as we will prove in the next proposition, on
the particular HPol-expansion used and not on the shape of the space involved:

Proposition 3.2. Let Y be a topological space and Y = (Yµ, qµ,µ′ ,M) an inverse
system on HPol. Suppose that q = {qµ} : Y −→ Y is an HPol-expansion. Consider
now the usual product order in M ×M and define the new inverse system

Y ′ = (Y(µ,γ), q(µ,γ),(µ′,γ′),M ×M)

where Y(µ,γ) = Yµ, q(µ,γ),(µ′,γ′) = qµ,µ′ . Then

q ′ = {q′(µ,γ)} : Y −→ Y ′

is an HPol-expansion, where q′(µ,γ) = qµ. Furthermore for every topological space X,

the canonical topology on Sh(X,Y ) induced by the ultrametric d (associated to the
HPol-expansion q ′ as in Theorem 2.3) is just the discrete one.

Proof. Fix a non maximal element γ0 ∈M and take

D = {(µ, γ) ∈M ×M | γ = γ0} .

Let ∆D ∈ L(M ×M)∗ be the minimal lower class in L(M ×M) containing D, it is

∆D = {(µ, γ) ∈M ×M | γ ≤ γ0} .

Now, if α ∈ Sh(X,Y ) then B∆D
(α) = {α}.

Note that Propositions 2.4 and 3.2 in this paper and the fact (proved in [19]) that
Sh(X,Y ) is, in general, non-discrete for compact metric spaces X, Y allow us to
deduce that the canonical topologies depend on the particular HPol-expansion used.

The counterpart of the last proposition will be given in the next one, but we need
first some words and definitions to motivate it. In [6] we defined a topology on the
sets of shape morphisms which depends only on the shape of the involved spaces. It
allowed us to construct many new shape invariants and to obtain some relationships
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between shape theory and N-compactness (see [13] for some relations between the
canonical topologies and N-compactness). Later, we saw in [12] (page 52, Corollary
9.6) the way to obtain the results in [6] as a by-product of the present paper. Let
now (M,≤) be a direct set and consider (L(M),≤) the corresponding ordered set of
lower classes in M . For every α ∈ M denote by [α] the lower class generated by α,
that is,

[α] = {α′ ∈M | α ≥ α′} .
Define

φ : (M,≤) −→ (L(M),≤)
µ 7→ [µ]

φ needs not to be injective (for example, think on (M,≤) as the Čech system asso-
ciated to a topological space -see [14]-), but we have that if µ ≥ µ′ then [µ] ≤ [µ′]
and (φ(M),≤) is a partial ordered set while (M,≤) maybe not. Note also that
(φ(M),≤) is downward directed in L(M) because M is a directed set. Suppose now
that Y = (Yµ, qµ,µ′ ,M) is an inverse system and that q = {qµ} : Y −→ Y is an
HPol-expansion. Let X be an arbitrary topological space and consider Sh(X,Y ) the
set of shape morphisms from X to Y . Then the family{

B[µ](α) | α ∈ Sh(X,Y ), µ ∈M
}

is a base for a topology on Sh(X,Y ) (see [12]). We call it the intrinsic topology . The
main reason is the following result:

Proposition 3.3. The intrinsic topology on Sh(X,Y ) is independent on the fixed
HPol-expansion of Y and it coincides with the topology defined and studied in [6].

From [19], [6] and [13] we can obtain the next result which, in particular, says
that, outside from the compact metric case, the intrinsic topology may not be ultra-
metrizable.

Proposition 3.4. a) If Y is a compact metric space and X is an arbitrary topological
space, the intrinsic topology on Sh(X,Y ) is induced by an ultrametric.

b) If ∗ is a one point space, the intrinsic topology on Sh(∗, {0, 1}ω1) ({0, 1} dis-
crete) is not induced by an ultrametric.

Proof. a) It is enough to use the HPol-expansion q described in Proposition 2.4.
b) From [6] it follows that the intrinsic topology on Sh(∗, {0, 1}ω1) is just, up one

identification, the product topology on {0, 1}ω1 and it is not ultrametrizable ([13]).

4. Semivalued and valued groups of shape equivalences

First of all, given a topological space Y , let us denote by E(Y ) the group of shape
equivalences. Take now an inverse system Y = (Yµ, qµ,µ′ ,M) and an HPol-expansion
q = {qµ} : Y −→ Y. If d is the ultrametric on Sh(Y, Y ) defined in Theorem 2.3, we
can state the next

Theorem 4.1. The map

ν : E(Y ) −→ (L(M),≤)
f 7→ ν(f) = d(f, idY )

is a semivaluation in the sense of [12] (page 37. See also [27]).

5 ——————————
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Proof. We must prove the following:

a) ν(f) = 0 iff f = idY .

b) ν(f−1) = ν(f) for every f ∈ E(Y ).

c) If ν(f) ≤ ∆, ν(g) ≤ ∆, then ν(g ◦ f) ≤ ∆.

a) is obvious because d is an ultrametric. Take now f, g ∈ E(Y ) with d(f, g) ≤ ∆.
This means that

qµ ◦ f = qµ ◦ g

for every µ ∈ ∆. For each h ∈ E(Y )

qµ(g ◦ h) = (qµ ◦ g) ◦ h = (qµ ◦ f) ◦ h = qµ(f ◦ h) ,

hence
d(f ◦ h, g ◦ h) ≤ d(f, g) .

On the other hand

d(f, g) = d((f ◦ h) ◦ h−1, (g ◦ h) ◦ h−1) ≤ d(f ◦ h, g ◦ h) .

This means that d is a right invariant ultrametric on E(Y ), that is,

d(f ◦ h, g ◦ h) = d(f, g)

for every f, g, h ∈ E(Y ). In particular,

ν(f) = d(f, idY ) = d(f ◦ f−1, idY ◦ f−1) = d(idY , f
−1) = ν(f−1)

and b) is proved.
Now suppose that ν(f) ≤ ∆ and ν(g) ≤ ∆. Thus,

d(idY , f
−1) = d(f, idY ) = ν(f) ≤ ∆

and
d(g, idY ) = ν(g) ≤ ∆ .

Since d is an ultrametric,
d(g, f−1) ≤ ∆ .

Consequently,
ν(g ◦ f) = d(g ◦ f, idY ) = d(g, f−1) ≤ ∆

and the proof is finished.

With the same notation as in Theorem 4.1, we obtain

Corollary 4.2. (See [28] for related results) For every ∆ ∈ L(M), B∆(idY ) is a
subgroup of E(Y ).

For the theory of shape, it could be convenient the study of E(Y) with the intrinsic
topology. For simplicity and clearness, we are going to give an outline of such study
within the compact metric case. Note that, in this case, ν is a valuation.

——————————
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Proposition 4.3. Let Y be a compact metric space. E(Y ), with the intrinsic topology,
is a completely ultrametrizable (a real metric) separable topological group.

Proof. Let us recall (see [19] or Theorem 1 in [6]) that the composition is continuous
and that, in this case (compact metric), the intrinsic topology in Sh(Y, Y ) is induced
by the non Archimedean metric d constructed in [19]. The separability of E(Y )
follows from the fact that (Sh(Y, Y ), d) is homeomorphic to a closed subspace of the
irrationals (see [19] Theorem 1.9).

Now, in order to prove that (E(Y ), d |E(Y )) is a topological group, it is enough to
state that the assignment

E(Y ) −→ E(Y )
f 7→ f−1

is continuous. Let {fn}n∈N −→ f in E(Y ), that is, {d(fn, f)}n∈N −→ 0. Since d is a
right invariant metric we deduce that

{d(idY , f ◦ f−1
n )}n∈N = {d(fn ◦ f−1

n , f ◦ f−1
n )}n∈N −→ 0 .

As the composition is continuous we have that

{d(f−1, f−1
n )}n∈N = {d(f−1, f−1 ◦ (f ◦ f−1

n ))}n∈N −→ 0

and therefore (E(Y ), d |E(Y )) is a topological group.
Finally, it is not difficult to prove that the formula

d′(f, g) = max{d(f, g), d(f−1, g−1)}

defines an equivalent complete non Archimedean metric on E(Y ).

As a consequence we obtain

Corollary 4.4. E(Y ) is countable iff (E(Y ), d) is uniformly discrete, that is, iff there
is an ε > 0 such that if d(f, g) < ε then f = g (f, g ∈ E(Y )).

Proof. Suppose that E(Y ) is countable. From the Baire theorem we have that E(Y )
is discrete (because of homogeneity). Let ε > 0 be such that B(idY , ε) = {idY }. Take
f, g ∈ E(Y ) with d(f, g) < ε. From the right invariance of d,

d(idY , g ◦ f−1) = d(f, g) < ε ,

hence idY = g ◦ f−1, consequently

0 = d(idY , g ◦ f−1) = d(f, g)

and f = g.
Assume now that E(Y ) is uniformly discrete. So, from separability, E(Y ) is

countable.

Remark 4.5. a) Note that if Y is an FANR-space (more generally, a calm compactum
[5]) then E(Y ) is countable (because it is discrete).

b) If Y is an ANR then E(Y ) is just the group of homotopy equivalences (not
maps but classes) and it is also countable.

7 ——————————
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From Theorem 3.1 in [19] we have that the natural projection

s : C(X,Y ) −→ Sh(X,Y )

is uniformly continuous, where C(X,Y ) is the space of continuous functions from X
to Y with the uniform convergence metric. In particular we obtain:

Proposition 4.6. Let Y be a compact metric space and H(Y ) the topological group
of autohomeomorphisms (with the uniform convergence topology), then the projection

s : H(Y ) −→ E(Y )

is a continuous (uniformly continuous) group homomorphism.

Remark 4.7. Many consequences can be drawn out from Proposition 4.6. In partic-
ular, we obtain many clopen subsets of H(Y ) depending on the shape classification
of the elements of H(Y ). In the case of a compact ANR Y , the subgroup H0(Y ) of
H(Y ) formed by all homeomorphisms which are homotopic to the identity is a clopen
normal subgroup of H(Y ) and the cardinal of the homotopy classes in H(Y ) is just the
index of H0(Y ) in H(Y ). We hope, in the future, to go further into this type of facts.
Other aspects can be studied considering the projection s : C(X,Y ) −→ Sh(X,Y ).
In many cases, for example if Y is calm, the limit of homeomorphisms is a shape
equivalence and, in some cases, it is a homotopy equivalence. Another fact we reach
is that the shape classes are closed in C(X,Y ) while homotopy classes are, in general,
not.

In order to show that our construction is not vacuous in meaning we have the
following

Proposition 4.8. For a compact zero-dimensional space Y the projection s : H(Y ) −→
E(Y ) is a uniformly continuous homeomorphism (with uniformly continuous inverse).

We could give a direct demonstration of the above proposition (we left it to the
reader) but note that it is also a consequence of the well-known Banach’s open map-
ping theorem for separable and completely metrizable topological groups.

The last proposition provides us of many examples of spaces Y such that (E(Y ), d)
is noncomplete. The completeness of (E(Y ), d) is an important fact, the reason is the
next result:

Proposition 4.9. (E(Y ), d) is complete iff the limit of any sequence of shape equiv-
alences in Sh(X,Y ) is a shape equivalence.

The first result along this line (from [19]) is the following:

Proposition 4.10. Let Y be a calm compact metric space (for example, a space shape
dominated by a polyhedron). Then (E(Y ), d) is uniformly discrete, so complete.

As a direct consequence we have:

Corollary 4.11. Let Y be a calm compact metric space (for example, a solenoid, a
maniflod, a polyhedrom...) and C(Y, Y ) be the space of continuous functions with the
uniform convergence topology. If the sequence {fn}n∈N ⊂ C(Y, Y ) converges to f and
every fn generate a shape equivalence (in particular, if each fn is a homeomorphism)
then f generates a shape equivalence.

——————————
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Proof. In fact the shape morphisms generated by fn and f are equals for almost all
n ∈ N.

Now from Corollary 4.4 we imply:

Proposition 4.12. If the group E(Y ) is finitely (even countably) generated, then
(E(Y ), d) is complete.

Another result on completeness is:

Proposition 4.13. When E(Y ) is abelian, (E(Y ), d) is complete.

Proof. Since d is right invariant and E(Y ) abelian, then d is in fact invariant (i.e., left
and right invariant). From [15] and the topological completeness of E(Y ) it follows
that d is complete.

Remark 4.14. a) Note that the above procedure permits us to prove that the center
(Z(Y ), d) of (E(Y ), d) is always complete.

b) We could think that, in general, the center Z(Y ) is “small”, at least topo-
logically, but in [18] there is an example (in the pointed case) where Z(Y ) is not
compact.

Let us establish now:

Proposition 4.15. If E(Y ) is locally compact, then (E(Y ), d) is complete.

Proof. Since E(Y ) is locally compact, there exists an ε > 0 such that B(e, ε) is a
compact subgroup of E(Y ), where e is the neutral element of E(Y ). Moreover, for
every g ∈ E(Y ) it is B(g, ε) = B(e, ε) ◦ g, thus {B(g, ε) | g ∈ E(Y )} is a clopen
partition of E(Y ). For a Cauchy sequence {fn}n∈N in E(Y ) we can assume the
existence of g ∈ E(Y ) such that {fn}n∈N ⊂ B(g, ε). Take now {hn}n∈N ⊂ B(e, ε)
with fn = hn ◦ g. As {fn}n∈N = {hn ◦ g}n∈N and d is right invariant, {hn}n∈N is a
Cauchy sequence. If h = limn→∞ hn, h ∈ B(e, ε) and, therefore, limn→∞ h−1

n = h−1.
In this way,

{fn}n∈N −→ h ◦ g

and
{f−1
n }n∈N = {g−1 ◦ h−1

n }n∈N −→ g−1 ◦ h−1 ,

so (E(Y ), d) is complete.

Using analogous arguments as in the precedent proof we can obtain

Proposition 4.16. a) If (Sh(Y, Y ), d) (see [19]) is locally compact then E(Y ) is
locally compact (and so complete).

b) If Sh(Y, Y ) is compact then E(Y ) is compact.

Remark 4.17. a) There are many examples showing that E(Y ) is compact but Sh(Y, Y )
is not (take Y = Sn, n ∈ N).

b) From [7] and Proposition 4.8 we can obtain many examples of zero-dimensional
compact metric spaces Y with (E(Y ), d) non complete.

c) Problem: Is (Z(Y ), d) always locally compact?

9 ——————————
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5. Semivaluation and valuation on shape groups

The n-th shape groups play the same role in shape theory as the n-th homotopy
groups do in homotopy theory and they coincide in the class of ANR’s (for example,
manifolds, polyhedra, ...).

The intrinsic topology (in the pointed case) allows us, in particular, to give a
natural structure of topological group on the n-th shape group. As in the third
section, we confine ourselves into the compact metric case. The way to go further is
that pointed out in Sections 1 and 2 of this paper (but in the pointed case).

Some of the authors (see [20]) have described a way to construct invariant ultra-
metrics (in the sense of [28]) on the shape groups. Then, they constructed valued
groups in the sense of [27] (or normed groups [10]).

Let us recall the following

Proposition 5.1. (see [20], Proposition 3) For any pointed compact metric space Y
and any n ∈ N there exists a norm ‖ · ‖ on the shape group Π̌n(Y ) such that

i) ‖ · ‖ is canonical, i.e., independent on any concrete presentation of the group.

ii) ‖αβα−1‖ = ‖β‖ for each α, β ∈ Π̌n(Y ).

iii) ‖α‖ = ‖α−1‖ for every α ∈ Π̌n(Y ).

iv) ‖ · ‖ leads to a left and right invariant complete ultrametric on Π̌n(Y ) given by
d(α, β) = ‖αβ−1‖.

Remark 5.2. a) As we said before, the norm ‖ · ‖ in the last proposition satisfies the
properties i), ii), iii) of [10] (page 386) in the Farkas’s definition of norms on groups.

b) One of the first authors who considered special kind of norms (non Archimedean)
on groups related to topology was Alexander in homology theory ([1] and [2]). See
also Markov [17] for some general contructions.

c) The kind of topology that we obtain on the shape groups by means of the norms
‖ · ‖ is just that defined in [11] under the name of subgroup topology, redefined (in
some sense) in [3] and used in [9] and [14] to get Whitehead type theorems in shape
theory.

The unique results we want to point out now for the shape groups with the topol-
ogy defined by ‖ · ‖ are the following consequences of Theorem 3.5 in [11]:

Proposition 5.3. For a pointed metric compact space (Y, y0), the normed shape
group (Π̌n(Y, y0), ‖ · ‖) is compact iff the normal subgroups B(e, ε) = {α ∈ Π̌n(Y, y0) :
‖α‖ < ε} are of finite index in Π̌n(Y, y0).

Corollary 5.4. Let (Y, y0) be a pointed metric compact space such that

(Y, y0) = lim
←−

{
(Pn, {p0}n), φn

}
,

where (Pn, {p0}n) are pointed polyhedra with finite m-homotopy group (for all n ∈ N).
Then, the mth-shape group Πm(Y, y0) is compact.

Remark 5.5. Note that the analogous result for the groups of (unpointed) shape
equivalences is not true. For example, the Cantor discontinuum C is the inverse limit
of finite spaces -so with finite groups of shape equivalences- but the topological group
of shape equivalences on C is not compact.
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