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The Concept of Probability
• A Bayesian approach is firmly based on axiomatic foundations.

Mathematical need to describe by probabilities all uncertainties:
Parameters must have a (prior) probability distribution,

assumed to describe available information about their values.
This probability distribution is not a description

of their variability (they are fixed unknown quantities),
but a description of the uncertainty about their true values.

Consideration of replications not required, and often irrelevant.

• Tentatively accept a formal model. which describes the proba-
bilistic relationship between data and quantities of interest.

Model is suggested by informal descriptive evaluation.
Conclusions always conditional on model assumptions.
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Objective Bayesian Statistics
• Very important particular case:

No relevant objective initial information.

• Includes scientific and industrial reporting,
and public decision making.

• Prior distribution based only on explicit model assumptions:
This is Objective Bayesian Statistics.

• Main research effort to theoretically derive the objective prior
from the assumed statistical model.

• Accepted procedures use mathematical information theory:
Reference prior, reference analysis.
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Notation
• The functions p(x), p(θ) are probability densities (or mass)
functions of observables x ∈ X or parameters θ ∈ Θ,

Special densities with specific notation:
N(x |µ, σ2), St(x |µ, σ, α), or Ga(θ |α, β).

• Model generating x ∈ X , M ≡{ p(x |θ), x ∈ X , θ ∈ Θ}
Data set x ∈ X . Sample space X , of arbitrary structure.
Quantity of interest φ = φ(θ) ∈ Φ ⊂ $
Alternatively, M ≡{ p(x |φ,ω), x ∈ X , φ ∈ Φ, ω ∈ Ω}

in terms of quantity of interest and nuisance parameters.

• Posterior p(φ |x) ∝
∫
Ω p(x |φ,ω) p(φ,ω) dω combines infor-

mation from data x with prior information.
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Reference Priors and Reference Posteriors
• Reference prior πφ(φ,ω |M,P) = πφ(φ,ω)

This is that formal prior which, among all candidate priors
p(φ,ω) ∈ P may be expected to have a minimal effect,
relative to data from M on the posterior inference about φ.

• Reference posterior
This is obtained by stantard use of probability theory
(Bayes theorem and appropriate integration) as
π(φ |x) ∝

∫
Ω p(x |φ,ω) πφ(φ,ω) dω.

• The reference posterior encapsutates all relevant information
about the quantity of interest φ provided by data x,
under the assumptions implied by M.
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Divergence Measures
Hellinger distance
h{p1, p2} =

∫
X

(√
p1(x)−

√
p2(x)

)2
dx

It is a metric, but it is not additive;
If pi(x) =

∏n
j=1 qi(xj), h{p1, p2} '= n h{q1, q2}

Logarithmic divergence
The logarithmic divergence (Kullback-Leibler) κ{p2 | p1} of a
density p2(x), x ∈ X2, from a true density p1(x), x ∈ X1, is
κ{p2 | p1} =

∫
X1

p1(x) log p1(x)
p2(x) dx, (provided this exists).

• κ{p2 | p1} ≥ 0 is zero iff, p2(x) = p1(x), a.e.
it is invariant under one-to-one transformations of x, and
it is additive: κ{p1 | p2} = n h{q1 | q2}

• But κ{p1 | p2} is not symmetric and diverges if X2 ⊂ X1.
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Intrinsic discrepancy

δ{p1, p2} = min
{∫

X1
p1(x) log p1(x)

p2(x) dx,
∫
X2

p2(x) log p2(x)
p1(x) dx

}

The intrinsic discrepancy δ{p1, p2} is symmetric,
non-negative, and zero iff, p1 = p2, a.e.
invariant under one-to-one transformations of x,
additive: If pi(x) =

∏n
j=1 qi(xj), δ{p1, p2} = n δ{q1, q2}

• With strictly nested supports the intrinsic discrepancy is still
well defined: If, strictly, Xi ⊂ Xj, then δ{pi, pj} = κ{pj | pi}.

Intrinsic convergence of distributions

• Intrinsic Convergence. A sequence of probability densities
{pi(x)}∞i=1 converges intrinsically to p(x) if (and only if) the in-
trinsic divergence between pi(x) and p(x) converges to zero. i.e.,
iff limi→∞ δ(pi, p) = 0.
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Permissible Priors

Proper approximation of improper priors

• Objective Bayesian methods often use improper priors, non-
negative functions π(θ) such that

∫
Θ π(θ) dθ is not finite.

• If π(θ) is an improper prior function, {Θi}∞i=1 is a sequence

approximating Θ, such that
∫
Θi

π(θ) <∞, and {πi(θ)}∞i=1,

are the proper priors obtained by renormalizing π(θ) within

each of the Θi’s, then

For all data x with likelihood p(x |θ), the sequence of posteriors

{πi(θ |x)}∞i=1, with πi(θ |x) ∝ p(x |θ) πi(θ)

converges intrinsically to π(θ |x) ∝ p(x |θ) π(θ).

• This justifies the formal use of improper prior functions.
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Class of permissible priors

• A positive function π(θ) is an permissible prior function for
model {p(x |θ), x ∈ X , θ ∈ Θ} if :

(i) for all x ∈ X ,
∫
Θ p(x |θ) π(θ) dθ <∞,

(ii) for some sequence {Θi}∞i=1 such that
limi→∞Θi = Θ, and

∫
Θi

π(θ) dθ <∞,

lim
i→∞

∫

X
pi(x) δ{πi(θ |x), π(θ |x)} dx = 0,

where πi(θ) is the renormalized restriction of π(θ) to Θi, πi(θ |x)
is the corresponding posterior, pi(x) =

∫
Θi

p(x |θ) πi(θ) dθ, and
π(θ |x) ∝ p(x |θ) π(θ). (Strong intrinsic convergence).

• All proper priors are permissible, but improper priors may or
may not be permissible, even if they are arbitrarily close to proper
priors.



Valencia, 2008 11

Intrinsic Association
• The intrinsic association α{pxy} between two random vectors
x ∈ X and y ∈ Y with joint density pxy and marginals px and px

is the intrinsic discrepancy α{pxy} = δ{px y, pxpx} between their
joint density and the product of their marginals.

It is a non-negative invariant measure of association between
two random vectors, which vanishes if they are independent.

• The coefficient of association,

γ{pxy} = 1− exp[−2α{pxy}]

is a general measure of stochastic dependence on [0, 1].

• In particular, if pxy is bivariate normal, with coefficient of cor-
relation ρ, then α{pxy} = −1

2 log(1− ρ2), and γ{pxy} = ρ2.
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Expected Information
• The expected intrinsic information I{pθ |M} which one obser-
vation from model M ≡ {p(x |θ), x ∈ X , θ ∈ Θ} may be
expected to provide about θ when the prior is p(θ) is defined as
the intrinsic dependence δ{px θ, px pθ} between x and θ, where
p(x, θ) = p(x |θ) p(θ), and p(x) =

∫
Θ p(x |θ) p(θ) dθ.

Properties of the expected intrinsic information

• For a fixed modelM, the expected intrinsic information I{pθ |M}
is a concave, positive functional of the prior p(θ).

• Under appropriate regularity conditions I{pθ |M} reduces to

Shannon’s expected information (cf. Lindley, 1956)

I{pθ |M} = Is{pθ |M} =

∫

X
p(x)

∫

Θ
p(θ |x) log

p(θ |x)

p(θ)
dθ dx.
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Intuitive Basis for Reference Priors

• Given model M, the intrinsic information I{pθ |M} measures,
as a functional of the prior p(θ), the information about the value
of θ which one observation x ∈ X may be expected to provide.

• The stronger the prior knowledge described by p(θ), the smaller
the information the data may be expected to provide; conversely,
weak initial knowledge about θ (relative to the information which
data from M could possibly provide) will correspond to large ex-
pected information from the data generated from M.

• Define the missing information about the quantity of interest
as that which infinite independent replications of the experiment
could possible provide.

• Define the reference prior as that which maximizes the missing
information about the quantity if interest.
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Reference Distributions
• Given model {p(x | θ), x ∈ X , θ ∈ Θ ⊂ $}, consider I{pθ |Mk}
the information about θ which may be expected from k condition-
ally independent replications of the original setup when the prior
is p(θ). As k →∞, this would provide any missing information
about θ, and the functional I{pθ |Mk} will approach the missing
information about the value of θ associated with the prior pθ.

• Let πk(θ) = πk(θ |M,P) (if it exists) be the unique proper prior
which maximizes I{pθ |Mk} in the class P of strictly positive can-
didate prior distributions (compatible with accepted assumptions
on the value of θ).

• If the sequence {πk(θ)} exists, the reference prior π(θ) =
π(θ |M,P) is defined as a limit of the sequence of priors {πk(θ)}.
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Formal Definition
• In general, however, the supremum of I{pθ |Mk} is not neces-
sarily attained at a proper prior πk(θ) within the candidate class P ,
and a more general definition is needed.

• Definition. (Berger, Bernardo and Sun, 2008). Consider
model M ≡ {p(x |φ), x ∈ X , φ ∈ Φ ⊂ $} and class of pri-
ors P . The positive function π(φ) = π(φ |M,P) is a reference
prior for model M given P if it is a permissible prior such that,
for some sequence {Φi}∞i=1 with limi Φi = Φ and

∫
Φi

π(φ) dφ <∞,

∀p ∈ P, lim
k→∞

{I{πi |Mk}− I{pi |Mk}} ≥ 0

where πi(φ) and pi(φ) are the restrictions of π(φ) and p(φ) to Φi.
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Explicit Expression
• Theorem. ConsiderM ≡{ p(x |φ), x ∈ X , φ ∈ Φ ⊂ $} and
the class P0 of all regular priors for φ. Let tk = t(x1, . . . ,xk) ∈ T
be a sufficient statistic for Mk, h(φ) be any positive function such
that, for sufficiently large k, ck =

∫
Φ p(tk |φ) h(φ) dφ <∞. Define

fk(φ) = exp

{∫

T
p(tk |φ) log πk(φ | tk) dtk

}
,

where πk(φ | tk) = p(tk |φ) h(φ)/ck, and let

f (φ) = lim
k→∞

fk(φ)/fk(φ0), for any φ0 ∈ Φ.

Then, if f (φ) is a permissible prior, any function of the form
π(φ |M,P0) = c f (φ) is a reference prior for model M.
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Explicit form under regularity conditions

• Corollary 1. Let φ̃k = φ̃(tk) be a consistent, asymptotically
sufficient estimator of φ (often the MLE), φ̂.

For large k, πk(φ) ≈ exp[Eφ̃k |φ{log πk(φ | φ̃k)}]
As k →∞, Eφ̃k |φ{f (φ̃k)} converges to f (φ).

Hence, π(φ |M,P0) = π(φ | φ̃k)|φ̃k=φ

• Under regularity conditions, the posterior distribution of φ

is asymptotically Normal, N{φ | φ̂, [n i(φ̂)]−1/2}, where

i(φ) = −Ex |φ[∂
2 log p(x |φ)/∂φ2]

is Fisher’s information function.

Hence, π(φ |M,P0) = i(φ)1/2 (Jeffreys’ rule).

• Thus, Jeffreys rule is a particular case of a reference prior,

only appropriate for one-parameter regular continuous problems.



Valencia, 2008 21

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

Θ

Π!Θ "n,r#

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1

2

4

6

8

Θ
#

d!Θ
#
"n,r#

Posterior summaries.

Point estimates,

Credible intervals (or regions) and

and Test of hypothesis are

all partial inferential statements,

• They are easily derived

from the reference posterior.

• They are defined using an

appropriate, information-based,

invariant loss function.
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1. Discrete Parameter Spaces

• Conventional Solutions: Bayes and Laplace

Model { p(z | θ) =
Qn

i=1 p(xi | θ), x ∈ X , θ ∈ Θ = {θ1, θ2, . . .} }
Prior Pr(θj) ∝ 1, j ∈ J ⊂ N
Posterior Pr(θj |z) ∝ p(z | θj), θ ∈ Θ}
Predictive p(x |z) =

P
j∈J p(x | θj) Pr(θj |z).

• Reference prior with finite parameter space (Maximum entropy)

If Θ = {θ1, . . . , θm} is finite,
πθ = Arg Max

pθ∈P
H[pθ], H[pθ] = −

Pm
j=1 pθ(θj) log pθ(θj)

If P = {All distributions overΘ}, πθ(θj) = 1/m, j = 1, . . . ,m.
If Θ is not finite, the existence of the reference prior depends on the
choice of the class P of permissible priors.
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• Uniform priors are often inappropriate

Example 1. Binomial model
In a Binomial Bi(r |n, θ) model with both parameters unkown, the use
of a prior of the form p(n, θ) = Be(θ | 12,

1
2), uniform on n and Jeffreys

on θ, produces an improper posterior for θ.
Example 2. Hypergeometric model
The hypergeometric model Hy(r |n,R,N) converges, asN →∞, to a
binomial model Bi(r |n, θ = R/N), but a uniform prior on R does not
converge to the commonly accepted (both Jeffreys and reference) con-
tinuous objective priorBe(θ | 12,

1
2), thus leading tomutually inconsistent

inferences on θ = R/N , even for very large N values.

As these examples suggest, if the θ’s in p(z | θ) are not just labels, but
meaningful quantitative values, some structure may be needed in the
reference prior (thus restricting the class P of permissible priors) to
incorporate this assumed knowledge.
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• Structured reference priors for discrete parameters

Embed the original model p(z | θ), θ discrete, into a model pe(z |ω)
with a continuous parameter ω, apply standard reference prior theory
(Bernardo 1979, 2005, Berger, Bernardo and Sun, 2008a) to obtain
πe(ω), and appropriately discretize πe(ω) to get π(θ).
No single embedding methodology seems to be always successful. The
choice of embedding may be the discrete analog of the need to choose
a sequence of compact sets in continuous models. Possible embedding
methodologies (Berger, Bernardo and Sun, 2008b) include:
(i) Treat the original parameter as continuous, after appropriate renor-
malization, if necessary.

(ii) Derive the reference prior πe(θ) for a continuous asymptotic sam-
pling distribution pe(θ̂ | θ) of some consistent estimator of θ.

(iii) Add a hierarchical structure p(θ |ω) with continuous hyperpara-
meter ω to the original model, derive the reference prior π(ω) for
the integrated model p(z |ω) =

P
θ p(z | θ)p(θ |ω), and use the

integrated prior π(θ) =
R
Ω p(θ |ω)π(ω) dω.
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2. Sampling from Finite Populations

• Random sampling without replacement from a finite population

Finite population of size N with R conforming (+) elements, where
0 ≤ R ≤ N . The propability that a random sample of size n contains r
conforming elements, is

Pr(r |n,R,N) = Hy(r |n,R,N) =
(Rr )(N−R

n−r )
(Nn )

if r = 0, . . . ,min{n,R}, and zero otherwise.

• Bayes and Laplace uniform prior

Uniform prior πu(R) = (N + 1)−1, R = 0, . . . , N .

Posterior πu(R | r, n,N) =
(Rr )(N−R

n−r )
(N+1
n+1)

, R = r, . . . , N − n + r.

In particular, Pr(All + |n,N) = πu(R = N | r = n,N) = n+1
N+1 .
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• Laplace law of succession

Probability that an element randomly selected among remaining unob-
served N − n elements is conforming is (Laplace, 1774)
Pr(+ | r, n,N) =

PN−n+r
R=r

R−r
N−n Pr(R | r,N, n) = r+1

n+2 .
In particular, for r = n,

πu(En) = πu(+ | r = n,N) = n+1
n+2 .

• Succession and ‘natural’ induction

With the uniform prior, if an event has been observed n uninterrupted
times in a population of sizeN , it is very likely, (n+1)/(n+2), that it
will be observed again next time, but quite unlikely, (n + 1)/(N + 1),
that it will always be observed (‘natural’ induction).
For Pr(R = N | r = n,N) to be large with large N >> n, a different
type of prior for R is needed. Jeffreys (1961) proposed priors of the
form Pr(R = 0) = Pr(R = N) = k, 1

3 ≤ k ≤ 1
2, with the remaining

1− 2k uniformly distributed among the remainingN − 1 values of R.
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3 Structured Reference Prior

• Hypergeometric-binomial hierarchical model

Consider the model Hy(r |n,R,N) and assume that the R conforming
items are a random sample from a binomial populationwith parameter p.
(
Pr(r |R,N, n) = Hy(r |n,R,N),
Pr(R |N, p) = Bi(R |N, p).

A prior π(p)must be chosen for the hyperparameter p. The appropriate
reference prior (Bernardo and Smith, 1994, p. 339) is that which corre-
sponds to the continuous parameter model obtained by eliminating R,
Pr(r |n,N, p) =

PN
R=0Hy(r |n,R,N)Bi(R |N, p) = Bi(r |n, p),

and this is Jeffreys prior π(p) = Be(p | 12,
1
2).

Hence, the corresponding structured reference prior for R, is

πr(R |N) =
R 1
0 Bi(R |N, p)Be(p | 12,

1
2) dp = 1

π
Γ(R+1

2)Γ(N−R+1
2)

Γ(R+1)Γ(N−R+1) .
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• Structured priors for the hypergeometric model
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• Large population size approximation
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For large N , using Stirling for the Gamma functions,

πr(θ |N) ≈ 1
N+2

π
Be(N θ+1

π
N+2

π
| 1

2 ,
1
2), θ = 0, 1/N, . . . , 1,

which converges to the reference prior π(θ) = Be(θ | 12,
1
2) as N →∞.
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• Reference prior predictive distribution of r

The referenceprior predictive distributionof the number r of conforming
items in a random sample of size n is,
PN

R=0Hy(r |R,N, n)πr(R |N) = 1
π

Γ(r+1
2 Γ(n−r+1

2)
Γ(r+1)Γ(n−r+1) = πr(r |n).

Notice that, as in the case of the uniform prior, the reference prior
predictive distribution of r givenn, has precisely the samemathematical
form as the reference prior of R given N , πr(R |N).

• Reference posterior distribution of R

The reference posterior for R has the analytical form

πr(R | r, n,N) = c(r,N, n)
Γ(R+1

2)Γ(N−R+1
2)

Γ(R−r+1)Γ(N−R−(n−r)+1) ,

c(r,N, n) = Γ(n+1)Γ(N−n+1)
Γ(N+1)Γ(r+1

2)Γ(n−r+1
2)
.

for R ∈ {r, r + 1, . . . , N − n + r}, and zero otherwise



12
• Probability of all elements conforming

In particular, for R = N and r = n,

πr(All + |n,N) = Γ(N+1/2)
Γ(N+1)

Γ(n+1)
Γ(n+1/2) ≈

q
n
N
.

• A new law of succesion

Reference probability that a new element is conforming is
πr(+ | r, n,N) =

PN−n+r
R=r

R−r
N−n πr(R | r,N, n) = r+1/2

n+1 .
In particular, for r = n,

πu(En) = πu(+ | r = n,N) = n+1/2
n+1 .

Converges faster to one than Laplace as n increases. For n = 1 this
yields 3/4 rather than Lapace 2/3.
Aswith the uniformprior, under the structured referenceprior, if an event
has been observed n uninterrupted times in a population of sizeN , it is
very likely, (n + 1/2)/(n + 1), that it will be observed next time, but
quite unlikely, about

p
n/N , that it will always be observed.
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4 Natural Induction

Testing the Precise Hypothesis that R=N

• The need for a mixture prior

Given a model p(z |φ), derivation of a posterior probability Pr(H0 |z)
for a precise hypothesisH0 = {φ = φ0} typically requires the use of a
mixture prior which assigns assigns a lump of probability to {φ = φ}.
This may be obtained from standard use of reference analysis, if the
parameter of interest is chosen to be whether or not {φ = φ0}, rather
than the actual value of φ. The result may be seen as a reformulation of
the use of a Bayes factor to test the hypothesis that {φ = φ0} versus the
alternative {φ 6= φ0}.
In finite population sampling, the name ‘natural’ induction is often asso-
ciated to testing whether or not all the elements in the popupation share
a given characteristic, i.e., testing the hypothesis thatR = N versus the
alternative R 6= N .
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• Reference prior for testing H0 = {R = N}

In the model Hy(r |n,R,N) let the quantity of interest be

φ =

(
φ0 if R = N (All +)
φ1 if 0 ≤ R < N,

and the nuisance parameter λ =

(
λ0 if R = N (All +)
R if 0 ≤ R < N.

Trivially, π(λ = λ0 |φ = φ0, N) = 1. Moreover, the sampling dis-
tribution of r given φ = φ1 is Hy(r |n,R,N − 1) and, therefore,
π(λ |φ = φ1, N) = πr(R |N − 1). Since φ has only two possible
values, π(φ = φ0) = π(φ = φ1) = 1/2.
Hence, the joint reference prior π0(R |N) of the unknown parameterR
when φ is the quantity of interest is

π(λ |φ, N)π(φ) =






1
2 if R = N
1
2

1
π

Γ(R+1/2)Γ(N−1−R+1/2)
Γ(R+1)Γ(N−1−R+1) if R 6= N.
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• Reference posterior probability Pr(H0 |n,N)

Using Bayes theorem π0(All + |n,N) is given by

π0(φ = φ0 | r = n,N) =
1
2 Pr(r=n |φ=φ0,N)

1
2 Pr(r=n |φ=φ0,N)+1

2 Pr(r=n |φ=φ1,N)
,

But Pr(r = n |φ = φ0, N) =

(
1 if r = n,
0 if 0 ≤ r < n,

and Pr(r = n |φ = φ1, N) =
PN−1

R=n Hy(n |n,R,N) πr(R |N − 1)

Substitution and simplification yields

π0(All + |n,N) = 1
1+ 1√

π
N−n

N
Γ(n+1/2)
Γ(n+1)

Using Stirling, Γ(n + 1/2)/Γ(n + 1) ≈ 1/
√

n + 1.
If N >> n, (N − n)/N ≈ 1.
Thus, π0(All + |n,N) ≈

p
π(n + 1)/(1 +

p
π(n + 1) ).
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• Continuous approximation Bayes factor approach

Conventional testing ofH0 = {p = 1} in a Binomial Bi(r |n, p)model
uses the mixture prior

Pr(p) =






1
2 p = 1,
1
2 Be(p |

1
2,

1
2) p 6= 1,

and, given r = n, yields
Pr(H0 |z) = 1

1+BF(H0,n) = 1

1+ 1√
π

Γ(n+1
2)

Γ(n+1)
Except for the population size corrrection factor (N − n)/N , this is
the reference posterior probability π0(All + |n,N). Thus, the use of
a (conditional) structured reference prior produces results compatible
with the accepted solution for the limiting continuous case.
With a uniform conditional prior the result (Bernardo, 1985) is
π1(All + |n,N) = (1 + 1

n+1 (1− n
N ))−1,

which is not compatible with the limiting continuous result.
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• Reference posterior probability and continuous Bayes factor
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• Example: Galapagos Islands

Charles Darwin research station, Galapagos Islands, Pacific Ocean.
A zoologist observes and marks 55 galapagos in a particular island, all
of which present a particular shell modification. What is the probability
that all galapagos in theat island have the reported modification?
Assume sample is random, and N ∈ [150, 250].
A conditional uniform prior yields the range [0.986, 0.989]. The struc-
tured reference condional prior gives the considerably lower range
π0(All + |n = 55, N ∈ [150, 250]) ∈ [0.944, 0.954],
still higher than the continuous the Bayes factor approximation 0.929.
Besides, the predictive probability that the first new unmarked galapago
to be observed in that also presents a modified shell is
πr(+ | r = n = 55) = 0.991.

• Other Examples

Quality assurance problems. Pharmacology. Physical Sciences.
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