Regression models for misclassified binary data

Lizbeth Naranjo Albarrán Jacinto Ramón Martín Jiménez Carlos Javier Pérez Sánchez

Departamento de Matemáticas, Universidad de Extremadura

lizbeth@unex.es

Index Index

Introduction

The Bayesian model

Illustrative example

References

Introduction

The Bayesian model

Illustrative example

Introduction

- Generalized linear models
- Generalized linear models for binary data
- Misclassified categorical data
- Proposed models
- Probit and t-link models

The Bayesian model

Illustrative example

References

Generalized linear models

Index

Introduction

- Generalized linear models
- Generalized linear models for binary data
- Misclassified categorical data
- Proposed models
- Probit and t-link models

The Bayesian model

```
Illustrative example
```

References

The generalized linear models proposed by Nelder and Wedderburn (1972) are specified by three components:

1. The *random component*: independent observations, y_1, \ldots, y_n , with distribution

$$f(y_i; \theta_i) = \exp\left\{ (y_i \theta_i - b(\theta_i)) / a_i(\phi) + c(y_i) \right\}$$

2. The systematic component or linear predictor:

 $\eta(\cdot) = \mathbf{x}\boldsymbol{\beta}$

3. The *link function*: monotone and diferenciable function that describes the relation between the random and systematic components:

$$g(\mu_i) = \eta_i = \sum_{j=1}^k \beta_j x_{ij},$$
 where $\mu_i = \mathcal{E}(y_i).$

Generalized linear models for binary data

Index

- Generalized linear models
- Generalized linear models for
- binary data
- Misclassified categorical data
- Proposed models
- Probit and t-link models
- The Bayesian model
- Illustrative example
- References

- The response variables have only two categories.
- Denote a binary response variable by Y and its two possible outcomes by 1 ("success") and 0 ("failure").
- We have $\mu_i = E(y_i)$, where $0 < \mu_i < 1$.
- A link function should satisfy the condition that it maps the interval (0,1) over the whole real line.
 - Symmetric links
 - logit: $\eta = \log\{\mu/(1-\mu)\} = \Psi^{-1}(\mu)$, $\Psi(\cdot)$ logistic cdf
 - probit: $\eta = \Phi^{-1}(\mu)$, $\Phi(\cdot)$ normal cdf
 - *t-link*: $\eta = \Psi^{-1}(\mu)$, $\Psi(\cdot)$ *t*-Student cdf
 - Asymmetric links
 - complementary log-log:
 - $\eta = \log\{-\log(1-\mu)\} = \Psi^{-1}(\mu), \quad \Psi(\cdot) \text{ Gumbel cdf}$
 - skew probit: $\eta = \Psi^{-1}(\mu)$, $\Psi(\cdot)$ skew normal cdf

Misclassified categorical data

Index

- Generalized linear models
- Generalized linear models for binary data
- Misclassified categorical data
- Proposed models
- Probit and t-link models
- The Bayesian model
- Illustrative example
- References

- Classification appears naturally in many situations.
- When information is collected in the real word, the data are not usually free of error.
 - This fact can happen due to several causes.
- Even a small proportion of misclassified data can produce an important impact on inferences.
- For example, in consumer surveys, consumers may:
 - not remember their previous behaviours accurately.
 - misunderstand survey questions.
 - intentionally misreport.
- Main consequence: important effects on the inferences.
- Noise or distortion must be statistically modelled.

Proposed models

Index

- Generalized linear models
- Generalized linear models for binary data
- Misclassified categorical data
- Proposed models
- Probit and t-link models
- The Bayesian model
- Illustrative example
- References

- GLM are used to describe the dependence of binary data on explanatory variables when the binary outcome is subject to misclassification.
- Statistical methodology: Bayesian.
- Precursors for logistic models:
 - Cowling et al. 2001.
 - Achcar et al. 2004.
 - Paulino et al. 2005.
- Proposed models: probit and t-link based regressions.
- Extension from Albert and Chib (1993) to address misclassification.

Probit and t-link models

Index

Introduction

- Generalized linear models
- Generalized linear models for binary data
- Misclassified categorical data
- Proposed models

Probit and t-link models

- The Bayesian model
- Illustrative example

References

- Main problem: computations.
- Solved by MCMC methods (Gibbs sampling).
- But previously, a data augmentation scheme is used.
 - The model increases its dimensionality, but the generation process becomes easier.

Introduction

The Bayesian model

Setting

- Introducing noise parameters
- Introducing latent variables
- Likelihood function
- Prior distributions
- Posterior distributions (normal prior)
- Posterior distributions (eliciting prior)

Illustrative example

References

The Bayesian model

Setting

Index

Introduction

The Bayesian model Setting

- Introducing noise parameters
- Introducing latent variables
- Likelihood function
- Prior distributions
- Posterior distributions (normal prior)
- Posterior distributions (eliciting prior)

Illustrative example

References

- Y_1, \ldots, Y_n independent binary random variables.
- $Y_i \sim \text{Bernoulli}(p(Y_i = 1) = \theta_i)$
- θ_i is related to a covariate set $\mathbf{x}_i = (x_{i1}, \dots, x_{ik})^T$ through a binary regression with misclassification.
- Binary response model: $p_i = \Psi(x_i^T \beta)$
- $g(\cdot) = \Psi^{-1}$ is the link function.
- Ψ is a cumulative distribution function:
 - normal distribution (probit)
 - *t*-Student distribution (t-link).

Introduction

Setting

prior)

References

The Bayesian model

Introducing noise parameters

Posterior distributions (normal

 Posterior distributions (eliciting prior)

Illustrative example

Introducing latent variables
 Likelihood function
 Prior distributions

Introducing noise parameters

Misclassification is introduced in the model by:

 $\theta_i = p_i (1 - \lambda_{10}) + (1 - p_i) \lambda_{01}$

- p_i is the true positive probability for the observation i,
- λ_{10} is the false negative probability,
- λ_{01} is the false positive probability.

Introducing latent variables

Index

Introduction

- The Bayesian model
- Setting
- Introducing noise parameters
- Introducing latent variables
- Likelihood function
- Prior distributions
- Posterior distributions (normal prior)
- Posterior distributions (eliciting prior)

Illustrative example

References

- A data augmentation scheme is proposed.
 - The first type of latent variables is c_{hk}^i , k = 0, 1, where
 - $c_{11}^i = 1$ if *i* is a true positive,
 - $c_{10}^i = 1$ if *i* is a false negative,
 - $c_{01}^i = 1$ if *i* is a false positive,
 - $c_{00}^i = 1$ if *i* is a true negative.
- Latent vector and latent matrix:
 - $\mathbf{c}^{i} = (c_{11}^{i}, c_{10}^{i}, c_{01}^{i}, c_{00}^{i})^{T}$ $\mathbf{c} = (\mathbf{c}^{1}, \mathbf{c}^{2}, \dots, \mathbf{c}^{n})^{T}$

Introducing latent variables

Index

Introduction

The Bayesian model

Setting

- Introducing noise parameters
- Introducing latent variables
- Likelihood function
- Prior distributions
- Posterior distributions (normal prior)
- Posterior distributions (eliciting prior)

Illustrative example

References

- The second type of latent variables is introduced based on Albert and Chib (1993).
 - *n* independent latent variables z_1, \ldots, z_n are considered, where z_i is distributed $N(x_i^T \beta, \gamma_i^{-1})$.

Define

$$\begin{cases} c_{11}^i + c_{10} = 1 & \text{if } z_i > 0 \\ c_{01}^i + c_{00} = 1 & \text{if } z_i \le 0 \end{cases}$$

- If the probit model is assumed, then $\gamma_i = p(\gamma_i) = 1$.
- If the t-link model is assumed, then γ_i is distributes $Gamma(\nu/2, 2/\nu)$, with pdf

$$p(\gamma_i) = c(\nu)\gamma_i^{\nu/2-1} \exp(-\nu\gamma_i/2),$$

where $c(\nu) = [\Gamma(\nu/2)(2/\nu)^{\nu/2}]^{-1}$.

Likelihood function

Likelihood function for the t-link model:

Index	

Introduction

The Bayesian model

- Setting
- Introducing noise parameters
- Introducing latent variables
- Likelihood function
- Prior distributions
- Posterior distributions (normal prior)
- Posterior distributions (eliciting prior)

Illustrative example

References

$$L(\boldsymbol{\beta}, \boldsymbol{\lambda}, \nu | \mathbf{D})$$

$$\propto \prod_{i=1}^{n} \left[\left\{ p_{i}(1 - \lambda_{10}) + (1 - p_{i})\lambda_{01} \right\}^{y_{i}} \\ \times \left\{ p_{i}\lambda_{10} + (1 - p_{i})(1 - \lambda_{01}) \right\}^{1 - y_{i}} \right]$$

$$\propto \prod_{i=1}^{n} \left[\int \int \int \left\{ \phi(z_{i}; \mathbf{x}_{i}^{T} \boldsymbol{\beta}, \gamma_{i}^{-1}) \\ \times (I[z_{i} > 0]I[c_{11}^{i} + c_{10}^{i} = 1] + I[z_{i} \le 0]I[c_{01}^{i} + c_{00}^{i} = 1]) \\ \times (I[y_{i} = 1]I[c_{11}^{i} + c_{01}^{i} = 1] + I[y_{i} = 0]I[c_{10}^{i} + c_{00}^{i} = 1]) \\ \times (1 - \lambda_{10})^{c_{11}^{i}}\lambda_{10}^{c_{01}^{i}}(1 - \lambda_{01})^{c_{00}^{i}}p(\gamma_{i}) \right\} d\gamma_{i}dz_{i}d\mathbf{c}^{i} \right]$$

Probit model: particular case of the t-link based model.

Prior distributions

Index

Introduction

The Bayesian model

- Setting
- Introducing noise parameters
- Introducing latent variables
- Likelihood function
- Prior distributions
- Posterior distributions (normal prior)
- Posterior distributions (eliciting prior)

Illustrative example

References

- The following step is defining the prior distributions.
 - Regression parameters
 ³: as usual in error-free models (i.e. multivariate normal distribution), or based on the expert opinion (as in Bedrick et al. (1996)).
 - Noise parameters: with the natural choice for modelling the uncertainty about probabilities, i.e. Beta distributions.
 - Degrees of freedom: a bounded discrete distribution.
- These specifications allow to derive a Gibbs sampling algorithm to generate from the posterior distribution.
- All full conditional distributions can be efficiently generated by using standard algorithms.

Prior distributions

Index

Introduction

The Bayesian model

- Setting
- Introducing noise parameters
- Introducing latent variables
- Likelihood function
- Prior distributions
- Posterior distributions (normal prior)
- Posterior distributions (eliciting prior)

Illustrative example

References

Bedrick et al. (1996) induce a prior probability distribution on β using a so called conditional means prior (CMP) on $\tilde{\mathbf{p}} = (\tilde{p}_1, \dots, \tilde{p}_k)^T$, where in binomial regression $\tilde{p}_l = \mathrm{E}(\tilde{y}_l | \tilde{\mathbf{x}}_l)$ is the success probability for a potentially observable response \tilde{y}_l at covariate vector $\tilde{\mathbf{x}}_l$.

- Assuming k regression coefficients, prior probabilities p
 _l are elicited in the predictor space, for selected locations x
 _l.
- With k linearly independent sets of covariate values, we obtain a 1-1 transformation between β and p̃, namely β = x̃⁻¹Ψ⁻¹(p̃), where x̃ = (x̃₁^T,...,x̃_k^T)^T.
- ◆ Uncertainty about p̃_l is modelled with independent distributions Be(a_l, b_l). The hyperparameters a_l and b_l are determined from expert prior judgements.

Index

Introduction

The Bayesian model

- Setting
- Introducing noise parameters
- Introducing latent variables
- Likelihood function
- Prior distributions
- Posterior distributions (normal prior)
- Posterior distributions (eliciting prior)

Illustrative example

References

Defining the prior distribution of β as $N_k(\mathbf{b}_0, \mathbf{B}_0)$.

Given the data D, the joint posterior distribution of the unobservables c, β , λ , and ν is

$$\pi(\mathbf{c}, \boldsymbol{\beta}, \boldsymbol{\lambda}, \boldsymbol{\nu} | \mathbf{D}) \propto \pi(\boldsymbol{\beta}) \pi(\boldsymbol{\lambda}) \pi(\boldsymbol{\nu})$$

$$\times \prod_{i=1}^{n} \left[\{ p_i(1 - \lambda_{10}) \}^{c_{11}^i} \{ p_i \lambda_{10} \}^{c_{10}^i} \right]$$

$$\times \{(1-p_i)\lambda_{01}\}^{c_{01}^i}\{(1-p_i)(1-\lambda_{01})\}^{c_{00}^i}$$

$$\times \left(I[y_i = 1]I[c_{11}^i + c_{01}^i = 1] + I[y_i = 0]I[c_{10}^i + c_{00}^i = 1] \right) \right]$$

The full conditional distributions for c and λ are easy to obtain:

 $\mathbf{c}^{i}|\boldsymbol{\beta}, \boldsymbol{\lambda}, \nu, \mathbf{D} \sim \text{Multinomial}\left(1, \pi_{c^{i}}(c_{11}^{i}, c_{10}^{i}, c_{01}^{i}, c_{00}^{i})\right),$

 $\pi_{c^{i}}(1,0,0,0) = \frac{p_{i}(1-\lambda_{10})}{\theta_{i}}I[y_{i}=1],$ $\pi_{c^{i}}(0,1,0,0) = \frac{p_{i}\lambda_{10}}{(1-\theta_{i})}I[y_{i}=0],$ $\pi_{c^{i}}(0,0,1,0) = \frac{(1-p_{i})\lambda_{01}}{\theta_{i}}I[y_{i}=1],$ $\pi_{c^{i}}(0,0,0,1) = \frac{(1-p_{i})(1-\lambda_{01})}{(1-\theta_{i})}I[y_{i}=0].$

$$\lambda_{10} | \mathbf{c}, \boldsymbol{\beta}, \nu, \mathbf{D} \sim \operatorname{Be} \left(a_{10} + \sum_{i=1}^{n} c_{10}^{i}, \ b_{10} + \sum_{i=1}^{n} c_{11}^{i} \right),$$

$$\lambda_{01} | \mathbf{c}, \boldsymbol{\beta}, \nu, \mathbf{D} \sim \operatorname{Be} \left(a_{01} + \sum_{i=1}^{n} c_{01}^{i}, \ b_{01} + \sum_{i=1}^{n} c_{00}^{i} \right),$$

Introduction

Index

The Bayesian model

- Setting
- Introducing noise parameters
- Introducing latent variables
- Likelihood function
- Prior distributions
- Posterior distributions (normal prior)
- Posterior distributions (eliciting prior)

Illustrative example

References

Index

Introduction

The Bayesian model

- Setting
- Introducing noise parameters
- Introducing latent variables
- Likelihood function
- Prior distributions
- Posterior distributions (normal prior)
- Posterior distributions (eliciting prior)

Illustrative example

References

- The full conditional distributions π(β|c, λ, ν, D) and π(ν|c, β, λ, D) have not closed expression from which to generate easily.
- Generating from these distributions could be addressed by using a Metropolis-Hasting algorithm, however a Gibbs-within-Gibbs algorithm is more efficient and easier to implement by considering the introduction of latent variables in $\pi(\beta, \nu | \mathbf{c}, \boldsymbol{\lambda}, \mathbf{D})$.
- The new distribution of interest is

$$\pi(\mathbf{z}, \boldsymbol{\beta}, \boldsymbol{\gamma}, \nu | \mathbf{c}, \boldsymbol{\lambda}, \mathbf{D})$$

$$\propto \quad \pi(\boldsymbol{\beta}) \pi(\nu) \prod_{i=1}^{n} \left\{ \phi(z_i; \mathbf{x}_i^T \boldsymbol{\beta}, \gamma_i^{-1}) p(\gamma_i) \right\}$$

$$\times \quad \left(I[z_i > 0] I[c_{11}^i + c_{10}^i = 1] + I[z_i \le 0] I[c_{01}^i + c_{00}^i = 1] \right)$$

Index

Introduction

The Bayesian model

- Setting
- Introducing noise parameters
- Introducing latent variables
- Likelihood function
- Prior distributions
- Posterior distributions (normal prior)
- Posterior distributions (eliciting prior)

Illustrative example

References

• The full conditional distributions of z_1, \ldots, z_n are conditionally independent

$$z_i | \boldsymbol{\beta}, \boldsymbol{\gamma}, \nu, \mathbf{c}, \boldsymbol{\lambda}, \mathbf{D} \sim \begin{cases} \mathrm{N}(\mathbf{x}_i^T \boldsymbol{\beta}, \gamma_i^{-1}) I[z_i > 0] & \text{if } c_{11}^i + c_{10}^i = 1\\ \mathrm{N}(\mathbf{x}_i^T \boldsymbol{\beta}, \gamma_i^{-1}) I[z_i \le 0] & \text{if } c_{01}^i + c_{00}^i = 1 \end{cases}.$$

• β is obtained by

$$oldsymbol{eta} | \mathbf{z}, oldsymbol{\gamma},
u, \mathbf{c}, oldsymbol{\lambda}, \mathbf{D} \sim \mathrm{N}_k\left(\mathbf{b}_k, \mathbf{B}_k
ight),$$

where

$$\mathbf{b}_k = \mathbf{B}_k(\mathbf{x}^T \mathbf{W} \mathbf{z} + \mathbf{B}_0^{-1} \mathbf{b}_0), \quad \mathbf{B}_k = (\mathbf{x}^T \mathbf{W} \mathbf{x} + \mathbf{B}_0^{-1})^{-1},$$

and $\mathbf{W} = \operatorname{diag}(\gamma_i).$

Index

Introduction

The Bayesian model

- Setting
- Introducing noise parameters
- Introducing latent variables
- Likelihood function
- Prior distributions
- Posterior distributions (normal prior)
- Posterior distributions (eliciting prior)

Illustrative example

References

For the t-link model:

The full conditional distributions of $\gamma_1, \ldots, \gamma_n$ are conditionally independent with

$$\gamma_i | \mathbf{z}, \boldsymbol{\beta}, \nu, \mathbf{c}, \boldsymbol{\lambda}, \mathbf{D} \sim \operatorname{Ga}\left(\frac{\nu+1}{2}, \frac{2}{\nu+(z_i - \mathbf{x}_i^T \boldsymbol{\beta})^2}\right).$$

ν|z, β, γ, c, λ, D is distributed according to a pmf proportional to

$$\pi(\nu)\prod_{i=1}^n \left(c(\nu)\gamma_i^{\nu/2-1}e^{-\nu\gamma_i/2}\right).$$

Posterior distributions (eliciting prior)

Index

Introduction

The Bayesian model

Setting

- Introducing noise parameters
- Introducing latent variables
- Likelihood function
- Prior distributions
- Posterior distributions (normal prior)
- Posterior distributions (eliciting prior)

Illustrative example

References

Building a prior distribution for β based on the expert prior elicitation was proposed by Bedrick et al. (1996).

The independence CMP

$$\pi(\tilde{\mathbf{p}}) \propto \prod_{l=1}^{k} \tilde{p}_l^{a_l-1} (1-\tilde{p}_l)^{b_l-1},$$

induces a prior on β given by

$$\pi(\boldsymbol{\beta}) \propto \prod_{l=1}^{k} \Psi(\tilde{\mathbf{x}}_{l}^{T}\boldsymbol{\beta})^{a_{l}-1} [1 - \Psi(\tilde{\mathbf{x}}_{l}^{T}\boldsymbol{\beta})]^{b_{l}-1} \psi(\tilde{\mathbf{x}}_{l}^{T}\boldsymbol{\beta}),$$

where $\Psi=\Phi$ for the probit model and $\Psi=T_{\nu}$ for the t-link model.

The posterior distribution is

 $\pi(\boldsymbol{\beta}, \boldsymbol{\lambda}, \nu | \mathbf{D}) \propto \pi(\boldsymbol{\beta}) \pi(\boldsymbol{\lambda}) \pi(\nu) L(\boldsymbol{\beta}, \boldsymbol{\lambda}, \nu).$

Posterior distributions (eliciting prior)

Index

Introduction

The Bayesian model

Setting

- Introducing noise parameters
- Introducing latent variables
- Likelihood function
- Prior distributions
- Posterior distributions (normal prior)
- Posterior distributions (eliciting prior)

Illustrative example

References

To sample from β, λ and ν, the latent variables c are introduced. The full conditional distributions for c and λ are the same as in case of normal prior.

• The full conditional distributions to β and ν are given by

$$\pi(\boldsymbol{\beta}|\mathbf{c},\boldsymbol{\lambda},\nu,\mathbf{D}) \propto \prod_{l=1}^{k} \Psi(\tilde{\mathbf{x}}_{l}^{T}\boldsymbol{\beta})^{a_{l}-1} [1 - \Psi(\tilde{\mathbf{x}}_{l}^{T}\boldsymbol{\beta})]^{b_{l}-1} \psi(\tilde{\mathbf{x}}_{l}^{T}\boldsymbol{\beta})$$
$$\times \prod_{i=1}^{n} \Psi(\mathbf{x}_{i}^{T}\boldsymbol{\beta})^{c_{11}^{i}+c_{10}^{i}} [1 - \Psi(\mathbf{x}_{i}^{T}\boldsymbol{\beta})]^{c_{01}^{i}+c_{00}^{i}},$$

$$\pi(\nu | \mathbf{c}, \boldsymbol{\lambda}, \boldsymbol{\beta}, \mathbf{D}) \propto \pi(\nu) \prod_{l=1}^{k} \Psi(\tilde{\mathbf{x}}_{l}^{T} \boldsymbol{\beta})^{a_{l}-1} [1 - \Psi(\tilde{\mathbf{x}}_{l}^{T} \boldsymbol{\beta})]^{b_{l}-1} \psi(\tilde{\mathbf{x}}_{l}^{T} \boldsymbol{\beta})$$
$$\times \prod_{i=1}^{n} \Psi(\mathbf{x}_{i}^{T} \boldsymbol{\beta})^{c_{11}^{i}+c_{10}^{i}} [1 - \Psi(\mathbf{x}_{i}^{T} \boldsymbol{\beta})]^{c_{01}^{i}+c_{00}^{i}}.$$

Introduction

The Bayesian model

Illustrative example

Context

- Misclassified cases
- Prior
- Predictions and DIC
- Conclusions

References

Illustrative example

Context

Index

Introduction

The Bayesian model

Illustrative example

- Context
- Misclassified cases
- Prior
- Predictions and DIC
- Conclusions

References

• A covariate set is generated by $x_{i1} \sim N(2, 0.09)$, and $x_{i2} \sim N(3, 0.09)$, i = 1, ..., 100.

The probabilities are obtained for both error-free models by:

$$\eta_i = \Psi^{-1}(p_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2},$$

where $\beta = (2, -4, 2)^T$.

• For each model, the true binary dependent variable y^{true} is obtained by

 $\begin{cases} y_i^{true} = 0 & \text{if } p_i \le 0.5 \\ y_i^{true} = 1 & \text{if } p_i > 0.5 \end{cases}$

Both probit and t(7)-Student models display the same outcomes because of the symmetric links and the discretization.

Context

Index

Introduction

The Bayesian model

Illustrative example • Context

- Misclassified cases
- Prior
- Predictions and DIC
- Conclusions

References

Intentionally misclassify some outcomes according to the following quantities:

- 7 outcomes with $y^{true} = 0$ becoming y = 1,
- 5 outcomes with $y^{true} = 1$ becoming y = 0.
- The new response variable y remains equal to y^{true} for the non-misclassified outcomes.

Then, the known proportion of misclassification for the new response is given by:

 $\lambda_{01} = p(\text{false positive}) = 1 - \text{Specificity} = \frac{7}{45} = 0.1555$ $\lambda_{10} = p(\text{false negative}) = 1 - \text{Sensitivity} = \frac{5}{55} = 0.0909$

Misclassified cases

A
Introduction
muouuouon

The Bayesian model

- Illustrative example
- Context

Index

- Misclassified cases
- Prior
- Predictions and DIC
- Conclusions

References

- Three misclassification cases are considered for both models, according to the previous quantities.
 - 1. Only outcomes close to the "border" are misclassified, i.e. outcomes for which $p_i \approx 0.5$.
 - 2. Outcomes being far from the "border", i.e. $p_i \approx 0$ or $p_i \approx 1$.
 - 3. A random misclassification is considered.
- The main objective is to compare the predictive performance of the proposed models to the standard ones.
- This simulated scenario allows to compare the predictive outcomes with the real ones and, therefore, to know what model performs better.

Misclassified cases

Prior

Index	

Introduction

The Bayesian model

Illustrative example

Context

- Misclassified cases
- Prior
- Predictions and DIC
- Conclusions

References

Three prior specifications are considered for the regression parameters β:

1. A informative prior, $\beta \sim N_3(\mathbf{b}_0^T, \mathbf{B}_0)$, where $\mathbf{b}_0^T = (2, -4, 2)$ and $\mathbf{B}_0 = \text{diag}(10, 10, 10)$.

- 2. A weakly informative prior, $\beta \sim N_3(\mathbf{b}_0^T, \mathbf{B}_0)$, where $\mathbf{b}_0^T = (0, 0, 0)$ and $\mathbf{B}_0 = \text{diag}(100, 100, 100)$.
- 3. A prior based on the proposal of Bedrick et al. (1996), that have been adapted to address misclassifications:

Configurations	Hyperparameters		
$\tilde{\mathbf{x}}_1^T = (1.7, 3.3)$	$a_{11} = 45$	$a_{21} = 5$	
$\tilde{\mathbf{x}}_{2}^{T} = (2.0, 3.0)$	$a_{12} = 25$	$a_{22} = 25$	
$\tilde{\mathbf{x}}_3^T = (2.3, 3.3)$	$a_{13} = 5$	$a_{23} = 15$	
λ_{10}	$a_{10} = 5$	$b_{10} = 50$	
λ_{01}	$a_{01} = 7$	$b_{01} = 38$	

Prior

Index

Introduction

The Bayesian model

Illustrative example

Context

Misclassified cases

```
Prior
```

- Predictions and DIC
- Conclusions

References

For the noise parameters, we introduce initial information according to the misclassification proportions that affect the data, i.e.:

 $\lambda_{10} \sim \operatorname{Be}(5,50)$ and $\lambda_{01} \sim \operatorname{Be}(7,38)$

Two cases are considered for the distribution of the degrees of freedom:

1. $\nu = 7$,

2. ν being a r.v. with discrete finite distribution. Its support is $\{4, \ldots, 10\}$ and the probabilities are (0.05, 0.10, 0.20, 0.30, 0.20, 0.10, 0.05).

Predictions and DIC

Case 1: Misclassification near to the border

	Prodictions	$y^{true} = 0$	$y^{true} = 0$	$y^{true} = 1$	$y^{true} = 1$
Index	FIEUICIONS	$y^{pred} = 0$	$y^{pred} = 1$	$y^{pred} = 0$	$y^{pred} = 1$
Introduction	Probit	42/43/45	3/2/0	0/0/1	55/55/54
The Bayesian model	Probit Mis.	42/43/45	3/2/0	0/0/0	55/55/55
Illustrative example Context 	t(7)	42/43/45	3/2/0	0/0/0	55/55/55
Misclassified casesPrior	t(7) Mis.	42/43/45	3/2/0	0/0/0	55/55/55
Predictions and DICConclusions	t(r.v.)	42/43/45	3/2/0	0/0/0	55/55/55
References	t(r.v.) Mis.	42/43/45	3/2/0	0/0/0	55/55/55

Informative prior/ Weakly informative prior/ Elicited prior information

DIC	Informative prior	Weakly informative prior	Elicited prior information
Probit	37.486	35.012	55.015
Probit Mis.	48.144	45.904	65.407
t(7)	38.627	35.740	51.060
t(7) Mis.	49.556	46.306	61.627
t(r.v.)	38.652	35.756	50.982
t(r.v.) Mis.	49.631	46.418	56.966

Predictions and DIC

Case 2: Misclassification far to the border

	Prodictions	$y^{true} = 0$	$y^{true} = 0$	$y^{true} = 1$	$y^{true} = 1$
Index	FIEUICIONS	$y^{pred} = 0$	$y^{pred} = 1$	$y^{pred} = 0$	$y^{pred} = 1$
Introduction	Probit	31/30/36	14/15/9	0/0/0	55/55/55
The Bayesian model	Probit Mis.	44/45/45	1/0/0	0/0/0	55/55/55
Illustrative example Context 	t(7)	32/32/37	13/13/8	0/0/0	55/55/55
Misclassified casesPrior	t(7) Mis.	44/45/44	1/0/1	0/0/0	55/55/55
Predictions and DICConclusions	t(r.v.)	32/32/37	13/13/8	0/0/0	55/55/55
References	t(r.v.) Mis.	44/45/45	1/0/0	0/0/0	55/55/55

Informative prior/ Weakly informative prior/ Elicited prior information

DIC	Informative prior	Weakly informative prior	Elicited prior information
Probit	131.836	132.058	133.301
Probit Mis.	97.179	87.822	116.479
t(7)	131.656	131.880	132.675
t(7) Mis.	99.813	89.219	113.194
t(r.v.)	131.728	131.740	132.686
t(r.v.) Mis.	99.954	89.531	114.228

Predictions and DIC

Case 3: Misclassification random

	Prodictions	$y^{true} = 0$	$y^{true} = 0$	$y^{true} = 1$	$y^{true} = 1$
Index	Fredictions	$y^{pred} = 0$	$y^{pred} = 1$	$y^{pred} = 0$	$y^{pred} = 1$
Introduction	Probit	41/41/42	4/4/3	0/0/1	55/55/54
The Bayesian model	Probit Mis.	43/44/44	2/1/1	0/0/0	55/55/55
Illustrative example Context 	t(7)	39/40/42	6/5/3	0/0/1	55/55/54
Misclassified casesPrior	t(7) Mis.	43/44/43	2/1/2	0/0/0	55/55/55
Predictions and DICConclusions	t(r.v.)	39/40/42	6/5/3	0/0/1	55/55/54
References	t(r.v.) Mis.	43/44/44	2/1/1	0/0/1	55/55/54

Informative prior/ Weakly informative prior/ Elicited prior information

DIC	Informative prior	Weakly informative prior	Elicited prior information
Probit	98.848	99.306	96.792
Probit Mis.	86.408	82.027	95.453
t(7)	97.172	97.897	95.240
t(7) Mis.	88.732	83.830	93.898
t(r.v.)	96.956	97.723	95.189
t(r.v.) Mis.	88.672	84.027	94.462

Conclusions

right values.

	1. Case 1: Misclassified outcomes are close to the border.
Index	I he models addressing misclassification perform similar
Introduction	to the standard models.
The Bayesian model	The proposed models are not able to identify the
Illustrative example	misclassified outcomes, giving similar predictions as in
Context	
 Misclassified cases 	the standard models.
Prior	
Predictions and DIC	
 Conclusions 	2. Case 2: Misclassified outcomes are far from the border.
References	The proposed models are able to identify and make right
	predictions, by relocating misclassified outcomes to their

- 3. Case 3: Misclassified outcomes randomness.
 - The proposed models performs better than the standard one, but not as well as in the second case.

Conclusions

Index	
Introduction	

The Bayesian model

Illustrative example

- Context
- Misclassified cases
- Prior
- Predictions and DIC
- Conclusions

References

In general, the proposed methods:

- They are no worse than the standard methods.
- They can increase substantially the number of correct predictions with respect to the standard methods.
- They can produce better fits than the standard models.
- The use of latent variables as proposed here enables us to avoid computational difficulties.
- Although the augmented models increase the dimensionality, the generation processes become easier.

Introduction

The Bayesian model

Illustrative example

Thank you

References

Thank you

References

References

	[1] Achcar, J. A., Martínez, E. Z., and Louzada-Neto, F. (2004). Proceedings
Index	of the Computational Statistics Conference, chapter Binary data in the
Introduction	presence of misclassifications, pages 581–588. Physica-Verlag.
The Bayesian model	[2] Albert, J. and Chib, S. (1993). Bayesian analysis of binary and
Illustrative example	polychotomous response data. Journal of the American Statistical
References	Association 88 , 669–679.

- [3] Bedrick, E. J., Christensen, R., and Johnson, W. (1996). A new perspective on priors for generalized linear models. Journal of the American Statistical Association **91**, 1450–1460.
- [4] Cowling, D., Johnson, W. O., and Gardner, I. A. (2001). Bayesian modelling of risk when binary outcomes are subject to error. Technical report, Department of Statistics, University of California, Davis.
- [5] Nelder, J., and Wedderburn, R.W.M. (1972). Generalized Linear Models. Journal of the Royal Statistical Socciety A135, 370–384.
- [6] Paulino, C. D., Silva, G., and Achcar, J. A. (2005). Bayesian analysis of correlated misclassified binary data. Computational Statistics and Data Analysis 49, 1120–1131.