```
Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions & Extensions

\title{
Bayesian Inference for the 2-states Markovian Arrival process
}

\author{
Pepa Ramírez Rosa E. Lillo Michael Wiper
}


Department of Statistics
Universidad Carlos III Madrid

7th November, 2008

\section*{Contents}
- Motivation: teletraffic data and queueing systems.
- The Markovian Arrival Process (MAP) and the Effective Markovian Arrival Process (E-MAP).
- Identifiability of the MAP.
- Bayesian Inference for the \(M A P_{2}\).
- Conclusions \& Extensions.

\section*{MOTIVATION}

\section*{Motivation: teletraffic data}

Unusual features: High variability, Heavy-tails, Self-similarity, Dependence and correlation.

```

Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions \& Extensions

Motivation: Queueing systems

- Interest: congestion problems, waiting times, system size...
- Basic assumptions (Poisson arrivals, exponential service times) differs from reality: need for appropriate arrivals and service models.
- The Markovian Arrival process captures the dependence between arrivals $\rightarrow M A P / G / 1$.
- The BMAP/G/1 queueing system (Lucantoni, 1993): Matrix-Analytic approach + transform inversion routines \rightarrow Stationary and Transient distributions for the queue and waiting times.

Motivation: Queueing systems

- Interest: congestion problems, waiting times, system size...
- Basic assumptions (Poisson arrivals, exponential service times) differs from reality: need for appropriate arrivals and service models.
- The Markovian Arrival process captures the dependence between arrivals \rightarrow MAP/G/1.
* The BMAP/G/1 queueing system (Lucantoni, 1993): Matrix-Analytic approach + transform inversion routines \rightarrow Stationary and Transient distributions for the queue and waiting times.

```
Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions & Extensions

\section*{Motivation: Queueing systems}
- Interest: congestion problems, waiting times, system size...
- Basic assumptions (Poisson arrivals, exponential service times) differs from reality: need for appropriate arrivals and service models.
- The Markovian Arrival process captures the dependence between arrivals \(\rightarrow M A P / G / 1\).
- The BMAP/G/1 queueing system (Lucantoni, 1993): Matrix-Analytic approach + transform inversion routines \(\rightarrow\) Stationary and Transient distributions for the queue and waiting times.

\section*{Motivation: Queueing systems}
- Interest: congestion problems, waiting times, system size...
- Basic assumptions (Poisson arrivals, exponential service times) differs from reality: need for appropriate arrivals and service models.
- The Markovian Arrival process captures the dependence between arrivals \(\rightarrow M A P / G / 1\).
- The BMAP/G/1 queueing system (Lucantoni, 1993): Matrix-Analytic approach + transform inversion routines \(\rightarrow\) Stationary and Transient distributions for the queue and waiting times.

THE MARKOVIAN ARRIVAL PROCESS

\section*{Introduction}
- Versatile Markovian point process (Neuts, 1979).
- Convenient representation: Batch Markovian Arrival process or BMAP (Lucanoni et al. 1990).
1. Stationary \(B M A P s\) are dense in the family of stationary point processes.
2. Keeps the tractability of the Poisson process.
3. Allows the inclusion of dependent interarrival times.
4. Non-exponential interarrival times.
5. Correlated batch sizes.
- Special cases:
1. Phase-type renewal processes (Erlang and Hyperexponential),
2. Markov-modulated Markov process: MMPP.
3. When all arrivals are of size 1, Markovian Arrival Process:

MAP.

\section*{Introduction}
- Versatile Markovian point process (Neuts, 1979).
- Convenient representation: Batch Markovian Arrival process or BMAP (Lucanoni et al. 1990).
1. Stationary BMAPs are dense in the family of stationary point processes.
2. Keeps the tractability of the Poisson process.
3. Allows the inclusion of dependent interarrival times.
4. Non-exponential interarrival times.
5. Correlated batch sizes.
- Special cases:

Phase-type renewal processes (Erlang and Hyperexponential),
Markov-modulated Markov process: MMPP
When all arrivals are of size 1, Markovian Arrival Process:
MAP.

\section*{Introduction}
- Versatile Markovian point process (Neuts, 1979).
- Convenient representation: Batch Markovian Arrival process or BMAP (Lucanoni et al. 1990).
1. Stationary BMAPs are dense in the family of stationary point processes.
2. Keeps the tractability of the Poisson process.
3. Allows the inclusion of dependent interarrival times.
4. Non-exponential interarrival times.
5. Correlated batch sizes.
- Special cases:
1. Phase-type renewal processes (Erlang and Hyperexponential),
2. Markov-modulated Markov process: MMPP.
3. When all arrivals are of size 1, Markovian Arrival Process: \(M A P\).
```

Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions \& Extensions

Definition

- Continuous Markov chain $J(t)$, state space $\mathcal{S}=\{1, \ldots, m\}$ and generator matrix D.
\Rightarrow Initial state $i_{0} \in \mathcal{S}$ given by an initial probability α.
- At the end of a sojourn time in state i, exponentially distributed with parameter $\lambda_{i}>0$, two possible transitions: 1. With probability $p_{i j 1}$ the MAP enters state $j \in \mathcal{S}$ and a single arrival occurs.

2. With probability pijo the MAP enters state j without arrivals, $j \neq i$

- The MAP process is characterized by the set $\left\{\boldsymbol{\alpha}, \boldsymbol{\lambda}, P_{0}, P_{1}\right\}$, where $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$, where


```
Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP N Conclusions & Extensions

\section*{Definition}
- Continuous Markov chain \(J(t)\), state space \(\mathcal{S}=\{1, \ldots, m\}\) and generator matrix \(D\).
- Initial state \(i_{0} \in \mathcal{S}\) given by an initial probability \(\boldsymbol{\alpha}\).
\(\square\) distributed with parameter \(\lambda_{i}>0\), two possible transitions: 1. With probability \(p_{i j 1}\) the MAP enters state \(j \in \mathcal{S}\) and a single arrival occurs.
2. With probability \(p_{i j 0}\) the MAP enters state \(j\) without arrivals,
\(\Rightarrow\) The MAP process is characterized by the set \(\left\{\alpha, \lambda, P_{0}, P_{1}\right\}\) where \(\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{m}\right)\), where



\section*{Definition}
- Continuous Markov chain \(J(t)\), state space \(\mathcal{S}=\{1, \ldots, m\}\) and generator matrix \(D\).
- Initial state \(i_{0} \in \mathcal{S}\) given by an initial probability \(\boldsymbol{\alpha}\).
- At the end of a sojourn time in state \(i\), exponentially distributed with parameter \(\lambda_{i}>0\), two possible transitions:
1. With probability \(p_{i j 1}\) the \(M A P\) enters state \(j \in \mathcal{S}\) and a single arrival occurs.
2. With probability \(p_{i j 0}\) the \(M A P\) enters state \(j\) without arrivals, \(j \neq i\)
- The MAP process is characterized by the set \(\left\{\alpha, \lambda, P_{0}, P_{1}\right\}\) where \(\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{m}\right)\), where


\section*{Definition}
- Continuous Markov chain \(J(t)\), state space \(\mathcal{S}=\{1, \ldots, m\}\) and generator matrix \(D\).
- Initial state \(i_{0} \in \mathcal{S}\) given by an initial probability \(\boldsymbol{\alpha}\).
- At the end of a sojourn time in state \(i\), exponentially distributed with parameter \(\lambda_{i}>0\), two possible transitions:
1. With probability \(p_{i j 1}\) the MAP enters state \(j \in \mathcal{S}\) and a single arrival occurs.
2. With probability \(p_{i j 0}\) the \(M A P\) enters state \(j\) without arrivals, \(j \neq i\)
- The MAP process is characterized by the set \(\left\{\boldsymbol{\alpha}, \boldsymbol{\lambda}, P_{0}, P_{1}\right\}\), where \(\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{m}\right)\), where
\[
P_{0}=\left(\begin{array}{cccc}
0 & p_{120} & \cdots & p_{1 m 0} \\
p_{210} & 0 & \cdots & p_{2 m 0} \\
\ldots & \ldots & \cdots & \ldots \\
p_{m 10} & p_{m 20} & \cdots & 0
\end{array}\right), \quad P_{1}=\left(\begin{array}{ccc}
p_{111} & \cdots & p_{1 m 1} \\
p_{211} & \cdots & p_{2 m 1} \\
\ldots & \cdots & \cdots \\
p_{m 11} & \cdots & p_{m m 1}
\end{array}\right)
\]

\section*{Graphical Illustration: \(M A P_{2}\)}

```

Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions \& Extensions

Simulation of a $M A P_{2}$

Simulation of 6 arrivals of a $M A P_{2}$ characterized by

$$
\begin{gathered}
\boldsymbol{\lambda}=(0.5,4) \\
P_{0}=\left(\begin{array}{cc}
0 & 0.3 \\
0.3 & 0
\end{array}\right), \quad P_{1}=\left(\begin{array}{cc}
0.4 & 0.3 \\
0.2 & 0.5
\end{array}\right)
\end{gathered}
$$


```
Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 2 Conclusions & Extensions

\section*{Alternative characterization}
- Rate matrices
\[
D_{0}=\left(\begin{array}{cccc}
-\lambda_{1} & \lambda_{1} p_{120} & \ldots & \lambda_{1} p_{1 m 0} \\
\lambda_{2} p_{210} & -\lambda_{2} & \ldots & \lambda_{2} p_{2 m 0} \\
\ldots & \ldots & \ldots & \ldots \\
\lambda_{m} p_{m 10} & \lambda_{m} p_{m 21} & \ldots & -\lambda_{m}
\end{array}\right), D_{1}=\left(\begin{array}{ccc}
\lambda_{1} p_{111} & \ldots & \lambda_{1} p_{1 m 1} \\
\lambda_{2} p_{211} & \ldots & \lambda_{2} p_{2 m 1} \\
\ldots & \ldots & \ldots \\
\lambda_{m} p_{m 11} & \ldots & \lambda_{m} p_{m m 1}
\end{array}\right)
\]
- \(D_{0}\) governs the transitions with no arrivals. \(D_{1}\) those with a single arrival.
\(\Rightarrow\) Then, \(D=D_{0}+D_{1}\) is the generator of \(J(t)\).
- The MAP process is also characterized by the set \(\left\{\boldsymbol{\alpha}, \boldsymbol{\lambda}, D_{0}, D_{1}\right\}\)
- \(X_{k}=\) state of the MAP at the time of the \(k\) th arrival, \(Y_{k}=\) time between the \((k-1)\) th and \(k\) th arrival. Then, \(\left\{X_{k-1}, Y_{k}\right\}_{k=1}^{\infty}\) is a Markov Renewal process.
```

Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 2 Conclusions \& Extensions

Alternative characterization

- Rate matrices

$$
D_{0}=\left(\begin{array}{cccc}
-\lambda_{1} & \lambda_{1} p_{120} & \ldots & \lambda_{1} p_{1 m 0} \\
\lambda_{2} p_{210} & -\lambda_{2} & \ldots & \lambda_{2} p_{2 m 0} \\
\ldots & \ldots & \ldots & \ldots \\
\lambda_{m} p_{m 10} & \lambda_{m} p_{m 21} & \ldots & -\lambda_{m}
\end{array}\right), D_{1}=\left(\begin{array}{ccc}
\lambda_{1} p_{111} & \ldots & \lambda_{1} p_{1 m 1} \\
\lambda_{2} p_{211} & \ldots & \lambda_{2} p_{2 m 1} \\
\ldots & \ldots & \ldots \\
\lambda_{m} p_{m 11} & \ldots & \lambda_{m} p_{m m 1}
\end{array}\right)
$$

- D_{0} governs the transitions with no arrivals. D_{1} those with a single arrival.
- Then, $D=D_{0}+D_{1}$ is the generator of $J(t)$.

The MAP process is also characterized by the set $\left\{\boldsymbol{\alpha}, \boldsymbol{\lambda}, D_{0}, D_{1}\right\}$ time between the $(k-1)$ th and k th arrival. Then, $\left\{X_{k-1}, Y_{k}\right\}_{k=1}^{\infty}$ is a Markov Renewal process.

Alternative characterization

- Rate matrices

$$
D_{0}=\left(\begin{array}{cccc}
-\lambda_{1} & \lambda_{1} p_{120} & \ldots & \lambda_{1} p_{1 m 0} \\
\lambda_{2} p_{210} & -\lambda_{2} & \ldots & \lambda_{2} p_{2 m 0} \\
\ldots & \ldots & \ldots & \ldots \\
\lambda_{m} p_{m 10} & \lambda_{m} p_{m 21} & \ldots & -\lambda_{m}
\end{array}\right), D_{1}=\left(\begin{array}{ccc}
\lambda_{1} p_{111} & \ldots & \lambda_{1} p_{1 m 1} \\
\lambda_{2} p_{211} & \ldots & \lambda_{2} p_{2 m 1} \\
\ldots & \ldots & \ldots \\
\lambda_{m} p_{m 11} & \ldots & \lambda_{m} p_{m m 1}
\end{array}\right)
$$

- D_{0} governs the transitions with no arrivals. D_{1} those with a single arrival.
- Then, $D=D_{0}+D_{1}$ is the generator of $J(t)$.
- The MAP process is also characterized by the set
- $X_{k}=$ state of the MAP at the time of the k th arrival, $Y_{k}=$ time between the $(k-1)$ th and k th arrival. Then, $\left\{X_{k-1}, Y_{k}\right\}_{k=1}^{\infty}$ is a Markov Renewal process.

Alternative characterization

- Rate matrices

$$
D_{0}=\left(\begin{array}{cccc}
-\lambda_{1} & \lambda_{1} p_{120} & \ldots & \lambda_{1} p_{1 m 0} \\
\lambda_{2} p_{210} & -\lambda_{2} & \ldots & \lambda_{2} p_{2 m 0} \\
\ldots & \ldots & \ldots & \ldots \\
\lambda_{m} p_{m 10} & \lambda_{m} p_{m 21} & \ldots & -\lambda_{m}
\end{array}\right), D_{1}=\left(\begin{array}{ccc}
\lambda_{1} p_{111} & \ldots & \lambda_{1} p_{1 m 1} \\
\lambda_{2} p_{211} & \ldots & \lambda_{2} p_{2 m 1} \\
\ldots & \ldots & \ldots \\
\lambda_{m} p_{m 11} & \ldots & \lambda_{m} p_{m m 1}
\end{array}\right)
$$

- D_{0} governs the transitions with no arrivals. D_{1} those with a single arrival.
- Then, $D=D_{0}+D_{1}$ is the generator of $J(t)$.
- The MAP process is also characterized by the set $\left\{\boldsymbol{\alpha}, \boldsymbol{\lambda}, D_{0}, D_{1}\right\}$.

Alternative characterization

- Rate matrices

$$
D_{0}=\left(\begin{array}{cccc}
-\lambda_{1} & \lambda_{1} p_{120} & \ldots & \lambda_{1} p_{1 m 0} \\
\lambda_{2} p_{210} & -\lambda_{2} & \ldots & \lambda_{2} p_{2 m 0} \\
\ldots & \ldots & \ldots & \ldots \\
\lambda_{m} p_{m 10} & \lambda_{m} p_{m 21} & \ldots & -\lambda_{m}
\end{array}\right), D_{1}=\left(\begin{array}{ccc}
\lambda_{1} p_{111} & \ldots & \lambda_{1} p_{1 m 1} \\
\lambda_{2} p_{211} & \ldots & \lambda_{2} p_{2 m 1} \\
\ldots & \ldots & \ldots \\
\lambda_{m} p_{m 11} & \ldots & \lambda_{m} p_{m m 1}
\end{array}\right)
$$

- D_{0} governs the transitions with no arrivals. D_{1} those with a single arrival.
- Then, $D=D_{0}+D_{1}$ is the generator of $J(t)$.
- The MAP process is also characterized by the set $\left\{\boldsymbol{\alpha}, \boldsymbol{\lambda}, D_{0}, D_{1}\right\}$.
- $X_{k}=$ state of the MAP at the time of the k th arrival, $Y_{k}=$ time between the $(k-1)$ th and k th arrival. Then, $\left\{X_{k-1}, Y_{k}\right\}_{k=1}^{\infty}$ is a Markov Renewal process.

```
Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions & Extensions

\section*{Quantities of interest}
- \(\pi\), stationary probability vector of the Markov process with generator \(D\).
- Fundamental rate: \(\lambda^{\star}=\pi D_{1} \mathrm{e}\).
\(\Rightarrow 1 / \lambda^{\star}\) is the mean interarrival time in the stationary MAP.
- \(T=\) time between successive arrivals in the stationary version. Then,
\(F_{T}(t)=P(T \leq t)=\left(\pi D_{1} \mathbf{e}\right)^{-1} \pi D_{1}\left(I-e^{D_{0} t}\right)\left(-D_{0}\right)^{-1} L, \quad t \geq 0\),
where

```

Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions \& Extensions
-

Quantities of interest

- π, stationary probability vector of the Markov process with generator D.
- Fundamental rate: $\lambda^{\star}=\pi D_{1} \mathbf{e}$.
- $1 / \lambda^{\star}$ is the mean interarrival time in the stationary MAP. Then,
$F_{T}(t)=P(T \leq t)=\left(\pi D_{1} e\right)^{-1} \pi D_{1}\left(1-e^{D_{0} t}\right)\left(-D_{0}\right)^{-1} L, \quad t \geq 0$,
where

Quantities of interest

- $\boldsymbol{\pi}$, stationary probability vector of the Markov process with generator D.
- Fundamental rate: $\lambda^{\star}=\pi D_{1} \mathbf{e}$.
- $1 / \lambda^{\star}$ is the mean interarrival time in the stationary MAP.
- $T=$ time between successive arrivals in the stationary version.

Then,
$F_{T}(t)=P(T \leq t)=\left(\boldsymbol{\pi} D_{1} \mathbf{e}\right)^{-1} \boldsymbol{\pi} D_{1}\left(I-e^{D_{0} t}\right)\left(-D_{0}\right)^{-1} L, \quad t \geq 0$,
where

$$
L=\left(\begin{array}{c}
\lambda_{1}\left(1-\sum_{j \neq 1} p_{1 j 0}\right) \\
\lambda_{2}\left(1-\sum_{j \neq 2} p_{2 j 0}\right) \\
\vdots \\
\lambda_{m}\left(1-\sum_{j \neq m} p_{m j 0}\right)
\end{array}\right) .
$$

THE EFFECTIVE MARKOVIAN ARRIVAL PROCESS

```
Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions & Extensions
○

\section*{Introduction to the \(E-M A P\)}
\(M A P \Rightarrow E-M A P \Rightarrow\) only times between arrivals are assumed to be observed.


\section*{Definition \& Properties}
- Effective transitions in a MAP ~ transitions in the corresponding E-MAP.
- Inference for the MAP | the \(E-M A P\) is partially observed.
- At the end of a sojourn time in \(i\), (which is distributed as a sum of exponentials) there are \(m\) possible transitions: with probability \(p_{i j}^{\star}\), for \(j=1, \ldots, m\), an arrival occurs and the process is instantaneously restarted in state \(j\).
- The \(E-M A P\) is characterized by \(\left\{\boldsymbol{\alpha}, \boldsymbol{\lambda}, P^{\star}\right\}\).

\section*{- The following properties are satisfied (Ramirez et al. 2008)} P1. (Transition probability matrix).

\section*{Definition \& Properties}
- Effective transitions in a MAP \(\sim\) transitions in the corresponding E-MAP.
- Inference for the MAP | the E-MAP is partially observed.
- At the end of a sojourn time in \(i\), (which is distributed as a sum of exponentials) there are \(m\) possible transitions: with probability \(p_{i j}^{\star}\), for \(j=1, \ldots, m\), an arrival occurs and the process is instantaneously restarted in state \(j\).
- The \(E-M A P\) is characterized by \(\left\{\boldsymbol{\alpha}, \boldsymbol{\lambda}, P^{\star}\right\}\).
- The following properties are satisfied (Ramirez et al. 2008):

P1. (Transition probability matrix).
\[
P^{\star}=\left(I-P_{0}\right)^{-1} P_{1} .
\]

\section*{Definition \& Properties}

P2. (Holding times).
Let \(H_{k}\) represent the holding time in state \(k\) in a E-MAP. Then,
\[
F_{H_{k}}(t)=P\left(H_{k} \leq t\right)=\xi_{k}\left(I-e^{D_{0} t}\right)\left(-D_{0}\right)^{-1} L
\]
where \(\xi_{k}\) is a vector of zeros with a single 1 in the \(k\) th position.

\section*{Definition \& Properties}

P3. (Holding times).
Let \(H_{i j}\) be defined as the holding time in state \(i\) given that \(j\) is the next visited state, in a \(E-M A P\). Then,
\[
F_{H_{i j}}(t)=P\left(H_{i j} \leq t\right)=\xi_{i}\left(I-e^{D_{0} t}\right)\left(-D_{0}\right)^{-1} D_{1} \xi_{j}^{\prime}\left(\xi_{i} P^{\star} \xi_{j}^{\prime}\right)^{-1}
\]
```

Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions \& Extensions

Definition \& Properties

Remark.

The densities of H_{k} and $H_{i j}$ can be numerically approximated by

$$
\begin{aligned}
f_{H_{i}}^{(h)}(t) & \approx \frac{F_{H_{i}}(t+h)-F_{H_{i}}(t-h)}{2 h} \\
f_{H_{i j}}^{(\tilde{h})}(t) & \approx \frac{F_{H_{i j}}(t+\tilde{h})-F_{H_{i j}}(t-\tilde{h})}{2 \tilde{h}},
\end{aligned}
$$

for some $h, \tilde{h} \approx 0$ so that $f_{H_{i}}^{(h)}(t)=f_{H_{i}}^{\left(h^{\prime}\right)}(t)$ and $f_{H_{i j}}^{(\tilde{h})}(t)=f_{H_{i j}}^{\left(h^{\prime \prime}\right)}(t)$, for all $h^{\prime} \leq h, h^{\prime \prime} \leq \tilde{h}$.

Definition \& Properties

P4. (Stationary distribution).
Let ϕ be the stationary distribution associated with the matrix P^{\star}. Then ϕ is related to π by

$$
\phi=\left(\boldsymbol{\pi} D_{1} \mathbf{e}\right)^{-1} \boldsymbol{\pi} D_{1} .
$$

Thus,

$$
F_{T}(t)=P(T \leq t)=\phi\left(I-e^{D_{0} t}\right)\left(-D_{0}\right)^{-1} L, \quad t \geq 0,
$$

ON IDENTIFIABILITY OF THE MAP

```
Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions & Extensions

\section*{Introduction}
- Inference \& identifiability problems.
\[
\begin{aligned}
& \text { Generator } M A P\left\{\boldsymbol{\alpha}, \boldsymbol{\lambda}, P_{0}, P_{1}\right\} \\
& \downarrow \\
& t_{1}, \ldots, t_{n} \\
& \downarrow \\
& \text { Estimated } M A P\left\{\widetilde{\boldsymbol{\alpha}}, \widetilde{\boldsymbol{\lambda}}, \widetilde{P}_{0}, \widetilde{P}_{1}\right\}
\end{aligned}
\]

> Q1. Is the \(M A P_{2}\) identifiable?
> A1. Only if there does not exist another equivalent \(M A P_{2}\)
> Q2. When are two \(M A P_{2}\) s equivalent?
> A2. When the corresponding effective processes or \(E-M A P s\) are equivalent.
> Q3. When are two E-MAPs equivalent?
```

Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions \& Extensions

Introduction

- Inference \& identifiability problems.

Q1. Is the $M A P_{2}$ identifiable?
A1. Only if there does not exist another equivalent $M A P_{2}$.
Q2. When are two $M A P_{2}$ s equivalent?
A2. When the corresponding effective processes or E-MAPs are equivalent.
Q3. When are two E-MAPs equivalent?

```
Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions & Extensions
O OOOOO
```

- Inference \& identifiability problems.

Q1. Is the $M A P_{2}$ identifiable?
A1. Only if there does not exist another equivalent $M A P_{2}$.
Q2. When are two $M A P_{2} s$ equivalent?
A2. When the corresponding effective processes or E-MAPs are equivalent.
Q3. When are two E-MAPs equivalent?

```
Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions & Extensions

\section*{Introduction}
- Inference \& identifiability problems.


Q1. Is the \(M A P_{2}\) identifiable?
A1. Only if there does not exist another equivalent \(M A P_{2}\).
Q2. When are two \(M A P_{2} s\) equivalent?

```

Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions \& Extensions
O OO - OOO
0 0 0 0 0

Introduction

- Inference \& identifiability problems.

Q1. Is the $M A P_{2}$ identifiable?
A1. Only if there does not exist another equivalent $M A P_{2}$.
Q2. When are two $M A P_{2}$ s equivalent?
A2. When the corresponding effective processes or $E-M A P s$ are equivalent.
Q3. When are two E-MAPs equivalent?

```
Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions & Extensions
O OO -OOO
    0 0 0 0 0

\section*{Introduction}
- Inference \& identifiability problems.


Q1. Is the \(M A P_{2}\) identifiable?
A1. Only if there does not exist another equivalent \(M A P_{2}\).
Q2. When are two \(M A P_{2}\) s equivalent?
A2. When the corresponding effective processes or \(E-M A P s\) are equivalent.
Q3. When are two E-MAPs equivalent?
```

Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions \& Extensions

Formal definition

- $T_{n}=$ holding time in the $(n-1)$ th transition in a E-MAP $=$ time between the $(n-1)$ th and nth arrival in a MAP.

- Definition 1

Two MAPs $\left\{\boldsymbol{\alpha}, \boldsymbol{\lambda}, P_{0}, P_{1}\right\}$ and $\left\{\widetilde{\boldsymbol{\alpha}}, \widetilde{\boldsymbol{\lambda}}, \widetilde{P}_{0}, \widetilde{P}_{1}\right\}$ are equivalent if and only if the corresponding $E-M A P s\left\{\boldsymbol{\alpha}, \boldsymbol{\lambda}, P^{\star}\right\}$ and $\left\{\widetilde{\alpha}, \lambda, P^{\star}\right\}$ are equivalent.

- Definition 2.

Two $E-M A P s\left\{\boldsymbol{\alpha}, \boldsymbol{\lambda}, P^{\star}\right\}$ and $\left\{\boldsymbol{\alpha}, \widetilde{\boldsymbol{\lambda}}, \widetilde{P}^{\star}\right\}$ are equivalent if and

$$
T_{n} \stackrel{d}{=} \widetilde{T}_{n}, \quad \forall n \geq 1,
$$

- Definition 3

A MAP $\left\{\boldsymbol{\alpha}, \boldsymbol{\lambda}, P_{0}, P_{1}\right\}$ with corresponding E-MAP $\left\{\alpha, \lambda, P^{*}\right\}$
is identifiable if there does not exist a different MAP whose
associated $E-M A P\left\{\widetilde{\alpha}, \lambda, P^{*}\right\}$ is equivalent to $\left\{\alpha_{2}, P_{1}^{\lambda}, P^{*}\right\} ;$

Formal definition

- $T_{n}=$ holding time in the $(n-1)$ th transition in a E-MAP $=$ time between the $(n-1)$ th and nth arrival in a MAP.
- Definition 1.

Two $\operatorname{MAPs}\left\{\boldsymbol{\alpha}, \boldsymbol{\lambda}, P_{0}, P_{1}\right\}$ and $\left\{\widetilde{\boldsymbol{\alpha}}, \widetilde{\boldsymbol{\lambda}}, \widetilde{P}_{0}, \widetilde{P}_{1}\right\}$ are equivalent if and only if the corresponding $E-M A P s\left\{\boldsymbol{\alpha}, \boldsymbol{\lambda}, P^{\star}\right\}$ and $\left\{\widetilde{\boldsymbol{\alpha}}, \widetilde{\boldsymbol{\lambda}}, \widetilde{P}^{\star}\right\}$ are equivalent.

- Definition 3
is identifiable if there does not exist a different MAP whose

Formal definition

- $T_{n}=$ holding time in the $(n-1)$ th transition in a E-MAP $=$ time between the $(n-1)$ th and nth arrival in a MAP.
- Definition 1.

Two $\operatorname{MAPs}\left\{\boldsymbol{\alpha}, \boldsymbol{\lambda}, P_{0}, P_{1}\right\}$ and $\left\{\widetilde{\boldsymbol{\alpha}}, \widetilde{\boldsymbol{\lambda}}, \widetilde{P}_{0}, \widetilde{P}_{1}\right\}$ are equivalent if and only if the corresponding $E-M A P s\left\{\boldsymbol{\alpha}, \boldsymbol{\lambda}, P^{\star}\right\}$ and $\left\{\widetilde{\boldsymbol{\alpha}}, \widetilde{\boldsymbol{\lambda}}, \widetilde{P}^{\star}\right\}$ are equivalent.

- Definition 2.

Two E-MAPs $\left\{\boldsymbol{\alpha}, \boldsymbol{\lambda}, P^{\star}\right\}$ and $\left\{\boldsymbol{\alpha}, \widetilde{\boldsymbol{\lambda}}, \widetilde{P}^{\star}\right\}$ are equivalent if and only if

$$
T_{n} \stackrel{d}{=} \widetilde{T}_{n}, \quad \forall n \geq 1
$$

- Definition 3

Formal definition

- $T_{n}=$ holding time in the $(n-1)$ th transition in a E-MAP $=$ time between the $(n-1)$ th and nth arrival in a MAP.
- Definition 1.

Two MAPs $\left\{\boldsymbol{\alpha}, \boldsymbol{\lambda}, P_{0}, P_{1}\right\}$ and $\left\{\widetilde{\boldsymbol{\alpha}}, \widetilde{\boldsymbol{\lambda}}, \widetilde{P}_{0}, \widetilde{P}_{1}\right\}$ are equivalent if and only if the corresponding $E-M A P s\left\{\boldsymbol{\alpha}, \boldsymbol{\lambda}, P^{\star}\right\}$ and $\left\{\widetilde{\boldsymbol{\alpha}}, \widetilde{\boldsymbol{\lambda}}, \widetilde{P}^{\star}\right\}$ are equivalent.

- Definition 2.

Two $E-M A P s\left\{\boldsymbol{\alpha}, \boldsymbol{\lambda}, P^{\star}\right\}$ and $\left\{\boldsymbol{\alpha}, \widetilde{\boldsymbol{\lambda}}, \widetilde{P}^{\star}\right\}$ are equivalent if and only if

$$
T_{n} \stackrel{d}{=} \widetilde{T}_{n}, \quad \forall n \geq 1
$$

- Definition 3.

A $M A P\left\{\boldsymbol{\alpha}, \boldsymbol{\lambda}, P_{0}, P_{1}\right\}$ with corresponding $E-M A P\left\{\boldsymbol{\alpha}, \boldsymbol{\lambda}, P^{\star}\right\}$ is identifiable if there does not exist a different MAP whose associated $E-M A P\left\{\widetilde{\boldsymbol{\alpha}}, \widetilde{\boldsymbol{\lambda}}, \widetilde{P}^{\star}\right\}$ is equivalent to $\left\{\boldsymbol{\alpha}, \boldsymbol{\lambda}, P^{\star}\right\}$.

```
Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions & Extensions

\section*{Remark}
- Equivalence is expressed in a weak sense.
- Definition based on the marginal interarrival time distribution.
- However, for strong equivalence,

- In a MAP the interarrival times are not independent (although they are conditionally independent given the sequence of visited states), and thus,
```

Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP N Conclusions \& Extensions

Remark

- Equivalence is expressed in a weak sense.
- Definition based on the marginal interarrival time distribution.
- However, for strong equivalence,
$f\left(t_{1}, \ldots, t_{n} \mid \boldsymbol{\alpha}, \boldsymbol{\lambda}, P_{0}, P_{1}\right)=f\left(t_{1}, \ldots, t_{n} \mid \widetilde{\boldsymbol{\alpha}}, \widetilde{\boldsymbol{\lambda}}, \widetilde{P}_{0}, \widetilde{P}_{1}\right), \quad \forall n$.
- In a MAP the interarrival times are not independent (although they are conditionally independent given the sequence of visited states), and thus,

Remark

- Equivalence is expressed in a weak sense.
- Definition based on the marginal interarrival time distribution.
- However, for strong equivalence,

$$
f\left(t_{1}, \ldots, t_{n} \mid \boldsymbol{\alpha}, \boldsymbol{\lambda}, P_{0}, P_{1}\right)=f\left(t_{1}, \ldots, t_{n} \mid \widetilde{\boldsymbol{\alpha}}, \widetilde{\boldsymbol{\lambda}}, \widetilde{P}_{0}, \widetilde{P}_{1}\right), \quad \forall n .
$$

- In a MAP the interarrival times are not independent (although they are conditionally independent given the sequence of visited states), and thus,

Weak equivalence \nsim Strong equivalence.

```
Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions & Extensions

\section*{Remark: MMPP}


Rydén (1996): the MMPP is identifiable (in strong sense) if and only if the exponential rates are ordered.
```

Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions \& Extensions

Two general results

$\triangleright \varphi_{T_{n+1}}(s)=\sum_{i=1}^{m} \alpha_{i}^{(n)} \varphi_{H_{i}}(s)=\boldsymbol{\alpha}^{(n)} \varphi_{\mathbf{H}}(s)$, where $\boldsymbol{\alpha}^{(n)}=\boldsymbol{\alpha}\left(P^{\star}\right)^{n}$.

- Result 1 .

$$
T_{n} \stackrel{d}{=} \widetilde{T}_{n}, \quad \forall n \geq 1
$$

$$
\boldsymbol{\alpha}\left(P^{\star}\right)^{n} \varphi_{\mathbf{H}}(s)=\widetilde{\boldsymbol{\alpha}}\left(\widetilde{P}^{\star}\right)^{n} \varphi_{\widetilde{\mathbf{H}}}(s), \quad \forall s, \quad \forall n \geq 0
$$

- Result 2.

A necessary condition for two MAPs to be equivalent is

$$
\phi \varphi_{\mathbf{H}}(s)=\widetilde{\phi} \varphi_{\widetilde{\mathbf{H}}}(s)
$$

Two general results

- $\varphi_{T_{n+1}}(s)=\sum_{i=1}^{m} \alpha_{i}^{(n)} \varphi_{H_{i}}(s)=\boldsymbol{\alpha}^{(n)} \varphi_{\mathbf{H}}(s)$, where $\boldsymbol{\alpha}^{(n)}=\boldsymbol{\alpha}\left(P^{\star}\right)^{n}$.
- Result 1.

$$
\begin{gathered}
T_{n} \stackrel{d}{=} \widetilde{T}_{n}, \quad \forall n \geq 1 \\
\Longleftrightarrow \\
\alpha\left(P^{\star}\right)^{n} \varphi_{\mathbf{H}}(s)=\widetilde{\boldsymbol{\alpha}}\left(\widetilde{P}^{\star}\right)^{n} \varphi_{\widetilde{\mathbf{H}}}(s), \quad \forall s, \quad \forall n \geq 0
\end{gathered}
$$

- Result 2.

A necessary condition for two MAPs to be equivalent is $\phi \varphi_{H}(s)=\widetilde{\phi} \varphi_{H}(s)$,

Two general results

$-\varphi_{T_{n+1}}(s)=\sum_{i=1}^{m} \alpha_{i}^{(n)} \varphi_{H_{i}}(s)=\boldsymbol{\alpha}^{(n)} \varphi_{\mathbf{H}}(s)$, where $\boldsymbol{\alpha}^{(n)}=\boldsymbol{\alpha}\left(P^{\star}\right)^{n}$.

- Result 1.

$$
\begin{gathered}
T_{n} \stackrel{d}{=} \widetilde{T}_{n}, \quad \forall n \geq 1 \\
\Longleftrightarrow \\
\alpha\left(P^{\star}\right)^{n} \varphi_{\mathbf{H}}(s)=\widetilde{\boldsymbol{\alpha}}\left(\widetilde{P}^{\star}\right)^{n} \varphi_{\widetilde{\mathbf{H}}}(s), \quad \forall s, \quad \forall n \geq 0
\end{gathered}
$$

- Result 2.

A necessary condition for two MAPs to be equivalent is

$$
\phi \varphi_{\mathbf{H}}(s)=\widetilde{\phi} \varphi_{\widetilde{\mathbf{H}}}(s), \quad \forall s,
$$

where ϕ is the stationary probability vector of P^{\star}, governing the state transitions in the $E-M A P$.

General result for $m=2$.

Let $\left\{\boldsymbol{\alpha}, \boldsymbol{\lambda}, P_{0}, P_{1}\right\}$ and $\left\{\widetilde{\boldsymbol{\alpha}}, \widetilde{\boldsymbol{\lambda}}, \widetilde{P}_{0}, \widetilde{P}_{1}\right\}$ define two $\mathrm{MAP}_{2} \mathrm{~s}$, with corresponding E-MAP ${ }_{2} s\left\{\boldsymbol{\alpha}, \boldsymbol{\lambda}, P^{\star}\right\}$ and $\left\{\widetilde{\boldsymbol{\alpha}}, \widetilde{\boldsymbol{\lambda}}, \widetilde{P}^{\star}\right\}$, where ϕ and $\widetilde{\phi}$ are the stationary probabilities associated to P^{\star} and \widetilde{P}^{\star}. Assume,
(i) $P^{\star} \neq \boldsymbol{\Phi}$ or $\widetilde{P}^{\star} \neq \widetilde{\boldsymbol{\Phi}}$,
(ii) $\beta_{1} \neq 0$, and $\widetilde{\beta}_{1} \neq 0$, where

$$
\begin{aligned}
& \beta_{1}=\lambda_{1}\left(p_{120}-1\right)+\lambda_{2}\left(1-p_{210}\right), \\
& \widetilde{\beta}_{1}=\widetilde{\lambda}_{1}\left(1-\widetilde{p}_{120}\right)+\widetilde{\lambda}_{2}\left(\widetilde{p}_{210}-1\right) .
\end{aligned}
$$

Then, the $\mathrm{MAP}_{2} \mathrm{~s}\left\{\boldsymbol{\alpha}, \boldsymbol{\lambda}, P_{0}, P_{1}\right\},\left\{\widetilde{\boldsymbol{\alpha}}, \widetilde{\boldsymbol{\lambda}}, \widetilde{P}_{0}, \widetilde{P}_{1}\right\}$ are (weakly) equivalent if and only if the following two conditions are fulfilled,

C1. $\phi \varphi_{\mathbf{H}}(s)=\widetilde{\phi} \varphi_{\widetilde{\mathbf{H}}}(s)$,
C2. $(\boldsymbol{\alpha}, \widetilde{\boldsymbol{\alpha}})=(\phi, \widetilde{\phi})$. \square

Remarks

1. C1. is equivalent to $T \stackrel{d}{=} \widetilde{T}$.
2. C2. implies that $T_{1} \stackrel{d}{=} T_{2} \stackrel{d}{=} \ldots \stackrel{d}{=} T_{n} \stackrel{d}{=} \ldots \stackrel{d}{=} T$, and similarly with $\widetilde{T}_{j}, \forall j \geq 1$.
3. (Weak) equivalence between two $M A P_{2} \mathrm{~s}$ can be established only if both $M A P_{2} s$ are in the stationary version.
4. It can be shown that

$$
\phi \varphi_{\mathbf{H}}(s)=\frac{a_{1} s+d_{0}}{s^{2}+d_{1} s+d_{0}},
$$

where

$$
\begin{aligned}
a_{1} & =\phi \lambda_{1}\left(p_{120}-1\right)+\lambda_{2}\left(\phi+p_{210}-1-\phi p_{210}\right) \\
d_{1} & =-\left(\lambda_{1}+\lambda_{2}\right) \\
d_{0} & =\lambda_{1} \lambda_{2}\left(1-p_{120} p_{210}\right)
\end{aligned}
$$

and thus, the result provides a simple way to test the weak equivalence of two $M A P_{2}$.

```
Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 2 Conclusions & Extensions

\section*{Example}

Consider the \(M A P_{2}\) defined by
\[
\boldsymbol{\lambda}=(0.5,20), \quad P_{0}=\left(\begin{array}{cc}
0 & 0.3 \\
0.3 & 0
\end{array}\right), \quad P_{1}=\left(\begin{array}{ll}
0.6148 & 0.0852 \\
0.0886 & 0.6114
\end{array}\right)
\]
and initial probability \(\alpha=\phi=0.504\).
Consider another \(M A P_{2}\) with parameters
\[
\boldsymbol{\lambda}=(0.8,19.7), \quad P_{0}=\left(\begin{array}{cc}
0 & 0.7683 \\
0.55 & 0
\end{array}\right), \quad P_{1}=\left(\begin{array}{ll}
0.0513 & 0.1804 \\
0.0873 & 0.3627
\end{array}\right)
\]
and initial probability \(\alpha=\phi=0.201\).
```

Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP N Conclusions \& Extensions

Example

- It can be seen that $\phi \varphi_{H}(s)=\widetilde{\phi} \varphi_{\widetilde{H}}(s)$, for all s.
- We are thus in the assumptions of the Theorem. This assures that the processes are weakly equivalent.
- Figure: CDF of T, time until next arrival in the stationary version of both $M A P_{2}$ s.

BAYESIAN INFERENCE FOR THE $M A P_{2}$

```
Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions & Extensions

\section*{Introduction}
- Performance analysis for models incorporating MAPs: well-developed area.
- Less progress on statistical estimation for such models.
- MMPP:
- Frequentist approaches: Heffes (1980), Rydén (1996), Salvador et al. (2003).
- Bayesian approach: Fearnhead and Sherlock (2006) Methodology based on the construction of the unobserved components.
- BMAP: Klemm et al. (2003), EM to estimate the BMAP.
- Aim: Bayesian inference for the \(M A P_{2}\) using theoretical results obtained for the \(E-M A P\).

\section*{Introduction}
- Performance analysis for models incorporating MAPs: well-developed area.
- Less progress on statistical estimation for such models.
- MMPP:
- Frequentist approaches: Heffes (1980), Rydén (1996), Salvador et al. (2003).
- Bayesian approach: Fearnhead and Sherlock (2006). Methodology based on the construction of the unobserved components.
- BMAP: Klemm et al. (2003), EM to estimate the BMAP.
- Aim: Bayesian inference for the \(M A P_{2}\) using theoretical results obtained for the E-MAP.

\section*{Introduction}
- Performance analysis for models incorporating MAPs: well-developed area.
- Less progress on statistical estimation for such models.
- MMPP:
- Frequentist approaches: Heffes (1980), Rydén (1996), Salvador et al. (2003).
- Bayesian approach: Fearnhead and Sherlock (2006). Methodology based on the construction of the unobserved components.
- BMAP: Klemm et al. (2003), EM to estimate the BMAP.
- Aim: Bayesian inference for the \(M A P_{2}\) using theoretical results obtained for the E-MAP.

\section*{Data \& Parameters of the model}
- We assume that the available data are the times between two successive arrivals, \(\mathbf{t}=\left(t_{1}, \ldots, t_{n}\right)\) in a stationary \(M A P_{2}\).
- The underlying Markov process governing the different states of the process, and the transition changes will be assumed to be unobservable.
- Parameters:
\[
\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}\right): \quad \text { Exponential rates }
\]
\(\mathbf{p}_{1}=\left(p_{120}, p_{111}, p_{121}\right): \quad\) Transition probabilities from state 1
\(\mathbf{p}_{2}=\left(p_{210}, p_{211}, p_{221}\right): \quad\) Transition probabilities from state 2
```

Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions \& Extensions

Prior distributions

- Independent gamma priors for λ_{1} and λ_{2},

$$
\lambda_{1}, \lambda_{2} \sim \mathcal{G}(\alpha, \beta)
$$

where we introduce the minimum order restriction $\lambda_{1}<\lambda_{2}$ to reduce problems due to lack of identifiability of the model.

- Dirichlet priors for the vector of probabilities,

$$
\mathrm{p}_{1}, \mathrm{p}_{2} \sim D^{\prime}(\mathrm{ce}),
$$

where \mathbf{e} is a unit vector of dimension 1×3.

```
Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions & Extensions
-

\section*{Prior distributions}
- Independent gamma priors for \(\lambda_{1}\) and \(\lambda_{2}\),
\[
\lambda_{1}, \lambda_{2} \sim \mathcal{G}(\alpha, \beta)
\]
where we introduce the minimum order restriction \(\lambda_{1}<\lambda_{2}\) to reduce problems due to lack of identifiability of the model.
- Dirichlet priors for the vector of probabilities,
\[
\mathbf{p}_{1}, \mathbf{p}_{2} \sim D(c \mathbf{e})
\]
where \(\mathbf{e}\) is a unit vector of dimension \(1 \times 3\).
```

Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP M Conclusions \& Extensions

Likelihood

$f\left(\mathbf{t} \mid \boldsymbol{\lambda}, \mathbf{p}_{1}, \mathbf{p}_{2}\right)=\sum_{i_{n}=1}^{2} \ldots \sum_{i_{1}=1}^{2} \phi_{i_{1}} p_{i_{1} i_{2}}^{\star} f_{H_{i_{1} 1_{2}}}\left(t_{1}\right) p_{i_{2} i_{3}}^{\star} f_{H_{i_{2} i_{3}}}\left(t_{2}\right) \ldots p_{i_{n-1} i_{n}}^{\star} f_{H_{i_{n-1} i_{n}}}\left(t_{n-1}\right) f_{H_{i_{n}}}\left(t_{n}\right)$ where,
$\phi_{i}=$ Stationary probability that the E-MAP is in state i.
$p_{i j}^{\star}=$ Probability of a transition from i to j in the E-MAP.
$f_{H_{i j}}(t)=$ Density of the holding time in a transition $i \rightarrow j$, in the E-MAP.
$f_{H_{i}}(t)=$ Density of the holding time in state i in the E-MAP.

Likelihood

It can be shown that

$$
f\left(\mathbf{t} \mid \boldsymbol{\lambda}, \mathbf{p}_{1}, \mathbf{p}_{2}\right)=\phi \prod_{i=1}^{n-1} \mathcal{F}\left(t_{i}\right) \mathcal{B}\left(t_{n}\right)
$$

where

$$
\mathcal{F}(t)=\left(\begin{array}{ll}
p_{11}^{\star} f_{H_{11}}(t) & p_{12}^{\star} f_{H_{12}}(t) \\
p_{21}^{\star} f_{H_{21}}(t) & p_{22}^{\star} f_{H_{22}}(t)
\end{array}\right) \quad \text { and } \quad \mathcal{B}(t)=\binom{f_{H_{1}}(t)}{f_{H_{2}}(t)} .
$$

Numerical complexity due to

1. Approximation of $f_{H_{k}}(t)$ and $f_{H_{i j}}(t)$.
2. Product of n matrices.
```
Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions & Extensions
O
O
OO
    0 0 0 0 0

\section*{The posterior distribution}
- Combining the likelihood \& priors gives a non-conjugate posterior distribution:
\[
f\left(\boldsymbol{\lambda}, \mathbf{p}_{1}, \mathbf{p}_{2} \mid \mathbf{t}\right) \propto \pi\left(\lambda_{1}\right) \pi\left(\lambda_{2}\right) \pi\left(\mathbf{p}_{1}\right) \pi\left(\mathbf{p}_{2}\right) f\left(\mathbf{t} \mid \boldsymbol{\lambda}, \mathbf{p}_{1}, \mathbf{p}_{2}\right) .
\]
- Metropolis-Hastings algorithm.
- Increase the acceptance rate: 3 blocks.
```

Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions \& Extensions
O
O

The Metropolis-Hastings to estimate the $M A P_{2}$

1. Draw a starting point $\lambda^{(0)}, \mathbf{p}_{1}^{(0)}$ and $\mathbf{p}_{2}^{(0)}$ from the prior distributions.
2. For $t=2, \ldots$:
(a) Sample a proposal $\boldsymbol{\lambda}^{\star}$ from a Log-Normal
distribution,

$$
\log \left(\lambda^{\star}\right) \sim N\left(\log \left(\lambda^{(t-1)}\right), \sigma\right)
$$

Accept or reject.
(b) Sample a proposal \mathbf{p}_{1}^{\star} from a Dirichlet distribution

$$
\mathbf{p}_{1}^{\star} \sim \mathcal{D}\left(d_{1} \mathbf{e}\right)
$$

Accept or reject.
(c) Sample a proposal \mathbf{p}_{2}^{\star} from a Dirichlet distribution

$$
\mathbf{p}_{2}^{\star} \sim \mathcal{D}\left(d_{2} \mathbf{e}\right) .
$$

Accept or reject.

Performance: Simulated data 1

- 1000 simulated interarrival times from the stationary $M A P_{2}$

$$
\lambda=(3,10), \quad P_{0}=\left(\begin{array}{cc}
0 & 0.2 \\
0.25 & 0
\end{array}\right), \quad P_{1}=\left(\begin{array}{cc}
0.35 & 0.45 \\
0.35 & 0.4
\end{array}\right)
$$

$$
\lambda^{\star}=3.6509, \quad \log \left(f\left(\mathbf{t} \mid \boldsymbol{\lambda}, \mathbf{p}_{1}, \mathbf{p}_{2}\right)\right)=328.8059
$$

- 100000 iterations, 50000 burn-in
- $d_{1}=d_{2}=0.6$
- Initially, $\sigma=1$; Within the burn-in period: $\sigma=0.3$
$\lambda^{0}=(1,5), \quad P_{0}^{0}=\left(\begin{array}{cc}0 & 0.0872 \\ 0.0270 & 0\end{array}\right), \quad P_{1}^{0}=\left(\begin{array}{cc}0.1027 & 0.8101 \\ 0.6735 & 0.2995\end{array}\right)$

Arrival rate, Log-Likelihood, $F_{T}(t)$

Results

$-$

$$
\lambda^{\star}=3.6509
$$

$$
E\left(\lambda^{\star} \mid \cdot\right)=3.6712
$$

- Acceptance rate for $\boldsymbol{\lambda}: 14.63 \%$
- Acceptance rate for $\mathbf{p}_{1}, \mathbf{p}_{2}: 2.5 \%$
- Computational time: $\approx 4 \mathrm{~h}$

Performance: Simulated data 2

- 1000 simulated interarrival times from the stationary $M_{M P P_{2}}$

$$
\boldsymbol{\lambda}=(5,20), \quad P_{0}=\left(\begin{array}{cc}
0 & 0.7 \\
0.4 & 0
\end{array}\right), \quad P_{1}=\left(\begin{array}{cc}
0.3 & \mathbf{0} \\
\mathbf{0} & 0.6
\end{array}\right)
$$

$$
\lambda^{\star}=4.6957, \quad \log \left(f\left(\mathbf{t} \mid \boldsymbol{\lambda}, \mathbf{p}_{1}, \mathbf{p}_{2}\right)\right)=618.5995
$$

- 100000 iterations, 50000 burn-in
- $d_{1}=d_{2}=0.6$
- Initially, $\sigma=1$; Within the burn-in period: $\sigma=0.3$
$\lambda^{0}=(1,5), \quad P_{0}^{0}=\left(\begin{array}{cc}0 & 0.783 \\ 0.6739 & 0\end{array}\right), \quad P_{1}^{0}=\left(\begin{array}{cc}0.217 & 0 \\ 0 & 0.3261\end{array}\right)$

```
Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions & Extensions

\section*{Exponential rates}

\(E\left(\lambda_{1} \mid \cdot\right)=5.14, \quad E\left(\lambda_{2} \mid \cdot\right)=17.21\)
```

Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions \& Extensions

Transition probabilities

The $M M P P_{2}$ is identifiable, thus, small variability is expected for the values of \mathbf{p}_{1} and \mathbf{p}_{2}.

$$
E\left(\mathbf{p}_{1} \mid \cdot\right)=(0.7866,0.2134)
$$

$$
E\left(\mathbf{p}_{2} \mid \cdot\right)=(0.3722,0.6278)
$$

Arrival rate, Log-Likelihood, $F_{T}(t)$


```
Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions & Extensions

\section*{Real data set}

50000 first interarrival times in seconds of a trace of 1 million ethernet packets. Source:
http://www.xtremes.de/xtremes/xtremes/download/download.htm.

```

Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions \& Extensions

Exponential rates

CDF

CONCLUSIONS \& EXTENSIONS

Motivation	The MAP	The E-MAP	Identifiability of the MAP	Bayesian Inference for the MAP	Conclusions \& Extensions
0	0	00	0000	0000000	0000000

Conclusions

- First step in the study of the identifiability of MAPs.
- Deep study of the E-MAP.
- Results that assures weak equivalence.
- Bayesian method to estimate the $M A P_{2}$.
- Easy to implement, based on our theoretical results.
- Good estimation results, suitable for real teletraffic data.

```
Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions & Extensions
-

\section*{Conclusions}
- First step in the study of the identifiability of MAPs.
- Deep study of the E-MAP.
- Results that assures weak equivalence.
- Bayesian method to estimate the \(M A P_{2}\).
- Easy to implement, based on our theoretical results.
- Good estimation results, suitable for real teletraffic data.
```

Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions \& Extensions

Extensions

- Study identifiability of MAPs in the strong sense.
- Get a better acceptance rate for \mathbf{p}_{1} and \mathbf{p}_{2} : play with proposals.
- Compute the theoretical ACF of the $E-M A P$ to test if the dependence is captured.
- Bayesian inference for the $M A P_{2} / G / 1$ queueing system. (In process).
- Extension to the BMAP.

Motivation	The MAP	The E-MAP	Identifiability of the MAP	Bayesian Inference for the MAP	Conclusions \& Extensions
0	0	00	0000	0000000	0000

Extensions

- Study identifiability of MAPs in the strong sense.
- Get a better acceptance rate for \mathbf{p}_{1} and \mathbf{p}_{2} : play with proposals.
- Compute the theoretical ACF of the $E-M A P$ to test if the dependence is captured.
- Bayesian inference for the $M A P_{2} / G / 1$ queueing system. (In process).
- Extension to the BMAP.

```
Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions & Extensions

\section*{Extensions}
- Study identifiability of MAPs in the strong sense.
- Get a better acceptance rate for \(\mathbf{p}_{1}\) and \(\mathbf{p}_{2}\) : play with proposals.
- Compute the theoretical ACF of the \(E-M A P\) to test if the dependence is captured.
- Bayesian inference for the \(M A P_{2} / G / 1\) queueing system. (In process)
- Extension to the BMAP.
```

Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions \& Extensions

Extensions

- Study identifiability of MAPs in the strong sense.
- Get a better acceptance rate for \mathbf{p}_{1} and \mathbf{p}_{2} : play with proposals.
- Compute the theoretical ACF of the $E-M A P$ to test if the dependence is captured.
- Bayesian inference for the $M A P_{2} / G / 1$ queueing system. (In process).
- Extension to the BMAP.

```
Motivation The MAP The E-MAP Identifiability of the MAP2 Bayesian Inference for the MAP 年 Conclusions & Extensions

\section*{Extensions}
- Study identifiability of \(M A P s\) in the strong sense.
- Get a better acceptance rate for \(\mathbf{p}_{1}\) and \(\mathbf{p}_{2}\) : play with proposals.
- Compute the theoretical ACF of the \(E-M A P\) to test if the dependence is captured.
- Bayesian inference for the \(M A P_{2} / G / 1\) queueing system. (In process).
- Extension to the BMAP.

\section*{Bibliography}
- Lucantoni, D. (1991). New results on the single server queue with a batch Markovian arrival process. Stochastic Models, 7, 1-46.
- Lucantoni, D. (1993). The BMAP/G/1 Queue: A Tutorial. Models and Techniques for performance Evaluation of Computer and Communications Systems, Eds., L. Donatiello and R. Nelson, Springer Verlag.
- Neuts, M.F. (1979). A versatile Markovian point process. Journal of Applied Probability, 16, 764-779.
- Fearnhead, P., and Sherlock, C. (2006). An exact Gibbs sampler for the Markov-modulated Poisson process. Journal of the Royal Statististical Society: Series B, 65, Part 5, 767-784.

\section*{Bibliography}
- Ramírez, P., Lillo, R.E. and Wiper, M.P. (2008). On identifiability of MAP processes. Working Paper 08-46, Statistics and Econometrics Series 13, Universidad Carlos III de Madrid.
- Rydén, T. (1996). On identifiability and order of continous-time aggregated Markov chains, Markov-modulated Poisson processes, and phase-type distributions. Journal of Applied Probability, 33, 640-653.
- Rydén, T. (1996). An EM algorithm for estimation in Markov-modulated Poisson processes. Computational Statistics \& Data Analysis, 21(4), 431-447.```

