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Abstract As an alternative to the multivariate normal distribution we have
dealt with a wider class of distributions, including the normal, that considers
slightly different tail behavior than the normal tail. This is the multivariate
exponential power family of distributions with a kurtosis parameter to give
the possible forms of the distributions. To measure distribution deviations
the Kullback-Leibler divergence will be used as an asymmetric dissimilarity
measure from an information-theoretic basis. Thus, a local quantitative de-
scription of the non-normality could be established for joint distributions in
this family as well as the impact this perturbation causes in the marginal and
conditional distributions.

1 Introduction

The multivariate normal distribution is traditionally used as a model for
multivariate data in applications. However, this assumption may be doubtful
in many real data analysis and it demands a wider class of distributions than
the normal to be handled. Our choice is the multivariate exponential power
family of distributions presented in [5] as a generalization of the multivariate
normal family in that a new parameter, β, is introduced, as an exponent
(see (1) below), which governs the kurtosis, and so the sharpness, of the
distribution; for β = 1 we have the normal distribution, thus this parameter
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represents the disparity of an exponential power distribution from the normal
distribution.

The multivariate exponential power family is also a generalization of the
univariate one (see [15] and [1, p. 157]) and can be included in the class of
Kotz type distributions (see [4, p. 69] and [13]), which, in its turn, is a subset
of the more general class of elliptical distributions (see a survey on these in
[7]) Also, a matrix generalization of the exponential power distribution can
be found in [6].

This distribution can be used to modelize multidimensional random phe-
nomena with distributions having higher or lower tails than those of the
normal distribution. Besides, the use of this distribution can robustify many
multivariate statistical procedures. The multivariate exponential power dis-
tribution has been used to obtain robust models for nonlinear repeated mea-
surements [10], to modeling dependencies among responses, as an alternative
to models based upon the multivariate t distribution, and also to obtain
robust models for the physiology of breathing. [2] use the multivariate ex-
ponential power distribution, as a heavy tailed distribution, in the field of
speech recognition.

In this paper we evaluate the effect of this source of non-normality on
the joint distributions and the corresponding marginal and conditional dis-
tributions for a specific partition. To measure distribution deviations, the
Kullback-Leibler (KL) divergence will be used as an asymmetric dissimilar-
ity measure from an information-theoretic basis. Thus, a local quantitative
description of the non-normality can be established for joint distributions in
this family as well as the impact this perturbation causes in the marginal and
conditional distributions. This approach could be useful in problems where,
given a model for the joint distribution, the interest is focussed in the dis-
tribution of a subset of variables given some values of the remaining ones.
Such situations occur, among others, when we deal with Gaussian Bayesian
networks for which the output is the conditional distribution of the variables
of interest given fixed values of the evidential variables and a sensitivity anal-
ysis to non-normality is performed to prove the robustness and accuracy of
the inferences.

The paper is organized as follows. In Section 2 the multivariate exponential
power family is presented, highlighting some probabilistic characteristics to
be handled in later sections. Section 3 is devoted to describe the impact of
non-normality on the probabilistic structures of a random vector. The paper
ends with conclusions in Section 4.
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2 On the multivariate exponential power distributions

Next, we summarize the most important features of this family of distribu-
tions. An absolutely continuous random vector X = (X1, . . . , Xn)′ is said to
have a power exponential distribution if its density has the form

f(x; µ,Σ, β) = k |Σ|− 1
2 exp

{
−1

2
(
(x− µ)′Σ−1 (x− µ)

)β
}

, (1)

with k =
nΓ(n

2 )
π

n
2 Γ(1+ n

2β )21+ n
2β

, where (µ,Σ, β) ∈ (Rn,S, (0,∞)) , S be-

ing the set of (n× n) positive definite symmetric matrices, then, we write
X ∼ EPn (µ,Σ, β). The parameters µ and Σ are location and scale parame-
ters. The parameter β is a shape parameter, as the kurtosis depends only on
it. Figs. 1-3 show the graphs of the density EP2 (0, I2, β) for the values 6, 1,
1/2 of β.
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Fig. 1 EP2 density for β = 6

It can be pointed that as β increases the sharpness diminishes; for β going
to infinity, (1) tends to be uniform in the ellipsoid (x− µ)′Σ−1 (x− µ) and
also when β goes to 0 the pick narrows infinitely and (1) tends to the improper
density constant in Rn.
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Fig. 2 Multivariate Normal density function, β = 1
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Fig. 3 Multivariate Double Exponential density, β = 1
2
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2.1 Some related distributions

Let X ∼ EPn (µ,Σ, β) . If β = 1, then X has a normal distribution: X ∼
Nn (µ,Σ) . In any case, X has an elliptical distribution: X ∼ En(µ,Σ, g) (in
the sense given in [7]) with g (t) = exp

{− 1
2 tβ

}
.

An exponential power distribution EPn (µ,Σ, β) is a scale mixture of nor-
mal distributions (see [8]) in the strict sense (namely, with respect to a prob-
ability distribution function) if β ∈ (0, 1]. If we exclude the normal case, that
is, if β ∈ (0, 1) , then

f(x; µ,Σ, β) =
∫ ∞

0

Nn

(
x; µ, v2Σ

)
dHβ(v), (2)

where Nn

(
x; µ, v2Σ

)
is the normal density with mean µ and covariance

matrix v2Σ, and Hβ is the distribution function having density

hβ(v) =
21+ n

2− n
2β Γ

(
1 + n

2

)

Γ
(
1 + n

2β

) vn−3Sβ

(
v−2; 21− 1

β

)
,

where Sβ ( · ; σ) means the density of the (positive) stable distribution
having characteristic function (see [14, p. 8])

ϕ(t) = exp
{
−σβ |t|β e−i π

2 βsign(t)
}

.

For β = 1 (the normal case) (2) holds, of course, Hβ being the distribution
function degenerate in 1. For β ∈ (1,∞), the exponential power distribution
EPn (µ,Σ, β) is a scale mixture of normal distributions too, as all the ellip-
tical distributions are (see [3]), but only in a wider sense, since in this case
function Hβ in (2) is like a distribution function in (0,∞) , but it is not a
nondecreasing function.

2.2 Probabilistic characteristics

If X ∼ EPn (µ,Σ, β), its characteristic function is

ϕX(t) =
n

Γ
(
1 + n

2β

)
2

n
2β

exp (it′µ)
∫ ∞

0

Ψn

(
r
√

t′Σt
)

rn−1 exp
{
−1

2
r2β

}
dr,

where Ψ1(x) = cos x and Ψn(x) = Γ ( n
2 )

π
1
2 Γ ( n−1

2 )

∫ π

0
exp {ix cos θ} sinn−2 θdθ,

for n > 1. Besides,
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E[X] = µ,

V ar[X] =
2

1
β Γ

(
n+2
2β

)

nΓ
(

n
2β

) Σ,

γ1[X] = 0,

γ2[X] = n2
Γ

(
n+4
2β

)
Γ

(
n
2β

)

(
Γ

(
n+2
2β

))2 − n(n− 2),

where γ1 and γ2 are the asymmetry and kurtosis coefficients as shown in [12,
p. 31].

Figure 4 shows the kurtosis coefficient as a function of β for n = 1 (dotted
line), 2, 3, 5 and 7, supporting the previous comments about the monotony
relation between kurtosis and the non-normality coefficient in this family.
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n=3

n=5

n=7

Fig. 4 Kurtosis coefficient as a function of β

2.3 Marginal and conditional distributions and
regression

The marginal and conditional distributions are elliptical. But the regression
function is linear, as in the normal case. Specifically, let X ∼ EPn (µ,Σ, β)
and make X = (X′

(1),X
′
(2))

′, with X(1) = (X1, . . . , Xp)′ and X(2) =
(Xp+1, . . . , Xn)′, with p < n; analogously make µ = (µ′(1), µ

′
(2))

′ and Σ =
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(
Σ11 Σ12

Σ21 Σ22

)
, where Σ11 is a (p× p) matrix. Then X(1) has an elliptical dis-

tribution: X(1) ∼ Ep(µ(1),Σ11, g(1)), where

g(1)(t) =
∫ ∞

0

w
n−p

2 −1 exp
{
−1

2
(t + w)β

}
dw.

The distribution of X(2) conditional to X(1) = x(1) is elliptical too.
(
X(2)

∣∣X(1) = x(1)

) ∼
En−p

(
µ(2.1),Σ22.1, g(2.1)

)
, with

µ(2.1) = µ(2) + Σ21Σ−1
11

(
x(1) − µ(1)

)
,

Σ22.1 = Σ22 −Σ21Σ−1
11 Σ12,

g(2.1)(t) = exp
{
−1

2
(
t + q(1)

)β
}

,

where q(1) =
(
x(1) − µ(1)

)′
Σ−1

11

(
x(1) − µ(1)

)
.

3 The effects of deviations from normality

Now, we are interested in the effects of small changes in the parameter β of
the EPn (µ,Σ, β) distribution taking as a reference the one with β0 = 1, that,
as pointed above, corresponds to a normal distribution with parameters µ and
Σ. When β is close to β0 = 1, that is, β = β0 + δ with δ representing a small
deviation from normality, the Taylor expansion leads to the approximation

DKL(f, f (δ)) ≈ 1
2
Fβ(1)δ2 , (3)

being f the normal density, f (δ) the perturbed density and Fβ(1) the
Fisher information with respect to β in β0 = 1. The same problem can be
formulated in terms of the marginal and conditional distributions for a fixed
partition of the random vector X. From now on, our goal is both analytical
and graphical description of the function (3).

3.1 Joint Distributions

Let f (x) be a density function of the family EPn (µ,Σ, β0 = 1), that is a nor-
mal density Nn (µ,Σ) and f (δ) (x) be the perturbed density EPn (µ,Σ, β = 1 + δ),
then the KL divergence between these densities can be calculated using that,
if X ∼Nn (µ,Σ), the quadratic form (X− µ)′Σ−1 (X− µ) is distributed as
a chi-square distribution with n degrees of freedom. Specifically, since
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DKL(f, f (δ)) = Ef

[
log

f (X)
f (δ) (X)

]

it follows

DKL(f, f (δ)) = log
2

n
2(1+δ) Γ

(
n

2(1+δ)

)

2
n
2 Γ

(
n
2

)
(1 + δ)

− 1
2
{Ef

[
(X− µ)′Σ−1 (X− µ)

]
+

− Ef

[(
(X− µ)′Σ−1 (X− µ)

)1+δ
]
}

that is

DKL(f, f (δ)) = log
2

n
2(1+δ) Γ

(
n

2(1+δ)

)

2
n
2 Γ

(
n
2

)
(1 + δ)

− 1
2

(
n− 2(1+δ)Γ

(
n
2 + (1 + δ)

)

Γ
(

n
2

)
)

(4)

According to this result, the divergence between joint densities depends
on the dimension of the random vector n and the perturbation δ applied to
the reference normal distribution. Figure 5 illustrates the relation (4) when δ
is small and, consequently, the approximation (3) holds. Observe that there
is a monotone behavior with respect to the dimension n with a faster growth
for high dimensions. From a local point of view, Figure 5 confirms the ap-
proximation /3).
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Fig. 5 KL divergence of the joint distributions for n = 4, 8, 12
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3.2 Conditional Distributions

Now we focus on the analysis of conditional distributions sensitivity to small
perturbations of the parameter β. Using previous notation it follows

f
(δ)
2.1

(
x(2) | x(1)

)
=

= k1 |Σ22.1|−
1
2 exp−1

2

{[(
x(2)−µ(2.1)

)′
Σ−1

22.1

(
x(2)−µ(2.1)

)
+ q1

](1+δ)
}

,

being

k1 =
Γ

(
n−p

2

)

π
n−p

2
∫∞
0

t
n−p

2 −1 exp
{
− 1

2 (t + q1)
(1+δ)

}
dt

and consequently the KL divergence is [11]

DKL

(
f2.1, f

(δ)
2.1

)
= log

∫∞
0

t
n−p

2 −1 exp
{
− 1

2 (t + q1)
(1+δ)

}
dt

2
n−p

2 Γ
(

n−p
2

)

− 1
2


n− p− q(1+δ)+ n−p

2
1

2
n−p

2

U (a, b, x)


 ,

where U (a, b, x) is the Confluent Hypergeometric Function calculated in

a =
n− p

2
, b = 2 + δ +

n− p

2
, x =

q1

2
.

Figure 6 shows the KL divergence, as a function of δ, for the conditional
distributions corresponding to selected values of the q1 distribution: the mean
and the 10th and 90th quantiles. In this setting the divergence is affected
by the dimension of X, the dimension of the conditioning random vector
X(1) and the particular value of the conditioning variables through the Ma-
halanobis distance to its mean. As it was expected, the KL divergence has a
quadratic appearance compatible with Equation (3) for δ close to zero. From
a statistical point of view, a larger variability is found for distributions with
lighter tails than the normal. Also, for the chosen values (mean and quantiles)
of the q1 distribution, the KL divergence functions are monotone and their
relative position are directly related to the ratio p/n..
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Fig. 6 KL divergence of the conditional distributions: n = 4, 8 ; p/n = 0.25, 0.75

3.3 Marginal Distributions

A similar approach holds for the case of marginal distributions. However,
deriving an exact expression for the KL divergence using analytical methods
appears to be a complicated task. Here, Monte Carlo simulation data were
used to approximate the value of this measure, under a variety of conditions.

DKL

(
f1, f

(δ)
1

)
= log

2
n

2(1+δ)− p
2 Γ

(
n

2(1+δ)

)
Γ

(
n−p

2

)

Γ
(

n
2

)
(1 + δ) exp

(
p
2

)

− log Eχ2
p

[∫ ∞

0

w
n−p

2 −1e−
w
2 e−

1
2 (χ2

p+w)δ

dw

]

Figure 7 shows the simulation results obtained for different values of n, p
and δ, using 50,000 replications of the random variable χ2

p for each case. In
general the behavior observed is similar to that of the previous sections.
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Fig. 7 KL divergence of the marginal distributions: n = 4, 8 ; p/n = 0.25, 0.50, 0.75

On the other hand, it is well known that the divergences between the
different distributions we have considered are related as follows

DKL(f, f (δ)) = Ef1

[
DKL

(
f2.1, f

(δ)
2.1

)]
+ DKL

(
f1, f

(δ)
1

)
(5)

and therefore the divergence between marginal densities would also be
approximated from the previous identity with Monte Carlo simulations to
estimate the conditional KL divergence mean.

Finally, Equation (5) suggests the definition of a relative divergence mea-
sure for the conditional and marginal distributions in terms of the ratios

Ef1

[
DKL

(
f2.1, f

(δ)
2.1

)]

DKL(f, f (δ))
,

DKL

(
f1, f

(δ)
1

)

DKL(f, f (δ))
.

A recent approach to this problem is presented in [9].
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4 Conclusions

In this paper we considered the multivariate exponential power family of
distributions as an alternative model when normality assumption was doubt-
ful. The Kullback-Leibler divergence measure is used as a tool for explor-
ing the influence of deviations from multivariate normal in joint, conditional
and marginal distributions. The obtained expressions for divergence measures
provide quadratic sensitivity functions both globally and locally. Moreover,
it results that this effect depends on the dimension of the vectors involved
as well as the values of the conditioning variables through the Mahalanobis
distance to its mean, for the case of conditionals.
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