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a b s t r a c t

In this paper the problem of testing a multivariate point hypothesis is considered. Of
interest is the relationship between the p-value and the posterior probability. A Bayesian
test for simple H0 : θ = θ0 versus bilateral H0 : θ 6= θ0, with a mixed prior distribution
for the parameter θ , is developed. The methodology consists of fixing a sphere of radius δ
around θ0 and assigning a prior mass, π0, to H0 by integrating the density π(θ) over this
sphere and spreading the remainder, 1 − π0, over H1 according to π(θ). A theorem that
shows when the frequentist and Bayesian procedures can give rise to the same decision is
proved. Then, some examples are revisited.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let f (x1, . . . , xn|θ) (θ = (θ1, . . . , θm) unknown) be the likelihood of a sample (X1, . . . , Xn). For a specified θ0 =
(θ01, . . . , θ0m)we want to test

H0 : θ = θ0 versus H1 : θ 6= θ0. (1)

As usual, we use the following mixed prior distribution to test (1)

π∗ (θ) = π0IH0 (θ)+ (1− π0) π (θ) IH1 (θ) . (2)

For a proper metric d and a value of δ sufficiently small, consider

H0δ : d (θ0, θ) ≤ δ, versus H1δ : d (θ0, θ) > δ.

Denote B (θ0, δ) =
{
θ ∈ Θ r ,

∑m
i=1 (θi − θ0i)

2
≤ δ2

}
. Gómez-Villegas et al. (2007) proposed to compute π0 by means of

π0 =

∫
B(θ0,δ)

π (θ) dθ. (3)

In this way, π0 is the probability assigned to H0, through π∗(θ), and H0δ , through π(θ), the Kullback–Leibler discrepancy
between π(θ) and π∗(θ) goes to zero as δ goes to zero, and the posterior probability of the null is

Pπ∗ (θ0|x1, . . . , xn) =
[
1+

1− π0
π0

η (x1, . . . , xn)
]−1

, (4)

η (x1, . . . , xn) =

∫
Θ
f (x1, . . . , xn|θ) π (θ) dθ
f (x1, . . . , xn|θ0)

. (5)
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Suppose thatH0 is rejectedwhen Pπ∗ (θ0|x1, . . . , xn) ≤ 1/2. On the other hand, ifΛ (x1, . . . , xn) = supθ∈Θ f (x1, . . . , xn|θ) /
f (x1, . . . , xn|θ0) is the test statistic, then the associated p-value,

p (x1, . . . , xn) = P (Λ (X1, . . . , Xn) > Λ (x1, . . . , xn) |θ0) , (6)

can be approximated by P
(
χ2m > 2 lnΛ (x1, . . . , xn)

)
. In this case, H0 is rejected when p (x1, . . . , xn) ≤ p∗, for a level of

significance p∗. The aim is to find conditions for δ in order that, when p∗ is fixed, whatever be (x1, . . . , xn) ∈ χ , the same
decision is reachedwith bothmethods. In Section 2, a theorem that showswhen both approaches are in agreement is proved.
In Section 3 some relevant examples are revisited. Conclusions and comments are included in Section 4.

2. Comparison between both approaches

In parametric testing of a simple null hypothesis, as opposed to the one-sided (see Casella and Berger, 1987), Bayesian and
frequentist procedures can give rise to different decisions (see Lindley, 1957; Berger and Sellke, 1987; Berger andDelampady,
1987, among others). In most of the Bayesian approaches, the infimum of a Bayesian evidence measure over a wide class
of priors is computed and is substantially larger than the p-value. Other important references are Oh and Dasgupta (1999),
Gómez-Villegas and Sanz (2000), Sellke et al. (2001), Gómez-Villegas et al. (2002) and Gómez-Villegas and González-Pérez
(2005, 2006).

2.1. Preliminaries

In this section we introduce some definitions and results in order to prove a characterization theorem of the agreement
between both methods to test (1).

Definition 2.1. Let π (θ) be the prior about θ. T = T (X1, . . . , Xn) is a sufficient statistic to test H0 : θ ∈ Θ0, versus
H1 : θ ∈ Θ1, withΘ0 ∩Θ1 = φ andΘ0 ∪Θ1 = Θ , if Pπ (Θ0|x1, . . . , xn) = Pπ (Θ0|t), when T (x1, . . . , xn) = t .

Note that the Bayes factor η given in (5) is a sufficient statistic to test the multivariate point null given in (1) when the
mixed prior (3) is used. In fact, with this prior choice, if T is a sufficient statistic to test (1), then there is a function g : R→ R
such that g (T ) = η. Moreover, the usual definition of sufficient statistic is not equal to this new concept of sufficient statistic
to test. If T is a sufficient statistic then T verifies Definition 2.1. The reciprocal is not true. We introduce the next concept in
order to compare two statistics.

Definition 2.2. Let T1 = T1 (X1, . . . , Xn) and T2 = T2 (X1, . . . , Xn) be univariate statistics. T1 is an increasing tendency statistic
with respect to T2 in a value T1 = t if supT1(x1,...,xn)<t T2 (x1, . . . , xn) ≤ infT1(x1,...,xn)≥t T2 (x1, . . . , xn) .

Proposition 2.1. If T1 = h (T2) and h : R → R is a non-decreasing monotonous function, then T1 is an increasing tendency
statistic with respect to T2 for any value T1 = t. Furthermore, when h is a strictly increasing function, then

sup
T1(x1,...,xn)<t

T2 (x1, . . . , xn) = inf
T1(x1,...,xn)≥t

T2 (x1, . . . , xn) = h−1 (t) .

2.2. Agreement between frequentist and Bayesian approaches

Theorem 2.1. Suppose that we wish to test (1) with the prior distribution given in (2) and π0 as in (3). If Λ is
an increasing tendency statistic with respect to η in Λ = λ∗, then for p∗ = Pθ0 {Λ ≥ λ

∗} there is an interval of values of
π0 = π0 (δ), I = I (p∗, n) = (`1, `2), where both methods are in agreement.

Proof. Define Aη (κ) = {(x1, . . . , xn) , η (x1, . . . , xn) = κ}. Pπ∗ (θ0|κ) > 1/2 is verified when π0 > κ(κ + 1)−1. π0 (κ) =
κ(κ + 1)−1 is a strictly increasing function. Moreover, if λ1 < λ2, then p (λ1) = Pθ0 {Λ ≥ λ1} ≥ Pθ0 {Λ ≥ λ2} = p (λ2). If
Λ is an increasing tendency statistic with respect to η in Λ = λ∗ then κ∗ = sup(x1,...,xn),p>p∗ η = supΛ<λ∗ η ≤ infΛ≥λ∗ η =
inf(x1,...,xn),p≤p∗ η = κ

∗ and `1 = π0 (κ∗) = sup(x1,...,xn), p>p∗ π
0 (η) ≤ inf(x1,...,xn), p≤p∗ π

0 (η) = π0 (κ∗) = `2 are verified
for p∗ = Pθ0 {Λ ≥ λ

∗}. Consider π0 ∈ (`1, `2). If (x1, . . . , xn) ∈ Aη (κ), κ < κ∗ ≤ κ∗, then π0 > `1 > κ(κ + 1)−1 and
Pθ0 {Λ ≥ Λ (x1, . . . , xn)} > p

∗. On the other hand, if (x1, . . . , xn) ∈ Aη (κ), κ ≥ κ∗ ≥ κ∗, then π0 < `2 ≤ κ(κ + 1)−1 and
Pθ0 {Λ ≥ Λ (x1, . . . , xn)} ≤ p

∗. �

Corollary 2.1. Let Λ = h (η) with h : R → R be a non-decreasing monotonous function. If (x1, . . . , xn) ∈ Aη (κ) is
observed, the same decision is reached with the posterior probability Pπ∗ (θ0|κ) = [1+ (1− π0 (δ)) κ/π0 (δ)]−1 and δ such
that π0 (δ) ∈ (`1, `2),

`1 = `1
(
p∗, n

)
= sup(x1,...,xn),p>p∗ η (η + 1)

−1 , (7)

`2 = `2
(
p∗, n

)
= inf

(x1,...,xn),p≤p∗
η (η + 1)−1 , (8)
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Table 1
Values of δ∗ (p∗, n,m) = δ

√
n/σ 2 where the agreement is achieved over unimodal and symmetric prior distribution class

δ∗ m = 2 m = 5 m = 10 m = 20

p∗ = 0.5 2 2.78 3.64 4.88
p∗ = 0.1 4.47 4.53 5.08 6.12
p∗ = 0.05 6.32 5.44 5.7 6.6
p∗ = 0.01 14.14 8.13 7.28 7.7
p∗ = 0.001 44.72 13.95 10.02 9.34

and p∗ = P (Λ ≥ λ∗) to quantify the p-value, p (h (κ)) = Pθ0 {Λ ≥ h (κ)}. Moreover, when h is strictly increasing continuous,
then η = h−1(Λ) and

`1 = `2 = π0
(
δ, p∗, n

)
= h−1

(
λ∗
) [
h−1

(
λ∗
)
+ 1

]−1
. (9)

The proof of Corollary 2.1 is easy by using Theorem 2.1 and Proposition 2.1. Another immediate outcome is that, when
the sample size n and the level of significance p∗ are fixed, the verification of `1 ≤ `2, defined in (7) and (8), is sufficient for
the existence of agreement between the p-value and the posterior probability. Moreover, when Λ = h (η) and h : R → R
is non-decreasing monotonous, `1 ≤ `2 is always true whatever be the value of p∗, and if h is strictly increasing continuous
then `1 = `2 and the agreement is obtained for (9).

3. Applications

3.1. Lindley’s paradox

Let (x1, . . . , xm)be a sample fromaunivariate normal ofmean θ and knownvarianceσ 2 and the priormass ofH0 : θ = θ0,
be c. Distribute the remainder 1 − c uniformly over some interval I containing θ0. x̄, the arithmetic mean, and a minimal
sufficient statistic, is well within I for n sufficiently enough. Then x̄ − θ0 tends to zero as n increases and the posterior
probability that θ = θ0 is

c̄ = cK−1 exp[−n (x̄− θ0)2 /(2σ 2)], (10)
K = c exp[−n (x̄− θ0)2 /(2σ 2)] + (1− c)

∫
I exp[−n (x̄− θ)

2 /(2σ 2)]dθ . By the assumption about x̄ and I , the last integral
can be evaluated as σ

√
2π/n. By using the usual test x̄ = θ0 + λασ

√
n [Φ (λα) = 1 − α/2, (Φ being the normal standard

distribution function)] is significant at the α% level and

c̄ = c exp(−λ2α/2)
[
c exp(−λ2α/2)+ (1− c) σ

√
2π/n

]−1
. (11)

From (11)we see that c̄ → 1whenn→∞ andwhatever be c , it can be foundn = n(c, α) such that ‘‘x̄ is significantly different
from θ0 at the α% level’’ and ‘‘the posterior probability that θ = θ0 is 100(1−α)%’’. This is the paradox. Both statements are in
direct conflict. However, Lindley (1957) remarks also that if A = c exp(−λ2α/2)[(1− c)

√
2π ]−1, then c̄ = A(A+ σ/

√
n)−1

and c̄ → 0 as σ/
√
n → ∞. Therefore, in a small experiment, significance at 5% may give good reasons to doubt the null

hypothesis. On the other hand when n and α are fixed, there is a value of c = c(n, α), such that both approaches are in
agreement. Observe that the posterior probability (10) may be written c̄ =

[
1+ (1− c) h−1 [T (x̄, θ0)] /c

]−1
, h−1 (u) =

σ
√
2π/n exp(u/2), T (x̄, θ0) = n (x̄− θ0)2 /σ 2. Lindley’s argument to show a paradox consists of finding a value of

n = n(c, α) such that both decisions differ radically. However, by applying Corollary 2.1 both agree with each other for

c = h−1
(
χ21,α

) [
h−1

(
χ21,α

)
+ 1

]−1
=

[
1+ n1/2

(
2πσ 2

)−1/2 exp(−χ21,α/2)]−1. Note that if α = 0.05, then c = 1/2 when
n/σ 2 ≈ 300. In general, for c and α fixed, n/σ 2 = 2πc−2 (1− c)2 exp(χ21,α).

3.2. Lowers bounds for unimodal and symmetric priors

Let X = (X1, . . . , Xm)′ ∼ Nm
(
θ, σ 2I

)
with σ 2 known, I the identity matrix m × m and θ = (θ1, . . . , θm)′ unknown. For

testing (1) with a sample of size n the usual test statistic is T
(
X, θ0

)
= nσ−2

(
X− θ0

)′ (
X− θ0

)
, with X =

(
X1, . . . , Xm

)′
,

and the p-value of the observed data, x̄ = (x̄1, . . . , x̄m)′, is p (x̄) ≈ P
{
χ2m ≥ T (x̄, θ0)

}
. If π∗ (θ) is the mixed prior given

in (2) with π0 computed by (3), the infimum of the posterior probability of the point null when π (θ) ∈ QUS , QUS being the
unimodal and symmetric priors about θ0, is

inf
π∈QUS

P (H0|x̄) =
[
1+ 2m/2δ∗−mΓ (m/2+ 1) exp[T (x̄, θ0) /2]

]−1
,

where δ∗ = δ
√
n/σ 2 (see Gómez-Villegas et al., 2007). Let t∗ be such that P

{
χ2m ≥ t

∗
}
= p∗. By applying Corollary 2.1 both

methods always agreewith each otherwhen δ∗ =
[
2m/2Γ (m/2+ 1) exp(t∗/2)

]1/m. Table 1 shows the values of δ∗ obtained
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Table 2
Agreement between the p-value and the infimum of the posterior probability when t = T (x̄, θ0) = 7

t = 7 m = 2 m = 5 m = 10 m = 20

p (t) 0.0302 0.22064 0.72544 0.9967
infπ∈QusP (H0|t = 7, δ

∗) m = 2 m = 5 m = 10 m = 20
p∗ = 0.5 0.0787 0.23133 0.76331 0.99791
p∗ = 0.1 0.2992 0.77584 0.98894 0.99998
p∗ = 0.05 0.46066 0.89648 0.99651 0.9999995
p∗ = 0.01 0.81027 0.98473 0.9997 0.9999998
p∗ = 0.001 0.97712 0.99897 0.999988 0.9999999

Table 3
Values of δ∗ (p∗, n,m) = δ

√
n/σ 2 where the agreement is achieved over scale mixture of normal prior class

δ∗ m = 5 m = 10 m = 15 m = 20

p∗ = 0.5 2.38 2.72 2.95 3.13
p∗ = 0.1 5.14 5.77 6.21 6.55
p∗ = 0.05 7.15 7.96 8.52 8.97
p∗ = 0.01 15.51 17.01 18.05 18.89
p∗ = 0.001 48.02 50.63 54.3 56.48

for different values ofm and p∗ and both methods are compared when t = T (x̄, θ0) = 7. We compute the p-values, and the
infimum of the posterior probabilities over the values of δ∗ given in Table 1, whenm = 2,m = 5,m = 10 andm = 20. For
instance, when m = 2, the p-value is p (7) = 0.0302. Therefore, a frequentist statistician who uses p∗ = 0.05, rejects H0,
whereas with p∗ = 0.01, accepts H0. The same result is obtained by a Bayesian with δ∗ = 6.32 and δ∗ = 14.14. In this case,
infπ∈Qus P (H0|t = 7, δ

∗
= 6.32) = 0.46066 and infπ∈Qus P (H0|t = 7, δ

∗
= 14.14) = 0.81027.

3.3. Lowers bounds for scale mixture of normals

In the same context of Section 3.2, we want to test (1) with θ0 = (0, . . . , 0)′ and a sample of size n. The usual
test statistic is T

(
X
)
= nσ−2X

′

X. If m > 2 the infimum of the posterior probability of H0 when π (θ) ∈ QN , QN ={
π
(
θ |v2

)
≈ Nm

(
0, v2I

)
, π
(
v2
)
non-decreasing on (0,∞)

}
, is

inf
π∈QN

P (H0|t) =
[
1+ δ∗−2Fm−2 (t) /fm (t)

]−1
,

t = nx̄′x̄/σ 2, δ∗ = δ
√
n/σ 2, Fm−2 is the distribution function of a χ2m−2 and fm is the density function of a χ

2
m (see Gómez-

Villegas et al., 2007). Let t∗ be such that P
{
χ2m ≥ t

∗
}
= p∗. By applying Corollary 2.2 both methods always agree with

each other when δ∗ (p∗, n,m) = [Fm−2 (t∗) /fm (t∗)]1/2. Table 2 shows the values of δ∗ computed for different values of
m and p∗ and both methods are compared when t = T (x) = 20. The p-values and the infimums on the values of δ∗
of Table 3 are computed. The p-value is p (20) = 0.02925 when m = 10. Therefore, a frequentist statistician who uses
p∗ = 0.05, rejects H0, whereas with p∗ = 0.01, accepts H0. The same result is reached by a Bayesian by using, respectively,
the values δ∗ = 7.96 and δ∗ = 17.01 given in Table 2. In this case infπ∈Qus P (H0|t = 20, δ

∗
= 7.96) = 0.3772 and

infπ∈Qus P (H0|t = 7, δ
∗
= 14.14) = 0.7343.

4. Conclusions and comments

An important conclusion is that p-values and posterior probabilities can be reconciled in the multivariate point null
testing problem. The methodology consists of assigning a prior mass to θ0 computed by the probability of a sphere of
radius δ centered at θ0 assigned by a density π(θ). The p-value and the posterior probability of the null for the mixed prior
π∗ (θ) = π0IH0 (θ)+ (1− π0) π (θ) IH1 (θ) are computed. This procedure allows one to prove a theorem that shows when
and how both approaches are in agreement. The analyzed examples show that such agreement is always possible when
δ∗ = δ∗(p∗, n,m) = δ

√
n/σ 2. This is due to the fact that the infimum of the posterior probability over the prior classes used

depends on the usual test statistic through an increasing function. When this dependence is not possible, the agreement is
in terms of a sufficient condition.
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