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Generalized linear models

The generalized linear models proposed by Nelder and
Wedderburn (1972) are specified by three components:

1. The random component : independent observations,
y1, . . . , yn, with distribution

f(yi; θi) = exp {(yiθi − b(θi))/ai(φ) + c(yi)}

2. The systematic component or linear predictor:

η(·) = xβ

3. The link function: monotone and diferenciable function that
describes the relation between the random and systematic
components:

g(µi) = ηi =

k
∑

j=1

βjxij , where µi = E(yi).
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Generalized linear models for binary data

■ The response variables have only two categories.

■ Denote a binary response variable by Y and its two possible
outcomes by 1 (“success”) and 0 (“failure”).

■ We have µi = E(yi), where 0 < µi < 1.

■ A link function should satisfy the condition that it maps the
interval (0, 1) over the whole real line.

◆ Symmetric links
■ logit : η = log{µ/(1 − µ)} = Ψ−1(µ), Ψ(·) logistic cdf
■ probit : η = Φ−1(µ), Φ(·) normal cdf
■ t-link : η = Ψ−1(µ), Ψ(·) t-Student cdf

◆ Asymmetric links
■ complementary log-log:
η = log{− log(1 − µ)} = Ψ−1(µ), Ψ(·) Gumbel cdf

■ skew probit : η = Ψ−1(µ), Ψ(·) skew normal cdf
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Misclassified categorical data

■ Classification appears naturally in many situations.

■ When information is collected in the real word, the data are
not usually free of error.

■ This fact can happen due to several causes.

■ Even a small proportion of misclassified data can produce an
important impact on inferences.

■ For example, in consumer surveys, consumers may:
◆ not remember their previous behaviours accurately.
◆ misunderstand survey questions.
◆ intentionally misreport.

■ Main consequence: important effects on the inferences.

■ Noise or distortion must be statistically modelled.
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Proposed models

■ GLM are used to describe the dependence of binary data on
explanatory variables when the binary outcome is subject to
misclassification.

■ Statistical methodology: Bayesian.

■ Precursors for logistic models:
◆ Cowling et al. 2001.
◆ Achcar et al. 2004.
◆ Paulino et al. 2005.

■ Proposed models: probit and t-link based regressions.

■ Extension from Albert and Chib (1993) to address
misclassification.
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Probit and t-link models

■ Main problem: computations.

■ Solved by MCMC methods (Gibbs sampling).

■ But previously, a data augmentation scheme is used.

■ The model increases its dimensionality, but the generation
process becomes easier.
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Setting

■ Y1, . . . , Yn independent binary random variables.

■ Yi ∼ Bernoulli(p(Yi = 1) = θi)

■ θi is related to a covariate set xi = (xi1, . . . , xik)T through a
binary regression with misclassification.

■ Binary response model: pi = Ψ(xT
i β)

■ g(·) = Ψ−1 is the link function.

■ Ψ is a cumulative distribution function:

◆ normal distribution (probit)

◆ t-Student distribution (t-link).
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Introducing noise parameters

■ Misclassification is introduced in the model by:

θi = pi(1 − λ10) + (1 − pi)λ01

◆ pi is the true positive probability for the observation i,

◆ λ10 is the false negative probability,

◆ λ01 is the false positive probability.
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Introducing latent variables

■ A data augmentation scheme is proposed.

■ The first type of latent variables is cihk, , k = 0, 1, where

◆ ci11 = 1 if i is a true positive,

◆ ci10 = 1 if i is a false negative,

◆ ci01 = 1 if i is a false positive,

◆ ci00 = 1 if i is a true negative.

■ Latent vector and latent matrix:

ci = (ci11, c
i
10, c

i
01, c

i
00)

T c = (c1, c2, . . . , cn)T
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Introducing latent variables

■ The second type of latent variables is introduced based on
Albert and Chib (1993).

◆ n independent latent variables z1, . . . , zn are considered,
where zi is distributed N(xT

i β, γ−1
i ).

◆ Define
{

ci11 + c10 = 1 if zi > 0

ci01 + c00 = 1 if zi ≤ 0

◆ If the probit model is assumed, then γi = p(γi) = 1.

◆ If the t-link model is assumed, then γi is distributes
Gamma(ν/2, 2/ν), with pdf

p(γi) = c(ν)γ
ν/2−1
i exp(−νγi/2),

where c(ν) = [Γ(ν/2)(2/ν)ν/2]−1.
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Likelihood function

■ Likelihood function for the t-link model:

L(β,λ, ν|D)

∝
n
∏

i=1

[

{

pi(1 − λ10) + (1 − pi)λ01

}yi

×
{

piλ10 + (1 − pi)(1 − λ01)
}1−yi

]

∝
n
∏

i=1

[
∫ ∫ ∫

{

φ(zi;x
T
i β, γ−1

i )

×
(

I[zi > 0]I[ci11 + ci10 = 1] + I[zi ≤ 0]I[ci01 + ci00 = 1]
)

×
(

I[yi = 1]I[ci11 + ci01 = 1] + I[yi = 0]I[ci10 + ci00 = 1]
)

× (1 − λ10)
ci

11λ
ci

10

10 λ
ci

01

01 (1 − λ01)
ci

00p(γi)

}

dγidzidc
i

]

■ Probit model: particular case of the t-link based model.
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Prior distributions

■ The following step is defining the prior distributions.

◆ Regression parameters β: as usual in error-free models
(i.e. multivariate normal distribution), or based on the
expert opinion (as in Bedrick et al. (1996)).

◆ Noise parameters: with the natural choice for modelling
the uncertainty about probabilities, i.e. Beta distributions.

◆ Degrees of freedom: a bounded discrete distribution.

■ These specifications allow to derive a Gibbs sampling
algorithm to generate from the posterior distribution.

■ All full conditional distributions can be efficiently generated
by using standard algorithms.
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Prior distributions

■ Bedrick et al. (1996) induce a prior probability distribution on
β using a so called conditional means prior (CMP) on
p̃ = (p̃1, . . . , p̃k)T , where in binomial regression p̃l = E(ỹl|x̃l)
is the success probability for a potentially observable
response ỹl at covariate vector x̃l.

◆ Assuming k regression coefficients, prior probabilities p̃l

are elicited in the predictor space, for selected locations
x̃l.

◆ With k linearly independent sets of covariate values, we
obtain a 1-1 transformation between β and p̃, namely
β = x̃−1Ψ−1(p̃), where x̃ = (x̃T

1 , . . . , x̃
T
k )T .

◆ Uncertainty about p̃l is modelled with independent
distributions Be(al, bl). The hyperparameters al and bl are
determined from expert prior judgements.
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Posterior distributions (normal prior)

Defining the prior distribution of β as Nk(b0,B0).

Given the data D, the joint posterior distribution of the
unobservables c, β, λ, and ν is

π(c,β,λ, ν|D) ∝ π(β)π(λ)π(ν)

×

n
∏

i=1

[

{pi(1 − λ10)}
ci

11{piλ10}
ci

10

× {(1 − pi)λ01}
ci

01{(1 − pi)(1 − λ01)}
ci

00

×
(

I[yi = 1]I[ci11 + ci01 = 1] + I[yi = 0]I[ci10 + ci00 = 1]
)

]
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Posterior distributions (normal prior)

The full conditional distributions for c and λ are easy to obtain:
■

ci|β,λ, ν,D ∼ Multinomial
(

1, πci(ci11, c
i
10, c

i
01, c

i
00)
)

,

πci(1, 0, 0, 0) = pi(1−λ10)
θi

I[yi = 1],

πci(0, 1, 0, 0) = piλ10

(1−θi)
I[yi = 0],

πci(0, 0, 1, 0) = (1−pi)λ01

θi

I[yi = 1],

πci(0, 0, 0, 1) = (1−pi)(1−λ01)
(1−θi)

I[yi = 0].
■

λ10|c,β, ν,D ∼ Be

(

a10 +

n
∑

i=1

ci10, b10 +

n
∑

i=1

ci11

)

,

λ01|c,β, ν,D ∼ Be

(

a01 +

n
∑

i=1

ci01, b01 +

n
∑

i=1

ci00

)

,
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Posterior distributions (normal prior)

■ The full conditional distributions π(β|c,λ, ν,D) and
π(ν|c,β,λ,D) have not closed expression from which to
generate easily.

■ Generating from these distributions could be addressed by
using a Metropolis-Hasting algorithm, however a
Gibbs-within-Gibbs algorithm is more efficient and easier to
implement by considering the introduction of latent variables
in π(β, ν|c,λ,D).

■ The new distribution of interest is

π(z,β,γ, ν|c,λ,D)

∝ π(β)π(ν)

n
∏

i=1

{

φ(zi;x
T
i β, γ−1

i )p(γi)

×
(

I[zi > 0]I[ci11 + ci10 = 1] + I[zi ≤ 0]I[ci01 + ci00 = 1]
)

}

.
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Posterior distributions (normal prior)

■ The full conditional distributions of z1, . . . , zn are
conditionally independent

zi|β,γ, ν, c,λ,D ∼

{

N(xT
i β, γ−1

i )I[zi > 0] if ci11 + ci10 = 1

N(xT
i β, γ−1

i )I[zi ≤ 0] if ci01 + ci00 = 1
.

■ β is obtained by

β|z,γ, ν, c,λ,D ∼ Nk (bk,Bk) ,

where

bk = Bk(xT Wz + B−1
0 b0), Bk = (xT Wx + B−1

0 )−1,

and W = diag(γi).
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Posterior distributions (normal prior)

For the t-link model:

■ The full conditional distributions of γ1, . . . , γn are
conditionally independent with

γi|z,β, ν, c,λ,D ∼ Ga

(

ν + 1

2
,

2

ν + (zi − xT
i β)2

)

.

■ ν|z,β,γ, c,λ,D is distributed according to a pmf
proportional to

π(ν)

n
∏

i=1

(

c(ν)γ
ν/2−1
i e−νγi/2

)

.
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Posterior distributions (eliciting prior)

Building a prior distribution for β based on the expert prior
elicitation was proposed by Bedrick et al. (1996).

■ The independence CMP

π(p̃) ∝

k
∏

l=1

p̃al−1
l (1 − p̃l)

bl−1,

induces a prior on β given by

π(β) ∝

k
∏

l=1

Ψ(x̃T
l β)al−1[1 − Ψ(x̃T

l β)]bl−1ψ(x̃T
l β),

where Ψ = Φ for the probit model and Ψ = Tν for the t-link
model.

■ The posterior distribution is

π(β,λ, ν|D) ∝ π(β)π(λ)π(ν)L(β,λ, ν).
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Posterior distributions (eliciting prior)

■ To sample from β, λ and ν, the latent variables c are
introduced. The full conditional distributions for c and λ are
the same as in case of normal prior.

■ The full conditional distributions to β and ν are given by

π(β|c,λ, ν,D) ∝

k
∏

l=1

Ψ(x̃T
l β)al−1[1 − Ψ(x̃T

l β)]bl−1ψ(x̃T
l β)

×

n
∏

i=1

Ψ(xT
i β)ci

11
+ci

10 [1 − Ψ(xT
i β)]c

i

01
+ci

00 ,

π(ν|c,λ,β,D) ∝ π(ν)
k
∏

l=1

Ψ(x̃T
l β)al−1[1 − Ψ(x̃T

l β)]bl−1ψ(x̃T
l β)

×
n
∏

i=1

Ψ(xT
i β)ci

11
+ci

10 [1 − Ψ(xT
i β)]c

i

01
+ci

00 .
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Illustrative example
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Context

■ A covariate set is generated by xi1 ∼ N(2, 0.09), and
xi2 ∼ N(3, 0.09), i = 1, . . . , 100.

■ The probabilities are obtained for both error-free models by:

ηi = Ψ−1(pi) = β0 + β1xi1 + β2xi2,

where β = (2,−4, 2)T .

■ For each model, the true binary dependent variable ytrue is
obtained by

{

ytrue
i = 0 if pi ≤ 0.5

ytrue
i = 1 if pi > 0.5

■ Both probit and t(7)-Student models display the same
outcomes because of the symmetric links and the
discretization.
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Context

■ Intentionally misclassify some outcomes according to the
following quantities:

◆ 7 outcomes with ytrue = 0 becoming y = 1,

◆ 5 outcomes with ytrue = 1 becoming y = 0.

■ The new response variable y remains equal to ytrue for the
non-misclassified outcomes.

■ Then, the known proportion of misclassification for the new
response is given by:

λ01 = p(false positive) = 1 − Specificity = 7
45 = 0.1555

λ10 = p(false negative) = 1 − Sensitivity = 5
55 = 0.0909
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Misclassified cases

■ Three misclassification cases are considered for both
models, according to the previous quantities.

1. Only outcomes close to the “border” are misclassified, i.e.
outcomes for which pi ≈ 0.5.

2. Outcomes being far from the “border”, i.e. pi ≈ 0 or pi ≈ 1.

3. A random misclassification is considered.

■ The main objective is to compare the predictive performance
of the proposed models to the standard ones.

■ This simulated scenario allows to compare the predictive
outcomes with the real ones and, therefore, to know what
model performs better.
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Misclassified cases
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Prior

■ Three prior specifications are considered for the regression
parameters β:

1. A informative prior, β ∼ N3(b
T
0 ,B0), where bT

0 = (2,−4, 2)
and B0 = diag(10, 10, 10).

2. A weakly informative prior, β ∼ N3(b
T
0 ,B0), where

bT
0 = (0, 0, 0) and B0 = diag(100, 100, 100).

3. A prior based on the proposal of Bedrick et al. (1996), that
have been adapted to address misclassifications:

Configurations Hyperparameters

x̃
T
1 = (1.7, 3.3) a11 = 45 a21 = 5

x̃
T
2 = (2.0, 3.0) a12 = 25 a22 = 25

x̃
T
3 = (2.3, 3.3) a13 = 5 a23 = 15

λ10 a10 = 5 b10 = 50

λ01 a01 = 7 b01 = 38
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Prior

■ For the noise parameters, we introduce initial information
according to the misclassification proportions that affect the
data, i.e.:

λ10 ∼ Be(5, 50) and λ01 ∼ Be(7, 38)

■ Two cases are considered for the distribution of the degrees
of freedom:

1. ν = 7,

2. ν being a r.v. with discrete finite distribution. Its support is
{4, . . . , 10} and the probabilities are
(0.05, 0.10, 0.20, 0.30, 0.20, 0.10, 0.05).
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Predictions and DIC
Case 1: Misclassification near to the border

Predictions
ytrue = 0 ytrue = 0 ytrue = 1 ytrue = 1

ypred = 0 ypred = 1 ypred = 0 ypred = 1

Probit 42/43/45 3/2/0 0/0/1 55/55/54

Probit Mis. 42/43/45 3/2/0 0/0/0 55/55/55

t(7) 42/43/45 3/2/0 0/0/0 55/55/55

t(7) Mis. 42/43/45 3/2/0 0/0/0 55/55/55

t(r.v.) 42/43/45 3/2/0 0/0/0 55/55/55

t(r.v.) Mis. 42/43/45 3/2/0 0/0/0 55/55/55

Informative prior/ Weakly informative prior/ Elicited prior information

DIC Informative prior Weakly informative prior Elicited prior information

Probit 37.486 35.012 55.015

Probit Mis. 48.144 45.904 65.407

t(7) 38.627 35.740 51.060

t(7) Mis. 49.556 46.306 61.627

t(r.v.) 38.652 35.756 50.982

t(r.v.) Mis. 49.631 46.418 56.966
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Predictions and DIC
Case 2: Misclassification far to the border

Predictions
ytrue = 0 ytrue = 0 ytrue = 1 ytrue = 1

ypred = 0 ypred = 1 ypred = 0 ypred = 1

Probit 31/30/36 14/15/9 0/0/0 55/55/55

Probit Mis. 44/45/45 1/0/0 0/0/0 55/55/55

t(7) 32/32/37 13/13/8 0/0/0 55/55/55

t(7) Mis. 44/45/44 1/0/1 0/0/0 55/55/55

t(r.v.) 32/32/37 13/13/8 0/0/0 55/55/55

t(r.v.) Mis. 44/45/45 1/0/0 0/0/0 55/55/55

Informative prior/ Weakly informative prior/ Elicited prior information

DIC Informative prior Weakly informative prior Elicited prior information

Probit 131.836 132.058 133.301

Probit Mis. 97.179 87.822 116.479

t(7) 131.656 131.880 132.675

t(7) Mis. 99.813 89.219 113.194

t(r.v.) 131.728 131.740 132.686

t(r.v.) Mis. 99.954 89.531 114.228
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Predictions and DIC
Case 3: Misclassification random

Predictions
ytrue = 0 ytrue = 0 ytrue = 1 ytrue = 1

ypred = 0 ypred = 1 ypred = 0 ypred = 1

Probit 41/41/42 4/4/3 0/0/1 55/55/54

Probit Mis. 43/44/44 2/1/1 0/0/0 55/55/55

t(7) 39/40/42 6/5/3 0/0/1 55/55/54

t(7) Mis. 43/44/43 2/1/2 0/0/0 55/55/55

t(r.v.) 39/40/42 6/5/3 0/0/1 55/55/54

t(r.v.) Mis. 43/44/44 2/1/1 0/0/1 55/55/54

Informative prior/ Weakly informative prior/ Elicited prior information

DIC Informative prior Weakly informative prior Elicited prior information

Probit 98.848 99.306 96.792

Probit Mis. 86.408 82.027 95.453

t(7) 97.172 97.897 95.240

t(7) Mis. 88.732 83.830 93.898

t(r.v.) 96.956 97.723 95.189

t(r.v.) Mis. 88.672 84.027 94.462
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Conclusions

1. Case 1: Misclassified outcomes are close to the border.
■ The models addressing misclassification perform similar

to the standard models.
■ The proposed models are not able to identify the

misclassified outcomes, giving similar predictions as in
the standard models.

2. Case 2: Misclassified outcomes are far from the border.
■ The proposed models are able to identify and make right

predictions, by relocating misclassified outcomes to their
right values.

3. Case 3: Misclassified outcomes randomness.
■ The proposed models performs better than the standard

one, but not as well as in the second case.
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Conclusions

In general, the proposed methods:

■ They are no worse than the standard methods.

■ They can increase substantially the number of correct
predictions with respect to the standard methods.

■ They can produce better fits than the standard models.

■ The use of latent variables as proposed here enables us to
avoid computational difficulties.

■ Although the augmented models increase the dimensionality,
the generation processes become easier.
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