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Approximate Bayesian computation

Regular Bayesian computation issues

When faced with a non-standard posterior distribution

π(θ|y) ∝ π(θ)L(θ|y)

the standard solution is to use simulation (Monte Carlo) to
produce a sample

θ1, . . . , θT

from π(θ|y) (or approximately by Markov chain Monte Carlo
methods)

[Robert & Casella, 2004]
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Approximate Bayesian computation

Untractable likelihoods

Cases when the likelihood function f(y|θ) is unavailable and when
the completion step

f(y|θ) =

∫
Z
f(y, z|θ) dz

is impossible or too costly because of the dimension of z
c© MCMC cannot be implemented!
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Approximate Bayesian computation

The ABC method

Bayesian setting: target is π(θ)f(x|θ)

When likelihood f(x|θ) not in closed form, likelihood-free rejection
technique:

ABC algorithm

For an observation y ∼ f(y|θ), under the prior π(θ), keep jointly
simulating

θ′ ∼ π(θ) , z ∼ f(z|θ′) ,

until the auxiliary variable z is equal to the observed value, z = y.

[Rubin, 1984; Tavaré et al., 1997]
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Approximate Bayesian computation

A as approximative

When y is a continuous random variable, equality z = y is replaced
with a tolerance condition,

%(y, z) ≤ ε

where % is a distance

Output distributed from

π(θ)Pθ{%(y, z) < ε} ∝ π(θ|%(y, z) < ε)
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Approximate Bayesian computation

ABC algorithm

Algorithm 1 Likelihood-free rejection sampler

for i = 1 to N do
repeat

generate θ′ from the prior distribution π(·)
generate z from the likelihood f(·|θ′)

until ρ{η(z), η(y)} ≤ ε
set θi = θ′

end for

where η(y) defines a (maybe in-sufficient) statistic



ABC Methods for Bayesian Model Choice

Approximate Bayesian computation

Output

The likelihood-free algorithm samples from the marginal in z of:

πε(θ, z|y) =
π(θ)f(z|θ)IAε,y(z)∫

Aε,y×Θ π(θ)f(z|θ)dzdθ
,

where Aε,y = {z ∈ D|ρ(η(z), η(y)) < ε}.

The idea behind ABC is that the summary statistics coupled with a
small tolerance should provide a good approximation of the
posterior distribution:

πε(θ|y) =

∫
πε(θ, z|y)dz ≈ π(θ|η(y)) .

[Not garanteed!]
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ABC for model choice

Bayesian model choice

Principle

Several models
M1,M2, . . .

are considered simultaneously for dataset y and model index M
central to inference.
Use of a prior π(M = m), plus a prior distribution on the
parameter conditional on the value m of the model index, πm(θm)
Goal is to derive the posterior distribution of M,

π(M = m|data)

a challenging computational target when models are complex.
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ABC for model choice

Generic ABC for model choice

Algorithm 2 Likelihood-free model choice sampler (ABC-MC)

for t = 1 to T do
repeat

Generate m from the prior π(M = m)
Generate θm from the prior πm(θm)
Generate z from the model fm(z|θm)

until ρ{η(z), η(y)} < ε
Set m(t) = m and θ(t) = θm

end for

[Grelaud & al., 2009; Toni & al., 2009]
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ABC for model choice

ABC estimates

Posterior probability π(M = m|y) approximated by the frequency
of acceptances from model m

1

T

T∑
t=1

Im(t)=m .

Early issues with implementation:

I should tolerances ε be the same for all models?

I should summary statistics vary across models? incl. their
dimension?

I should the distance measure ρ vary across models?
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ABC for model choice

ABC estimates

Posterior probability π(M = m|y) approximated by the frequency
of acceptances from model m

1

T

T∑
t=1

Im(t)=m .

Extension to a weighted polychotomous logistic regression
estimate of π(M = m|y), with non-parametric kernel weights

[Cornuet et al., DIYABC, 2009]



ABC Methods for Bayesian Model Choice

Gibbs random fields

Potts model

Potts model

Distribution with an energy function of the form

θS(y) = θ
∑
l∼i

δyl=yi

where l∼i denotes a neighbourhood structure

In most realistic settings, summation

Zθ =
∑
x∈X

exp{θTS(x)}

involves too many terms to be manageable and numerical
approximations cannot always be trusted



ABC Methods for Bayesian Model Choice

Gibbs random fields

Potts model

Potts model

Distribution with an energy function of the form

θS(y) = θ
∑
l∼i

δyl=yi

where l∼i denotes a neighbourhood structure

In most realistic settings, summation

Zθ =
∑
x∈X

exp{θTS(x)}

involves too many terms to be manageable and numerical
approximations cannot always be trusted



ABC Methods for Bayesian Model Choice

Gibbs random fields

Neighbourhood relations

Setup
Choice to be made between M neighbourhood relations

i
m∼ i′ (0 ≤ m ≤M − 1)

with
Sm(x) =

∑
i
m∼i′

I{xi=xi′}

driven by the posterior probabilities of the models.
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Gibbs random fields

Model index

Computational target:

P(M = m|x) ∝
∫

Θm

fm(x|θm)πm(θm) dθm π(M = m)

If S(x) sufficient statistic for the joint parameters
(M, θ0, . . . , θM−1),

P(M = m|x) = P(M = m|S(x)) .
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Gibbs random fields

Sufficient statistics in Gibbs random fields

Each model m has its own sufficient statistic Sm(·) and
S(·) = (S0(·), . . . , SM−1(·)) is also (model-)sufficient.
Explanation: For Gibbs random fields,

x|M = m ∼ fm(x|θm) = f1
m(x|S(x))f2

m(S(x)|θm)

=
1

n(S(x))
f2
m(S(x)|θm)

where
n(S(x)) = ] {x̃ ∈ X : S(x̃) = S(x)}

c© S(x) is sufficient for the joint parameters
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Generic ABC model choice

More about sufficiency

‘Sufficient statistics for individual models are unlikely to
be very informative for the model probability. This is
already well known and understood by the ABC-user
community.’

[Scott Sisson, Jan. 31, 2011, ’Og]

If η1(x) sufficient statistic for model m = 1 and parameter θ1 and
η2(x) sufficient statistic for model m = 2 and parameter θ2,
(η1(x), η2(x)) is not always sufficient for (m, θm)

c© Potential loss of information at the testing level
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Generic ABC model choice

Limiting behaviour of B12 (T →∞)

ABC approximation

B̂12(y) =

∑T
t=1 Imt=1 Iρ{η(zt),η(y)}≤ε∑T
t=1 Imt=2 Iρ{η(zt),η(y)}≤ε

,

where the (mt, zt)’s are simulated from the (joint) prior

As T go to infinity, limit

Bε
12(y) =

∫
Iρ{η(z),η(y)}≤επ1(θ1)f1(z|θ1) dz dθ1∫
Iρ{η(z),η(y)}≤επ2(θ2)f2(z|θ2) dz dθ2

=

∫
Iρ{η,η(y)}≤επ1(θ1)fη1 (η|θ1) dη dθ1∫
Iρ{η,η(y)}≤επ2(θ2)fη2 (η|θ2) dη dθ2

,

where fη1 (η|θ1) and fη2 (η|θ2) distributions of η(z)
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Generic ABC model choice

Limiting behaviour of B12 (ε→ 0)

When ε goes to zero,

Bη
12(y) =

∫
π1(θ1)fη1 (η(y)|θ1) dθ1∫
π2(θ2)fη2 (η(y)|θ2) dθ2

c© Bayes factor based on the sole observation of η(y)
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Generic ABC model choice

Limiting behaviour of B12 (under sufficiency)

If η(y) sufficient statistic in both models,

fi(y|θi) = gi(y)fηi (η(y)|θi)

Thus

B12(y) =

∫
Θ1
π(θ1)g1(y)fη1 (η(y)|θ1) dθ1∫

Θ2
π(θ2)g2(y)fη2 (η(y)|θ2) dθ2

=
g1(y)

∫
π1(θ1)fη1 (η(y)|θ1) dθ1

g2(y)
∫
π2(θ2)fη2 (η(y)|θ2) dθ2

=
g1(y)

g2(y)
Bη

12(y) .

[Didelot, Everitt, Johansen & Lawson, 2011]

c© No discrepancy only when cross-model sufficiency
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Generic ABC model choice

Poisson/geometric example

Sample
x = (x1, . . . , xn)

from either a Poisson P(λ) or from a geometric G(p)
Sum

S =

n∑
i=1

xi = η(x)

sufficient statistic for either model but not simultaneously

Discrepancy ratio

g1(x)

g2(x)
=
S!n−S/

∏
i xi!

1
/(

n+S−1
S

)
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Generic ABC model choice

Poisson/geometric discrepancy

Range of B12(x) versus Bη
12(x): The values produced have

nothing in common.



ABC Methods for Bayesian Model Choice

Generic ABC model choice

Formal recovery

Creating an encompassing exponential family

f(x|θ1, θ2, α1, α2) ∝ exp{θT
1 η1(x) + θT

2 η2(x) +α1t1(x) +α2t2(x)}

leads to a sufficient statistic (η1(x), η2(x), t1(x), t2(x))
[Didelot, Everitt, Johansen & Lawson, 2011]
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Formal recovery

Creating an encompassing exponential family

f(x|θ1, θ2, α1, α2) ∝ exp{θT
1 η1(x) + θT

2 η2(x) +α1t1(x) +α2t2(x)}

leads to a sufficient statistic (η1(x), η2(x), t1(x), t2(x))
[Didelot, Everitt, Johansen & Lawson, 2011]

In the Poisson/geometric case, if
∏
i xi! is added to S, no

discrepancy
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Generic ABC model choice

Formal recovery

Creating an encompassing exponential family

f(x|θ1, θ2, α1, α2) ∝ exp{θT
1 η1(x) + θT

2 η2(x) +α1t1(x) +α2t2(x)}

leads to a sufficient statistic (η1(x), η2(x), t1(x), t2(x))
[Didelot, Everitt, Johansen & Lawson, 2011]

Only applies in genuine sufficiency settings...

c© Inability to evaluate loss brought by summary statistics
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Generic ABC model choice

Meaning of the ABC-Bayes factor

‘This is also why focus on model discrimination typically
(...) proceeds by (...) accepting that the Bayes Factor
that one obtains is only derived from the summary
statistics and may in no way correspond to that of the
full model.’

[Scott Sisson, Jan. 31, 2011, ’Og]

In the Poisson/geometric case, if E[yi] = θ0 > 0,

lim
n→∞

Bη
12(y) =

(θ0 + 1)2

θ0
e−θ0
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Generic ABC model choice

MA example
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Evolution [against ε] of ABC Bayes factor, in terms of frequencies of
visits to models MA(1) (left) and MA(2) (right) when ε equal to
10, 1, .1, .01% quantiles on insufficient autocovariance distances. Sample
of 50 points from a MA(2) with θ1 = 0.6, θ2 = 0.2. True Bayes factor
equal to 17.71.
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Generic ABC model choice

A population genetics evaluation

Population genetics example with

I 3 populations

I 2 scenari

I 15 individuals

I 5 loci

I single mutation parameter

I 24 summary statistics

I 2 million ABC proposal

I importance [tree] sampling alternative
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Stability of importance sampling
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Generic ABC model choice

Comparison with ABC

Use of 24 summary statistics and DIY-ABC logistic correction
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Generic ABC model choice

Comparison with ABC

Use of 15 summary statistics and DIY-ABC logistic correction
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Generic ABC model choice

Comparison with ABC

Use of 15 summary statistics and DIY-ABC logistic correction
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ABC Methods for Bayesian Model Choice

Generic ABC model choice

The only safe cases???

Besides specific models like Gibbs random fields,

using distances over the data itself escapes the discrepancy...
[Toni & Stumpf, 2010; Sousa & al., 2009]

...and so does the use of more informal model fitting measures
[Ratmann & al., 2009]
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ABC model choice consistency

Approximate Bayesian computation

ABC for model choice

Gibbs random fields

Generic ABC model choice

Model choice consistency
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Model choice consistency

Formalised framework

The starting point

Central question to the validation of ABC for model choice:

When is a Bayes factor based on an insufficient statistic
T (y) consistent?

Note: c© drawn on T (y) through BT
12(y) necessarily differs from

c© drawn on y through B12(y)
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Model choice consistency

Formalised framework

A benchmark if toy example

Comparison suggested by referee of PNAS paper [thanks]:
[X, Cornuet, Marin, & Pillai, Aug. 2011]

Model M1: y ∼ N (θ1, 1) opposed to model M2:
y ∼ L(θ2, 1/

√
2), Laplace distribution with mean θ2 and scale

parameter 1/
√

2 (variance one).
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Model choice consistency

Formalised framework

A benchmark if toy example

Comparison suggested by referee of PNAS paper [thanks]:
[X, Cornuet, Marin, & Pillai, Aug. 2011]

Model M1: y ∼ N (θ1, 1) opposed to model M2:
y ∼ L(θ2, 1/

√
2), Laplace distribution with mean θ2 and scale

parameter 1/
√

2 (variance one).
Four possible statistics

1. sample mean y (sufficient for M1 if not M2);

2. sample median med(y) (insufficient);

3. sample variance var(y) (ancillary);

4. median absolute deviation mad(y) = med(y −med(y));
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ABC Methods for Bayesian Model Choice

Model choice consistency

Formalised framework

Framework

Starting from sample

y = (y1, . . . , yn)

the observed sample, not necessarily iid with true distribution

y ∼ Pn

Summary statistics

T (y) = T n = (T1(y), T2(y), · · · , Td(y)) ∈ Rd

with true distribution T n ∼ Gn.
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Model choice consistency

Formalised framework

Framework

c© Comparison of

– under M1, y ∼ F1,n(·|θ1) where θ1 ∈ Θ1 ⊂ Rp1

– under M2, y ∼ F2,n(·|θ2) where θ2 ∈ Θ2 ⊂ Rp2

turned into

– under M1, T (y) ∼ G1,n(·|θ1), and θ1|T (y) ∼ π1(·|T n)

– under M2, T (y) ∼ G2,n(·|θ2), and θ2|T (y) ∼ π2(·|T n)
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Model choice consistency

Consistency results

Assumptions

A collection of asymptotic “standard” assumptions:

[A1] There exist a sequence {vn} converging to +∞,
an a.c. distribution Q with continuous bounded density q(·),
a symmetric, d× d positive definite matrix V0
and a vector µ0 ∈ Rd such that

vnV
−1/2
0 (T n − µ0)

n→∞
 Q, under Gn

and for all M > 0

sup
vn|t−µ0|<M

∣∣∣|V0|1/2v−dn gn(t)− q
(
vnV

−1/2
0 {t− µ0}

)∣∣∣ = o(1)
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Model choice consistency

Consistency results

Assumptions

A collection of asymptotic “standard” assumptions:

[A2] For i = 1, 2, there exist d× d symmetric positive definite matrices
Vi(θi) and µi(θi) ∈ Rd such that

vnVi(θi)
−1/2(T n − µi(θi))

n→∞
 Q, under Gi,n(·|θi) .
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Model choice consistency

Consistency results

Assumptions

A collection of asymptotic “standard” assumptions:

[A3] For i = 1, 2, there exist sets Fn,i ⊂ Θi and constants εi, τi, αi > 0
such that for all τ > 0,

sup
θi∈Fn,i

Gi,n

[
|T n − µ(θi)| > τ |µi(θi)− µ0| ∧ εi |θi

]
. v−αi

n (|µi(θi)− µ0| ∧ εi)−αi

with
πi(Fcn,i) = o(v−τin ).
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Model choice consistency

Consistency results

Assumptions

A collection of asymptotic “standard” assumptions:

[A4] For u > 0

Sn,i(u) =
{
θi ∈ Fn,i; |µ(θi)− µ0| ≤ u v−1n

}
if inf{|µi(θi)− µ0|; θi ∈ Θi} = 0, there exist constants di < τi ∧ αi − 1
such that

πi(Sn,i(u)) ∼ udiv−din , ∀u . vn



ABC Methods for Bayesian Model Choice

Model choice consistency

Consistency results

Assumptions

A collection of asymptotic “standard” assumptions:

[A5] If inf{|µi(θi)− µ0|; θi ∈ Θi} = 0, there exists U > 0 such that for
any M > 0,

sup
vn|t−µ0|<M

sup
θi∈Sn,i(U)

∣∣∣|Vi(θi)|1/2v−dn gi(t|θi)

−q
(
vnVi(θi)

−1/2(t− µ(θi)
)∣∣∣ = o(1)

and

lim
M→∞

lim sup
n

πi

(
Sn,i(U) ∩

{
||Vi(θi)−1||+ ||Vi(θi)|| > M

})
πi(Sn,i(U))

= 0 .
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Model choice consistency

Consistency results

Assumptions

A collection of asymptotic “standard” assumptions:

[A1]–[A2] are standard central limit theorems ([A1] redundant
when one model is “true”)
[A3] controls the large deviations of the estimator T n from the
estimand µ(θ)
[A4] is the standard prior mass condition found in Bayesian
asymptotics (di effective dimension of the parameter)
[A5] controls more tightly convergence esp. when µi is not
one-to-one
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Model choice consistency

Consistency results

Effective dimension

[A4] Understanding d1, d2 : defined only when
µ0 ∈ {µi(θi), θi ∈ Θi},

πi(θi : |µi(θi)− µ0| < n−1/2) = O(n−di/2)

is the effective dimension of the model Θi around µ0
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Model choice consistency

Consistency results

Asymptotic marginals

Asymptotically, under [A1]–[A5]

mi(t) =

∫
Θi

gi(t|θi)πi(θi) dθi

is such that
(i) if inf{|µi(θi)− µ0|; θi ∈ Θi} = 0,

Clv
d−di
n ≤ mi(T

n) ≤ Cuvd−din

and
(ii) if inf{|µi(θi)− µ0|; θi ∈ Θi} > 0

mi(T
n) = oPn [vd−τin + vd−αin ].
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Model choice consistency

Consistency results

Within-model consistency

Under same assumptions, if inf{|µi(θi)− µ0|; θi ∈ Θi} = 0, the
posterior distribution of µi(θi) given T n is consistent at rate 1/vn
provided αi ∧ τi > di.

Note: di can truly be seen as an effective dimension of the model
under the posterior πi(.|T n), since if µ0 ∈ {µi(θi); θi ∈ Θi},

mi(T
n) ∼ vd−din
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Consistency results

Within-model consistency

Under same assumptions, if inf{|µi(θi)− µ0|; θi ∈ Θi} = 0, the
posterior distribution of µi(θi) given T n is consistent at rate 1/vn
provided αi ∧ τi > di.

Note: di can truly be seen as an effective dimension of the model
under the posterior πi(.|T n), since if µ0 ∈ {µi(θi); θi ∈ Θi},

mi(T
n) ∼ vd−din
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Model choice consistency

Consistency results

Between-model consistency

Consequence of above is that asymptotic behaviour of the Bayes
factor is driven by the asymptotic mean value of T n under both
models. And only by this mean value!
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Model choice consistency

Consistency results

Between-model consistency

Consequence of above is that asymptotic behaviour of the Bayes
factor is driven by the asymptotic mean value of T n under both
models. And only by this mean value!

Indeed, if

inf{|µ0 − µ2(θ2)|; θ2 ∈ Θ2} = inf{|µ0 − µ1(θ1)|; θ1 ∈ Θ1} = 0

then

Clv
−(d1−d2)
n ≤ m1(T n)

/
m2(T n) ≤ Cuv−(d1−d2)

n ,

where Cl, Cu = OPn(1), irrespective of the true model.
c© Only depends on the difference d1 − d2
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Model choice consistency

Consistency results

Between-model consistency

Consequence of above is that asymptotic behaviour of the Bayes
factor is driven by the asymptotic mean value of T n under both
models. And only by this mean value!

Else, if

inf{|µ0 − µ2(θ2)|; θ2 ∈ Θ2} > inf{|µ0 − µ1(θ1)|; θ1 ∈ Θ1} = 0

then
m1(T n)

m2(T n)
≥ Cu min

(
v−(d1−α2)
n , v−(d1−τ2)

n

)
,
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Model choice consistency

Consistency results

Consistency theorem

If

inf{|µ0 − µ2(θ2)|; θ2 ∈ Θ2} = inf{|µ0 − µ1(θ1)|; θ1 ∈ Θ1} = 0,

Bayes factor
BT

12 = O(v−(d1−d2)
n )

irrespective of the true model. It is consistent iff Pn is within the
model with the smallest dimension
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Model choice consistency

Consistency results

Consistency theorem

If Pn belongs to one of the two models and if µ0 cannot be
attained by the other one :

0 = min (inf{|µ0 − µi(θi)|; θi ∈ Θi}, i = 1, 2)

< max (inf{|µ0 − µi(θi)|; θi ∈ Θi}, i = 1, 2) ,

then the Bayes factor BT
12 is consistent
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Model choice consistency

Summary statistics

Consequences on summary statistics

Bayes factor driven by the means µi(θi) and the relative position of
µ0 wrt both sets {µi(θi); θi ∈ Θi}, i = 1, 2.

For ABC, this implies the most likely statistics T n are ancillary
statistics with different mean values under both models

Else, if T n asymptotically depends on some of the parameters of
the models, it is quite likely that there exists θi ∈ Θi such that
µi(θi) = µ0 even though model M1 is misspecified
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Model choice consistency

Summary statistics

Toy example: Laplace versus Gauss [1]

If

T n = n−1
n∑
i=1

X4
i , µ1(θ) = 3 + θ4 + 6θ2, µ2(θ) = 6 + · · ·

and the true distribution is Laplace with mean θ0 = 1, under the
Gaussian model the value θ∗ = 2

√
3− 3 leads to µ0 = µ(θ∗)

[here d1 = d2 = d = 1]
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Model choice consistency

Summary statistics

Toy example: Laplace versus Gauss [1]

If

T n = n−1
n∑
i=1

X4
i , µ1(θ) = 3 + θ4 + 6θ2, µ2(θ) = 6 + · · ·

and the true distribution is Laplace with mean θ0 = 1, under the
Gaussian model the value θ∗ = 2

√
3− 3 leads to µ0 = µ(θ∗)

[here d1 = d2 = d = 1]
c© a Bayes factor associated with such a statistic is inconsistent
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Model choice consistency

Summary statistics

Toy example: Laplace versus Gauss [1]

If

T n = n−1
n∑
i=1

X4
i , µ1(θ) = 3 + θ4 + 6θ2, µ2(θ) = 6 + · · ·
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Model choice consistency

Summary statistics

Toy example: Laplace versus Gauss [1]

If

T n = n−1
n∑
i=1

X4
i , µ1(θ) = 3 + θ4 + 6θ2, µ2(θ) = 6 + · · ·
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Model choice consistency

Summary statistics

Toy example: Laplace versus Gauss [1]

If

T n = n−1
n∑
i=1

X4
i , µ1(θ) = 3 + θ4 + 6θ2, µ2(θ) = 6 + · · ·

Caption: Comparison of the distributions of the posterior
probabilities that the data is from a normal model (as opposed to a
Laplace model) with unknown mean when the data is made of
n = 1000 observations either from a normal (M1) or Laplace (M2)
distribution with mean one and when the summary statistic in the
ABC algorithm is restricted to the empirical fourth moment. The
ABC algorithm uses proposals from the prior N (0, 4) and selects
the tolerance as the 1% distance quantile.
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Model choice consistency

Summary statistics

Toy example: Laplace versus Gauss [0]

When
T (y) =

{
ȳ(4)
n , ȳ(6)

n

}
and the true distribution is Laplace with mean θ0 = 0, then
µ0 = 6, µ1(θ∗1) = 6 with θ∗1 = 2

√
3− 3

[d1 = 1 and d2 = 1/2]
thus

B12 ∼ n−1/4 → 0 : consistent

Under the Gaussian model µ0 = 3 µ2(θ2) ≥ 6 > 3 ∀θ2

B12 → +∞ : consistent
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Model choice consistency

Summary statistics

Toy example: Laplace versus Gauss [0]

When
T (y) =

{
ȳ(4)
n , ȳ(6)

n

}
and the true distribution is Laplace with mean θ0 = 0, then
µ0 = 6, µ1(θ∗1) = 6 with θ∗1 = 2

√
3− 3

[d1 = 1 and d2 = 1/2]
thus

B12 ∼ n−1/4 → 0 : consistent

Under the Gaussian model µ0 = 3 µ2(θ2) ≥ 6 > 3 ∀θ2

B12 → +∞ : consistent
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Model choice consistency

Summary statistics

Toy example: Laplace versus Gauss [0]

When
T (y) =

{
ȳ(4)
n , ȳ(6)

n

}
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Summary statistics

Embedded models

When M1 submodel of M2, and if the true distribution belongs to
the smaller model M1, Bayes factor is of order

v−(d1−d2)
n
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Model choice consistency

Summary statistics

Embedded models

When M1 submodel of M2, and if the true distribution belongs to
the smaller model M1, Bayes factor is of order

v−(d1−d2)
n

If summary statistic only informative on a parameter that is the
same under both models, i.e if d1 = d2, then
c© the Bayes factor is not consistent
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Model choice consistency

Summary statistics

Embedded models

When M1 submodel of M2, and if the true distribution belongs to
the smaller model M1, Bayes factor is of order

v−(d1−d2)
n

Else, d1 < d2 and Bayes factor is consistent under M1. If true
distribution not in M1, then
c© Bayes factor is consistent only if µ1 6= µ2 = µ0
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Model choice consistency

Summary statistics

Another toy example: Quantile distribution

Q(p;A,B, g, k) = A+B

[
1 +

1− exp{−gz(p)}
1 + exp{−gz(p)}

] [
1 + z(p)2

]k
z(p)

A,B, g and k, location, scale, skewness and kurtosis parameters
Embedded models:

I M1 : g = 0 and k ∼ U [−1/2, 5]

I M2 : g ∼ U [0, 4] and k ∼ U [−1/2, 5].
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Model choice consistency

Summary statistics

Consistency [or not]
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Model choice consistency

Summary statistics

Consistency [or not]

Caption: Comparison of the distributions of the posterior
probabilities that the data is from model M1 when the data is
made of 100 observations (left column), 1000 observations (central
column) and 10,000 observations (right column) either from M1

(M1) or M2 (M2) when the summary statistics in the ABC
algorithm are made of the empirical quantile at level 10% (first
row), the empirical quantiles at levels 10% and 90% (second row),
and the empirical quantiles at levels 10%, 40%, 60% and 90%
(third row), respectively. The boxplots rely on 100 replicas and the
ABC algorithms are based on 104 proposals from the prior, with
the tolerance being chosen as the 1% quantile on the distances.
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Conclusions

Conclusions

• Model selection feasible with ABC
• Choice of summary statistics is paramount
• At best, ABC → π(. | T (y)) which concentrates around µ0

• For estimation : {θ;µ(θ) = µ0} = θ0

• For testing {µ1(θ1), θ1 ∈ Θ1} ∩ {µ2(θ2), θ2 ∈ Θ2} = ∅
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• For estimation : {θ;µ(θ) = µ0} = θ0

• For testing {µ1(θ1), θ1 ∈ Θ1} ∩ {µ2(θ2), θ2 ∈ Θ2} = ∅
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