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The problem

Two models
Mi : fi (· | θi ), θi ∈ Θi , i = 1, 2

are under consideration to explain the data x

The Bayes factor

B21 =
m2(x)

m1(x)
=

∫
f2(x | θ2)π2(θ2)dθ2∫
f1(x | θ1)π1(θ1)dθ1

requires specification of π1(θ1) and π2(θ2)
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Estimation priors do not work

Default priors, πNi (θi ) (Jeffreys or reference priors) are often used for
estimation

Usually improper priors

πNi (θi ) = cihi (θi ), ci > 0,

∫
hi (θi )dθi = +∞

The Bayes factor is not well-defined

BN
21 =

∫
f2(x | θ2)πN2 (θ2)dθ2∫
f1(x | θ1)πN1 (θ1)dθ1

=
c2

c1

∫
f2(x | θ2)h2(θ2)dθ2∫
f1(x | θ1)h1(θ1)dθ1

because c2/c1 is arbitrary
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Proposals for model selection priors
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Proposals for model selection priors
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Proposals for variable selection priors

Zellner’s g-priors (1986) and Mixtures (Liang et al. (2008))

Robust prior (Bayarri et al. (2012))

Power-expected-posterior priors (Fouskakis et al. (2015))
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Intrinsic priors for nested models

{πI1(θ1), πI2(θ2)}

πI2(θ2) =

∫
πI2(θ2 | θ1)πI1(θ1)dθ1

πI2(θ2 | θ1) =
∫
πN2 (θ2 | x)f1(x | θ1)dx

x is an imaginary minimal training sample

πI1(θ1) is free!!!

Usually πI1(θ1) := πN1 (θ1) (Moreno et al. (1998))
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Expected posterior priors

πE1 (θ1) :=

∫
πN1 (θ1 | x)m(x)dx

πE2 (θ2) :=

∫
πN2 (θ2 | x)m(x)dx

where x is an imaginary minimal training sample and m(x) can be any
predictive distribution, proper or not

Two proposals for m(x) are the empirical distribution of the data, and the
predictive distribution of the simplest model
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Expected posterior priors for nested models

If M1 is nested in M2, and m(x) := mN
1 (x), then

πEi (θi ) = πIi (θi ), i = 1, 2

The expected posterior priors can be seen as a generalization of
intrinsic priors
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Integral priors
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Integral priors

Integral priors are the solutions π1(θ1) and π2(θ2) to the system of integral
equations

π1(θ1) =

∫
πN1 (θ1 | x)m2(x)dx

π2(θ2) =

∫
πN2 (θ2 | x)m1(x)dx

where

mi (x) =

∫
fi (x | θi )πi (θi )dθi , i = 1, 2,

and x is an imaginary minimal training sample
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Integral priors

Because of mi (x) =
∫
fi (x | θi )πi (θi )dθi

π1(θ1) =

∫
πN1 (θ1 | x)f2(x | θ2)π2(θ2)dxdθ2

π2(θ2) =

∫
πN2 (θ2 | x)f1(x | θ1)π1(θ1)dxdθ1

Therefore we have a system of two integral equations, and the integral
priors are its solution
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Justification

Model selection priors should be close to the initial default priors

Any prior π1(θ1) satisfies

π1(θ1) =

∫
π1(θ1 | x)m1(x)dx ,

and a sensible way to get a prior π1(θ1) close to πN1 (θ1) is by means of

π1(θ1) =

∫
πN1 (θ1 | x)m1(x)dx
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Justification

The predictive distributions mi (x) =
∫
fi (x | θi )πi (θi )dθi , i = 1, 2, should

be as close as possible.

Any prior π1(θ1) satisfies

π1(θ1) =

∫
π1(θ1 | x)m1(x)dx ,

and a sensible way to get m1(x) and m2(x) to be close is by means of

π1(θ1) =

∫
π1(θ1 | x)m2(x)dx
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In summary, a sensible way to get priors

close to the initial default priors, and

with predictive distributions as close as possible (predictive
matching, see Berger and Pericchi (2001), and Bayarri et al. (2012))

is by means of

π1(θ1) =

∫
πN1 (θ1 | x)m2(x)dx

π2(θ2) =

∫
πN2 (θ2 | x)m1(x)dx

and these are the integral priors!!!
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Intrinsic and Integral priors

If M1 is nested in M2, then the intrinsic priors satisfy

π2(θ2) =

∫
πI2(θ2 | θ1)π1(θ1)dθ1

If we add the symmetrical equation

π1(θ1) =

∫
πI1(θ1 | θ2)π2(θ2)dθ2

Again we have the integral priors!!!
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The Markov chains associated with the
integral priors
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The associated Markov chains

The integral prior π1(θ1) is the invariant σ-finite measure of the Markov
chain with transition θ1 → θ′1 defined by the following four steps
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If this Markov chain is Harris recurrent, then the integral prior
π1(θ1) can be approximated by simulation

Therefore, the transition θ1 → θ′1 and the integral priors are
essentially the same thing

There exists a parallel Markov chain for θ2 with the same properties;
in particular, if one is (Harris) recurrent then so is the other
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The first example

One-sided testing for the exponential distribution

M1 : Exp(θ1), θ1 < 1

M2 : Exp(θ2), θ2 > 1

πN1 (θ1) ∝ θ−1
1 1(0,1)(θ1)

πN2 (θ2) ∝ θ−1
2 1(1,+∞)(θ2)
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Markov chain for θ1

1 x ′ = −θ1 log u1

2 θ2 = −x ′/ log(u2(1− e−x
′
) + e−x

′
)

3 x = −θ2 log u3

4 θ′1 = (1− 1
x log u4)

u1, u2, u3, u4 ∼ U(0, 1)
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M1 : θ1 < 1 M2 : θ2 > 1

π1(θ1) π2(θ2)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

1 3 5 7 9 11 13 15 17 19
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

25 / 65



Integral priors can be applied to nested and non-nested situations

Priors close to the initial default priors, and with predictive
distributions as close as possible

The integral prior for each model takes into account the existence of
the other model
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Group invariance

An important situation is when M1 and M2 have the same group
invariance structure

In this situation right-Haar priors are exact predictive matching for
minimal training samples (Berger, Pericchi and Varshavsky (1998))

Right-Haar priors are Integral priors when these priors are the initial
default priors
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Location models

M1 : N(θ, 1), πN1 (θ) = c1

M2 : DE (λ, 1), πN2 (λ) = c2

π1(θ) = 1 and π2(λ) = 1 are the integral priors

Because these priors are improper, we expect a lack of stability in their
associated Markov chains
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1 x ′ ∼ f1(x ′ | θ1)

2 θ2 ∼ πN2 (θ2 | x ′)

3 x ∼ f2(x | θ2)

4 θ′1 ∼ πN1 (θ′1 | x)

1 x ′ ∼ f A1 (x ′ | θ1) ∝ f1(x ′ | θ1)IA(x)

2 θ2 ∼ πN2 (θ2 | x ′)

3 x ∼ f A2 (x | θ2) ∝ f2(x ′ | θ2)IA(x)

4 θ′1 ∼ πN1 (θ′1 | x)
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M1 : N(θ, 1), πN1 (θ) = c1 and M2 : DE (λ, 1), πN2 (λ) = c2

The constraint x ∈ A = [−10, 10] on the imaginary trainig samples
prevents the explosion of the chain

0 10000 20000 30000 40000

−
30

−
20

−
10

0
10

20
30

Our recommendation is keeping the imaginary training samples within an
interval ±5s about the sample mean
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The only thing one needs to apply this methodology is

To simulate minimal training samples from fi (x | θi ), which seems
easy to do, and

To simulate from the posteriors πNi (θi | x), which usually is also easy
to do, or it can be done using MCMC
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The one way heteroscedastic ANOVA

M1 : µ1 = µ2 = · · · = µk = µ

M2 : all the µi
′s are not equal

πN1 (µ, σ1, . . . , σk) ∝ (σ1 · · ·σk)−1

πN2 (µ1, . . . , µk , σ1, . . . , σk) ∝ (σ1 · · ·σk)−1

Here the simulation from the posterior πN1 (θ1 | x) can not be performed
directly

πN1 (µ, σ1, . . . , σk | x) ∝
k∏

i=1

σ−3
i exp

(
−(xi1 − µ)2 + (xi2 − µ)2

2σ2
i

)
.

We use Gibbs sampling within this step
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1 x ′ ∼ f A1 (x ′ | θ1) ∝ f1(x ′ | θ1)IA(x ′)

2 θ2 ∼ πN2 (θ2 | x ′)

3 x ∼ f A2 (x | θ2) ∝ f2(x | θ2)IA(x)

4 θ′1 ∼ πN1 (θ′1 | x) : Gibbs sampling with h ≥ 1 iterations
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Four populations. 100,000 iterations for the Markov chain and
h = 1, 10, 100, 200 iterations of the Gibbs sampling

There are no differences from h = 10 to h = 100 or larger, so h = 10
is enough for the Gibbs algorithm

Integral prior for model M2 concentrates mass in favor of model M1
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Computation of Bayes factors with
integral priors

Monte Carlo

Laplace approximation

Importance sampling
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Monte Carlo

The Markov chain θ
(1)
i , θ

(2)
i , . . . for πi (θi )

lim
L→+∞

1

L

L∑
t=1

fi (x | θti ) = mi (x) =

∫
fi (x | θi )πi (θi )dθi

Very large values of L are needed if fi (x | θi ) is concentrated relative
to πi (θi )
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Laplace approximation

mi (x) =
∫
fi (x | θi )πi (θi )dθi

π̂i is a nonparametric estimate of the integral prior πi

m̂i (x) = (2π)
dim(Θi )

2 |Σ̂i |1/2fi (x | θ̂i )π̂i (θ̂i )

θ̂i = MLE

Σ̂−1
i observed information matrix under Mi
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Importance sampling I

π̂i is a nonparametric estimate of the integral prior πi

mi (x) =

∫
fi (x | θi )πi (θi )dθi ≈

∫
fi (x | θi )π̂i (θi )dθi

=

∫
fi (x | θi )π̂i (θi )

p(θi | x)
p(θi | x)dθi

p(θi | x) the importance density
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Importance sampling II

m2(x) =

∫
f2(x | θ2)π2(θ2)dθ2 =

∫
f2(x | θ2)πN2 (θ2 | z2)m1(z2)dz2dθ2

=

∫
f2(x | θ2)πN2 (θ2 | z2)

p(θ2 | x , z2)
p(θ2 | x , z2)m1(z2)dz2dθ2

p(θ2 | x , z2) the importance density

The simulation of the Markov chain gives us simulations from m1(z2)

We need to evaluate πN2 (θ2 | z2), where z2 is a minimal training sample
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Multiple comparison
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Integral priors for Multiple comparison

𝑀𝑖

𝑀1

𝑀2

𝑀𝑞

𝑄𝑖1(𝜃𝑖
′|𝜃𝑖)

𝑄𝑖2(𝜃𝑖
′|𝜃𝑖)

𝑄𝑖𝑞(𝜃𝑖
′|𝜃𝑖)

𝑄𝑖 𝜃𝑖
′ 𝜃𝑖 =

 𝑗≠𝑖𝑄𝑖𝑗(𝜃𝑖
′|𝜃𝑖)

𝑞 − 1
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Integral priors for Multiple comparison

Definition: πi (θi ) for Mi

The integral prior πi (θi ) is the invariant σ-finite measure of the Markov
chain with transition θi → θ′i defined by the following four steps

𝑀𝑖 𝑀𝑗
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Testing for the exponential distribution

M1 : Exp(θ1), θ1 ∈ I1 = (0, 1)

M2 : Exp(θ2), θ2 ∈ I2 = (1,+∞)

M3 : Exp(θ3), θ3 ∈ I3 = (0,+∞)

πNi (θi ) ∝ θ−1
i 1Ii (θi )

ξi = log θi

i = 1, 2, 3
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ξ1 < 0 ξ2 > 0 ξ3 ∈ R
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Variable selection
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Variable selection for the linear regression model

Full model

y = Xβ + ε, ε ∼ Nn(0, σ2I)

πN(β, σ) ∝ 1/σ

β ∈ Rk , σ > 0

X = [x1, . . . , xk ] an n × k full rank matrix and n > k

xj = (x1j , . . . , xnj)
′, j = 1, . . . , k

Usually x1 = 1n
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Submodels

The full model is represented by the matrix X = (xij) ∈ Rn×k

R a subsequence of I = {1, . . . , n} representing rows of X

C a subsequence of J = {1, . . . , k} representing columns of X

XR,C = (xij)i∈R,j∈C and XC = XI,C

The submodel MC is represented by the matrix XC

MC : y = XCβC + εC , εC ∼ Nn(0, σ2
CI)

πN(βC , σC) ∝ 1/σC
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MC1
versus MC2

(βC1 , σC1)→ (β′C1
, σ′C1

)

Select random sequences, R and S, from I = {1, . . . , n}, with
|R| = |C2|+ 1 and |S| = |C1|+ 1, such that XRC2 and XSC1 be full rank
matrices.

1 Simulate a training sample y2 ∼ N(XRC1βC1 , σ
2
C1

I)

2 Simulate the posterior πN(βC2 , σC2 | y2,XRC2)

3 Simulate a training sample y1 ∼ N(XSC2βC2 , σ
2
C2

I)

4 Simulate the posterior πN(β′C1
, σ′C1

| y1,XSC1)
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The caterpillar dataset: 210 = 1024 models

Y = log of the average number of nests of caterpillars per tree in an area

k = 10 potential explanatory variables defined on n = 33 areas

x1 altitude
x2 slope
x3 number of pines in the area
...

Bayesian core: a practical approach to computational Bayesian statistics.
Jean-Michel Marin and Christian P. Robert. Springer.
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Full model: Integral prior and πN(θ | y)
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Full model: Integral prior and πN(θ | y)
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Full model: Integral prior and πN(θ | y)
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Full model: Integral prior and πN(θ | y)
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The marginal distributions with integral priors

m(y) =

∫
f (y | θ)π(θ)dθ =

∫
f (y | θ)πN(θ)

π(θ)

πN(θ)
dθ

≈
∫

f (y | θ)πN(θ)
π̂(θ)

πN(θ)
dθ ≈ π̂(θ̂)

πN(θ̂)

∫
f (y | θ)πN(θ)dθ

m(y) ≈ π̂(θ̂)

πN(θ̂)
mN(y)
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Variable selection for Generalized linear models

For two Binomial regression
models with a general link
function

It can be done for multiple
comparison!

1 Simulate a training sample y2

2 Simulate the posterior given y2

3 Simulate a training sample y1

4 Simulate the posterior given y1
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Variable selection for Nonlinear regression models

y = g(X , β) + ε, ε ∼ Nn(0, σ2I)

It can be done!

(βC1 , σC1)→ (β′C1
, σ′C1

)

1 Simulate a training sample y2:

it is easy

2 Simulate the posterior given y2: MCMC if it is necessary

3 Simulate a training sample y1: it is easy

4 Simulate the posterior given y1: MCMC if it is necessary
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Conclusions and oncoming research

The application of integral priors just needs to simulate imaginay
minimal training samples z from the involved models, and their
posterior distributions πNi (θi | z)

This methodology can directly be applied to the comparison of
nonnested models, that is a common restriction in other
methodologies

Integral priors are obtained by simulation, and therefore the predictive
distribution and the Bayes factors have not a closed form in general

Computation of Bayes factors with integral priors is work in progress
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