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Basics of variable selection

Bayesian variable selection

Competing models

• Main uncertainty concerns which (numerical) variables of a given set

{x1, x2, . . . , xk}

explain a response variable y . Other variables are known to explain y (eg. the constant).
Focus here is on linear models and the response y is Gaussian.

• The formal Bayesian answer considers all possible models that arise when different
combination of the potential variables are chosen.
• There are a total of 2k models, that normally are notated through the use of a binary
vector γ.

Mγ : yi = α + β1 xi1 + β7 xi7 + εi , εi ∼ N(0, σ2), i = 1, . . . , n,

or
Mγ? : yi = α + β1 xi1 + β4 xi4 + εi , εi ∼ N(0, σ2), i = 1, . . . , n.
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Basics of variable selection

Bayesian variable selection

Competing models (cont’)

• The simplest possible model (null model) is

M(0,...,0) : yi = α + εi , εi ∼ N(0, σ2), i = 1, . . . , n.

and the most complex model (full model) is

M(1,...,1) : yi = α +
k∑

j=1

βj xij + εi , εi ∼ N(0, σ2), i = 1, . . . , n.

• In general, model Mγ can be compactly expressed as

Mγ : y = 1α + X γβγ + ε,

where X γ is the design matrix (assume columns centered) that has kγ columns.
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Basics of variable selection

The Bayesian answer and the prior inputs

The Bayesian method then proceeds computing posterior probabilities of all 2k the
models:

Pr(Mγ | y) ∝ mγ(y)Pr(Mγ), mγ(y) =

∫
Mγ(y | βγ , σ, α)πγ(βγ , σ, α) dβγdσdα.

• The ratio
mγ (y )

m0(y )
≡ Bγ is called the Bayes factor of Mγ to the null model.

• The method is parsimonious since the Bayes factor automatically penalizes complexity.

Of great importance is the specification of

Prior for parameters under each model: πγ(βγ , α, σ), and

prior over the model space Pr(Mγ).
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Basics of variable selection

About πγ(βγ , α, σ) and the conventional approach

What we call ‘conventional’ approach are a family of priors of the form:

πγ(α,βγ , σ) = σ−1

∫
Nkγ (β | 0, gσ2(X tX )−1) h(g) dg ,

where h(g) is a mixing function and for the null

π0(α, σ) = σ−1.

• Conventional priors follow the tradition of Jeffreys-Zellner-Siow (60‘s and 80’s),
followed by many others (90’s and 00’s) and recently formally endorsed by Bayarri et al
(2012).

• You obtain

Bγ = B
(SSEγ
SSE0

, 1, kγ + 1, n
)
,

where SSEγ is the sum of squared errors and B is a univariate integral.

Workshop Métodos Bayesianos’17. 8/11/17 7 /
18



Basics of variable selection

About πγ(βγ , α, σ) and the conventional approach

What we call ‘conventional’ approach are a family of priors of the form:

πγ(α,βγ , σ) = σ−1

∫
Nkγ (β | 0, gσ2(X tX )−1) h(g) dg ,

where h(g) is a mixing function and for the null

π0(α, σ) = σ−1.

• Conventional priors follow the tradition of Jeffreys-Zellner-Siow (60‘s and 80’s),
followed by many others (90’s and 00’s) and recently formally endorsed by Bayarri et al
(2012).

• You obtain

Bγ = B
(SSEγ
SSE0

, 1, kγ + 1, n
)
,

where SSEγ is the sum of squared errors and B is a univariate integral.

Workshop Métodos Bayesianos’17. 8/11/17 7 /
18



Basics of variable selection

About Pr(Mγ) and the multiplicity issue

The Bayes factor already penalizes complexity so this should not be done through
Pr(Mγ).

The standard default prior over the model space is

Pr(Mγ) = 1/2k ,

but this tends to favor models of dimension ≈ k/2, particularly if k is large.

Our preferred prior is

Pr(Mγ | τ) = τ kγ (1− τ)k−kγ , τ ∼ U(0, 1),

which was studied by Scott and Berger (2010), who argued adjusts for
multiplicity.This adjustment effect becomes clear with the alternative form:

Pr(Mγ) = 1/{# of models of dimension kγ}

which has also the form
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Considering factors

Factors as (potential) explanatory variables

Factors

A factor, Λ, is a categorical variable (eg. nationality, sex, etc) and for each sample unit
takes only one of several, `, categories or levels (eg. ”Español/a”, ”Francés/a”,
”Argentino/a” ).

In many applied problems, factors are considered as possible explanatory variables
jointly with perhaps numerical variables.

Main goal

”Repeat” the variable selection exercise but now selecting among certain set of potential
covariates and/or factors

{x1, . . . , xk ,Λ1, . . . ,Λp}

In principle the problem is solved using dummies, but we will see that certain aspects are
not well understood and may lead to unexpected results and accompanying challenges.
These can be better understood in the simplest scenario with only one factor (` levels)
and no numerical covariates:

{Λ}
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Considering factors

Issue 1: All levels or any levels?

The null model M0 only contains the intercept, but

Question

What does it mean that the factor Λ is a relevant predictor?

Answer 1. All levels of the factor are important, or

Answer 2. any level of the factor is important.

Answer 1 implies comparing only two models:

M0, M1 : yij = α + aj + εij , j = 1, . . . , `,

but has two severe drawbacks:

If M1 is accepted, we do not know which levels are relevant

M1 is highly penalized due to its complexity (particularly if ` >>).

We prefer (and use in what follows) Answer 2, implying that there are 2` competing
models:

M0, Mγ : yij = α + ajγj + εij , γ ∈ {0, 1}`,

we will see other advantages of this approach later.
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Considering factors

Issue 2: Prior model probabilities

Question

How to specify Pr(Mγ)?

The standard approaches imply that prior probability of M0 is largely affected by `. This
effect is very severe for constant prior:

Pr(H0)
` = 3 ` = 7

Constant 1/8 1/128
Scott-Berger 1/4 1/8

Our proposal is a two-stage (hierarchical) specification: Pr(H0) = Pr(Λ) = 1/2 and then

Pr(Mγ | Λ) = Constant,

or (better) the Scott-Berger in this second stage:

Pr(Mγ | Λ) =
1

`
(
`
kγ

) .
Which automatically controls for the multiplicity issue that arises due to the ` dummy
variables used, a potential pitfall already observed by Chipman (1996).
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Considering factors

Issue 3: Reparameterizations?

Perhaps someone has realized that the full model is rank deficient (many more models
with more than one factor).

This is quite uncomfortable but also the conventional priors
cannot be used.

Idea!

Reparametrize the problem from a full rank (eg. choosing one level as the baseline)
expression of the full model.

We could have the illusory perception that parameterizations do not have either any
impact in testing composed hypotheses. But this turned out to be quite wrong:

Real example 1

y is body mass index of n = 1002 obese children aged 3-11 (Zurriaga et al, 2011).

Potential factor: Sports (coded 0 to 5).

Pr(H0 | y)
base = 0 base = 1

0.440 0.002
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Reparametrize the problem from a full rank (eg. choosing one level as the baseline)
expression of the full model.

We could have the illusory perception that parameterizations do not have either any
impact in testing composed hypotheses. But this turned out to be quite wrong:

Real example 1

y is body mass index of n = 1002 obese children aged 3-11 (Zurriaga et al, 2011).

Potential factor: Sports (coded 0 to 5).
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Considering factors

Issue 3: Reparameterizations? (cont’)

• Since parameterizations are so influential, the safest alternative is not doing any!

How to use the conventional priors?

For rank-deficient models Mγ use a particular family of (X t
γX γ)− which is regular.

Priors are not unique, but the Bayes factor is:

Bγ = B
(SSEγ
SSE0

, 1, rγ + 1, n
)
,

where rγ is the rank of X γ (rγ < kγ).
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The big problem

full problem

Recall:
{x1, . . . , xk ,Λ1, . . . ,Λp}.

Our proposal can be summarized as:

Do not reparameterize,

use hierarchical-SB prior:

P({xi1 , . . . , xim1
,Λj1 , . . . ,Λjm2

}) =

[
(k + p + 1)

(
k + p

m1 + m2

)]−1

(1)

P(Mγ | {xi1 , . . . , xim1
,Λj1 , . . . ,Λjm2

}) =

[
m2∏
h=1

`h

(
`h
kh
γ

)]−1

, (2)

where, in (2), m2 ≥ 1 (otherwise, it is equal to one), and 1 ≤ kh
γ ≤ `h is the number of

levels of factor Λh active in Mγ .
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The big problem

Application: childhood Obesity

Real example

y is body mass index of n = 1002 obese children aged 3-11 (Zurriaga et al, 2011).

4 Fixed covariates: Intercept, WeightBorn, HeightBorn and Age;

2 Potential covariates: HrsScrDay and HrsSleep;

2 Potential factors: Sports (coded 0 to 5) and HealthyFood (0-2). In both cases
smaller codes correspond to negative habits.

Sports(` = 6) HealthyFood(` = 3) HrsScrDay HrsSleep
0.995 0.998 0.999 0.622

Table: Inclusion probabilities of factors and covariates.

Sports HealthyFood
0 1 2 3 4 5 0 1 2

0.99 0.08 0.25 0.09 0.14 0.09 0.82 0.76 0.78

Table: Inclusion probabilities of levels of factors.
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The big problem

Thanks!
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