
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Univ Complutense De Madrid]
On: 4 November 2009
Access details: Access Details: [subscription number 908035440]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Communications in Statistics - Theory and Methods
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713597238

A Bayesian Test for the Mean of the Power Exponential Distribution
Miguel A. Gómez-Villegas a; Javier Portela b; Luis Sanz a

a Departamento de Estadística e Investigación Operativa I, Universidad Complutense de Madrid, Madrid,
Spain b Departamento de Estadística e Investigación Operativa III, Universidad Complutense de Madrid,
Madrid, Spain

Online Publication Date: 01 January 2008

To cite this Article Gómez-Villegas, Miguel A., Portela, Javier and Sanz, Luis(2008)'A Bayesian Test for the Mean of the Power
Exponential Distribution',Communications in Statistics - Theory and Methods,37:18,2865 — 2876

To link to this Article: DOI: 10.1080/03610920802162698

URL: http://dx.doi.org/10.1080/03610920802162698

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713597238
http://dx.doi.org/10.1080/03610920802162698
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Communications in Statistics—Theory and Methods, 37: 2865–2876, 2008
Copyright © Taylor & Francis Group, LLC
ISSN: 0361-0926 print/1532-415X online
DOI: 10.1080/03610920802162698

Inference

A Bayesian Test for theMean of the Power
Exponential Distribution

MIGUEL A. GÓMEZ–VILLEGAS1,
JAVIER PORTELA2, AND LUIS SANZ1

1Departamento de Estadística e Investigación Operativa I,
Universidad Complutense de Madrid, Madrid, Spain
2Departamento de Estadística e Investigación Operativa III,
Universidad Complutense de Madrid, Madrid, Spain

In this article, we deal with the problem of testing a point null hypothesis for
the mean of a multivariate power exponential distribution. We study the conditions
under which Bayesian and frequentist approaches can match. In this comparison it
is observed that the tails of the model are the key to explain the reconciliability or
irreconciliability between the two approaches.

Keywords Mixed prior distributions; Multivariate point null hypothesis;
Posterior probability; Power exponential distribution; p-value; Robust Bayesian
analysis.

Mathematics Subject Classification 62F15; 62F03.

1. Introduction

1.1. Multivariate Power Exponential Distribution

Introduced by Gómez et al. (1998), the multidimensional power exponential
distribution is useful to modelize a lot of classes of random phenomena, including
those that can be modelized with a normal distribution, but mainly, those
phenomena whose distributions have higher or lower tails than the normal
distribution. Besides, it can be used to robustify statistical procedures.

Recent examples of the power exponential distribution uses are applications to
repeated measurements (see Lindsey, 1999), and an application to obtain robust
models for repeated measurements in order to model dependencies among responses
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2866 Gómez–Villegas et al.

(see Lindsey and Lindsey, 2006). It has also been applied in Bayesian networks, as
an alternative to the mixture of normal distributions. Some applications in the field
of speech recognition and image processing are given in Basu et al. (2001). The use
of the multivariate power exponential distribution in linear dynamic models can be
seen in Gómez et al. (2002).

As it is defined in Gómez et al. (1998), a p-variate random vector
X = �X1� � � � � Xp�

′, p ≥ 1, is distributed as a p-dimensional power exponential
distribution with parameters �, �, and �, being � ∈ Rn, � a �p× p� definite positive
symmetric matrix and � ∈ �0���, if its density function is

f�x � �� �� �� = k���−1/2 exp
{
−1
2
��x− ��t�−1�x− ����

}
� (1.1)

with k = p	�p/2�

p/2	�1+p/�2���21+p/�2�� .

We denote this distribution as PEp��� �� ��, where � is the location parameter,
� is the scale matrix, and � is a parameter related to kurtosis that shows the
disparity with the normal distribution.

The density in (1.1) represents, when � = 1, the density of a multivariate normal
distribution. The sharpness of the density diminishes as � increases. If � = 1/2,
(1.1) is a multivariate generalization of the double exponential distribution. Besides,
when � tends to infinite, (1.1) tends to a multivariate generalization of the uniform
distribution.

Finally, it can be observed that (1.1) is the density of an elliptically contoured
random vector; see Fang and Zhang (1990).

1.2. The Problem: Testing Point Null Hypothesis
for the Location Parameter

For the location parameter � = ��1� � � � � �p�
′ of a p-dimensional multivariate power

exponential distribution, with density (1.1), a point null hypothesis test, without lost
of generality, can be represented as:

H0 � �1 = · · · = �p = 0 versus H1 � at least one �i �= 0 for i = 1� � � � � p� (1.2)

There are many approaches for the univariate two-sided hypothesis test, both
in frequentist and Bayesian tests, but not for the multivariate two-sided one. Some
exceptions are Oh (1998), who dealt with the multivariate normal distribution, Oh
and DasGupta (1999), who explored the relevance of 
0, the prior probability of
the sharp null hypothesis, in the difference between the infimum of the posterior
probability and the p-value for some classes of priors on the alternative hypothesis,
and Gómez–Villegas et al. (2008) who compared the p-value and the posterior
probability for some classes of prior distributions when testing for the mean of a
multivariate normal distribution.

We assume that � and � are known and let us suppose that our prior opinion
about � is given by the density 
���. Then, from a Bayesian point of view, the prior
to test (1.2) will be given by a mixed prior distribution, 
∗���, assigning mass 
0 to
H0 and spreading the remainder, 1− 
0, over the alternative according to the density

���,


∗��� = 
0I�=0����+ �1− 
0�
���I� �=0����� (1.3)
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Testing the Power Exponential Distribution 2867

What we propose is to use 
���, our prior opinion about �, and compute 
0 by
means of:


0 =
∫
E��=0���


���d�� (1.4)

being E�� = 0� �� an ellipsoid centered at 0. Any other metric around � = 0 can
be used in (1.4), we use this because of its computational tractability and intuitive
appeal.

Although the usual value taken for 
0 is 0�5, several reasons can justify the
choice of 
0 as in (1.4). Firstly, in the univariate case, when using (1.3) and (1.4)
with suitable small values of � – in case of normal likelihood � ∈ �0�1� 0�3� –
and 
��� in the class of all unimodal and symmetric distributions or in the class
of �-contaminated distributions, a suitable approximation between the posterior
probability and the p-value is obtained. These results can be seen in Gómez–Villegas
and Gómez (1992), Gómez–Villegas and Sanz (1998, 2000), and Gómez et al. (2002),
Gómez–Villegas et al. (2004).

The second reason to use 
0 as in (1.4) is that if 
��� reflects our prior opinion
about �, then the prior probability of � = 0 is zero, but if we use (1.3), the prior
mass assigned to � = 0 is 
0 and this probability is obtained through 
���.

The third reason arises because, if 
��� reflects our opinion about � and 
∗���,
given by (1.3), is the solution that we propose to test (1.2), it seems natural that both

��� and 
∗��� must satisfy

lim
�→0

��
∗ � 
� = 0 (1.5)

for some suitable measure of discrepancy, �. One of the most popular measures of
discrepancy is:

��
∗ � 
� =
∫


��� ln

���


∗���
d�� (1.6)

see, by example, Bernardo and Smith (1994, p. 76). With our approximation,
we have:

��
∗ � 
� =
∫


��� ln
[


0


���
I�=0���+ �1− 
0�I� �=0���

]−1

d�

= −
∫


��� ln
[


0


���
I�=0���+ �1− 
0�I� �=0���

]
d�

= −
∫
� �=0


��� ln�1− 
0�d�

= − ln�1− 
0�� (1.7)

We think this is a desirable property. Usually in the literature, at least in the
univariate case, the expression (1.3) is used with 
0 = 0�5. However, for 
0 = 0�5,
(1.7) gives ��
∗ � 
� = 0�693 that seems a high discrepancy between these two
distributions, 
∗ and 
. Whereas with our approximation, the result (1.5) is verified,
because if � goes to zero then 
0 goes to zero too.
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2868 Gómez–Villegas et al.

The three reasons above are enough, given a prior density 
���, to justify the
choice of 
∗��� as in (1.3) with 
0 as in (1.4) for the problem of testing a multivariate
point null hypothesis. Anyhow, in this article the results are obtained as a function
of 
0 and then can be specified for every 
0 as in (1.4). In particular, it is possible
to compute the value of � that provides 
0 = 0�5.

In Sec. 2, bounds on posterior probabilities for the class of elliptical
distributions are computed and compared with the p-value of the frequentist
approach, for the n = 1 case. Section 3 presents a frequentist test for the mean and
Monte Carlo methods to approach the general case. Section 4 shows two interesting
applications. Finally, Sec. 5 develops some final comments and conclusions.

2. Lower Bounds on Posterior Probabilities

In order to make comparisons between the p-value and the posterior probabilities,
we will take wide classes of prior distributions and then we compute the infimum of
the posterior probabilities over these classes. This is the usual procedure to compare
Bayesian and frequentist approaches, because a frequentist should behave like a
Bayesian using a large class of priors.

Because of the structure of the problem, it looks reasonable to deal with the
class 	EU ��

0� �0�, class of distributions on Rp having probability density functions
of the type


��� = �
(
�� − �0�′��0�−1�� − �0�

)

with ��·� a decreasing function on �0���, �0 ∈ Rp, and �0 a �p× p� positive definite
matrix. This distributions are called elliptical and are unimodal in the sense of
Anderson (1955) and have ellipsoidal contours centered at �0 with scale matrix �0.
In particular, 	EU ��

0� �0� contains the spherical distributions on Rp.
Furthermore, if the following additional regularity conditions are imposed: (i)

��r2� → 0 as r → �; and (ii) ��r2� is of bounded variation in every finite interval
away from the origin, then it can be shown (see Jensen and Good, 1983), that

��� ∈ 	EU ��

0� �0� if and only if 
��� is a mixture of uniform densities on ellipsoids
centered at �0, E��0� k� = � � �� − �0�′��0�−1�� − �0� ≤ k2�.

Then, to find the infimum of the posterior probability of the point null
hypothesis over the class 	EU ��

0� �0�, it is sufficient to find it over the much smaller
class of the uniforms, see Casella and Berger (1987, Lemma 3.1). Without loss of
generality, it can be supposed �0 = 0. Appropriate data translations can be used to
reduce applications to this particular case.

To test (1.2), the posterior probability of H0 is given by:

P�H0 � x� =
(
1+ 1− 
0


0

1
B

)−1

� (2.1)

where 
0 is given by (1.4) and B is the Bayes factor in favour of H0, given by:

B = f�x � � = 0�∫
E�0�k� f�x � ��
���d�

with 
��� = 	�p/2+1�

p/2kp

IE��0=0�k���� a uniform density over E��0 = 0� k�.
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Testing the Power Exponential Distribution 2869

Then, as 
0 =
∫
E��0=0��� 
���d� = �p/kp, the posterior probability of H0 is:

P�H0 � x� =
[
1+

(
1
�p

− 1
kp

)
	�p/2+ 1�


p/2

∫
E�0�k�

f�x � ��
f�x � � = 0�

]−1

(2.2)

expression which is nonincreasing in k, so the infimum is obtained as k goes to
infinity. Then:

inf

∈	EU

P�H0 � x� =
[
1+ 	�p/2+ 1�


p/2�p

∫
Rp

f�x � ��
f�x � � = 0�

d�

]−1

� (2.3)

If we look for the values of � so that this infimum of the posterior probability
agrees with the p-value, we equal this expression to the p-value and solve for �:

� =
[

p�x�
1− p�x�

	�p/2+ 1�

p/2

∫
Rp

f�x � ��
f�x � � = 0�

d�

]1/p

� (2.4)

where p�x� is the p-value of the observed data.
To test H0 � � = �0, being Y ∼ PEp��� �� ��, with � and � known, we use the

transformed vector X such that X = �−1/2�Y − �0�.
We can derive the exact distribution of the test statistic defined as T = �X ′X��.

As Y comes from an elliptical distribution, it can be shown, applying Theorem 2.5.5
from Fang and Zhang (1990), that Q = X ′X has, under H0, the following density
function:

f�q� = p

	
(
1+ p

2�

)
21+

1
2�

q
p
2−1e

1
2 q

�

� q > 0� (2.5)

From (2.5), it follows that, under H0, T = Q� is distributed as a Gamma variate
	�1/2� p/�2���. Then, a frequentist test for the point null hypothesis can be based
on the p-value p�t� = P�T > t�, with T distributed as 	�1/2� p/�2��� and t = �xtx��.

In order to obtain values of � that make equal the infimum of the posterior
probability and the frequentist p-value, we use (2.4), where we have

∫
Rp

f�x � ��
f�x � � = 0�

d� = e
1
2 t

[
	

(
1+ 1

2�

)
21+

1
2�

]p

�

then the value of � should be:

�∗ =
[

p�x�
1− p�x�

	

(
p

2
+ 1

)
e

1
2 t

]1/p 1√


	

(
1+ 1

2�

)
21+

1
2� � (2.6)

being p�x� the frequentist p-value. In the multivariate normal case (� = 1), the value
of �∗ is given by (2.6) and the p-value is obtained through a �2p test.

Table 1 shows the values of �∗ for some dimensions p, some significant p-values,
and some values of �. It can be observed that the values of �∗ are increasing
functions of the dimension p. This is a reasonable behaviour, because it means that
as great the uncertainty over H0 is, as great the radius of the ellipsoid must be to
make equal both approximations, Bayesian and frequentist.
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2870 Gómez–Villegas et al.

Table 1
Values of �∗ to obtain agreement for some �, p, and p�x�

� = 0�5 � = 1 � = 1�5

p-value p = 2 p = 5 p = 2 p = 5 p = 2 p = 5

0.1 5.22 9.25 1.48 2.93 0.97 2.05
0.05 5.46 9.91 1.45 3.01 0.92 2.07
0.01 6.26 11.56 1.42 3.23 0.85 2.13
0.001 7.22 13.89 1.41 3.51 0.79 2.22

Figure 1 shows the infimum of the posterior probability of H0, given by (2.3)
for fixed values of � based on the range observed in Table 1, and the p-value. It can
be seen how for some reasonable range of values of �, for each dimension p, and
parameter � we obtain suitable approximations between frequentist and Bayesian
approaches. Dashed line represents the p-value, while dotted lines represent the
infimum of the posterior probability of H0 over the class 
 ∈ 	EU for the values of
� given below.

Figure 1. p-value and infimum of the posterior probability for some values of �. Dashed
line: p-value, dotted lines: infimum of the posterior probability of the point null hypothesis,
H0, infimum taken over the class of priors 	EU , from bottom to top for the values of �
pointed out in each case.
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Testing the Power Exponential Distribution 2871

3. A Simulation Approach for the General Case

For samples with more than one observation (n > 1), (2.3) and (2.4) become,
respectively,

inf

∈	EU

P�H0 � x� =
[
1+ 	�p/2+ 1�


p/2�p

∫
Rp

f�x1� � � � � xn � ��
f�x1� � � � � xn � � = 0�

d�

]−1

(3.1)

and

� =
[

p�x�
1− p�x�

	�p/2+ 1�

p/2

∫
Rp

f�x1� � � � � xn � ��
f�x1� � � � � xn � � = 0�

d�

]1/p

� (3.2)

Let Y1� � � � �Yn be n independent observations from a multivariate Exponential
Power distribution PEp��� �� ��. Let Xi = �−1/2�Yi − �0� be the components of
the transformed vector. As Ti = �X t

iXi�
� is distributed, under H0 � � = 0, as

a 	�1/2� p/�2��� variable, it follows that T = ∑n
i=1�X

t
iXi�

� is distributed as a
	�1/2� �np�/�2��� variable, since it is the sum of n independent Gamma variables.
The frequentist p-value for testing H0 � � = 0 will be computed as p�x� = PT > t�,
where T is distributed as 	�1/2� �np�/�2��� and t is the sample value of the statistic,
t = ∑n

i=1�x
t
ixi�

��
Now, for the multivariate Exponential Power distribution we must compute:

∫
Rp

f�x1� � � � � xn � ��
f�x1� � � � � xn � � = 0�

d�

= exp
{
1
2

n∑
i=1

�xt
ixi�

�

} ∫
Rp

exp
{
−1
2

n∑
i=1

[
�xi − ��t�xi − ��

]�}
d�� (3.3)

For the particular case � = 1 (Normal case), it can be shown that (3.3) depends
on the value of the well-known statistic q = nX

t
X , so different samples that give

the same value of q lead to the same value of �. In this case, (2.4) becomes:

� =
[

p�x�
1− p�x�

(
2
n

)p/2

	

(
p

2
+ 1

)
eq/2

]1/p

�

where the p-value p�x� is computed as P�2p > q�. Result obtained by Gómez–
Villegas et al. (2004).

For � �= 1, the integral (3.3) can not be simplified, as it would be in the
multivariate normal case. Furthermore, when � �= 1, for each p-value we have
infinite samples that lead to the same value of the statistic t associated to this
p-value. Computing the integral (3.3) leads to different results for each of these
samples and then for a different � for each sample.

In order to understand the behavior of � when � �= 1, depending on the values
of p� n� �, and t, we have developed the following procedure:

1. The p-value (and hence t), n� �, and p are fixed.
2. A large base of samples �x1� � � � � xn� such that t = ∑n

1=1�x
t
ixi�

� for each of them
is built. This is done by giving values in a large grid covering a big range of
values to the p components of n vectors, yi, and then applying the transformation
xi = �t/

∑n
i=1�y

t
iyi�

��1/�2��yi. Since this application is surjective, the original values
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2872 Gómez–Villegas et al.

yi chosen in a large grid lead to a base of xi that covers roughly the image space
of (x1� � � � � xn� such that t = ∑n

i=1�x
t
ixi�

�.
3. For each one of the samples, �x1� � � � � xn�, we compute (3.3). A Monte-Carlo

approach can here be used. We choose the sample xmin, such that its Euclidean
distance to the origin is the smallest, so that it guarantees that the � values are to
be simulated approximately from the null hypothesis distribution, covering the
most reasonable range of values. Then, the integral (3.3) can be written as:

∫
Rp
exp

{
− 1

2

n∑
i=1

��xi − ��t�xi − ����
}
d�

= 1
k

∫
Rp
exp

{
− 1

2

n∑
i=1�i �=min

��xi − ��t�xi − ����
}
k

× exp
{
− 1

2
��xmin − ��t�xmin − ����

}
d�� (3.4)

The second term in (3.4) is a multivariate exponential power distribution with
mean xmin, where k is the integration constant. Samples are taken from this
distribution (an algorithm to generate these values can be seen in Gómez et al.,
1998). Then we obtain, by averaging, a Monte Carlo estimate of the integral.

4. Finally, for each one of the samples, we compute the mean or median of the
values of � obtained using (3.2).

Table 2 shows the results for different values of n� �, and p, fixing the p-value
as p�x� = 0�10� For � = 1, values of � are exact for each n� p� and �; for � �= 1, the
presented values of � are the median over the grid created in the procedure above.

In Table 2, we can see that for � < 1, the values of � that make equal the
infimum of the posterior probability of H0 and the frequentist p-value are increasing
(while not monotonous increasing) as the sample size increases, yielding high values
and tending to infinite as n grows. This means that for a high kurtosis likelihood
distribution (heavy tails), the prior mass on the point null hypothesis should be
higher as n increases to make numerically equal the frequentist p-value and the
posterior probability of H0 for the point null testing problem.

Anyhow, we have presented just the median of the optimum value of � over a
grid of samples that lead to the same frequentist p-value. The range of values of �
in these samples for � < 1 is variable: it can happen that, given two samples leading
to the same statistic t (and then leading to the same frequentist p-value), we need
an � = 1�20 in order to agree frequentist and Bayesian procedure in the first sample,

Table 2
Optimum values of � for p�x� = 0�10

� = 0�5 � = 1 � = 1�5

n p = 2 p = 5 p = 2 p = 5 p = 2 p = 5

2 3.89 9.45 1.05 2.06 0.29 0.27
5 19.3 32.11 0.66 1.30 0.05 0.01
10 1602.1 4510 0.47 0.92 0.01 0.005
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and � = 1� 200 in the second sample. This heavy tails effect has also been found in
the univariate testing problem (see Gómez–Villegas and Sanz, 1998) and leads to an
inefficient procedure if we wish to fix �� before realizing the test, based only on the
values of n� p, and �. This shows, once again, the difficulty of reaching an agreement
for heavy tails distributions between frequentist and Bayesian testing.

Alternatively, for � ≥ 1� � tends to 0 as n tends to infinite. As � gets higher, this
convergence seems to be faster. Then for likelihoods with low kurtosis and light tails,
it seems that less prior mass on the null hypothesis point should be set to have similar
results to the frequentist test, as n increases. Here we obtain an easier agreement
between frequentist and Bayesian procedures within a reasonable range of �.

4. Applications

In this section, we develop two applications in order to show the behavior of the
infimum of the posterior probability of the point null hypothesis with respect to
the frequentist p-value, in the multivariate context presented, through the analysis
of the values of � that lead to the agreement. In the first application high kurtosis
data is used, while the second application is based on low kurtosis data. These are
examples where the point null hypothesis testing problem has a really practical sense
for the researcher.

4.1. Response Time to Visual Stimulus

Crowder and Hand (1990) analyzed the response to visuals flashes of the left and
right eyes equipped with different lenses, for seven subjects. We pose the problem
of determining if the vector of differences �y1� y2� = �left eye difference of response,
right eye difference of response) between the two lenses has mean �0 = �0� 0�.
This would mean that response time of reaction would be identical for both lenses.

We assume that the vectors of differences, yi, are distributed as independent
PEp��� �� ��. In an empirical Bayesian approach, � is approximated by the sample
covariance matrix, �∗, and, as we want to test H0 � � = 0, we pose xi = �

∑∗�−1/2yi.
The transformed vectors of differences are then (−2.29, 0.11), (−1.35, −0.10),
(−0.76, −0.16), (−0.17, −0.22), (−1.53, 0.27), (0.79, 0.10), (−1.02, −2.60). To choose
�, the posterior distribution mode for � is estimated, letting a noninformative
prior for �, and using (1.1). This leads to a maximization problem: it is needed to
maximize the posterior distribution p�� � x1� � � � � x7�, with

p�� � x1� � � � � x7� ∝
[
	

(
1+ p

2�

)
21+p/�2��

]−1 ∫
Rp
exp

{
−1
2

7∑
i=1

��xi − ��t�xi − ����
}
d��

(4.1)

where the integral is estimated via Monte Carlo as explained in Sec. 3, and
maximization is reached by means of a simple bisection algorithm. This process
leads to an estimated posterior mode of �̂ = 0�75, as a consequence of data’s high
kurtosis. We will assume this �̂ value fixed for the testing procedure.

In Table 3, we present the frequentist p-value, the tabulated value �∗
tab that

would have been used for these application, with the methods shown in Sec. 2
with p = 2� n = 7� � = 0�75, and the value of P�H0 � x� �∗

tab� = inf
∈	EU P�H0 � x� �∗
tab�

obtained for this �∗
tab using (2.6). Since setting a prior mass of 
0 = 0�5 is habitual
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Table 3
P-value and infimum of posterior probabilities of H0 over 	EU

�∗
sample �∗

tab P�H0 � x� �∗
sample� = p-value P�H0 � x� �∗

tab� P�H0 � x� 
0 = 0�5�

1.33 42 0.0348 0.30 0.24

in the Bayesian point null hypothesis testing problem, we also show the value of
P�H0 � x� 
0 = 0�5� = inf
∈	EU P�H0 � x� 
0 = 0�5� obtained with this setting, letting a
prior distribution 
��� uniform over a certain range of reasonable values �−4� 4�×
�−4� 4�, and computing (3.1).

With the automatic procedure, the value proposed for agreement, �∗
tab,

computed before the sample is drawn, gives a value of �∗
tab = 42. Using (3.1), a value

of PH0 � x� �∗
tab� = 0�30 is obtained. As the p-value for this sample is p�x� = 0�0348,

frequentist and Bayesian procedures do not reach the agreement. The automatic
procedure is inefficient in this case, because of high tails effect model. Also, the
usual setting 
0 = 0�5 gives a considerably high value to the infimum of the posterior
probability with respect to the p-value, due to the high prior mass given to the null
hypothesis. Therefore, if the model is of high tails, namely � < 1, it is not possible,
with our procedure, an agreement between Bayesian and frequentist approaches
in testing a point null hypothesis. This behavior has been also observed in the
univariate case; see Gómez–Villegas and Sanz (1998). By the way, it happens the
same in the one-sided case; if the model has high tails; see Casella and Berger (1987).

4.2. Archaeological Data

In archaeological science, sometimes it is interesting to determine the geographic
center of a settlement, in order to decide about the main excavation place. We can
have observations that represent significative findings in an area, represented by
their plane or polar coordinates �x� y� with respect the null hypothesis center, and
we want to test whether the geographic center, that is the mean of the observations,
is some �0.

Lizee and Plunkett (2002) used data collected in Farmington River,
Connecticut, in order to illustrate sampling strategies in archaeology. In a limited
area, there are 12 places where prehistoric artifacts were found. If we assume that
findings follow an elliptical distribution and therefore are more likely to exist in
places near the mean of the distribution, it is interesting to obtain an estimate of
this center point. Furthermore, if we have some beliefs about where this center
could be, based on qualitative information, we can determine by means of an
hypothesis testing procedure how strongly the data assets this theoretical belief.
In the example data a yi − �0 translation is used, where �0 is the belief center, so
that a H0 � � = �0� 0� test can be used over the transformed data.

As in the previous example, the transformation xi = ��∗�−1/2yi is applied, where
�∗ is the sample covariance matrix. Figure 2 shows the observations transformed
set. These �x1� x2� points are (−0.88, 1.57), (0.13, 1.46), (−0.26, 0.94), (−1.07, 0.10),
(−0.11, 0.31), (0.52, 0.96), (−0.29, 0.38), (−1.09, −1.10), (−1.72, −1.11), (1.42,
−0.03), (0.83, −0.87), (1.34, −1.05). A spline-smoothed graphical estimate of the
�x1� x2� distribution is also displayed. The test H0 � � = �0� 0� is developed as in the
previous application. The sample kurtosis coefficients for x1 and x2 are low: −0.90
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Figure 2. Archaeological findings in an area of interest. Smoothed graphical estimated of
�x1� x2� distribution.

and −1.42, respectively. The � estimated posterior mode, using (4.1), is then higher
than 1, about �̂ = 1�25.

Table 4 shows that the automatic procedure behaves reasonably well in this
case, obtaining a value of P�H0 � x� �∗

tab� = inf
∈	EU P�H0 � x� �∗
tab� similar to the

p-value. The prior mass 
0 = 0�5 increases the posterior probability giving extremely
high posterior probability to the null hypothesis with respect to the p-value. That
is to say, with our procedure, it is possible to reach agreement between frequentist
and Bayesian approaches if the model is of low tails.

5. Conclusions

The multivariate power exponential model offers more possibilities than the normal
model, basically when the amount of observations is not great. By the way, this
family of distributions includes the normal distribution, this is the case if the
parameter � = 1.

In testing a point null hypothesis concerning the mean, the procedure set in
Sec. 1.2 can be applied to symmetric models around the mean, as it is the case of
the multivariate power exponential distribution.

This procedure allows us to assign mass to the point null hypothesis through a
prior density which is, on the other hand, the only source of information that we
use. Furthermore, if the tails of the model distribution are low, that is to say � ≥ 1,
it is possible to reach agreement between the frequentist and Bayesian approaches.
This is not the case if we put a 
0 = 0�5 mass over the point null hypothesis. If the
tails of the model are high, that is to say � < 1, we cannot reach the agreement
between the two approaches. More research must be carry out in this setting.

Table 4
P-value and infimum of posterior probabilities of H0 over 	EU

�∗
sample �∗

tab P�H0 � x� �∗
sample� = p�x� P�H0 � x� �∗

tab� P�H0 � x� 
0 = 0�5�

0.084 0.062 0.0209 0.018 0.73
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