Criteria for objective Bayesian model choice

Gonzalo García-Donato (UCLM)

Collaborators: MJ Bayarri ${ }^{1}$, J Berger ${ }^{2}$, A Forte ${ }^{3}$

Universidad de Castilla-La Mancha (Spain)
${ }^{1}$ Universidad de Valencia (Spain), ${ }^{2}$ Duke University (USA), ${ }^{3}$ Universidad Jaume I (Spain)

Madrid - November 2011
(1) 1. Introduction
(2) 2. The formal model selection criteria
(3) 3. Three examples three
4. 4. DB priors and the criteria
(1) 1. Introduction

- 1.1Preliminaries and motivation
- 1.2 The problem
- 1.3 Historical background

(2) 2. The formal model selection criteria

(3) 3. Three examples three
4) 4. DB priors and the criteria

Estimation vs. Model selection

An experiment with outcome Y is of interest:

Estimation problems

Statistical model for Y is assumed known.

Estimation vs. Model selection

An experiment with outcome Y is of interest:
Estimation problems
Statistical model for Y is assumed known.

Model selection (MS) problems
The uncertainty about which model provides a better explanation for Y is explicitly considered.

Estimation vs. Model selection

An experiment with outcome Y is of interest:
Estimation problems
Statistical model for Y is assumed known.

Model selection (MS) problems
The uncertainty about which model provides a better explanation for Y is explicitly considered.

Key features of objective Bayesian MS, based on Bayes factors:

Estimation vs. Model selection

An experiment with outcome Y is of interest:
Estimation problems
Statistical model for Y is assumed known.

Model selection (MS) problems
The uncertainty about which model provides a better explanation for Y is explicitly considered.

Key features of objective Bayesian MS, based on Bayes factors:

- Results are highly sensitive to the choice of priors,

Estimation vs. Model selection

An experiment with outcome Y is of interest:
Estimation problems
Statistical model for Y is assumed known.

Model selection (MS) problems
The uncertainty about which model provides a better explanation for Y is explicitly considered.

Key features of objective Bayesian MS, based on Bayes factors:

- Results are highly sensitive to the choice of priors,
- sensitivity does not vanish as n grows (unlike the estimation scenario),

Estimation vs. Model selection

An experiment with outcome Y is of interest:
Estimation problems
Statistical model for Y is assumed known.

Model selection (MS) problems
The uncertainty about which model provides a better explanation for Y is explicitly considered.

Key features of objective Bayesian MS, based on Bayes factors:

- Results are highly sensitive to the choice of priors,
- sensitivity does not vanish as n grows (unlike the estimation scenario),
- improper priors cannot, in general, be used

Estimation vs. Model selection

An experiment with outcome Y is of interest:
Estimation problems
Statistical model for Y is assumed known.

Model selection (MS) problems
The uncertainty about which model provides a better explanation for Y is explicitly considered.

Key features of objective Bayesian MS, based on Bayes factors:

- Results are highly sensitive to the choice of priors,
- sensitivity does not vanish as n grows (unlike the estimation scenario),
- improper priors cannot, in general, be used
- which prior to be used is still an open question.

There have been...

...many efforts, over more than 30 years, to develop convincing objective priors for MS. A number of such proposals:

- the Intrinsic priors (Berger and Pericchi 1996; Moreno et al. 1998; O'Hagan 1997),

There have been...

...many efforts, over more than 30 years, to develop convincing objective priors for MS. A number of such proposals:

- the Intrinsic priors (Berger and Pericchi 1996; Moreno et al. 1998; O'Hagan 1997),
- the Expected posterior priors (Pérez and Berger 2002),

There have been...

...many efforts, over more than 30 years, to develop convincing objective priors for MS. A number of such proposals:

- the Intrinsic priors (Berger and Pericchi 1996; Moreno et al. 1998; O'Hagan 1997),
- the Expected posterior priors (Pérez and Berger 2002),
- the Integral priors (Cano et al. 2008),

There have been...

...many efforts, over more than 30 years, to develop convincing objective priors for MS. A number of such proposals:

- the Intrinsic priors (Berger and Pericchi 1996; Moreno et al. 1998; O'Hagan 1997),
- the Expected posterior priors (Pérez and Berger 2002),
- the Integral priors (Cano et al. 2008),
- the Divergence based priors (Bayarri and García-Donato 2008).

There have been...

...many efforts, over more than 30 years, to develop convincing objective priors for MS. A number of such proposals:

- the Intrinsic priors (Berger and Pericchi 1996; Moreno et al. 1998; O'Hagan 1997),
- the Expected posterior priors (Pérez and Berger 2002),
- the Integral priors (Cano et al. 2008),
- the Divergence based priors (Bayarri and García-Donato 2008).

Diversity is good, but up to a certain level!

We don't need another...prior

This lack of progress in reaching consensus resulted in our approaching the problem from a different direction: is it possible a constructive minimum agreement?

We don't need another...prior

This lack of progress in reaching consensus resulted in our approaching the problem from a different direction: is it possible a constructive minimum agreement?

Main motivation
Compiling+formalizing+completing the different criteria that have been deemed essential for MS priors, and seeing if these criteria can essentially determine the priors.
(1) 1. Introduction

- 1.1Preliminaries and motivation
- 1.2 The problem
- 1.3 Historical background

(2) 2. The formal model selection criteria

(3) 3. Three examples three
4) 4. DB priors and the criteria

The problem

We observe a vector $\mathbf{y} \sim f(\mathbf{y} \mid \boldsymbol{\alpha}, \boldsymbol{\beta})$ of size n. The competing models are

$$
M_{0}: f_{0}(\mathbf{y} \mid \boldsymbol{\alpha})=f\left(\mathbf{y} \mid \boldsymbol{\alpha}, \boldsymbol{\beta}_{0}\right), \quad M_{1}: f_{1}(\mathbf{y} \mid \boldsymbol{\alpha}, \boldsymbol{\beta})=f(\mathbf{y} \mid \boldsymbol{\alpha}, \boldsymbol{\beta})
$$

for certain $\boldsymbol{\beta}_{0}$.

The problem

We observe a vector $\mathbf{y} \sim f(\mathbf{y} \mid \boldsymbol{\alpha}, \boldsymbol{\beta})$ of size n. The competing models are

$$
M_{0}: f_{0}(\mathbf{y} \mid \boldsymbol{\alpha})=f\left(\mathbf{y} \mid \boldsymbol{\alpha}, \boldsymbol{\beta}_{0}\right), \quad M_{1}: f_{1}(\mathbf{y} \mid \boldsymbol{\alpha}, \boldsymbol{\beta})=f(\mathbf{y} \mid \boldsymbol{\alpha}, \boldsymbol{\beta}),
$$

for certain $\boldsymbol{\beta}_{0}$. In testing notation

$$
H_{0}: \boldsymbol{\beta}=\boldsymbol{\beta}_{0}, \quad H_{1}: \boldsymbol{\beta} \neq \boldsymbol{\beta}_{0} .
$$

The problem

We observe a vector $\mathbf{y} \sim f(\mathbf{y} \mid \boldsymbol{\alpha}, \boldsymbol{\beta})$ of size n. The competing models are

$$
M_{0}: f_{0}(\mathbf{y} \mid \boldsymbol{\alpha})=f\left(\mathbf{y} \mid \boldsymbol{\alpha}, \boldsymbol{\beta}_{0}\right), \quad M_{1}: f_{1}(\mathbf{y} \mid \boldsymbol{\alpha}, \boldsymbol{\beta})=f(\mathbf{y} \mid \boldsymbol{\alpha}, \boldsymbol{\beta})
$$

for certain $\boldsymbol{\beta}_{0}$. In testing notation

$$
H_{0}: \boldsymbol{\beta}=\boldsymbol{\beta}_{0}, \quad H_{1}: \boldsymbol{\beta} \neq \boldsymbol{\beta}_{0} .
$$

We base our response to the problem on the Bayes factor B_{10} : the ratio of prior marginals wrt the priors $\pi_{1}(\boldsymbol{\alpha}, \boldsymbol{\beta})$ and $\pi_{0}(\boldsymbol{\alpha})$.

The problem

We observe a vector $\mathbf{y} \sim f(\mathbf{y} \mid \boldsymbol{\alpha}, \boldsymbol{\beta})$ of size n. The competing models are

$$
M_{0}: f_{0}(\mathbf{y} \mid \boldsymbol{\alpha})=f\left(\mathbf{y} \mid \boldsymbol{\alpha}, \boldsymbol{\beta}_{0}\right), \quad M_{1}: f_{1}(\mathbf{y} \mid \boldsymbol{\alpha}, \boldsymbol{\beta})=f(\mathbf{y} \mid \boldsymbol{\alpha}, \boldsymbol{\beta})
$$

for certain $\boldsymbol{\beta}_{0}$. In testing notation

$$
H_{0}: \boldsymbol{\beta}=\boldsymbol{\beta}_{0}, \quad H_{1}: \boldsymbol{\beta} \neq \boldsymbol{\beta}_{0} .
$$

We base our response to the problem on the Bayes factor B_{10} : the ratio of prior marginals wrt the priors $\pi_{1}(\boldsymbol{\alpha}, \boldsymbol{\beta})$ and $\pi_{0}(\boldsymbol{\alpha})$.
Without loss of generality we express

$$
\pi_{1}(\boldsymbol{\alpha}, \boldsymbol{\beta})=\pi_{1}(\boldsymbol{\alpha}) \pi_{1}(\boldsymbol{\beta} \mid \boldsymbol{\alpha})
$$

A needed consideration

Due to the nature of H_{0} this problem is known in the literature as testing a "precise" or "punctual" hypothesis, which we interpret as the more real of $H_{0}^{R}: \boldsymbol{\beta} \approx \boldsymbol{\beta}^{0}$.

A needed consideration

Due to the nature of H_{0} this problem is known in the literature as testing a "precise" or "punctual" hypothesis, which we interpret as the more real of $H_{0}^{R}: \boldsymbol{\beta} \approx \boldsymbol{\beta}^{0}$.

Conditions under which testing H_{0} is a valid approximation for H_{0}^{R} have been studied by Berger and Delampady (1987), Gómez-Villegas and Sánchez-Manzano (1992) and Verdinelly and Wasserman (1996).
(1) 1. Introduction

- 1.1Preliminaries and motivation
- 1.2 The problem
- 1.3 Historical background

(2) 2. The formal model selection criteria

(3) 3. Three examples three
(4) 4. DB priors and the criteria

Jeffreys' desiderata

Jeffreys' desiderata

The approach of using criteria leading to priors is reminiscent of the Jeffreys (1961) approach to testing, wherein certain testing desiderata were presented and testing priors were derived from them.

Jeffreys' desiderata

The approach of using criteria leading to priors is reminiscent of the Jeffreys (1961) approach to testing, wherein certain testing desiderata were presented and testing priors were derived from them.

see Robert et al (2009) for a comprehensive and modern review of Jeffreys' book.

Jeffreys' desiderata

The approach of using criteria leading to priors is reminiscent of the Jeffreys (1961) approach to testing, wherein certain testing desiderata were presented and testing priors were derived from them.

see Robert et al (2009) for a comprehensive and modern review of Jeffreys' book.
These arguments are often called Jeffreys' desiderata

Jeffreys' desiderata

The approach of using criteria leading to priors is reminiscent of the Jeffreys (1961) approach to testing, wherein certain testing desiderata were presented and testing priors were derived from them.

see Robert et al (2009) for a comprehensive and modern review of Jeffreys' book.
These arguments are often called Jeffreys' desiderata

These and related ideas have been repeatedly used to evaluate-guide-justify development of objective MS priors.

Jeffreys' desiderata (cont')

General problems

Testing whether β a normal mean is zero (σ unknown)

0

Jeffreys' desiderata (cont')

General problems

- If $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are "orthogonal", then one can take $\pi_{0}(\boldsymbol{\alpha})=\pi_{1}(\boldsymbol{\alpha})$. Due to its small impact on the Bayes factors he recommended an objective estimation prior.

Testing whether β a normal mean is zero (σ unknown)

Jeffreys' desiderata (cont')

General problems

- If $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are "orthogonal", then one can take $\pi_{0}(\boldsymbol{\alpha})=\pi_{1}(\boldsymbol{\alpha})$. Due to its small impact on the Bayes factors he recommended an objective estimation prior.
- The conditional prior $\pi_{1}(\boldsymbol{\beta} \mid \boldsymbol{\alpha})$ should be proper and have heavy tails (he noted that this condition is closely related with what is nowadays known as information consistency).

Testing whether β a normal mean is zero (σ unknown)
-

0

Jeffreys' desiderata (cont')

General problems

- If $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are "orthogonal", then one can take $\pi_{0}(\boldsymbol{\alpha})=\pi_{1}(\boldsymbol{\alpha})$. Due to its small impact on the Bayes factors he recommended an objective estimation prior.
- The conditional prior $\pi_{1}(\boldsymbol{\beta} \mid \boldsymbol{\alpha})$ should be proper and have heavy tails (he noted that this condition is closely related with what is nowadays known as information consistency).

Testing whether β a normal mean is zero (σ unknown)

- The conditional prior $\pi_{1}(\beta \mid \sigma)$ should be centered at zero and scaled by σ (from "considerations of similarity"),

Jeffreys' desiderata (cont')

General problems

- If $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are "orthogonal", then one can take $\pi_{0}(\boldsymbol{\alpha})=\pi_{1}(\boldsymbol{\alpha})$. Due to its small impact on the Bayes factors he recommended an objective estimation prior.
- The conditional prior $\pi_{1}(\boldsymbol{\beta} \mid \boldsymbol{\alpha})$ should be proper and have heavy tails (he noted that this condition is closely related with what is nowadays known as information consistency).

Testing whether β a normal mean is zero (σ unknown)

- The conditional prior $\pi_{1}(\beta \mid \sigma)$ should be centered at zero and scaled by σ (from "considerations of similarity"),
- For $n=1$ the Bayes factor should be one (since a single observation allows no discrimination between the two models).

(1) 1. Introduction

(2) 2. The formal model selection criteria

- I. Basic criteria
- II.Consistency criteria
- III. Predictive matching criteria
- IV. Invariance criteria
(3) 3. Three examples three

4) 4. DB priors and the criteria

Jeffreys' desiderata are

intuitively sensible but ad-hoc arguments: difficult to justify.

Jeffreys' desiderata are
intuitively sensible but ad-hoc arguments: difficult to justify.
We try to formalize the most general and compelling of the various criteria that have been suggested, together with a new criterion.

Jeffreys' desiderata are
intuitively sensible but ad-hoc arguments: difficult to justify.
We try to formalize the most general and compelling of the various criteria that have been suggested, together with a new criterion.

The resulting criteria can be organized into four blocks:

- I. Basic criteria,
- II. Consistency criteria,
- III. Predictive matching criteria,
- IV. Invariance criteria.

Jeffreys' desiderata are
intuitively sensible but ad-hoc arguments: difficult to justify.
We try to formalize the most general and compelling of the various criteria that have been suggested, together with a new criterion.

The resulting criteria can be organized into four blocks:

- I. Basic criteria,
- II. Consistency criteria,
- III. Predictive matching criteria,
- IV. Invariance criteria.

Few modern references that are relevant to the development of such criteria

Fernández et al. (2001); Berger and Pericchi (2001); Berger et al. (2003); Liang et al. (2008); Moreno et al. (2009); Casella et al. (2009)

I. Basic criteria

In words

Formally

I. Basic criteria

In words
The evidence provided by a MS procedure cannot depend on arbitrary constants

Formally

I. Basic criteria

In words
The evidence provided by a MS procedure cannot depend on arbitrary constants

Formally

Basic criterion
 The conditional prior $\pi_{1}(\boldsymbol{\beta} \mid \boldsymbol{\alpha})$ must be proper (integrating to one) and cannot be arbitrarily vague.

II.Consistency criteria

In words

Formally

II.Consistency criteria

In words
If the evidence in favor of one of the entertained models grows to infinite, the evidence provided by the MS procedure should 'grow' accordingly.

Formally

II.Consistency criteria

If the evidence in favor of one of the entertained models grows to infinite, the evidence provided by the MS procedure should 'grow' accordingly.

- MS consistency criterion

If data \mathbf{y} have been generated by M_{i}, then the posterior probability of M_{i} should converge in probability to 1 as $n \rightarrow \infty$.

II.Consistency criteria

In words
If the evidence in favor of one of the entertained models grows to infinite, the evidence provided by the MS procedure should 'grow' accordingly.

Formally

- MS consistency criterion

If data \mathbf{y} have been generated by M_{i}, then the posterior probability of M_{i} should converge in probability to 1 as $n \rightarrow \infty$.

- Information consistency criterion

If $\Lambda_{10} \rightarrow \infty$ then B_{10} should also $\rightarrow \infty$.
Where Λ_{10} is the observed likelihood ratio for M_{1} compared to M_{0} :

III. Predictive matching criteria

In words

Formally

III. Predictive matching criteria

In words
When the information in the data is extremely weak, the MS procedure should not be conclusive.

Formally

III. Predictive matching criteria

In words
When the information in the data is extremely weak, the MS procedure should not be conclusive.

Formally

Predictive matching criterion

- For samples \boldsymbol{y}^{*} of 'minimal size', in comparing M_{0} with M_{1}, one should have model selection priors such that $m_{0}\left(\mathbf{y}^{*}\right)$ and $m_{1}\left(\mathbf{y}^{*}\right)$ are close.

III. Predictive matching criteria

In words
When the information in the data is extremely weak, the MS procedure should not be conclusive.

Formally

Predictive matching criterion

- For samples \boldsymbol{y}^{*} of 'minimal size', in comparing M_{0} with M_{1}, one should have model selection priors such that $m_{0}\left(\mathbf{y}^{*}\right)$ and $m_{1}\left(\mathbf{y}^{*}\right)$ are close.
- Optimal is exact predictive matching: $m_{0}\left(\mathbf{y}^{*}\right)=m_{1}\left(\mathbf{y}^{*}\right)$.

Predictive matching

- Asking the priors for being appropriately 'matched' is a crucial aspect, specially when the models under comparison differ much in dimensionality.

Predictive matching

- Asking the priors for being appropriately 'matched' is a crucial aspect, specially when the models under comparison differ much in dimensionality.
- In Berger and Pericchi (2001), minimal sample size n^{*} was defined as the smallest sample size for which

$$
0<m_{i} \quad\left(\mathbf{y}^{*}\right)<\infty,
$$

for all i and when objective estimation priors π_{i}^{N} are used.

Predictive matching

- Asking the priors for being appropriately 'matched' is a crucial aspect, specially when the models under comparison differ much in dimensionality.
- In Berger and Pericchi (2001), minimal sample size n^{*} was defined as the smallest sample size for which

$$
0<m_{i}^{N}\left(\mathbf{y}^{*}\right)<\infty
$$

for all i and when objective estimation priors π_{i}^{N} are used.

Predictive matching

- Asking the priors for being appropriately 'matched' is a crucial aspect, specially when the models under comparison differ much in dimensionality.
- In Berger and Pericchi (2001), minimal sample size n^{*} was defined as the smallest sample size for which

$$
0<m_{i}^{N}\left(\mathbf{y}^{*}\right)<\infty,
$$

for all i and when objective estimation priors π_{i}^{N} are used.

- We propose a different definition of minimal size.

Predictive matching: minimal size

We think that, in general, minimal sample size should be defined relative to the model selection priors being utilized:

Predictive matching: minimal size

We think that, in general, minimal sample size should be defined relative to the model selection priors being utilized:

Definition of Minimal training sample \mathbf{y}^{*}
for $\left\{M_{1}, \pi_{1}\right\}$ is a sample of minimal size $n^{*} \geq 1$ with

$$
0<m_{i}\left(\mathbf{y}^{*}\right)<\infty .
$$

Crucial consequences:

Predictive matching: minimal size

We think that, in general, minimal sample size should be defined relative to the model selection priors being utilized:

Definition of Minimal training sample \mathbf{y}^{*}
for $\left\{M_{1}, \pi_{1}\right\}$ is a sample of minimal size $n^{*} \geq 1$ with

$$
0<m_{i}\left(\mathbf{y}^{*}\right)<\infty .
$$

Crucial consequences:

- Because of Basic criteria this new n^{*} is smaller than the B\&P01 n *: the predictive matching criteria becomes a weaker condition.

Predictive matching: minimal size

We think that, in general, minimal sample size should be defined relative to the model selection priors being utilized:

Definition of Minimal training sample \mathbf{y}^{*} for $\left\{M_{1}, \pi_{1}\right\}$ is a sample of minimal size $n^{*} \geq 1$ with

$$
0<m_{i}\left(\mathbf{y}^{*}\right)<\infty .
$$

Crucial consequences:

- Because of Basic criteria this new n^{*} is smaller than the B\&P01 n^{*} : the predictive matching criteria becomes a weaker condition.
- In problems with more than 2 competing models (e.g variable selection) the concept of minimal size is almost insensitive to the dimension of the largest model.

IV. Invariance criteria

In words

Formally

IV. Invariance criteria

In words
If models posses an invariance structure, this should be preserved after marginalization

Formally

IV. Invariance criteria

In words
If models posses an invariance structure, this should be preserved after marginalization

Formally

Invariance criterion

If M_{0} and M_{1} are invariant under certain group of transformations G_{0}, then the conditional distribution, $\pi_{1}(\boldsymbol{\beta} \mid \boldsymbol{\alpha})$, should be chosen in such a way that the conditional marginal distribution

$$
f_{1}^{\prime}(\mathbf{y} \mid \boldsymbol{\alpha})=\int f_{1}(\mathbf{y} \mid \boldsymbol{\alpha}, \boldsymbol{\beta}) \pi_{1}(\boldsymbol{\beta} \mid \boldsymbol{\alpha}) d \boldsymbol{\beta}
$$

is also invariant under G_{0}.

Invariance criterion: first important consequence (In case of

 existence of such structure)- Note: G_{0} is a group of transformations relevant for the null model M_{0}.

Hence

Invariance criterion: first important consequence (In case of

 existence of such structure)- Note: G_{0} is a group of transformations relevant for the null model M_{0}.

```
Hence
invariance criterion can be understood as a formalization of the Jeffreys' requirement that the prior for a non-null parameter should be "centered at the simple model" (will become apparent in the examples).
```


Invariance criterion: second important consequence(In case of

 existence of such structure)....it is about the tricky question of determining the priors for the common model parameters $\pi_{0}(\boldsymbol{\alpha})$ and $\pi_{1}(\boldsymbol{\alpha})$.

Invariance criterion: second important consequence(In case of

 existence of such structure)....it is about the tricky question of determining the priors for the common model parameters $\pi_{0}(\boldsymbol{\alpha})$ and $\pi_{1}(\boldsymbol{\alpha})$.
With invariance criterion, the problem becomes transformed in one with competing models:

$$
f_{0}(\mathbf{y} \mid \boldsymbol{\alpha}), \pi_{0}(\boldsymbol{\alpha}) \quad \text { vs } f_{1}^{\prime}(\mathbf{y} \mid \boldsymbol{\alpha}), \pi_{1}(\boldsymbol{\alpha})
$$

with the same dimension and sharing a common invariance structure.

Invariance criterion: second important consequence(In case of

 existence of such structure)....it is about the tricky question of determining the priors for the common model parameters $\pi_{0}(\boldsymbol{\alpha})$ and $\pi_{1}(\boldsymbol{\alpha})$.
With invariance criterion, the problem becomes transformed in one with competing models:

$$
f_{0}(\mathbf{y} \mid \boldsymbol{\alpha}), \pi_{0}(\boldsymbol{\alpha}) \quad \text { vs } f_{1}^{\prime}(\mathbf{y} \mid \boldsymbol{\alpha}), \pi_{1}(\boldsymbol{\alpha})
$$

with the same dimension and sharing a common invariance structure. In this situation choosing

Invariance criterion: second important consequence(In case of

 existence of such structure)....it is about the tricky question of determining the priors for the common model parameters $\pi_{0}(\boldsymbol{\alpha})$ and $\pi_{1}(\boldsymbol{\alpha})$.
With invariance criterion, the problem becomes transformed in one with competing models:

$$
f_{0}(\mathbf{y} \mid \boldsymbol{\alpha}), \pi_{0}(\boldsymbol{\alpha})=\pi^{H}(\boldsymbol{\alpha}) \text { vs } f_{1}^{\prime}(\mathbf{y} \mid \boldsymbol{\alpha}), \pi_{1}(\boldsymbol{\alpha})
$$

with the same dimension and sharing a common invariance structure. In this situation choosing

Invariance criterion: second important consequence(In case of

 existence of such structure)....it is about the tricky question of determining the priors for the common model parameters $\pi_{0}(\boldsymbol{\alpha})$ and $\pi_{1}(\boldsymbol{\alpha})$.
With invariance criterion, the problem becomes transformed in one with competing models:

$$
f_{0}(\mathbf{y} \mid \boldsymbol{\alpha}), \pi_{0}(\boldsymbol{\alpha})=\pi^{H}(\boldsymbol{\alpha}) \text { vs } f_{1}^{\prime}(\mathbf{y} \mid \boldsymbol{\alpha}), \pi_{1}(\boldsymbol{\alpha})=\pi^{H}(\boldsymbol{\alpha})
$$

with the same dimension and sharing a common invariance structure. In this situation choosing

Invariance criterion: second important consequence(In case of

 existence of such structure)....it is about the tricky question of determining the priors for the common model parameters $\pi_{0}(\boldsymbol{\alpha})$ and $\pi_{1}(\boldsymbol{\alpha})$.
With invariance criterion, the problem becomes transformed in one with competing models:

$$
f_{0}(\mathbf{y} \mid \boldsymbol{\alpha}), \pi_{0}(\boldsymbol{\alpha})=\pi^{H}(\boldsymbol{\alpha}) \text { vs } f_{1}^{\prime}(\mathbf{y} \mid \boldsymbol{\alpha}), \pi_{1}(\boldsymbol{\alpha})=\pi^{H}(\boldsymbol{\alpha})
$$

with the same dimension and sharing a common invariance structure. In this situation choosing where $\pi^{H}(\cdot)$ is the right-Haar density of G_{0}

Invariance criterion: second important consequence(In case of

 existence of such structure)....it is about the tricky question of determining the priors for the common model parameters $\pi_{0}(\boldsymbol{\alpha})$ and $\pi_{1}(\boldsymbol{\alpha})$.
With invariance criterion, the problem becomes transformed in one with competing models:

$$
f_{0}(\mathbf{y} \mid \boldsymbol{\alpha}), \pi_{0}(\boldsymbol{\alpha})=\pi^{H}(\boldsymbol{\alpha}) \text { vs } f_{1}^{\prime}(\mathbf{y} \mid \boldsymbol{\alpha}), \pi_{1}(\boldsymbol{\alpha})=\pi^{H}(\boldsymbol{\alpha})
$$

with the same dimension and sharing a common invariance structure. In this situation choosing where $\pi^{H}(\cdot)$ is the right-Haar density of G_{0}

Berger et al (1998) ensures, under commonly satisfied conditions, exact predictive matching.

(2) 2. The formal model selection criteria

(3) 3. Three examples three

- Pr1. Normal mean (σ unknown)
- Pr2. Normal standard deviation (μ unknown)
- Pr3. Gamma shape parameter (mean μ unknown)

4) 4. DB priors and the criteria

Problem 1

Suppose \mathbf{y} is an iid sample of a normal population with σ unknown and the hypotheses about the mean

$$
H_{0}: \mu=0, \quad H_{1}: \mu \neq 0 .
$$

The priors $\pi_{0}(\sigma)$ and $\pi_{1}(\mu, \sigma)=\pi_{1}(\mu \mid \sigma) \pi_{1}(\sigma)$ needs to be assigned.

Problem 1

Suppose \mathbf{y} is an iid sample of a normal population with σ unknown and the hypotheses about the mean

$$
H_{0}: \mu=0, \quad H_{1}: \mu \neq 0
$$

The priors $\pi_{0}(\sigma)$ and $\pi_{1}(\mu, \sigma)=\pi_{1}(\mu \mid \sigma) \pi_{1}(\sigma)$ needs to be assigned.
Basic criterion: $\pi_{1}(\mu \mid \sigma)$ must be proper and not arbitrarily vague.

Invariance criterion

Note that M_{0} and M_{1} are invariant under the group $G_{0}=\{g \in(0, \infty)\}$ with action over \mathbf{y} as $g(\mathbf{y})=g \mathbf{y}$.

Invariance criterion

Note that M_{0} and M_{1} are invariant under the group $G_{0}=\{g \in(0, \infty)\}$ with action over \mathbf{y} as $g(\mathbf{y})=g \mathbf{y}$.

Result

$$
\mathbf{y} \sim f_{1}^{\prime}(\mathbf{y} \mid \sigma)=\int f_{1}(\mathbf{y} \mid \sigma, \mu) \pi_{1}(\mu \mid \sigma) d \mu
$$

is invariant under the action of G_{0} if and only if $\pi_{1}(\mu \mid \sigma)=\frac{1}{\sigma} h\left(\frac{\mu}{\sigma}\right)$.

Invariance criterion

Note that M_{0} and M_{1} are invariant under the group $G_{0}=\{g \in(0, \infty)\}$ with action over \mathbf{y} as $g(\mathbf{y})=g \mathbf{y}$.

Result

$$
\mathbf{y} \sim f_{1}^{\prime}(\mathbf{y} \mid \sigma)=\int f_{1}(\mathbf{y} \mid \sigma, \mu) \pi_{1}(\mu \mid \sigma) d \mu
$$

is invariant under the action of G_{0} if and only if $\pi_{1}(\mu \mid \sigma)=\frac{1}{\sigma} h\left(\frac{\mu}{\sigma}\right)$.
This result gives a characterization for choosing $\pi_{1}(\mu \mid \sigma)$

- scaled by σ,
- centered at zero (the null model).

Invariance criterion

Note that M_{0} and M_{1} are invariant under the group $G_{0}=\{g \in(0, \infty)\}$ with action over \mathbf{y} as $g(\mathbf{y})=g \mathbf{y}$.

Result

$$
\mathbf{y} \sim f_{1}^{\prime}(\mathbf{y} \mid \sigma)=\int f_{1}(\mathbf{y} \mid \sigma, \mu) \pi_{1}(\mu \mid \sigma) d \mu
$$

is invariant under the action of G_{0} if and only if $\pi_{1}(\mu \mid \sigma)=\frac{1}{\sigma} h\left(\frac{\mu}{\sigma}\right)$.
This result gives a characterization for choosing $\pi_{1}(\mu \mid \sigma)$

- scaled by σ,
- centered at zero (the null model).
or equivalently a characterization of Jeffreys' considerations of similarity.

Predictive matching

The minimal size (new definition) associated with

$$
\left\{M_{1}, \pi_{1}(\mu, \sigma)=\sigma^{-1} h(\mu / \sigma) \pi_{1}(\sigma)\right\}
$$

Predictive matching

The minimal size (new definition) associated with

$$
\left\{M_{1}, \pi_{1}(\mu, \sigma)=\sigma^{-1} h(\mu / \sigma) \pi_{1}(\sigma)\right\}, \text { is } n^{*}=1
$$

> Result
> If in addition $\pi_{0}(\sigma)=\pi^{H}(\sigma)$ and $\pi_{1}(\sigma)=\pi^{H}(\sigma)$ where $\pi^{H}(\sigma)=1 / \sigma$ (ie the right-Haar measure for G_{0}) then the resulting MS procedure is exact predictive matching (under the weak assumption of even h).

Proof.

Jeffreys (1961) (a very ingenious change of variable), generalized by Berger et al. (1998) using group invariance theory.

Predictive matching

Using

$$
\begin{equation*}
\pi_{0}(\sigma)=\sigma^{-1}, \pi_{1}(\mu, \sigma)=\sigma^{-1} \sigma^{-1} h(\mu / \sigma) \tag{1}
\end{equation*}
$$

is of course the basis for Jeffreys' proposal.

Predictive matching

Using

$$
\begin{equation*}
\pi_{0}(\sigma)=\sigma^{-1}, \quad \pi_{1}(\mu, \sigma)=\sigma^{-1} \sigma^{-1} h(\mu / \sigma) \tag{1}
\end{equation*}
$$

is of course the basis for Jeffreys' proposal.

A subtle difference
Here (1) becomes justified (almost characterized) through invariance and predictive matching while Jeffreys justified its use on the grounds of orthogonality (here unneeded).

Predictive matching

Using

$$
\begin{equation*}
\pi_{0}(\sigma)=\sigma^{-1}, \quad \pi_{1}(\mu, \sigma)=\sigma^{-1} \sigma^{-1} h(\mu / \sigma) \tag{1}
\end{equation*}
$$

is of course the basis for Jeffreys' proposal.

A subtle difference

Here (1) becomes justified (almost characterized) through invariance and predictive matching while Jeffreys justified its use on the grounds of orthogonality (here unneeded).

- Consistency criterion

It is well known (e.g. Jeffreys (1961); Fernández et al. 2001; Liang et al. 2008) that, in this case, a density h with heavy tails (no moments) ensures consistency.

Problem 2

Suppose \mathbf{y} is an iid sample of a normal population with μ unknown and the hypotheses about the standard deviation

$$
H_{0}: \sigma=\sigma_{0}, \quad H_{1}: \sigma \neq \sigma_{0}
$$

where σ_{0} is certain positive number.
The priors $\pi_{0}(\mu)$ and $\pi_{1}(\mu, \sigma)=\pi_{1}(\sigma \mid \mu) \pi_{1}(\mu)$ needs to be assigned.

Problem 2

Suppose \mathbf{y} is an iid sample of a normal population with μ unknown and the hypotheses about the standard deviation

$$
H_{0}: \sigma=\sigma_{0}, \quad H_{1}: \sigma \neq \sigma_{0}
$$

where σ_{0} is certain positive number.
The priors $\pi_{0}(\mu)$ and $\pi_{1}(\mu, \sigma)=\pi_{1}(\sigma \mid \mu) \pi_{1}(\mu)$ needs to be assigned.

- Basic criterion: $\pi_{1}(\sigma \mid \mu)$ must be proper and not arbitrarily vague.

Invariance

In this case M_{0} and M_{1} are invariant under the group $G_{0}=\{g \in \mathcal{R}\}$ with action over \mathbf{y} as $g(\mathbf{y})=\mathbf{y}+g \mathbf{1}_{n}$.

Result

Invariance

In this case M_{0} and M_{1} are invariant under the group $G_{0}=\{g \in \mathcal{R}\}$ with action over \mathbf{y} as $g(\mathbf{y})=\mathbf{y}+g \mathbf{1}_{n}$.

Result

$$
\mathbf{y} \sim f_{1}(\mathbf{y} \mid \mu)=\int f_{1}(\mathbf{y} \mid \sigma, \mu) \pi_{1}(\sigma \mid \mu) d \sigma
$$

is invariant under the action of G_{0} (and hence the priors satisfy the criterion) if and only if $\pi_{1}(\sigma \mid \mu)=h(\sigma)$.

Hence:

Invariance

In this case M_{0} and M_{1} are invariant under the group $G_{0}=\{g \in \mathcal{R}\}$ with action over \mathbf{y} as $g(\mathbf{y})=\mathbf{y}+g \mathbf{1}_{n}$.

Result

$$
\mathbf{y} \sim f_{1}(\mathbf{y} \mid \mu)=\int f_{1}(\mathbf{y} \mid \sigma, \mu) \pi_{1}(\sigma \mid \mu) d \sigma
$$

is invariant under the action of G_{0} (and hence the priors satisfy the criterion) if and only if $\pi_{1}(\sigma \mid \mu)=h(\sigma)$.

Hence: $\pi_{1}(\sigma \mid \mu)$ must not depend on μ.

Predictive matching

Again the minimal size (new definition) associated with

$$
\left\{M_{1}, \pi_{1}(\mu, \sigma)=h(\sigma) \pi_{1}(\mu)\right\}, \quad \text { is } \quad n^{*}=1
$$

Result

Predictive matching

Again the minimal size (new definition) associated with

$$
\left\{M_{1}, \pi_{1}(\mu, \sigma)=h(\sigma) \pi_{1}(\mu)\right\}, \quad \text { is } \quad n^{*}=1
$$

Result

If we take $\pi_{0}(\mu)=\pi^{H}(\mu)$ and $\pi_{1}(\mu)=\pi^{H}(\mu)$ where $\pi^{H}(\mu)=1$ (ie the right-Haar measure for G_{0}), then the resulting procedure is exact predictive matching.

Consistency criteria

It can be seen that the observed likelihood ratio $\Lambda_{10} \rightarrow \infty$ if and only if $n \geq 2$ and either $S \rightarrow \infty$ or $S \rightarrow 0$.

Result

Consistency criteria

It can be seen that the observed likelihood ratio $\Lambda_{10} \rightarrow \infty$ if and only if $n \geq 2$ and either $S \rightarrow \infty$ or $S \rightarrow 0$.

Result

- If $S \rightarrow \infty$ then $B_{10} \rightarrow \infty$ (independently of h),

Consistency criteria

It can be seen that the observed likelihood ratio $\Lambda_{10} \rightarrow \infty$ if and only if $n \geq 2$ and either $S \rightarrow \infty$ or $S \rightarrow 0$.

Result

- If $S \rightarrow \infty$ then $B_{10} \rightarrow \infty$ (independently of h),
- If $S \rightarrow 0$ then $B_{10} \rightarrow \infty$ for all $n \geq 2$ if

$$
\int_{0}^{\infty} \sigma^{1 / 2} h(\sigma) d \sigma=\infty
$$

Consistency criteria

It can be seen that the observed likelihood ratio $\Lambda_{10} \rightarrow \infty$ if and only if $n \geq 2$ and either $S \rightarrow \infty$ or $S \rightarrow 0$.

Result

- If $S \rightarrow \infty$ then $B_{10} \rightarrow \infty$ (independently of h),
- If $S \rightarrow 0$ then $B_{10} \rightarrow \infty$ for all $n \geq 2$ if

$$
\int_{0}^{\infty} \sigma^{1 / 2} h(\sigma) d \sigma=\infty .
$$

Note: this is a stronger requirement than having no moments and is not met, for instance, by the conjugate prior.

Problem 3

Consider the Gamma density with mean μ and shape parameter α :

$$
G a(y \mid \alpha, \mu)=\left(\frac{\alpha}{\mu}\right)^{\alpha} \Gamma(\alpha)^{-1} y^{\alpha-1} e^{-y \alpha / \mu} .
$$

Now suppose that \mathbf{y} is an iid sample of a gamma population with mean μ unknown and the hypotheses about the shape parameter

$$
H_{0}: \alpha=\alpha_{0}, \quad H_{1}: \alpha \neq \alpha_{0},
$$

where α_{0} is certain positive number.
The priors $\pi_{0}(\mu)$ and $\pi_{1}(\mu, \alpha)=\pi_{1}(\alpha \mid \mu) \pi_{1}(\mu)$ needs to be assigned.

Problem 3

Consider the Gamma density with mean μ and shape parameter α :

$$
G a(y \mid \alpha, \mu)=\left(\frac{\alpha}{\mu}\right)^{\alpha} \Gamma(\alpha)^{-1} y^{\alpha-1} e^{-y \alpha / \mu} .
$$

Now suppose that \mathbf{y} is an iid sample of a gamma population with mean μ unknown and the hypotheses about the shape parameter

$$
H_{0}: \alpha=\alpha_{0}, \quad H_{1}: \alpha \neq \alpha_{0},
$$

where α_{0} is certain positive number.
The priors $\pi_{0}(\mu)$ and $\pi_{1}(\mu, \alpha)=\pi_{1}(\alpha \mid \mu) \pi_{1}(\mu)$ needs to be assigned.

- Basic criterion: $\pi_{1}(\alpha \mid \mu)$ must be proper and not arbitrarily vague.

Invariance

Here M_{0} and M_{1} are invariant under the group $G_{0}=\{g \in(0, \infty)\}$ with action over \mathbf{y} as $g(\mathbf{y})=g \mathbf{y}$.

Result

Invariance

Here M_{0} and M_{1} are invariant under the group $G_{0}=\{g \in(0, \infty)\}$ with action over \mathbf{y} as $g(\mathbf{y})=g \mathbf{y}$.

Result

$$
\mathbf{y} \sim f_{1}(\mathbf{y} \mid \mu)=\int f_{1}(\mathbf{y} \mid \alpha, \mu) \pi_{1}(\alpha \mid \mu) d \alpha
$$

is invariant under the action of G_{0} (and hence the priors satisfy the criterion) if and only if

$$
\pi_{1}(\alpha \mid \mu)=h(\alpha) .
$$

Hence:

Invariance

Here M_{0} and M_{1} are invariant under the group $G_{0}=\{g \in(0, \infty)\}$ with action over \mathbf{y} as $g(\mathbf{y})=g \mathbf{y}$.

Result

$$
\mathbf{y} \sim f_{1}(\mathbf{y} \mid \mu)=\int f_{1}(\mathbf{y} \mid \alpha, \mu) \pi_{1}(\alpha \mid \mu) d \alpha
$$

is invariant under the action of G_{0} (and hence the priors satisfy the criterion) if and only if

$$
\pi_{1}(\alpha \mid \mu)=h(\alpha) .
$$

Hence: $\pi_{1}(\alpha \mid \mu)$ must not depend on μ.

Predictive matching criterion

The minimal size (new definition) associated with

$$
\left\{M_{1}, \pi_{1}(\mu, \alpha)=h(\alpha) \pi_{1}(\mu)\right\}, \quad \text { is } \quad n^{*}=1
$$

Result

Predictive matching criterion

The minimal size (new definition) associated with

$$
\left\{M_{1}, \pi_{1}(\mu, \alpha)=h(\alpha) \pi_{1}(\mu)\right\}, \quad \text { is } \quad n^{*}=1
$$

Result

If we take $\pi_{0}(\mu)=\pi^{H}(\mu)$ and $\pi_{1}(\mu)=\pi^{H}(\mu)$ where $\pi^{H}(\mu)=1 / \mu$ is the right-Haar measure for G_{0}, then exact predictive matching criterion is satisfied.

Consistency criteria

In this case the observed likelihood ratio Λ_{10} has a more involved expression, $\Lambda_{10}=\Lambda_{10}\left(n, \bar{y}^{g}, \bar{y}\right)$ where \bar{y}^{g} is the geometric mean.

Consistency criteria

In this case the observed likelihood ratio Λ_{10} has a more involved expression, $\Lambda_{10}=\Lambda_{10}\left(n, \bar{y}^{g}, \bar{y}\right)$ where \bar{y}^{g} is the geometric mean. Still it can be proved that if $\bar{y}^{g} / \bar{y} \rightarrow 1$ then $\Lambda_{10} \rightarrow \infty$ (more of such situations?).

Result

Consistency criteria

In this case the observed likelihood ratio Λ_{10} has a more involved expression, $\Lambda_{10}=\Lambda_{10}\left(n, \bar{y}^{g}, \bar{y}\right)$ where \bar{y}^{g} is the geometric mean.

Still it can be proved that if $\bar{y}^{g} / \bar{y} \rightarrow 1$ then $\Lambda_{10} \rightarrow \infty$ (more of such situations?).

Result
If $\bar{y}^{g} / \bar{y} \rightarrow 1$ then $B_{10} \rightarrow \infty$ if

$$
\int_{0}^{\infty} \alpha^{1 / 2} h(\alpha) d \alpha=\infty
$$

Priors that satisfy the criteria

- Pr1. $H_{0}: \mu=0$ vs. $H_{1}: \mu \neq 0(\mu$ is a normal mean $)$:

$$
\pi_{0}(\sigma)=\sigma^{-1}, \pi_{1}(\mu, \sigma)=\sigma^{-2} h(\mu / \sigma)
$$

with h proper (not vague), even and $\int x h(x) d x=\infty$

- Pr2. $H_{0}: \sigma=\sigma_{0}$ vs. $H_{1}: \sigma \neq \sigma_{0}(\sigma$ is a normal sd):

$$
\pi_{0}(\mu)=1, \quad \pi_{1}(\mu, \sigma)=h(\sigma)
$$

with h proper (not vague) and $\int \sqrt{x} h(x) d x=\infty$

- Pr3. $H_{0}: \alpha=\alpha_{0}$ vs. $H_{1}: \alpha \neq \alpha_{0}$ (α is a gamma shape):

$$
\pi_{0}(\mu)=1, \quad \pi_{1}(\mu, \alpha)=h(\alpha)
$$

with h proper (not vague) and $\int \sqrt{x} h(x) d x=\infty$

(2) 2. The formal model selection criteria

(3) 3. Three examples three
4. 4. DB priors and the criteria

- Definition
- DB priors in the 3 examples

General definition

For the problem

$$
M_{0}: f_{0}(\mathbf{y} \mid \boldsymbol{\alpha}), \quad M_{1}: f_{1}(\mathbf{y} \mid \boldsymbol{\alpha}, \boldsymbol{\beta})
$$

Bayarri and García-Donato (2008) proposed the Divergence-Based priors:

$$
\pi_{1}^{D}(\boldsymbol{\beta} \mid \boldsymbol{\alpha}) \propto g_{q}\left(D\left(\boldsymbol{\beta}, \boldsymbol{\beta}_{0}, \boldsymbol{\alpha}\right)\right) \pi_{1}^{N}(\boldsymbol{\beta} \mid \boldsymbol{\alpha})
$$

where

- D is some 'distance' between f_{1} and f_{0},

General definition

For the problem

$$
M_{0}: f_{0}(\mathbf{y} \mid \boldsymbol{\alpha}), \quad M_{1}: f_{1}(\mathbf{y} \mid \boldsymbol{\alpha}, \boldsymbol{\beta})
$$

Bayarri and García-Donato (2008) proposed the Divergence-Based priors:

$$
\pi_{1}^{D}(\boldsymbol{\beta} \mid \boldsymbol{\alpha}) \propto g_{q}\left(D\left(\boldsymbol{\beta}, \boldsymbol{\beta}_{0}, \boldsymbol{\alpha}\right)\right) \pi_{1}^{N}(\boldsymbol{\beta} \mid \boldsymbol{\alpha})
$$

where

- D is some 'distance' between f_{1} and f_{0},
- g_{q} is a real value decreasing function indexed by a parameter $q>0$, and

General definition

For the problem

$$
M_{0}: f_{0}(\mathbf{y} \mid \boldsymbol{\alpha}), \quad M_{1}: f_{1}(\mathbf{y} \mid \boldsymbol{\alpha}, \boldsymbol{\beta})
$$

Bayarri and García-Donato (2008) proposed the Divergence-Based priors:

$$
\pi_{1}^{D}(\boldsymbol{\beta} \mid \boldsymbol{\alpha}) \propto g_{q}\left(D\left(\boldsymbol{\beta}, \boldsymbol{\beta}_{0}, \boldsymbol{\alpha}\right)\right) \pi_{1}^{N}(\boldsymbol{\beta} \mid \boldsymbol{\alpha})
$$

where

- D is some 'distance' between f_{1} and f_{0},
- g_{q} is a real value decreasing function indexed by a parameter $q>0$, and
- $\pi_{1}^{N}(\boldsymbol{\beta} \mid \boldsymbol{\alpha})$ is an objective estimation prior (possibly improper).

DB priors: recommended ingredients

This definition defines a vast family of prior distributions (depending on D, h_{q} and $\left.\pi_{1}^{N}\right)$.

DB priors: recommended ingredients

This definition defines a vast family of prior distributions (depending on D, h_{q} and π_{1}^{N}).
Below the author's specific recommendations:

DB priors: recommended ingredients

This definition defines a vast family of prior distributions (depending on D, h_{q} and π_{1}^{N}).
Below the author's specific recommendations:

- $D=$ symmetrized Kullback-Leibler divergence divided by n,

DB priors: recommended ingredients

This definition defines a vast family of prior distributions (depending on D, h_{q} and π_{1}^{N}).
Below the author's specific recommendations:

- $D=$ symmetrized Kullback-Leibler divergence divided by n,
- $g_{q}(x)=(1+x)^{-q}$ (has polynomial tails),

DB priors: recommended ingredients

This definition defines a vast family of prior distributions (depending on D, h_{q} and π_{1}^{N}).
Below the author's specific recommendations:

- $D=$ symmetrized Kullback-Leibler divergence divided by n,
- $g_{q}(x)=(1+x)^{-q}$ (has polynomial tails),
- π_{1}^{N} the reference prior of Berger and Bernardo (1992),

DB priors: recommended ingredients

This definition defines a vast family of prior distributions (depending on D, h_{q} and π_{1}^{N}).
Below the author's specific recommendations:

- $D=$ symmetrized Kullback-Leibler divergence divided by n,
- $g_{q}(x)=(1+x)^{-q}$ (has polynomial tails),
- π_{1}^{N} the reference prior of Berger and Bernardo (1992),
- (partly our intuition)

$$
q=\frac{1}{2}+\inf \left\{q>0: \pi_{1}^{D}() \text { is proper }\right\}
$$

DB priors, the examples and the criteria

- For the problems shown, DB priors lead to proposals that fully satisfy with criteria,

DB priors, the examples and the criteria

- For the problems shown, DB priors lead to proposals that fully satisfy with criteria,
- we expect this happening with broad generality (formal proofs are work in progress).

Problem 1: normal mean with σ unknown

In this case

$$
\pi_{1}^{D}(\mu \mid \sigma)=\operatorname{Cauchy}(\mu \mid 0, \sigma)
$$

Coincides with Jeffreys' famous proposal.

Problem 2: normal standard deviation normal with μ unknown

In this case

$$
\pi_{1}^{D}(\sigma \mid \mu)=\frac{\sqrt{\pi}}{4 \Gamma(5 / 4)^{2}} \frac{1}{\sigma}\left(\frac{\sigma_{0}^{2}}{\sigma^{2}}+\frac{\sigma^{2}}{\sigma_{0}^{2}}\right)^{-1 / 2} .
$$

Problem 3: gamma shape parameter (mean μ unknown)

In this case
$\pi_{1}^{D}(\alpha \mid \mu) \propto\left(1+\left(\alpha-\alpha_{0}\right)\left(\log \left(\frac{\alpha}{\alpha_{0}}\right)+\psi(\alpha)-\psi\left(\alpha_{0}\right)\right)\right)^{-1 / 2}\left(\psi^{(1)}(\alpha)-\alpha^{-1}\right)^{1 / 2}$,
where ψ and $\psi^{(1)}$ are the digamma and trigamma functions respectively.

Thanks!

Thanks!

Thanks!

Problem 3: an educative radiography of $\pi_{1}^{D}(\alpha \mid \mu)$

The problem $H_{0}: \alpha=3$ vs. $H_{1}: \alpha \neq 3$.

$$
\pi_{1}^{D}(\alpha \mid \mu) \quad=c\left(\alpha_{0}\right) D\left(\alpha, \alpha_{0}\right)^{-1 / 2} \quad \times \quad \pi^{N}(\alpha \mid \mu)
$$

Problem 3: an educative radiography of $\pi_{1}^{D}(\alpha \mid \mu)$

The problem $H_{0}: \alpha=3$ vs. $H_{1}: \alpha \neq 3$.

$$
\pi_{1}^{D}(\alpha \mid \mu) \quad=c\left(\alpha_{0}\right) D\left(\alpha, \alpha_{0}\right)^{-1 / 2} \quad \times \quad \pi^{N}(\alpha \mid \mu)
$$

Problem 3: an educative radiography of $\pi_{1}^{D}(\alpha \mid \mu)$

The problem $H_{0}: \alpha=3$ vs. $H_{1}: \alpha \neq 3$.

$$
\pi_{1}^{D}(\alpha \mid \mu) \quad=c\left(\alpha_{0}\right) D\left(\alpha, \alpha_{0}\right)^{-1 / 2} \quad \times \quad \pi^{N}(\alpha \mid \mu)
$$

Invariance criterion: surprising facts

- $\pi^{H}(\boldsymbol{\alpha})$ is typically improper (and hence could be multiplied by an arbitrary constant) and yet, if the same $\pi^{H}(\boldsymbol{\alpha})$ is used for all marginal models, the prior is appropriately calibrated across models in the strong sense of exact predictive matching.
- For invariant models, the combination of the Invariance criterion and (exact) Predictive matching criterion allows complete specification of the prior for $\boldsymbol{\alpha}$ in all models and this argument does not require orthogonality, which, since Jeffreys (1961), has been viewed as a necessary condition to say that one can use a common prior for $\boldsymbol{\alpha}$ in different models.
- For those concerned with the use of improper priors: the use of any approximating series of proper priors for $\pi^{H}(\boldsymbol{\alpha})$ will, in the limit, yield Bayes factors equal to that obtained directly from $\pi^{H}(\boldsymbol{\alpha})$.

