Bayes spaces: use of improper priors and distances between densities

J. J. Egozcue ${ }^{1}$, V. Pawlowsky-Glahn², R. Tolosana-Delgado ${ }^{1}$, M. I. Ortego ${ }^{1}$ and G. van den Boogaart ${ }^{3}$

${ }^{1}$ Universidad Politécnica de Cataluña, Spain
${ }^{2}$ Universidad de Girona, Spain
${ }^{3}$ T.U. Freiberg, Germany

Workshop on Bayesian Methods, UCM
Madrid, November 11, 2011

Distances/divergences for probability densities

applications:

- goodness of fit
- fitting distributions (e.g. kernel estimation)
- information theory (e.g. Kullback-Leibler div.)
examples of distances/divergences:
- from functional spaces: L^{1}, L^{2}, L^{∞} applied to pdf's or cdf's
- ad-hoc: Hellinger-Matusita; Chi-square;
- from information theory: Kullback-Leibler, ...

What is lacking in these distances/divergences?

compatibility with probabilistic operations

two relevant operations:

- convolution of pdf's: associated with sum of random variables.
- Bayes updating: information acquisition
there is a need of a meaningful algebraic/geometric structure associated with Bayes updating

simplex and compositional data

composition: equivalent class of real vectors with proportional positive components

- components quantify parts of a whole
- only ratios between components are informative
- standard representative: a point in the simplex (components adding to 1)

Euclidean structure of the simplex

- interpretable operations: perturbation \oplus, powering \odot
- Aitchison metrics: inner product, norm and distance
- orthogonal bases, reference measure
perturbation in the simplex is the Bayes formula for discrete probability vectors

simplex

Coordinate representation

b1

$$
\begin{array}{|cc|}
\hline \text {-PRIOR -LIKELIHOOD -POSTERIOR } \\
\hline
\end{array}
$$

simplex coordinates

prior

likelihood

posterior balance-coordinates

$$
b_{1}=\frac{1}{\sqrt{2}} \log \frac{p_{1}}{p_{2}}
$$

$$
b_{2}=\sqrt{\frac{2}{3}} \log \frac{\left(p_{1} p_{2}\right)^{1 / 2}}{p_{3}}
$$

leading ideas and goal

heuristic idea: a histogram is a composition and it is equivalent to a simplex element

- increasing the number of classes in a histogram it approaches a pdf...
- perturbation in the simplex is discrete Bayes formula, it can be extended to the continuous case...

goal

- vector space structure with Bayes updating as addition
- metric spaces of densities
- Hilbert spaces of densities

λ-equivalent measures

assuring existence of densities

measurable space: (Ω, \mathfrak{A})
sigma-additive measures: λ equivalent to μ (finite or infinite)

$$
\mu \equiv \lambda \Leftrightarrow \forall A \in \mathfrak{A},(\lambda(A)=0 \Leftrightarrow \mu(A)=0)
$$

- λ and μ have the same support
- the Radon-Nikodým derivative (density) exists

$$
\frac{d \mu}{d \lambda}=f_{\mu}
$$

Examples of equivalent measures:

- $\Omega=\mathbb{R}$: normal, t-student, Lebesgue measure (improper uniform)
- $\Omega=\mathbb{R}_{+}$: log-normal, gamma, Lebesgue measure in \mathbb{R}_{+}
- $\Omega=\{0,1,2,3, \ldots\}$: Poisson, geometric, counting measure

B-equivalence: proportional densities

reference measure λ : $\mu_{1}, \mu_{2} \equiv \lambda$ densities: $f_{1}=d \mu_{1} / d \lambda, f_{2}=d \mu_{2} / d \lambda$
μ_{1}, μ_{2} are B-equivalent, $\mu_{1}=B \mu_{2}$, iff

$$
\exists c>0, \forall A \in \mathfrak{A}, \mu_{1}(A)=c \cdot \mu_{2}(A), f_{1}=c \cdot f_{2},(\lambda-\text { a.e. })
$$

Remarks

- likelihood principle: proportional likelihood functions convey identical information
- normalization of probabilities: not essential
- essential information: ratios of probabilities

perturbation and powering

Bayes space, reference λ : elements of $B(\lambda)$ are classes of B-equivalent measures/densities
perturbation (addition, group operation): $f_{1}, f_{2} \in B(\lambda)$

$$
f_{1} \oplus f_{2}={ }_{B} f_{1} \cdot f_{2}(\lambda-\text { a.e. }) \quad, \quad\left(\mu_{1} \oplus \mu_{2}\right)(A)=\int_{A} \frac{d \mu_{1}}{d \lambda} \frac{d \mu_{2}}{d \lambda} d \lambda
$$

powering (multiplication): $f \in B(\lambda), \alpha \in \mathbb{R}$

$$
\alpha \odot f={ }_{B} f^{\alpha}(\lambda-\text { a.e. }) \quad, \quad(\alpha \odot \mu)(A)=\int_{A}\left(\frac{d \mu}{d \lambda}\right)^{\alpha} d \lambda
$$

vector space and Bayes theorem

$B(\lambda)$-space includes

- prior densities, proper or improper
- likelihood functions, integrable or not
- posterior densities, proper or improper

Bayes theorem

$$
p={ }_{B} L \oplus \pi=B\left(\bigoplus_{i=1}^{n} L_{i}\right) \oplus \pi
$$

perturbation/Bayes updating is an internal operation in $B(\lambda)$ powering means (linear) weighting iterate perturbation: group properties allow improper intermediate steps

vector space and exponential families

exponential families, k-parametric, natural parameters

$$
f(x \mid \vec{\theta})=C(\vec{\theta}) g(x) \exp \left[\sum_{j=1}^{k} \theta_{j} T_{j}(x)\right]
$$

$B(\lambda)$ expression

$$
f_{\lambda}(x)={ }_{B} g_{\lambda}(x) \oplus \bigoplus_{j=1}^{k}\left(\theta_{j} \odot \exp \left[T_{j}(x)\right]\right)
$$

k-dimensional affine subspace

- $g_{\lambda}(x)$ origen of the affine subspace
- $\exp \left[T_{j}(x)\right]$ basis of the subspace
- θ_{j} coordinates of $f_{\lambda}(x)$
probability densities are a convex cone of the k-dimensional affine subspace

example: distribution of a sample maximum

n-sample, distribution F, density f density of sample maximum

$$
f_{M}(x)=n f(x) \cdot[F(x)]^{n-1}
$$

reference f_{0}

$$
f_{M}(x)=B_{B} \underbrace{\frac{f(x)}{f_{0}(x)}}_{\text {origin }} \oplus(n-1) \odot \underbrace{[F(x)]}_{\text {direction }}
$$

the family is 1-parametric and follows a straight-line with n

centered log-ratio mapping

clr for compositions

$$
\operatorname{clr}(\vec{x})=\log \left(x_{1}, x_{2}, \ldots, x_{k}\right)-\frac{1}{k} \sum_{j=1}^{k} \log x_{j} \quad, \sum_{j=1}^{k} c \operatorname{clr}(\vec{x})=0
$$

clr in $B(P)$ reference P probability measure; density f_{P} definition of clr, $f \in B(P)$

$$
c \operatorname{lr}(f)=\log (f)-\frac{1}{P(\Omega)} \int \log (f(x)) f_{P}(x) d x
$$

P prob. measure $\Leftrightarrow P(\Omega)=1$
cIr mapping is linear; scale and $B(P)$-reference invariant

$B^{q}(P)$ spaces

$B^{q}(P)$ space of measures/densities, $1 \leq q<\infty$

$$
B^{q}(P)=\left\{f \in B(P): \int|\log f(x)|^{q} f_{P}(x) d x<+\infty\right\},
$$

- clr exists for densities in $B^{1}(P)$;
- clr : $B^{1}(P) \rightarrow L_{0}^{1}(P)$ is one-to-one
- $B^{1}(P) \supseteq B^{2}(P) \supseteq \cdots \supseteq B^{\infty}(P)$
- $B^{q}(P)$ are Minkowsky metric spaces
$d_{B q}\left(f_{1}, f_{2}\right)=d_{L q}\left(\operatorname{clr}\left(f_{1}\right), \operatorname{clr}\left(f_{2}\right)\right)=\left[\int\left(\operatorname{clr}\left(f_{1}\right)-\operatorname{clr}\left(f_{2}\right)\right)^{q} d P\right]^{1 / q}$

B-derivative

$f(x \mid t) \in B^{1}(P) ; t$ external variable (time, space, sample values)
$f: \mathbb{R} \rightarrow B^{1}(P)$
Definition of B-derivative

$$
\frac{d^{\oplus}}{d t} f(x \mid t)=B \lim _{h \rightarrow 0} \frac{1}{h} \odot[f(x \mid t+h) \ominus f(x \mid t)]
$$

if it exists. $\ominus=\oplus(-1) \odot$

- describes change of densities with t
- differential calculus and differential equations for densities/measures
- useful concept in applications (Bayesian, robust stats.)

Hilbert space

$B^{2}(P)$ is a separable Hilbert space

$$
c l r: B^{2}(P) \leftrightarrow L_{0}^{2}(P)
$$

inner product, $f_{1}, f_{2} \in B^{2}(P)$

$$
\left\langle f_{1}, f_{2}\right\rangle_{B^{2}}=\left\langle\operatorname{clr}\left(f_{1}\right), \operatorname{c|r}\left(f_{2}\right)\right\rangle_{L^{2}}
$$

distance and norm

$$
d_{B^{2}}\left(f_{1}, f_{2}\right)=d_{L^{2}}\left(\operatorname{clr}\left(f_{1}\right), \operatorname{clr}\left(f_{2}\right)\right) \quad, \quad\left\|f_{1}\right\|_{B^{2}}=\left\|\operatorname{clr}\left(f_{1}\right)\right\|_{L^{2}}
$$

Hilbert basis and Fourier coordinates

$\psi_{0}, \psi_{1}, \psi_{2}, \ldots$ a Hilbert basis in $L^{2}(P)$
$\psi_{0}(x)$ constant function
Hilbert basis of $B^{2}(P)$

$$
\exp \left(\psi_{1}\right), \exp \left(\psi_{2}\right), \ldots
$$

coordinates: Fourier coefficients, $f \in B^{2}(P)$

$$
f={ }_{B} \bigoplus_{j=1}^{\infty}\left\langle f, \exp \left(\psi_{j}\right)\right\rangle_{B^{2}} \odot \exp \left(\psi_{j}\right)
$$

- Fourier coefficients are real orthogonal coordinates
- if normalized, distances, norms, orthogonal projections, ... are computed as ℓ^{2} sequences
- they allow to use standard "real multivariate statistics"

the Normal family

reference $P=N(0,1)$ with Lebesgue density f_{0}
P-density g corresponding to $N\left(m, \sigma^{2}\right)$

$$
g(x)={ }_{B} f(x) / f_{0}(x)={ }_{B} \exp \left(-\frac{(x-m)^{2}-\sigma^{2} x^{2}}{2 \sigma^{2}}\right)
$$

clr

$$
\operatorname{clr}(g)(x)=\frac{x^{2}-1}{2}+\frac{1-x^{2}+2 m x}{2 \sigma^{2}}
$$

distance, $g_{i} \sim N\left(m_{i}, \sigma_{i}^{2}\right)$

$$
d_{B^{2}}^{2}\left(g_{1}, g_{2}\right)=\frac{1}{2}\left(\frac{1}{\sigma_{1}^{2}}-\frac{1}{\sigma_{2}^{2}}\right)^{2}+\left(\frac{m_{1}}{\sigma_{1}^{2}}-\frac{m_{2}}{\sigma_{2}^{2}}\right)^{2}
$$

Fourier expansion of Normal family

orthonormal Hilbert basis in $L^{2}(N(0,1))$: Hermite

$$
\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} H_{j}\left(2^{-1 / 2} x\right) H_{k}\left(2^{-1 / 2} x\right) e^{-x^{2} / 2} d x=\delta_{j k} K_{j}^{-2}, K_{j}=2^{-j / 2}(j!)^{-1 / 2}
$$

Hilbert basis in $B^{2}(N(0,1))$

$$
\exp \left[\psi_{j}(x)\right]=\exp \left[K_{j} H_{j}\left(2^{-1 / 2} x\right)\right], j=1,2, \ldots
$$

Fourier expansion

$$
\begin{gathered}
g(x)={ }_{B} c_{1} \odot \exp \left[\psi_{1}(x)\right] \oplus c_{2} \odot \exp \left[\psi_{2}(x)\right] \\
c_{1}=\frac{m}{\sigma^{2}}, c_{2}=-\sqrt{2}\left(\frac{1}{2 \sigma^{2}}-\frac{1}{2}\right), c_{j}=0, j=3,4, \ldots,
\end{gathered}
$$

normals

norms of normals

reference: $N(0,1)$
$N(-2,1), \quad N\left(-1,1.5^{2}\right), \quad N\left(0,2^{2}\right), \quad N\left(1,2.5^{2}\right)$

conclusions

results

- proportional densities are considered equivalent $(B(\lambda))$
- perturbation is the (extended) Bayes updating
- proper and improper priors, likelihoods and posteriors are in $B(\lambda)$
- $(B(\lambda), \oplus, \odot)$ is a vector space
- linear affine subspaces contain exponential families
- q-log-integrable densities $\left(B^{q}(P)\right)$ are metric spaces
- clr : $B^{1}(P) \rightarrow L_{0}^{1}(P)$ is one-to-one (isometry)
- 2-log-integrable densities in $B^{2}(P)$ are a separable Hilbert space. Standard tools are then available:
- Hilbert basis and Fourier expansions
- distances, norm, orthogonal projections
- Aitchison geometry of the simplex is a particular case.

conclusions

consequences

- the new framework allows to rephrase most standard probabilistic models (Bayes theorem, exponential families, ...) in a simple and formal way
- tools of vector, metric and Hilbert spaces are now available for probabilistic/statistical modelling

a good deal of research is still pending...

- the role of references in $B^{2}(P)$
- possible uses of Fourier transforms in $B^{1}(P)$ and $B^{2}(P)$
- asymptotic theory on $B(\lambda)$
- characteristics of well-known families (normal, gamma, beta, t-student,...)
- approximation of $B^{2}(P)$ spaces by the simplex geometry

some steps towards B-spaces

Aitchison, J. (1986). The Statistical Analysis of Compositional Data. Monographs on Statistics and Applied Probability. Chapman \& Hall Ltd., London (UK). 416 p.

Pawlowsky-Glahn, V. and J.J. Egozcue (2001) Geometric Approach to Statistical Analysis on the Simplex, Stochastic Environmental Research and Risk Assessment 15 (5), 384-398

Egozcue, J. J., J. L. Díaz-Barrero and V. Pawlowsky-Glahn (2006). Hilbert Space of Probability Density Functions Based on Aitchison Geometry, Acta Mathematica Sinica 22 (4), 1175-1182
van den Boogaart, K. G., J. J. Egozcue, and V. Pawlowsky-Glahn (2010). Bayes linear spaces. Statistics and Operations Research Transactions, SORT 34 (2), 201-222

example: zero-inflated Poisson exponential family

reference measure: counting measure

$$
\nu(x)=1, x=0,1,2, \ldots
$$

mixture expression

$$
f(x \mid \phi, p)=(1-p) \cdot \delta(x)+p \cdot \frac{\phi^{x} e^{-\phi}}{x!}
$$

$B(\nu)$ 2-parametric exponential family

$$
\begin{gathered}
f\left(x \mid \theta_{1}, \theta_{2}\right)={ }_{B(\nu)} \underbrace{\frac{1}{x!}}_{\text {origin }} \oplus(\theta_{1} \odot \underbrace{e^{x}}_{\text {basis }_{1}}) \oplus(\theta_{2} \odot \underbrace{e^{\delta(x)}}_{\text {basis }_{2}}) \\
\theta_{1}=\log \phi, \theta_{2}=\log \left[(1-p) e^{\phi}+p\right], C\left(\theta_{1}, \theta_{2}\right)=\left[\exp \left(\theta_{2}\right)+\exp \left(\exp \left(\theta_{1}\right)\right)-1\right]^{-1}
\end{gathered}
$$

3-parametric conjugate family

$$
\pi\left(\theta_{1}, \theta_{2}\right)==_{B} \exp \left(t_{0} \log C\left(\theta_{1}, \theta_{2}\right)+t_{1} \theta_{1}+t_{2} \theta_{2}\right)
$$

