Integral Prior Distributions for linear models and multiple comparison

Salmerón D. and Cano J.A.
Universidad de Murcia

- Integral priors for model selection and testing
- The Markov chains associated with the integral priors
- Computation of Bayes factors with integral priors
- Multiple comparison
- Variable selection

The problem

- Two models

$$
M_{i}: f_{i}\left(\cdot \mid \theta_{i}\right), \quad \theta_{i} \in \Theta_{i}, \quad i=1,2
$$

are under consideration to explain the data \mathbf{x}

- The Bayes factor

$$
B_{21}=\frac{m_{2}(\mathbf{x})}{m_{1}(\mathbf{x})}=\frac{\int f_{2}\left(\mathbf{x} \mid \theta_{2}\right) \pi_{2}\left(\theta_{2}\right) \mathrm{d} \theta_{2}}{\int f_{1}\left(\mathbf{x} \mid \theta_{1}\right) \pi_{1}\left(\theta_{1}\right) \mathrm{d} \theta_{1}}
$$

requires specification of $\pi_{1}\left(\theta_{1}\right)$ and $\pi_{2}\left(\theta_{2}\right)$

Estimation priors do not work

- Default priors, $\pi_{i}^{N}\left(\theta_{i}\right)$ (Jeffreys or reference priors) are often used for estimation
- Usually improper priors

$$
\pi_{i}^{N}\left(\theta_{i}\right)=c_{i} h_{i}\left(\theta_{i}\right), \quad c_{i}>0, \quad \int h_{i}\left(\theta_{i}\right) \mathrm{d} \theta_{i}=+\infty
$$

- The Bayes factor is not well-defined

$$
B_{21}^{N}=\frac{\int f_{2}\left(\mathbf{x} \mid \theta_{2}\right) \pi_{2}^{N}\left(\theta_{2}\right) \mathrm{d} \theta_{2}}{\int f_{1}\left(\mathbf{x} \mid \theta_{1}\right) \pi_{1}^{N}\left(\theta_{1}\right) \mathrm{d} \theta_{1}}=\frac{c_{2}}{c_{1}} \frac{\int f_{2}\left(\mathbf{x} \mid \theta_{2}\right) h_{2}\left(\theta_{2}\right) \mathrm{d} \theta_{2}}{\int f_{1}\left(\mathbf{x} \mid \theta_{1}\right) h_{1}\left(\theta_{1}\right) \mathrm{d} \theta_{1}}
$$

because c_{2} / c_{1} is arbitrary

Proposals for model selection priors

The Intrinsic Bayes Factor for Model Selection and Prediction

Expected-posterior prior distributions for model selection
By JOSÉ M. PÉREZ
Centro de Estadística y Software Matemático, Universidad Simón Bolivar, Aptdo. 89000,
Caracas 1080A, Venezuela
jperez@cesma.usb.ve
AND JAMES O. BERGER
Institute of Statistics and Decision Sciences, Duke University, Durham,
North Carolina 27708-0251, U.S.A.
berger@stat.duke.edu

An Intrinsic Limiting Procedure for Model Selection and Hypotheses Testing

Elías Moreno, Francesco Bertolino, and Walter Racugno

Proposals for model selection priors

Integral equation solutions as prior distributions for Bayesian model selection

J.A. Cano - D. Salmerón • C.P. Robert

Generalization of Jeffreys divergence-based priors for Bayesian hypothesis testing
M. J. Bayarri

University of Valencia, Spain
and G. Garcia-Donato
University of Castilla-La Mancha, Albacete, Spain

CRITERIA FOR BAYESIAN MODEL CHOICE WITH APPLICATION TO VARIABLE SELECTION ${ }^{1}$

By M. J. Bayarri, J. O. Berger, A. Forte and G. García-Donato

Proposals for variable selection priors

Zellner's g-priors (1986) and Mixtures (Liang et al. (2008))
Robust prior (Bayarri et al. (2012))
Power-expected-posterior priors (Fouskakis et al. (2015))

Intrinsic priors for nested models

$$
\left\{\pi_{1}^{\prime}\left(\theta_{1}\right), \pi_{2}^{\prime}\left(\theta_{2}\right)\right\}
$$

$$
\pi_{2}^{\prime}\left(\theta_{2}\right)=\int \pi_{2}^{\prime}\left(\theta_{2} \mid \theta_{1}\right) \pi_{1}^{\prime}\left(\theta_{1}\right) \mathrm{d} \theta_{1}
$$

$\pi_{2}^{\prime}\left(\theta_{2} \mid \theta_{1}\right)=\int \pi_{2}^{N}\left(\theta_{2} \mid x\right) f_{1}\left(x \mid \theta_{1}\right) \mathrm{d} x$
x is an imaginary minimal training sample

Intrinsic priors for nested models

$$
\left\{\pi_{1}^{\prime}\left(\theta_{1}\right), \pi_{2}^{\prime}\left(\theta_{2}\right)\right\}
$$

$$
\pi_{2}^{\prime}\left(\theta_{2}\right)=\int \pi_{2}^{\prime}\left(\theta_{2} \mid \theta_{1}\right) \pi_{1}^{\prime}\left(\theta_{1}\right) \mathrm{d} \theta_{1}
$$

$\pi_{2}^{\prime}\left(\theta_{2} \mid \theta_{1}\right)=\int \pi_{2}^{N}\left(\theta_{2} \mid x\right) f_{1}\left(x \mid \theta_{1}\right) \mathrm{d} x$
x is an imaginary minimal training sample
$\pi_{1}^{\prime}\left(\theta_{1}\right)$ is free!!!
Usually $\pi_{1}^{\prime}\left(\theta_{1}\right):=\pi_{1}^{N}\left(\theta_{1}\right)$ (Moreno et al. (1998))

Expected posterior priors

$$
\begin{aligned}
& \pi_{1}^{E}\left(\theta_{1}\right):=\int \pi_{1}^{N}\left(\theta_{1} \mid x\right) m(x) \mathrm{d} x \\
& \pi_{2}^{E}\left(\theta_{2}\right):=\int \pi_{2}^{N}\left(\theta_{2} \mid x\right) m(x) \mathrm{d} x
\end{aligned}
$$

where x is an imaginary minimal training sample and $m(x)$ can be any predictive distribution, proper or not

Two proposals for $m(x)$ are the empirical distribution of the data, and the predictive distribution of the simplest model

Expected posterior priors for nested models

- If M_{1} is nested in M_{2}, and $m(x):=m_{1}^{N}(x)$, then

$$
\pi_{i}^{E}\left(\theta_{i}\right)=\pi_{i}^{\prime}\left(\theta_{i}\right), \quad i=1,2
$$

- The expected posterior priors can be seen as a generalization of intrinsic priors

Integral priors

Integral priors

Integral priors are the solutions $\pi_{1}\left(\theta_{1}\right)$ and $\pi_{2}\left(\theta_{2}\right)$ to the system of integral equations

$$
\begin{aligned}
& \pi_{1}\left(\theta_{1}\right)=\int \pi_{1}^{N}\left(\theta_{1} \mid x\right) m_{2}(x) \mathrm{d} x \\
& \pi_{2}\left(\theta_{2}\right)=\int \pi_{2}^{N}\left(\theta_{2} \mid x\right) m_{1}(x) \mathrm{d} x
\end{aligned}
$$

where

$$
m_{i}(x)=\int f_{i}\left(x \mid \theta_{i}\right) \pi_{i}\left(\theta_{i}\right) \mathrm{d} \theta_{i}, \quad i=1,2
$$

and x is an imaginary minimal training sample

Integral priors

Because of $m_{i}(x)=\int f_{i}\left(x \mid \theta_{i}\right) \pi_{i}\left(\theta_{i}\right) \mathrm{d} \theta_{i}$

$$
\begin{aligned}
& \pi_{1}\left(\theta_{1}\right)=\int \pi_{1}^{N}\left(\theta_{1} \mid x\right) f_{2}\left(x \mid \theta_{2}\right) \pi_{2}\left(\theta_{2}\right) \mathrm{d} x \mathrm{~d} \theta_{2} \\
& \pi_{2}\left(\theta_{2}\right)=\int \pi_{2}^{N}\left(\theta_{2} \mid x\right) f_{1}\left(x \mid \theta_{1}\right) \pi_{1}\left(\theta_{1}\right) \mathrm{d} x \mathrm{~d} \theta_{1}
\end{aligned}
$$

Therefore we have a system of two integral equations, and the integral priors are its solution

Justification

Model selection priors should be close to the initial default priors
Any prior $\pi_{1}\left(\theta_{1}\right)$ satisfies

$$
\pi_{1}\left(\theta_{1}\right)=\int \pi_{1}\left(\theta_{1} \mid x\right) m_{1}(x) \mathrm{d} x
$$

Justification

Model selection priors should be close to the initial default priors
Any prior $\pi_{1}\left(\theta_{1}\right)$ satisfies

$$
\pi_{1}\left(\theta_{1}\right)=\int \pi_{1}\left(\theta_{1} \mid x\right) m_{1}(x) \mathrm{d} x
$$

and a sensible way to get a prior $\pi_{1}\left(\theta_{1}\right)$ close to $\pi_{1}^{N}\left(\theta_{1}\right)$ is by means of

$$
\pi_{1}\left(\theta_{1}\right)=\int \pi_{1}^{N}\left(\theta_{1} \mid x\right) m_{1}(x) \mathrm{d} x
$$

Justification

The predictive distributions $m_{i}(x)=\int f_{i}\left(x \mid \theta_{i}\right) \pi_{i}\left(\theta_{i}\right) \mathrm{d} \theta_{i}, i=1,2$, should be as close as possible.

Any prior $\pi_{1}\left(\theta_{1}\right)$ satisfies

$$
\pi_{1}\left(\theta_{1}\right)=\int \pi_{1}\left(\theta_{1} \mid x\right) m_{1}(x) \mathrm{d} x
$$

Justification

The predictive distributions $m_{i}(x)=\int f_{i}\left(x \mid \theta_{i}\right) \pi_{i}\left(\theta_{i}\right) \mathrm{d} \theta_{i}, i=1,2$, should be as close as possible.

Any prior $\pi_{1}\left(\theta_{1}\right)$ satisfies

$$
\pi_{1}\left(\theta_{1}\right)=\int \pi_{1}\left(\theta_{1} \mid x\right) m_{1}(x) \mathrm{d} x
$$

and a sensible way to get $m_{1}(x)$ and $m_{2}(x)$ to be close is by means of

$$
\pi_{1}\left(\theta_{1}\right)=\int \pi_{1}\left(\theta_{1} \mid x\right) m_{2}(x) \mathrm{d} x
$$

$$
\pi_{1}\left(\theta_{1}\right)=\int \pi_{1}^{N}\left(\theta_{1} \mid x\right) m_{1}(x) \mathrm{d} x
$$

$$
\pi_{1}\left(\theta_{1}\right)=\int \pi_{1}\left(\theta_{1} \mid x\right) m_{2}(x) \mathrm{d} x
$$

$$
\pi_{1}\left(\theta_{1}\right)=\int \pi_{1}\left(\theta_{1} \mid x\right) m_{1}(x) \mathrm{d} x
$$

$$
\pi_{1}\left(\theta_{1}\right)=\int \pi_{1}^{N}\left(\theta_{1} \mid x\right) m_{1}(x) \mathrm{d} x
$$

$$
\pi_{1}\left(\theta_{1}\right)=\int \pi_{1}\left(\theta_{1} \mid x\right) m_{2}(x) \mathrm{d} x
$$

$$
\pi_{1}\left(\theta_{1}\right)=\int \pi_{1}^{N}\left(\theta_{1} \mid x\right) m_{2}(x) \mathrm{d} x
$$

In summary, a sensible way to get priors

- close to the initial default priors, and
- with predictive distributions as close as possible (predictive matching, see Berger and Pericchi (2001), and Bayarri et al. (2012))
is by means of

$$
\begin{aligned}
& \pi_{1}\left(\theta_{1}\right)=\int \pi_{1}^{N}\left(\theta_{1} \mid x\right) m_{2}(x) \mathrm{d} x \\
& \pi_{2}\left(\theta_{2}\right)=\int \pi_{2}^{N}\left(\theta_{2} \mid x\right) m_{1}(x) \mathrm{d} x
\end{aligned}
$$

and these are the integral priors!!!

Intrinsic and Integral priors

- If M_{1} is nested in M_{2}, then the intrinsic priors satisfy

$$
\pi_{2}\left(\theta_{2}\right)=\int \pi_{2}^{\prime}\left(\theta_{2} \mid \theta_{1}\right) \pi_{1}\left(\theta_{1}\right) \mathrm{d} \theta_{1}
$$

- If we add the symmetrical equation

$$
\pi_{1}\left(\theta_{1}\right)=\int \pi_{1}^{\prime}\left(\theta_{1} \mid \theta_{2}\right) \pi_{2}\left(\theta_{2}\right) \mathrm{d} \theta_{2}
$$

Intrinsic and Integral priors

- If M_{1} is nested in M_{2}, then the intrinsic priors satisfy

$$
\pi_{2}\left(\theta_{2}\right)=\int \pi_{2}^{\prime}\left(\theta_{2} \mid \theta_{1}\right) \pi_{1}\left(\theta_{1}\right) \mathrm{d} \theta_{1}
$$

- If we add the symmetrical equation

$$
\pi_{1}\left(\theta_{1}\right)=\int \pi_{1}^{\prime}\left(\theta_{1} \mid \theta_{2}\right) \pi_{2}\left(\theta_{2}\right) \mathrm{d} \theta_{2}
$$

- Again we have the integral priors!!!

The Markov chains associated with the integral priors

The associated Markov chains

The integral prior $\pi_{1}\left(\theta_{1}\right)$ is the invariant σ-finite measure of the Markov chain with transition $\theta_{1} \rightarrow \theta_{1}^{\prime}$ defined by the following four steps
(1) $z_{2} \sim f_{1}\left(z_{2} \mid \theta_{1}\right)$
(2) $\theta_{2} \sim \pi_{2}^{N}\left(\theta_{2} \mid z_{2}\right)$
(3) $z_{1} \sim f_{2}\left(z_{1} \mid \theta_{2}\right)$

(9) $\theta_{1}^{\prime} \sim \pi_{1}^{N}\left(\theta_{1}^{\prime} \mid z_{1}\right)$

- If this Markov chain is Harris recurrent, then the integral prior $\pi_{1}\left(\theta_{1}\right)$ can be approximated by simulation
- Therefore, the transition $\theta_{1} \rightarrow \theta_{1}^{\prime}$ and the integral priors are essentially the same thing
- There exists a parallel Markov chain for θ_{2} with the same properties; in particular, if one is (Harris) recurrent then so is the other

The first example

One-sided testing for the exponential distribution

$$
\begin{aligned}
& M_{1}: \mathcal{E} \times p\left(\theta_{1}\right), \theta_{1}<1 \\
& M_{2}: \mathcal{E} \times p\left(\theta_{2}\right), \theta_{2}>1 \\
& \pi_{1}^{N}\left(\theta_{1}\right) \propto \theta_{1}^{-1} 1_{(0,1)}\left(\theta_{1}\right) \\
& \pi_{2}^{N}\left(\theta_{2}\right) \propto \theta_{2}^{-1} 1_{(1,+\infty)}\left(\theta_{2}\right)
\end{aligned}
$$

Markov chain for θ_{1}

(1) $x^{\prime}=-\theta_{1} \log u_{1}$
(2) $\theta_{2}=-x^{\prime} / \log \left(u_{2}\left(1-e^{-x^{\prime}}\right)+e^{-x^{\prime}}\right)$
(3) $x=-\theta_{2} \log u_{3}$
(9) $\theta_{1}^{\prime}=\left(1-\frac{1}{x} \log u_{4}\right)$
$u_{1}, u_{2}, u_{3}, u_{4} \sim U(0,1)$
$M_{1}: \theta_{1}<1 \quad M_{2}: \theta_{2}>1$

- Integral priors can be applied to nested and non-nested situations
- Priors close to the initial default priors, and with predictive distributions as close as possible
- The integral prior for each model takes into account the existence of the other model

Group invariance

- An important situation is when M_{1} and M_{2} have the same group invariance structure
- In this situation right-Haar priors are exact predictive matching for minimal training samples (Berger, Pericchi and Varshavsky (1998))
- Right-Haar priors are Integral priors when these priors are the initial default priors

Location models

$M_{1}: N(\theta, 1), \pi_{1}^{N}(\theta)=c_{1}$
$M_{2}: D E(\lambda, 1), \pi_{2}^{N}(\lambda)=c_{2}$
$\pi_{1}(\theta)=1$ and $\pi_{2}(\lambda)=1$ are the integral priors
Because these priors are improper, we expect a lack of stability in their associated Markov chains

Integral Priors and Constrained Imaginary
 Training Samples for Nested and Non-nested Bayesian Model Comparison

Juan Antonio Cano * and Diego Salmerón ${ }^{\dagger} \ddagger$

(1) $x^{\prime} \sim f_{1}\left(x^{\prime} \mid \theta_{1}\right)$
(2) $\theta_{2} \sim \pi_{2}^{N}\left(\theta_{2} \mid x^{\prime}\right)$
(3) $x \sim f_{2}\left(x \mid \theta_{2}\right)$
(1) $\theta_{1}^{\prime} \sim \pi_{1}^{N}\left(\theta_{1}^{\prime} \mid x\right)$

Integral Priors and Constrained Imaginary Training Samples for Nested and Non-nested Bayesian Model Comparison

Juan Antonio Cano * and Diego Salmerón ${ }^{\dagger} \ddagger$

(1) $x^{\prime} \sim f_{1}\left(x^{\prime} \mid \theta_{1}\right)$
(1) $x^{\prime} \sim f_{1}^{A}\left(x^{\prime} \mid \theta_{1}\right) \propto f_{1}\left(x^{\prime} \mid \theta_{1}\right) \mathbb{I}_{A}(x)$
(2) $\theta_{2} \sim \pi_{2}^{N}\left(\theta_{2} \mid x^{\prime}\right)$
(2) $\theta_{2} \sim \pi_{2}^{N}\left(\theta_{2} \mid x^{\prime}\right)$
(3) $x \sim f_{2}\left(x \mid \theta_{2}\right)$
(3) $x \sim f_{2}^{A}\left(x \mid \theta_{2}\right) \propto f_{2}\left(x^{\prime} \mid \theta_{2}\right) \mathbb{I}_{A}(x)$
(1) $\theta_{1}^{\prime} \sim \pi_{1}^{N}\left(\theta_{1}^{\prime} \mid x\right)$
(9) $\theta_{1}^{\prime} \sim \pi_{1}^{N}\left(\theta_{1}^{\prime} \mid x\right)$
$M_{1}: N(\theta, 1), \pi_{1}^{N}(\theta)=c_{1}$ and $M_{2}: D E(\lambda, 1), \pi_{2}^{N}(\lambda)=c_{2}$
The constraint $x \in A=[-10,10]$ on the imaginary trainig samples prevents the explosion of the chain

Our recommendation is keeping the imaginary training samples within an interval $\pm 5 s$ about the sample mean

The only thing one needs to apply this methodology is

- To simulate minimal training samples from $f_{i}\left(x \mid \theta_{i}\right)$, which seems easy to do, and
- To simulate from the posteriors $\pi_{i}^{N}\left(\theta_{i} \mid x\right)$, which usually is also easy to do, or it can be done using MCMC

The one way heteroscedastic ANOVA

$$
\begin{gathered}
M_{1}: \mu_{1}=\mu_{2}=\cdots=\mu_{k}=\mu \\
M_{2}: \text { all the } \mu_{i}^{\prime} \text { 's are not equal } \\
\pi_{1}^{N}\left(\mu, \sigma_{1}, \ldots, \sigma_{k}\right) \propto\left(\sigma_{1} \cdots \sigma_{k}\right)^{-1} \\
\pi_{2}^{N}\left(\mu_{1}, \ldots, \mu_{k}, \sigma_{1}, \ldots, \sigma_{k}\right) \propto\left(\sigma_{1} \cdots \sigma_{k}\right)^{-1}
\end{gathered}
$$

Here the simulation from the posterior $\pi_{1}^{N}\left(\theta_{1} \mid x\right)$ can not be performed directly

$$
\pi_{1}^{N}\left(\mu, \sigma_{1}, \ldots, \sigma_{k} \mid x\right) \propto \prod_{i=1}^{k} \sigma_{i}^{-3} \exp \left(-\frac{\left(x_{i 1}-\mu\right)^{2}+\left(x_{i 2}-\mu\right)^{2}}{2 \sigma_{i}^{2}}\right)
$$

We use Gibbs sampling within this step
(1) $x^{\prime} \sim f_{1}^{A}\left(x^{\prime} \mid \theta_{1}\right) \propto f_{1}\left(x^{\prime} \mid \theta_{1}\right) \mathbb{I}_{A}\left(x^{\prime}\right)$
(2) $\theta_{2} \sim \pi_{2}^{N}\left(\theta_{2} \mid x^{\prime}\right)$
(3) $x \sim f_{2}^{A}\left(x \mid \theta_{2}\right) \propto f_{2}\left(x \mid \theta_{2}\right) \mathbb{I}_{A}(x)$
(1) $\theta_{1}^{\prime} \sim \pi_{1}^{N}\left(\theta_{1}^{\prime} \mid x\right)$: Gibbs sampling with $h \geq 1$ iterations

Four populations. 100,000 iterations for the Markov chain and $h=1,10,100,200$ iterations of the Gibbs sampling

- There are no differences from $h=10$ to $h=100$ or larger, so $h=10$ is enough for the Gibbs algorithm
- Integral prior for model M_{2} concentrates mass in favor of model M_{1}

Cano, J. A., Kessler, M. and Salmerón, D. (2007a). Integral priors for the one way random effects model. Bayesian Analysis, 2-1, 59-68.

Cano, J. A., Kessler, M. and Salmerón, D. (2007b). A synopsis of integral priors for the one way random effects model. Bayesian Statistics, 8, 577-582. Oxford University Press.

Cano, J. A., Salmerón, D. and Robert, C. P. (2008). Integral equation solutions as prior distributions for Bayesian model selection. Test, 17-3, 493-504.

Cano, J. A. and Salmerón, D. (2013). Integral Priors and Constrained Imaginary Training Samples for Nested and Non-nested Bayesian Model Comparison. Bayesian Analysis, 8-2, 361-380.

Salmerón, D., Cano, J. A. and Robert, C. P. (2015). Objective Bayesian hypothesis testing in binomial regression models with integral prior distributions. Statistica Sinica, 25-3, 1009-1023.

Cano, J.A. and Salmerón, D. (2016). A Review of the Developments on Integral Priors for Bayesian Model Selection. BEIO, 32-2, 96-111.

Cano, J.A., Iniesta M. and Salmerón, D. Integral priors for Bayesian model selection: How they operate from simple to complex cases. Submitted.

Computation of Bayes factors with integral priors

- Monte Carlo
- Laplace approximation
- Importance sampling

Monte Carlo

- The Markov chain $\theta_{i}^{(1)}, \theta_{i}^{(2)}, \ldots$ for $\pi_{i}\left(\theta_{i}\right)$

$$
\lim _{L \rightarrow+\infty} \frac{1}{L} \sum_{t=1}^{L} f_{i}\left(\boldsymbol{x} \mid \theta_{i}^{t}\right)=m_{i}(\boldsymbol{x})=\int f_{i}\left(\boldsymbol{x} \mid \theta_{i}\right) \pi_{i}\left(\theta_{i}\right) \mathrm{d} \theta_{i}
$$

- Very large values of L are needed if $f_{i}\left(\boldsymbol{x} \mid \theta_{i}\right)$ is concentrated relative to $\pi_{i}\left(\theta_{i}\right)$

Laplace approximation

$m_{i}(\boldsymbol{x})=\int f_{i}\left(\boldsymbol{x} \mid \theta_{i}\right) \pi_{i}\left(\theta_{i}\right) \mathrm{d} \theta_{i}$
$\hat{\pi}_{i}$ is a nonparametric estimate of the integral prior π_{i}

$$
\hat{m}_{i}(\boldsymbol{x})=(2 \pi)^{\frac{\operatorname{dim}\left(\theta_{i}\right)}{2}}\left|\hat{\Sigma}_{i}\right|^{1 / 2} f_{i}\left(\boldsymbol{x} \mid \hat{\theta}_{i}\right) \hat{\pi}_{i}\left(\hat{\theta}_{i}\right)
$$

$\hat{\theta}_{i}=M L E$
$\hat{\Sigma}_{i}^{-1}$ observed information matrix under M_{i}

Importance sampling I

$\hat{\pi}_{i}$ is a nonparametric estimate of the integral prior π_{i}

$$
\begin{gathered}
m_{i}(\boldsymbol{x})=\int f_{i}\left(\boldsymbol{x} \mid \theta_{i}\right) \pi_{i}\left(\theta_{i}\right) \mathrm{d} \theta_{i} \approx \int f_{i}\left(\boldsymbol{x} \mid \theta_{i}\right) \hat{\pi}_{i}\left(\theta_{i}\right) \mathrm{d} \theta_{i} \\
=\int \frac{f_{i}\left(\boldsymbol{x} \mid \theta_{i}\right) \hat{\pi}_{i}\left(\theta_{i}\right)}{p\left(\theta_{i} \mid \boldsymbol{x}\right)} p\left(\theta_{i} \mid \boldsymbol{x}\right) \mathrm{d} \theta_{i}
\end{gathered}
$$

$p\left(\theta_{i} \mid \boldsymbol{x}\right)$ the importance density

Importance sampling II

$$
\begin{aligned}
m_{2}(\boldsymbol{x})= & \int f_{2}\left(\boldsymbol{x} \mid \theta_{2}\right) \pi_{2}\left(\theta_{2}\right) \mathrm{d} \theta_{2}=\int f_{2}\left(\boldsymbol{x} \mid \theta_{2}\right) \pi_{2}^{N}\left(\theta_{2} \mid z_{2}\right) m_{1}\left(z_{2}\right) \mathrm{d} z_{2} \mathrm{~d} \theta_{2} \\
& =\int \frac{f_{2}\left(\boldsymbol{x} \mid \theta_{2}\right) \pi_{2}^{N}\left(\theta_{2} \mid z_{2}\right)}{p\left(\theta_{2} \mid \boldsymbol{x}, z_{2}\right)} p\left(\theta_{2} \mid \boldsymbol{x}, z_{2}\right) m_{1}\left(z_{2}\right) \mathrm{d} z_{2} \mathrm{~d} \theta_{2}
\end{aligned}
$$

$p\left(\theta_{2} \mid \boldsymbol{x}, z_{2}\right)$ the importance density
The simulation of the Markov chain gives us simulations from $m_{1}\left(z_{2}\right)$
We need to evaluate $\pi_{2}^{N}\left(\theta_{2} \mid z_{2}\right)$, where z_{2} is a minimal training sample

Multiple comparison

Integral priors for Multiple comparison

$$
M_{i}\left\{\begin{array}{ccc}
M_{1} & \longrightarrow & Q_{i 1}\left(\theta_{i}^{\prime} \mid \theta_{i}\right) \\
M_{2} & \longrightarrow & Q_{i 2}\left(\theta_{i}^{\prime} \mid \theta_{i}\right) \\
& \vdots & \\
M_{q} & \longrightarrow & Q_{i q}\left(\theta_{i}^{\prime} \mid \theta_{i}\right)
\end{array}\right\} Q_{i}\left(\theta_{i}^{\prime} \mid \theta_{i}\right)=\frac{\sum_{j \neq i} Q_{i j}\left(\theta_{i}^{\prime} \mid \theta_{i}\right)}{q-1}
$$

Integral priors for Multiple comparison

Definition: $\pi_{i}\left(\theta_{i}\right)$ for M_{i}
The integral prior $\pi_{i}\left(\theta_{i}\right)$ is the invariant σ-finite measure of the Markov chain with transition $\theta_{i} \rightarrow \theta_{i}^{\prime}$ defined by the following four steps
(1) $x_{j} \sim f_{i}\left(\cdot \mid \theta_{i}\right)$
(2) $\theta_{j} \sim \pi_{j}^{N}\left(\cdot \mid x_{j}\right)$
(3) $x_{i} \sim f_{j}\left(\cdot \mid \theta_{j}\right)$
(4) $\theta_{i}^{\prime} \sim \pi_{i}^{N}\left(\cdot \mid x_{i}\right)$

$$
j \sim \mathcal{U}\{1,2, \ldots, i-1, i+1, \ldots, q\}
$$

Testing for the exponential distribution

$$
\begin{aligned}
& M_{1}: \mathcal{E} \times p\left(\theta_{1}\right), \quad \theta_{1} \in I_{1}=(0,1) \\
& M_{2}: \mathcal{E} \times p\left(\theta_{2}\right), \quad \theta_{2} \in I_{2}=(1,+\infty) \\
& M_{3}: \mathcal{E} \times p\left(\theta_{3}\right), \quad \theta_{3} \in I_{3}=(0,+\infty) \\
& \pi_{i}^{N}\left(\theta_{i}\right) \propto \theta_{i}^{-1} 1_{l_{i}}\left(\theta_{i}\right) \\
& \xi_{i}=\log \theta_{i} \\
& i=1,2,3
\end{aligned}
$$

$\xi_{1}<0$
$\xi_{2}>0$

$\xi_{3} \in \mathbb{R}$

Variable selection

Variable selection for the linear regression model

Full model

$$
\begin{aligned}
& \boldsymbol{y}=X \beta+\varepsilon, \varepsilon \sim N_{n}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right) \\
& \pi^{N}(\beta, \sigma) \propto 1 / \sigma \\
& \beta \in \mathbb{R}^{k}, \sigma>0 \\
& X=\left[x_{1}, \ldots, x_{k}\right] \text { an } n \times k \text { full rank matrix and } n>k \\
& x_{j}=\left(x_{1 j}, \ldots, x_{n j}\right)^{\prime}, j=1, \ldots, k \\
& \text { Usually } x_{1}=\mathbf{1}_{n}
\end{aligned}
$$

Submodels

The full model is represented by the matrix $X=\left(x_{i j}\right) \in \mathbb{R}^{n \times k}$
\mathcal{R} a subsequence of $\mathcal{I}=\{1, \ldots, n\}$ representing rows of X
\mathcal{C} a subsequence of $\mathcal{J}=\{1, \ldots, k\}$ representing columns of X
$X_{\mathcal{R}, \mathcal{C}}=\left(x_{i j}\right)_{i \in \mathcal{R}, j \in \mathcal{C}}$ and $X_{\mathcal{C}}=X_{\mathcal{I}, \mathcal{C}}$

The submodel $M_{\mathcal{C}}$ is represented by the matrix $X_{\mathcal{C}}$

$$
\begin{gathered}
M_{\mathcal{C}}: \boldsymbol{y}=X_{\mathcal{C}} \beta_{\mathcal{C}}+\varepsilon_{\mathcal{C}}, \varepsilon_{\mathcal{C}} \sim N_{n}\left(\mathbf{0}, \sigma_{\mathcal{C}}^{2} \mathbf{l}\right) \\
\pi^{N}\left(\beta_{\mathcal{C}}, \sigma_{\mathcal{C}}\right) \propto 1 / \sigma_{\mathcal{C}}
\end{gathered}
$$

$M_{\mathcal{C}_{1}}$ versus $M_{\mathcal{C}_{2}}$

$\left(\beta_{\mathcal{C}_{1}}, \sigma_{\mathcal{C}_{1}}\right) \rightarrow\left(\beta_{\mathcal{C}_{1}}^{\prime}, \sigma_{\mathcal{C}_{1}}^{\prime}\right)$
Select random sequences, \mathcal{R} and \mathcal{S}, from $\mathcal{I}=\{1, \ldots, n\}$, with $|\mathcal{R}|=\left|\mathcal{C}_{2}\right|+1$ and $|\mathcal{S}|=\left|\mathcal{C}_{1}\right|+1$, such that $X_{\mathcal{R} C_{2}}$ and $X_{\mathcal{S C}_{1}}$ be full rank matrices.
(1) Simulate a training sample $y_{2} \sim N\left(X_{\mathcal{R C}_{1}} \beta_{\mathcal{C}_{1}}, \sigma_{\mathcal{C}_{1}}^{2} \mathbf{I}\right)$
(2) Simulate the posterior $\pi^{N}\left(\beta_{\mathcal{C}_{2}}, \sigma_{\mathcal{C}_{2}} \mid y_{2}, X_{\mathcal{R} \mathcal{C}_{2}}\right)$

- Simulate a training sample $y_{1} \sim N\left(X_{\mathcal{S C}_{2}} \beta_{\mathcal{C}_{2}}, \sigma_{\mathcal{C}_{2}}^{2} \mathbf{I}\right)$
(- Simulate the posterior $\pi^{N}\left(\beta_{\mathcal{C}_{1}}^{\prime}, \sigma_{\mathcal{C}_{1}}^{\prime} \mid y_{1}, X_{\mathcal{S}}\right)$

The caterpillar dataset: $2^{10}=1024$ models

$Y=\log$ of the average number of nests of caterpillars per tree in an area
$k=10$ potential explanatory variables defined on $n=33$ areas
x_{1} altitude
x_{2} slope
x_{3} number of pines in the area

Bayesian core: a practical approach to computational Bayesian statistics. Jean-Michel Marin and Christian P. Robert. Springer.

Full model: Integral prior and $\pi^{N}(\theta \mid \mathbf{y})$

Full model: Integral prior and $\pi^{N}(\theta \mid \mathbf{y})$

Full model: Integral prior and $\pi^{N}(\theta \mid \mathbf{y})$

Full model: Integral prior and $\pi^{N}(\theta \mid \mathbf{y})$

The marginal distributions with integral priors

$$
\begin{gathered}
m(\boldsymbol{y})=\int f(\boldsymbol{y} \mid \theta) \pi(\theta) \mathrm{d} \theta=\int f(\boldsymbol{y} \mid \theta) \pi^{N}(\theta) \frac{\pi(\theta)}{\pi^{N}(\theta)} \mathrm{d} \theta \\
\approx \int f(\boldsymbol{y} \mid \theta) \pi^{N}(\theta) \frac{\hat{\pi}(\theta)}{\pi^{N}(\theta)} \mathrm{d} \theta \approx \frac{\hat{\pi}(\hat{\theta})}{\pi^{N}(\hat{\theta})} \int f(\boldsymbol{y} \mid \theta) \pi^{N}(\theta) \mathrm{d} \theta \\
m(\boldsymbol{y}) \approx \frac{\hat{\pi}(\hat{\theta})}{\pi^{N}(\hat{\theta})} m^{N}(\boldsymbol{y})
\end{gathered}
$$

Variables in the model	Posterior probability (\%)	Variables	Posterior probability (\%)
$(0,9)$	21.8	V1	35.7
$(0,1,9)$	11.2	V2	23.5
$(0,3)$	6.4	V3	12.1
$(0,8)$	5.6	V4	17.9
$(0,6)$	3.9	V5	13.8
$(0,2,9)$	3.4	V6	10.6
(0,4,9)	2.2	V7	5.6
(0,1,2,4,5)	2.2	V8	15.5
$(0,1,8)$	2.2	V9	53.8
$(0,1)$	2	V10	4.3
(0,1,2,9)	1.9		
$(0,1,2)$	1.7		
(0,1,4,5)	1.5		
$(0,5,9)$	1.1		
(0,7,9]	1.1		

Variable selection for Generalized linear models

For two Binomial regression models with a general link function

OBJECTIVE BAYESIAN HYPOTHESIS TESTING IN BINOMIAL REGRESSION MODELS WITH INTEGRAL PRIOR DISTRIBUTIONS
D. Salmerón, J. A. Cano and C. P. Robert

CIBER Epidemiología y Salud Pública (CIBERESP), Universidad de Murcia and PSL, Université Paris-Dauphine

Variable selection for Generalized linear models

For two Binomial regression models with a general link function

OBJECTIVE BAYESIAN HYPOTHESIS TESTING IN BINOMIAL REGRESSION MODELS WITH INTEGRAL PRIOR DISTRIBUTIONS
D. Salmerón, J. A. Cano and C. P. Robert

CIBER Epidemiología y Salud Pública (CIBERESP), Universidad de Murcia and PSL, Université Paris-Dauphine
(1) Simulate a training sample y_{2}
(2) Simulate the posterior given y_{2}
(3) Simulate a training sample y_{1}
(9) Simulate the posterior given y_{1}

Variable selection for Nonlinear regression models

$\boldsymbol{y}=\boldsymbol{g}(X, \beta)+\varepsilon, \quad \varepsilon \sim N_{n}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$

It can be done!
$\left(\beta_{\mathcal{C}_{1}}, \sigma_{\mathcal{C}_{1}}\right) \rightarrow\left(\beta_{\mathcal{C}_{1}}^{\prime}, \sigma_{\mathcal{C}_{1}}^{\prime}\right)$
(1) Simulate a training sample y_{2} :

Variable selection for Nonlinear regression models

$\boldsymbol{y}=\boldsymbol{g}(X, \beta)+\varepsilon, \quad \varepsilon \sim N_{n}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$

It can be done!
$\left(\beta_{\mathcal{C}_{1}}, \sigma_{\mathcal{C}_{1}}\right) \rightarrow\left(\beta_{\mathcal{C}_{1}}^{\prime}, \sigma_{\mathcal{C}_{1}}^{\prime}\right)$
(1) Simulate a training sample y_{2} : it is easy
(2) Simulate the posterior given y_{2} :

Variable selection for Nonlinear regression models

$\boldsymbol{y}=\boldsymbol{g}(X, \beta)+\varepsilon, \quad \varepsilon \sim N_{n}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$

It can be done!
$\left(\beta_{\mathcal{C}_{1}}, \sigma_{\mathcal{C}_{1}}\right) \rightarrow\left(\beta_{\mathcal{C}_{1}}^{\prime}, \sigma_{\mathcal{C}_{1}}^{\prime}\right)$
(1) Simulate a training sample y_{2} : it is easy
(2) Simulate the posterior given y_{2} : MCMC if it is necessary
(3) Simulate a training sample y_{1} :

Variable selection for Nonlinear regression models

$\boldsymbol{y}=\boldsymbol{g}(X, \beta)+\varepsilon, \quad \varepsilon \sim N_{n}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$

It can be done!
$\left(\beta_{\mathcal{C}_{1}}, \sigma_{\mathcal{C}_{1}}\right) \rightarrow\left(\beta_{\mathcal{C}_{1}}^{\prime}, \sigma_{\mathcal{C}_{1}}^{\prime}\right)$
(1) Simulate a training sample y_{2} : it is easy
(2) Simulate the posterior given y_{2} : MCMC if it is necessary
(3) Simulate a training sample y_{1} : it is easy
(9) Simulate the posterior given y_{1} :

Variable selection for Nonlinear regression models

$\boldsymbol{y}=\boldsymbol{g}(X, \beta)+\varepsilon, \quad \varepsilon \sim N_{n}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$

It can be done!
$\left(\beta_{\mathcal{C}_{1}}, \sigma_{\mathcal{C}_{1}}\right) \rightarrow\left(\beta_{\mathcal{C}_{1}}^{\prime}, \sigma_{\mathcal{C}_{1}}^{\prime}\right)$
(1) Simulate a training sample y_{2} : it is easy
(2) Simulate the posterior given y_{2} : MCMC if it is necessary
(3) Simulate a training sample y_{1} : it is easy
(9) Simulate the posterior given y_{1} : MCMC if it is necessary

Conclusions and oncoming research

- The application of integral priors just needs to simulate imaginay minimal training samples z from the involved models, and their posterior distributions $\pi_{i}^{N}\left(\theta_{i} \mid z\right)$

Conclusions and oncoming research

- The application of integral priors just needs to simulate imaginay minimal training samples z from the involved models, and their posterior distributions $\pi_{i}^{N}\left(\theta_{i} \mid z\right)$
- This methodology can directly be applied to the comparison of nonnested models, that is a common restriction in other methodologies

Conclusions and oncoming research

- The application of integral priors just needs to simulate imaginay minimal training samples z from the involved models, and their posterior distributions $\pi_{i}^{N}\left(\theta_{i} \mid z\right)$
- This methodology can directly be applied to the comparison of nonnested models, that is a common restriction in other methodologies
- Integral priors are obtained by simulation, and therefore the predictive distribution and the Bayes factors have not a closed form in general

Conclusions and oncoming research

- The application of integral priors just needs to simulate imaginay minimal training samples z from the involved models, and their posterior distributions $\pi_{i}^{N}\left(\theta_{i} \mid z\right)$
- This methodology can directly be applied to the comparison of nonnested models, that is a common restriction in other methodologies
- Integral priors are obtained by simulation, and therefore the predictive distribution and the Bayes factors have not a closed form in general
- Computation of Bayes factors with integral priors is work in progress

Gracias por vuestra atención

