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Introduction::Niche overlap

Niche overlap

The study of the interaction among species is an active area of
research in Ecology.

o In particular, it is of interest to evaluate the overlap of their
ecological niches.

¢ The niche is the multidimensional hypervolume in which a species
maintains a viable population (Hutchinson, 1957).

¢ The space where the niche is defined includes the spatial and
temporal dimensions as well as other environmental variables.
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Introduction::Niche overlap

Temporal activity is one of the axes of the niche most commonly
used to explore ecological segregation among animal species.

Many contributions focus on the overlap of this variable.

If we record times around a 24-hour clock, then we have a
circular variable.

This is the case that will be analyzed here.
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Introduction::Niche overlap

As for the original objective, it is possible to think, at least
theoretically, in terms of the multivariate overlap.

In practice, however, the overlap is usually calculated separately
for each axis of the niche.

The resulting quantities are then combined to provide an idea of
the 'global’ overlap.

There exist several proposals for the combination rule
(Geange et al. 2011).
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Introduction::Data

Data

¢ Collecting information on animal activity patterns in the wild
is not an easy task and can be expensive.

e Camera-trapping systems have allowed ecologists to generate
useful information to address this issue.

e Some cameras are distributed over the research area.

e Every time a sensor detects some movement, a photo is taken
(including date and time of the day).
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Introduction::Data

¢ At some point the photos are collected and the species that
appear in each image are identified.

o As a result we get, for each species of interest, a collection
of times of the day { X1, Xz, ..., Xn}.

e These times are regarded as a random sample from an
unknown distribution.

¢ Given the samples from two species: { X1, Xz, ..., Xn} and
{X{, X5,..., Xy}, we have to estimate the overlap of the
activity patterns.
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Introduction::Data

The Camera-trapping system
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Introduction::Measures of niche overlap

Measures of niche overlap

¢ For a continuous variable X, if the probability density functions
f(x) and g(x), corresponding to the species A and B are known,
the overlap can be measured in a variety of ways

No overlap Partial overlap Partial overlap
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Introduction::Measures of niche overlap

e There are symmetric and asymmetric measures of overlap.

o Two examples of symmetric measures (Ridout & Linkie 2009):
A(f.9)= [ min{f(0).g(0}dx and p(f.g) = [ VIIg0x)dx.

Here we focus on the overlap coefficient A(f, g).

Workshop Métodos Bayesianos’17. Madrid, Espafa. November 8, 2017



Introduction

ooe

Introduction::Measures of niche overlap

 Overlap coefficient: A(f, g) = [ min{f(x), g(x)}dx

No overlap Partial overlap Partial overlap

e The idea is to estimate A using a sample from f(x)
and a sample from g(x); (f and g circular distributions).
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Previous ideas::Parametric analysis

Parametric models

In practice, the densites f(x) and g(x) are unknown and must be
estimated.

As in many other applications, the first attempts were based on
parametric models, specifically normal distributions.

Just like any other parametric model, this may be quite a restrictive
assumption.

Alternative: non-parametric estimation of f(x) and g(x).
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Previous ideas::Non-parametric analysis

Non-parametric models

¢ Kernel density estimation (Silverman 1986).

o For circular data (such as activity times around a 24-hour clock) we can
replace the usual Gaussian kernels by distributions defined on the circle.

e The are a number of models available. Two of the most popular are the
von Mises and the projected normal distributions.
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Previous ideas::Non-parametric analysis

R package overlap

Provides:

¢ Functions to fit kernel density functions to data on temporal
activity patterns of animals;
o Estimates for the coefficient A(f, g);

¢ Approximate confidence intervals (bootstrap) for A(f, g).

Specific to temporal (circular, cyclic) data.
(Meredith & Ridout 2016).
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Bayesian inference::Nonparametric approach

Bayesian inference

We propose a Dirichlet Process Mixture model
(Escobar & West 1995).

We can produce non-parametric inferences about f(x), g(x)
and any functional thereof.

In particular, we can obtain the posterior distribution for A(f, g).

We may use von Mises or projected normal distributions instead
of the usual Gaussian kernels.

Workshop Métodos Bayesianos’17. Madrid, Espafa. November 8, 2017



Bayesian inference

®00000

Bayesian inference::The model

The DPM model

e For each species, the distribution of X is modelled as a DPM of F (-|V¥),

XV~ F(|¥)
WH ~ H
H ~ DP(a,Ho),

where the c.d.f. H follows a Dirichlet process with parameters Hp and a.
e Given a sample Xj, ..., X, from X, we can use sampling-based methods

to obtained ‘realizations’ of the posterior distribution of the density of the
variable X.
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Bayesian inference::The model

The DPM model

e For a large integer M, we then get a sample of pairs of estimated
densities: {(f, gi)}M,.

e From these, a sample {A,}™, from the corresponding posterior
distribution of the overlap coefficient A, can be readily obtained
(Ai = A(fi, gi))-

¢ We can then produce any inference of interest regarding A (in
particular, pointwise estimates and probability intervals) .
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Bayesian inference::The model

Choices for F(-|V)

e von Mises distribution

with W = (u, k) and where f(-) is a modified Bessel function of the
first kind and order 0.

This distribution is also known as the Circular Normal distribution
because of its similarities to the Normal distribution on the real line.
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Bayesian inference::The model

Choices for F(-|V)

¢ Projected normal distribution

1 1 t
F(6lu) = - exp {—gum} [1 b o)

where v = (cos 6,sin ), and ¢(-) and ®(-) denote the p.d.f. and
the c.d.f. of a standard normal distribution, respectively.

This is the marginal distribution of the angle 0 that we get when a

bivariate normal distribution N(X|w, I) is transformed into polar
coordinates.
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Bayesian inference::The model

Choices for F(-|V)

e Here, we discuss the results for the DPM of projected normal
distributions. This model entails challenges and advantages.

e We only observe the angles {0;}/_,, and the corresponding radial
coordinates {r;}/_; should be treated as missing.

¢ A Dirichlet Process Mixture of Projected Normals is the same as

a Projected Dirichlet Process Mixture of Normals. Then, many
calculations are simplified.
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Bayesian inference::The model

Specific model

o For each species, we define

Yip ~ N(|p )
ulH ~ H
H ~ DP(a,Ho)

Ho, a bivariate normal distribution N(-|,, Xo); o ~ Ga(ao, bo).

e The variable of interest (the time of the day X), is given by:
0, the angle of the transformation to polar coordinates
Y — (r,0).
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Bayesian inference::Prior distribution

Prior Distribution

In the case of a nonparametric analysis, the specification of the
prior distribution is usually a rather complicated task.

e There are no general rules to choose a noninformative prior.

Here, we use a predictive argument.

A prior is noninformative if the corresponding predictive distribution
gives us little information regarding the location of future observations.
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Bayesian inference::Prior distribution

e The parameters of the prior are chosen to produce a prior predictive
distribution for 6, that is Uniform over the unit circle.

¢ Specifically, we adopt the prior:

p~N@O,I) and o~ Ga(2,4).

e The first part guarantees a Uniform predictive a priori, and also
conditional realizations of the density of 6 not far from this average.

e The prior for «, describes rather vague knowledge regarding the
mixture model.
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Examples::Our data

Real data

o We have a sample of size n = 16 of pecari activity times and a sample of
size m = 35 of tapir activity times.

Pecari Tapir

e but first...
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Examples::Simulated data

Simulated data

We considered the following two mixtures:

() = 0.1 6™ (@ | pay1) + 0.2 (0 | p1p) + 0.4 6™ (0 | pa45) + 0.3 0™ (10 | pa44)

and

9(v) = 0.5 ™ (¥ | ppy) + 0.2 6™ (¥ | pz2) + 0.3 6™ (W | ),
where pir = (1.5,1.5)" pyp = (=1,1)", pyg = (=1,2)", g = (1.5, -1.5)'
and por = (1,1), e = (=2,0)%, poy = (0, —3)".

Workshop Métodos Bayesianos’17. Madrid, Espaia. November 8, 2017



Examples

(e]e]e]e)

Examples::Simulated data
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Examples::Simulated data

Analysis

¢ We simulated samples of sizes n and m, respectively, from these
models.

o We then estimated each of the densities f and g, as well as the
corresponding overlap coefficient A(f, g).

e As an example, for the case n = m = 50, here we show the
estimation of min(f, g).
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Examples::Simulated data

¢ Posterior distribution of the overlap coefficient (true value in red):

i T T
0.4 05 0.6 07 0.8
overlap index

¢ The corresponding 95% credible interval is given by (0.499, 0.765).
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Examples::Simulated data

Sample size Interval

f g

10 20 (0.534, 0.887)

10 50 (0.557, 0.832)

10 100 (0.566, 0.828)
)
)
)

20 50 (0.506, 0.800
20 100 (0.602, 0.824
50 100 (0.565, 0.783

Table: 95% credible intervals for A (true value = 0.672).
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Examples::Simulated data

¢ 95% credible intervals for the overlap coefficient based on 100 pairs of
samples (n = m = 10):

e The true value of the overlap coefficient is captured by 99 of the 100
intervals.
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Examples::Real data

Real data
El Triunfo Biosphere Reserve in Chiapas, Mexico.

UCATAN

CAMPECHE

MICHOACAN

coLima

GUERRERD
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Examples::Real data

Real data

El Triunfo Biosphere Reserve in Chiapas, Mexico.

TABASCO

CHIAPAS

Eyal
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Examples::Real data

Real data

El Triunfo Biosphere Reserve in Chiapas, Mexico.
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Examples::Real data

Real data

Data concerning three mammalian species (Red Brocket Deer, Baird’s Tapir,
Collared Pecari) inhabiting the ‘El Triunfo’ Biosphere Reserve in Chiapas,
Mexico.

1547N

1536'N

15225°N
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Data collection

Camera-trapping was used to obtain the data.

92°49'W 92°94T'W

15°40'N

SIMBOLOGIA
Elevacién (msnm)
1487
w962
21107

15°38'N

92°51'W 92°49'W 92°47'W

Workshop Métodos Bayesianos'17. Madrid, Espana. November 8, 2017



Examples

[e]e]e]e]e] lele]e]

Examples::Real data

Analysis

o For this illustration we use a sample of size n = 16 of pecari activity
times and a sample of size m = 35 of tapir activity times.

Pecari Tapir

+
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Examples::Real data

o Posterior inference for the distribution of tapir activity times
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Examples::Real data

o Posterior inference for the distribution of pecari activity times
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Examples::Real data

¢ Posterior distribution of the overlap coefficient:

‘ll Tapir vs. Pecari
_III III-_
I T T T T T 1

0.2 0.3 0.4 0.5 0.6 0.7 0.8

¢ The corresponding 95% credible interval is given by (0.328,0.687).
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Concluding remarks
o Our approach yields the full posterior distribution of the overlap
coefficient.

¢ Moreover, our proposal allows us to make inferences about any
other characteristic of the densities f and g.

¢ In particular, we can evaluate other measures of overlap.
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Concluding remarks

e Comparisons with the results obtained with the R package overlap
suggest that our procedure is more precise.

¢ Their (approximate) confidence intervals are usually larger than our
probability intervals.

e They fail to capture the true value of A more often than ours.
e We are currently exploring the use of DPMs of von Mises distributions.

e Extensions to mixed multivariate settings (including both circular and
linear variables) are also of interest.
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