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The display of the data by means of contingency tables is used in different
approaches to statistical inference, for example, to broach the test of homogeneity
of independent multinomial distributions. We develop a Bayesian procedure to
test simple null hypotheses versus bilateral alternatives in contingency tables.
Given independent samples of two binomial distributions and taking a mixed prior
distribution, we calculate the posterior probability that the proportion of successes
in the first population is the same as in the second. This posterior probability
is compared with the p-value of the classical method, obtaining a reconciliation
between both results, classical and Bayesian. The obtained results are generalized
for r × s tables.
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1. Introduction

The r × s table is used for discussing different approaches to statistical inference.
For example, suppose that independent random samples are drawn from two large
populations, and their each member is classified as a “success” or a “failure”. The
first sample is of size n1 and produces a successes and b failures, the second is of size
n2 and produces c successes and d failures. The situation is displayed in the Table 1.

In this situation a quantitative measure of the strength of the evidence that the
data gives support or rejection of the hypothesis that the proportion of successes
in the first population, p1, is equal to the proportion of successes in the second
population, p2, is required. This problem, apparently simple, has given rise to
an extensive literature, since Karl Pearson introduced his already classical �2 test
to value the goodness of the fit (see Pearson, 1900). This is one of the simplest
natural problems to demonstrate clear differences between classical and Bayesian
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Table 1
Data in the 2× 2 table

Successes Failures Total

Sample 1 a b n1

Sample 2 c d n2

Total m1 m2 N

approaches, and also between different types of classical analysis. There are of
course a number of variations on this problem. Some important bayesian references
are given next.

Howard (1998) advocates for the more frequent use of unilateral tests and
approaches to the problem from a Bayesian viewpoint. He considers as hypotheses
of interest H1 � p2 < p1 and H2 � p1 < p2, and gives a quantitative measure of the
strength of the evidence in support of the more likely hypothesis. He assumes that p1

and p2 will not be exactly equal, and that neither will be 0 or 1. Given independent
samples from two binomial distributions, he notes that the posterior probability that
p2 < p1 can be estimated from the standard (uncorrected) �2 significance level. He
has to assume independent Jeffreys priors about the two populations, that is to say,

��p1� p2� ∝ p
−1/2
1 �1− p1�

−1/2p
−1/2
2 �1− p2�

−1/2�

in order to get this result. Besides, he introduces a conjugate family of priors which
incorporate dependence between beliefs about the two populations.

In this same line of work, with unilateral hypotheses like p1 > p2, other
Bayesian approaches to the problem of comparing two proportions for a 2× 2
table can be mentioned; log-odds-ratio methods and inverse-root-sine methods,
which calculate the posterior probability that �1 −�2 > 0 for beta priors, where
�i = log pi�1− pi�

−1, and �i = arcsen
√
pi� i = 1� 2, respectively, as measures of the

degree in which two populations are homogeneous (see Lee, 1997, pp. 152–154).
Quintana (1998) postulates a nonparametric Bayesian model for assessing

homogeneity in r × s contingency tables with fixed right margin totals. The vectors
of classification probabilities are assumed to be a sample from a distribution F ,
and the prior distribution of F is assumed to be a Dirichlet process, centered on a
probability measure � and with weight c. He also assumes a prior distribution for c
and proposes a Bayes factor.

Lindley (1988) gives a probability model for the formation of genotypes from
two alleles. The alleles are A and a, and the genotypes are AA, Aa, and aa (it
is a standard notation). The model can be expressed in terms of two parameters,
� = 1

2 log
4p1p3
p22

and 	 = 1
2 log

p1
p3
. A Bayesian test of the hypothesis that � = 0

versus � �= 0, based on a Bayes factor, is considered, where � = 0 is the null
hypothesis of Hardly-Weinberg equilibrium, H0 � p

2� 2p�1− p�� �1− p�2� p being the
proportion of A’s.

We consider testing equality of proportions of independent multinomial
distributions when the common proportions are known. Our general approach
to the problem of homogeneity consists in working directly with the simple null
hypothesis and calculating its posterior probability. To do this, we will follow the
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Table 2
Pearson’s example

Successes Failures Total

Sample 1 3 15 18
Sample 2 7 5 12
Total 10 20 30

method used by Gómez-Villegas and Sanz (2000) and Gómez-Villegas et al. (2002),
based on assigning an initial probability �0 to the null hypothesis and distributing
the remaining probability in the points of the alternative with a prior density
��p1� p2�. Posterior probabilities of the null hypothesis are calculated with respect
to a mixture of point prior on the null and an independent Dirichlet prior on the
proportions. With this procedure, in the context of the punctual null hypothesis,
it is possible to get a reconciliation between the classical p-value and the Bayesian
posterior probability of the null hypothesis.

Section 2 formulates the problem in a precise way and calculates an exact
expression of the posterior probability that the proportion of successes in the first
population is the same as in the second, and equal to a known common value p0.
Section 3 reaches a reconciliation between the classical and Bayesian results, and
the Pearson (1947) data (see Table 2) is used to illustrate the procedure. Section 4
generalizes the results of Sec. 2 and 3 for a r × s table. Section 5 exposes a summary
of conclusions.

2. Formulation of the Problem and Posterior Probability

Consider Xi� i = 1� 2, independent random binomial variables, B�ni� pi�, and
suppose that we wish to test

H0 � p1 = p2 = p0 versus H1 � p1 �= p2� (1)

where p0 is a known value and the hypothesis p1 �= p2 means that at least one of
them is different from p0, that is to say, �p1� p2� �= �p0� p0�. Moreover, suppose that
our prior opinion about �p1� p2� is given by the density ��p1� p2�. Hence, in order
to test (1), a mixed prior distribution is needed. We propose

�∗�p1� p2� = �0IH0
�p1� p2�+ �1− �0���p1� p2�IH1

�p1� p2��

�0 being the assigned prior probability to the null hypothesis.
Then, the posterior probability of the null hypothesis, when the data of Table 1

has been observed, is

P�H0 � a� c�

= pa+ c
0 �1−p0�

b+d�0

pa+ c
0 �1−p0�

b+d�0 + �1− �0�
∫ 1
0

∫ 1
0 pa

1�1−p1�
bpc

2�1−p2�
d��p1� p2�dp2 dp1
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A possible initial distribution consists in assigning independent uniform prior
distributions, also called independent Laplace distributions, that is to say,

��p1� p2� = I�0�1��p1�I�0�1��p2�


In this situation, we obtain

P�H0 � a� c� =
[
1+ 1− �0

�0

�

]−1

� (2)

where � = p
−m1
0 �1− p0�

−m2 ��a+1���b+1�
��a+b+2�

��c+1���d+1�
��c+d+2� .

A more general assignment consists in using independent beta prior
distributions,

��p1� p2� =
���+ 	�

������	�

��+ ��

�������
p�−1
1 �1− p1�

	−1p
−1
2 �1− p2�

�−1�

where p1� p2 ∈ �0� 1�, ��� 	� � � > 0�.
Then, the posterior probability of the null hypothesis is obtained evaluating

expression (2) in

� = p
−m1
0 �1− p0�

−m2
���+ 	�

������	�

��+ ��

�������

��a+ ����b + 	�

��a+ b + �+ 	�

��c + ���d + ��

��c + d + + ��



The posterior probability that is calculated in expression (2) depends on �0,
the initial prior probability assigned to the null hypothesis H0 � p1 = p2 = p0. Now,
consider the more realistic precise hypothesis

H0� � d��p0� p0�� �p1� p2�� ≤ � versus H1� � d��p0� p0�� �p1� p2�� > �� (3)

with an appropriate metric d and a value of � > 0 sufficiently small. Applying the
method of Gómez-Villegas and Sanz (2000) and Gómez-Villegas et al. (2002), we can
use � �p1� p2�, our opinion about �p1� p2�, and calculate �0 by means of averaging,

�0 =
∫∫

B��p0�p0����
� �p1� p2�dp2 dp1� (4)

where B��p0� p0�� �� = ��p1� p2� ∈ �0� 1�× �0� 1�� d��p0� p0�� �p1� p2�� ≤ ��, the
sphere of center �p0� p0� and radius �.

Then, the prior probability assigned to H0 and to H0� by means of � �p1� p2� is
the same thing.

Different ways of specifying d ��p0� p0� � �p1� p2�� can be considered. One of
them could be considering an arbitrary value of � and dividing it in two values
�1 and �2, may be �1 = �2 = �

2 , and then we would build the distance starting from
�pi − p0� < �i, i = 1� 2. Another way could be considering

B��p0� p0�� �� = ��p1� p2� ∈ �0� 1�× �0� 1�� �p1 − p0�
2 + �p2 − p0�

2 ≤ �2�


By means of this second procedure, the posterior probability obtained in (2) can
be expressed in terms of �. In this article the results are obtained first in function
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of �0, and afterwards are specified in terms of � employing the expression (4). In
particular, it is possible to calculate the value of � in (3) such that �0 = 1

2 . It can be
observed that if our prior opinion about �p1� p2� is the uniform distribution given
by means of the density ��p1� p2� = 1, p1� p2 ∈ �0� 1�, then the value of �0 that is
obtained with the expression (4), for � sufficiently small, is �0 = ��2, the area of the
sphere of radius �.

Note that, in general, H0 � p1 = p2 = p0 in (1) is no natural null hypothesis. By
this reason we consider first a value of p0 and after take an sphere of radius �
about this value. Besides, in general, when we wish to test (1), the value of p0 is
unknown. In spite of this, (1) has a clear theoretical interest because it can be used as
an auxiliary test to develop a Bayesian procedure, with the proposed methodology,
when p0 is unknown or with functional form known.

Suppose that we wish to test (1) with p0 = 1
2 and our prior opinion about

�p1� p2� is given by the uniform density ��p1� p2� = 1, p1� p2 ∈ �0� 1�.
Thereby, the posterior probability of the null hypothesis is

P�H0 � a� c� =
[
1+ 1− �0

�0

�

]−1

� (5)

where � = 2N ��a+1���b+1�
��a+b+2�

��c+1���d+1�
��c+d+2� .

It can be observed that values of � which correspond with �0 >
�

�+1 get
P�H0 � a� c� > 1

2 . Moreover, P�H0 � a� c� = 1
�+1 for � such that �0 = 1

2 .
For the data of Table 2 we obtain � = 6
7265 and, if � = 1√

2�
, then �0 = 1

2 and
P�H0 � a� c� = 0
1294, so that H0 is rejected. Moreover, to accept H0 with the data of
Pearson’s example, � > 0
53905 or �0 > 0
8706. Therefore, for the data of Table 2,
we can observe that there is a wide range of values of �� � < 0
53905, for which
H0 is rejected.

3. Comparison with the Classical Method

From the classical viewpoint, instead of considering the observed data �a� c� as fixed
values and permitting that �p1� p2� changes, the point �p0� p0� of the null hypothesis
is fixed and after the probability of observing a point in some extreme region of the
alternative hypothesis which includes �a� c� is calculated, that is to say, instead of
calculating the posterior probability of the null hypothesis, the p-value is calculated.
(The idea is basically that or H0 is false, or an event with probability very small has
occurred.)

As usual, if we use, as measure of the evidence in support of H1, the discrepancy
between the observed values and the expected values when H0 is true, then, in the
terms of Pearson’s �2 statistic, the test statistical would be the random variable

� = a2

n1p0

+ b2

n1�1− p0�
+ c2

n2p0

+ d2

n2�1− p0�
− N
 (6)

The sampling distribution of � when H0 is true is �22. Then, if the value of �
in the data point is ��a0� c0� = �, and the experiment was repeated independently,
once again sampling n1 subjects randomly from population 1 and n2 subjects
randomly from population 2 for �p0� p0� fixed, the probability that we would get a
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new value of � as big as � or larger than � can be calculated. Therefore, �� ≥ �� is
a possible critical region, and

p = P�� ≥ � � �p0� p0�� = P��22 ≥ �� = e−
�
2 �

is the p-value.
With this procedure, the decision of accepting or rejecting H0 depends on the

size of the p-value, namely, H0 is rejected when p < p∗� p∗ ∈ �0� 1� being a value
sufficiently small.

Now, we are going to suppose that we wish to test (1) with p0 = 1
2 by means of

the previous classical method.
In this situation, the test statistic is the random variable

� = 2
[
a2 + b2

n1

+ c2 + d2

n2

]
− N�

and the evidence used is the p-value,

p = e
N
2 −

a20+b20
n1

− c20+d20
n2 


For the data of Table 2 we obtain � = 8
33333, and a p-value p = 0
015504.
Observe that H0 is rejected for p∗ = 0
05, but for p∗ = 0
01 there is not enough
evidence to reject it, and in that sense H0 is accepted.

To compare the proposed Bayesian method with Pearson’s �2 classical method,
which uses the value given in expression (6) as the test statistical, it would be
interesting if there exists a functional dependence between both statistics, � and �,
or between the posterior probability and the p-value, p. That it to say, � = g���

for some increasing function g � R+ → R+. However, for 2× 2 tables, if n1 = 18
and n2 = 12, it can be observed that for the data of Pearson’s example, �a� c� =
�3� 7�, the value of � in the expression (5) is 6.72 and the value of � in the
expression (6) is 8.33333, whereas if �a� c� = �9� 1�, then � = 7
45 and � = 8
33333.
Hence, such functional dependence is not possible. Furthermore, it can be observed
that in contradistinction to �� � distinguishes between the two previous situations.
Notwithstanding, it can be verified that there exists a non-monotonous function,
h � R+ → R+, for which � = h��� (see Fig. 1). Therefore, the classical test allows a
representation in terms of �.

Now, the objective is to get some kind of reconciliation between the classical
and the Bayesian approaches, that is to say, it would be convenient that a same
number had both performances. To do this, we consider the following equation,

[
1+ 1− �0

�0

�

]−1

= p

2p∗ �

from which the value of �0 can be obtained,

�0 =
[
1+ 1

�

(
2p∗

p
− 1

)]−1

= �p

�p+ 2p∗ − p
� (7)
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Figure 1. Bars diagram ���a� c����a� c��, for 2× 2 tables with n1 = 18 and n2 = 12.
There is a non-monotonous function, h � R+ → R+, such that � = h���


which satisfies that P�H0 � a� c� > 1
2 when p > p∗. Therefore, using the value of �0

which is obtained in the expression (7), the same conclusion would be reached with
both methods.

Notwithstanding, this reconciliation is too strict, since the obtained value in
expression (7) depends on the data. In this sense, we do not affirm that the
procedure to obtain the accord has to be by means of equaling both expressions, but
that the use of a value next to the result of this equalization can furnish, when this is
possible, an approximately equal numeric value from both viewpoints. The desirable
reconciliation would formulate the accord so that if for example p∗ ∈ �0
05� 0
1�,
then �0 ∈ ��1� �2� for some �1� �2 ∈ �0� 1�, �1 < �2.

It can be noted that 0 < �0 < 1 only when 2p∗ > p. Moreover, fixing p∗,
0 < p∗ < 1, for any p-value p� 0 < p < 2p∗, there is an initial prior probability
�0� 0 < �0 < 1, assigned to the null hypothesis of test (1) for p0 = 1

2 , assuming our
initial opinion about �p1� p2� is uniform, that allows both results, the classical and
the Bayesian, to be equal. It can also be observed that if p∗ = 1

2 , then, whatever the
p-value p is, such �0 always exists and verifies that P�H0 � a� c� = p.

For the data of Table 2, if p∗ = 1
2 , the value �0 that reconciles the classical

p-value, p = 0
015504, with the Bayesian posterior probability is �0 = 0
09578.
If p∗ = 0
1 we obtain �0 = 0
36113 and reject with a posterior probability 0.07752.
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Table 3
Summary of results for Pearson’s example

� p � ��+ 1�−1 ���+ 1�−1 �

8.333333 0.015504 6.7265 0.1294 0.8706 0.53905

Table 2 p∗ = 0
5 p∗ = 0
1 p∗ = 0
05 p∗ = 0
01

�p��p+ 2p∗ − p�−1 0.09578 0.36113 0.5524 0.9587
� 0.17461 0.33904 0.41933 0.6085
p�2p∗�−1 0.015504 0.07752 0.15503 0.77523

If p∗ = 0
05 we get �0 = 0
5524 and reject with 0.15503. For p∗ = 0
01 we get
�0 = 0
9587 and accept with 0.77533.

The obtained results are summarized in Table 3.
We can observe that the value of �0, and accordingly the value of �, which

obtains the agreement between the classical and the Bayesian results in the
previously exposed terms, decreases when p∗ increases. Besides, for the data of
Pearson’s example, the values of � for which this agreement is achieved when p∗ ∈
�0
01� 0
5� are such that � ≤ 0.6085.

It has already been indicated that the accord between the classical and Bayesian
results that is obtained by means of expression (7) is too strict. However, it gives an
idea of what value of �, when it exists, must be so that this reconciliation between
both methods is possible.

To eliminate the dependence of the data, we have generated all of the possible
2× 2 tables to n1 and n2 fixed and known. In the situation that we are studying,
the entries are n1 = 18 and n2 = 12, and a total of 247 possible tables have been
generated. Pearson’s data is organized in Table 95 in the ascendant sort carried
out according to the values of � (see Fig. 1). For every one of these tables, we
carry out the same study that has previously been carried out for the data of
Pearson’s example.

By means of an easy data analysis, we can check that there are values of
p∗, for example p∗ = 0
5� p∗ = 0
1� p∗ = 0
05, or p∗ = 0
01, such that we can find
an interval of values of �0� I = I�p∗� n1 = 18� n2 = 12�, which verifies that the
result obtained with the proposed Bayesian method for test (1), with p0 = 1

2 and
��p1� p2� = 1� p1� p2 ∈ �0� 1�, using a value �0 ∈ I , is the same as the result obtained
with Pearson’s �2 classical test (see the following enclosed summary of results).
Hence, there exists an accord between both methods. Notwithstanding, there are
also values of p∗, for example p∗ = 0
015, such that this is not possible.

The obtained results are summarized in Table 4.

Table 4
Summary of results for 2× 2 tables with n1 = 18 and n2 = 12

p∗ ∈ �0
46� 0
513� �0
087� 0
143� �0
045� 0
052� �0
0095� 0
0138�
� ∈ �0
221� 0
23� �0
353� 0.4� �0
453� 0
462� �0
5528� 0
5675�
�0 ∈ �0
153� 0.167� �0
391� 0
506� �0
643� 0
673� �0
893� 0
914�



Bayesian Analysis of Contingency Tables 1751

Moreover, it can be verified that the value of �0, and thereby the value of �,
such that the previous reconciliation between both methods is possible, decreases
when p∗ increases. Also, it can be checked that the value of �0 computed by means
of expression (7) does not always exist, and when it exists this value does not always
belong to the interval of values that allow the reconciliation between both methods
to be achieved.

In the general situation with fixed n1, n2, and p∗, if we denote by means of

�1 = �1�p
∗� n1� n2� = max

�a�c��p>p∗
���+ 1�−1�

�2 = �2�p
∗� n1� n2� = min

�a�c��p≤p∗
���+ 1�−1�

and p∗ satisfies that �1 < �2, then there exists an interval of values of �0,
I = I�p∗� n1� n2� = ��1� �2�, such that the result obtained with the developed
Bayesian method to test (1), using a value of �0 ∈ I , is the same conclusion obtained
with the Pearson’s �2 classical method.

It is clear that the existence of values of p∗ which satisfy the sufficient condition
that ensures the accord between both methods depends on the increasing tendency
that we can observe (see Fig. 1) in the functional relationship that exists between
both statistics, � = h���, although this relationship is not strictly monotonous.

Therefore, the reconciliation is possible in that sense.

4. r × s Tables

In the following, we will generalize the previously obtained results to the situation
of r × s tables. To do this, we suppose that independent random samples are drawn
from r sufficiently large populations, and their each member belongs to one and
only one of the s classes C1� 
 
 
 � Cs. The sample number i� i = 1� 
 
 
 � r, is of size ni

and yields nij individuals in the category Cj� j = 1� 
 
 
 � s.
The situation is displayed in Table 5.
Let Xi� i = 1� 
 
 
 � r, be independent multinomial random variables, MB�ni� pi�,

with pi = �pi1� 
 
 
 � pis� ∈ �, where � = �p = �p1� 
 
 
 � ps� ∈ �0� 1�s�
∑s

i=1 pj = 1� ⊂
Rs−1. In this situation, we are going to suppose that we wish to test

H0 � p1 = · · · = pr = p0 versus H1 � ∃i �= j� pi �= pj� (8)

where p0 = �p01� 
 
 
 � p0s� ∈ � is an unknown value and H1 � ∃i �= j� pi �= pj means
that at least one of them is different from p0. Consider that our prior opinion about

Table 5
Data in the r × s table

Class 1 Class 2 
 
 
 Class s Total

Sample 1 n11 n12 
 
 
 n1s n1

Sample 2 n21 n22 
 
 
 n2s n2



























Sample r nr1 nr2 
 
 
 nrs nr

Total m1 m2 
 
 
 ms N
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�p1� 
 
 
 � pr � is given by means of the density ��p1� 
 
 
 � pr � =
∏r

i=1 ��pi�. Therefore, a
mixed prior distribution is needed to test (8), namely

�∗�p1� 
 
 
 � pr � = �0IH0
�p1� 
 
 
 � pr �+ �1− �0���p1� 
 
 
 � pr �IH1

�p1� 
 
 
 � pr ��

�0 being the prior probability assigned to the null hypothesis.
Then, the posterior probability of the null hypothesis, when the data of Table 5

has been observed, is

∏s
j=1 p

∑r
i=1 nij

0j �0∏s
j=1 p

∑r
i=1 nij

0j �0 + �1− �0�
∏r

i=1

∫
�

∏s
j=1 p

nij
ij ��pi�dpi




Consider �i = ��i1� 
 
 
 � �is�, with �ij > 0 for all j = 1� 
 
 
 � s and all i = 1� 
 
 
 � r.
If we assign to each pi a Dirichlet prior distribution of parameter �i� D��i��
i = 1� 
 
 
 � r, (see Ghosh and Ramamoorthi, 2003, Ch. 3), namely,

��pi� =
��
∑s

j=1 �ij�∏s
j=1 ���ij�

s∏
j=1

p
�ij−1
ij � pi = �pi1� 
 
 
 � pis� ∈ �� i = 1� 
 
 
 � r�

then such posterior probability is

[
1+

s∏
j=1

p
−mj

0j

1− �0

�0

r∏
i=1

{
��
∑s

j=1 �ij�∏s
j=1 ���ij�

∫
�

s∏
j=1

p
nij+�ij−1
ij dpi

}]−1




Therefore, the posterior probability of the null hypothesis, when the data of
Table 5 has been observed, can be expressed in the following way,

[
1+ 1− �0

�0

�

]−1

� (9)

where � = ∏s
j=1 p

−mj

0j

{∏r
i=1 ��

∑s
j=1 �ij �∏r

i=1
∏s

j=1 ���ij �

} {∏r
i=1

∏s
j=1 ��nij+�ij �∏r

i=1 ��ni+
∑s

j=1 �ij �

}
.

We can note that if we assign a uniform prior distribution on � to each pi,
i = 1� 
 
 
 � r, then the posterior probability of the null hypothesis can be obtained
evaluating expression (9) in

� =
s∏

j=1

p
−mj

0j ��s�r
{∏r

i=1

∏s
j=1 ��nij + 1�∏r

i=1 ��ni + s�

}



The posterior probability calculated in expression (9) depends on �0, the initial
prior probability that we assign to the null hypothesis, H0 � p1 = · · · = pr = p0.

Following, if we denote by P0 = �p0� 
 
 
 � p0� ∈ �r ⊂ Rr�s−1� and P = �p1� 
 
 
 � pr �
∈ �r ⊂ Rr�s−1�, then H0 � P = P0 is the null hypothesis of test (8). Now, we are going
to consider the more realistic precise hypotheses,

H0� � d�P0�P� ≤ � versus H1� � d�P0�P� > ��

with an appropriate metric d and a value of � > 0 sufficiently small.
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We propose to use B�P0� �� = �P ∈ �r�
∑r

i=1

∑s−1
j=1 �pij − p0j�

2 ≤ �2�. Then,
applying the method of Gómez-Villegas and Sanz (2000) and Gómez-Villegas et al.
(2002), we can use ��p1� 
 
 
 � pr � = ��P�, our opinion about P, to calculate �0 by
means of averaging, �0 =

∫
B�P0���

��P�dP. We can observe that if a uniform prior
distribution on � is assigned to each pi, i = 1� 
 
 
 � r, then

�0 =
�

r�s−1�
2 �r�s−1�

�� r�s−1�
2 + 1�

�

the volume of the sphere of radius � in Rr�s−1�, for � sufficiently small.
From a classical viewpoint and considering Pearson’s �2 test statistic,

� =
r∑

i=1

s∑
j=1

n2
ij

nip0j

− N�

if we denote by means of � the value of � calculated in the point which the observed
data of Table 5 forms, that is to say, ��nij0� i = 1� 
 
 
 � r� j = 1� 
 
 
 � s� = �, then
�� ≥ �� is a possible critical region and the p-value is

p = P�� ≥ � � p0� = P��2r�s−1� ≥ ��


Therefore, to search for a reconciliation between both results, the classical and
the Bayesian, we can follow the same kind of reasoning developed in Sec. 3, since
expression (9) has the same form as expression (2).

In conclusion, with fixed ni, i = 1� 
 
 
 � r and p∗, if we denote by means of

�1 = �1�p
∗� n1� 
 
 
 � nr� = max

�nij ��p>p∗
���+ 1�−1� (10)

�2 = �2�p
∗� n1� 
 
 
 � nr� = min

�nij ��p≤p∗
���+ 1�−1� (11)

and p∗ satisfies that �1 < �2, then there is an interval of values of �0,
I = I�p∗� n1� 
 
 
 � nr� = ��1� �2�, such that the result obtained with the proposed
Bayesian method to test (8), using a value of �0 ∈ I , is the same conclusion obtained
when we use Pearson’s �2 classical method.

Therefore, the accord is possible in this sense.

5. Conclusions

The posterior probability of the null hypothesis of homogeneity of independent
multinomial populations in tables r × s, when p0 is known for a mixed prior
distribution that assigns an initial probability �0 to H0 � p1 = · · · = pr = p0 and
distributes of a continuous way the remaining probability in the points of the
alternative hypothesis by means of a Dirichlet prior density, can be expressed as

[
1+ 1− �0

�0

�

]−1

�
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where � is a statistic that measures the strength of the evidence in support of
the more likely hypothesis, � = h��� is the test statistic for Pearson’s �2 Classical
method, and h � R+ → R+ is a nonmonotonous function of increasing tendency.

Fixing ni ∈ N� i = 1� 
 
 
 � r and p∗ ∈ �0� 1�� �1 < �2 , where �1 and �2 are defined
in expressions (10) and (11), respectively, gives a sufficient condition by which the
reconciliation between both methods is possible. That is to say, if p∗ satisfies that
�1 < �2, then for some value of � such that �0 = �0��� ∈ ��1� �2�, the p-value, p,
verifies that p > p∗ and �1+ 1−�0

�0
��−1 > 1

2 , or that p ≤ p∗ and �1+ 1−�0
�0

��−1 ≤ 1
2 ,

whatever �nij0� i = 1� 
 
 
 � r� j = 1� 
 
 
 � s�, the point that the observed data of Table 5
forms, is.

The existence of values p∗ that satisfy such sufficient condition depends on the
functional relationship, in terms of h, that exists between the statistics � and �.
Thereby, the reconciliation between both methods is possible in that sense.

For example, for 2× 2 tables with n1 = 18 and n2 = 12, when p∗ = 0
1 the
accord is obtained for � ∈ �0
353� 0
4�.

The generalization of the previous results for the problem to test the
homogeneity of independent multinomial populations when p0 is unknown, or with
functional form known, p0 = p���, is possible following a similar reasoning.

We are studying some robustness properties of the Bayes procedure for the
�−contaminated class of priors and we have partial results.
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