| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

## Bayesian Inference for the 2-states Markovian Arrival process

Pepa Ramírez Rosa E. Lillo Michael Wiper



Department of Statistics Universidad Carlos III Madrid

7th November, 2008

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

| Motivation<br>0<br>0 | The <i>MAP</i><br>0<br>00000 | The <i>E-MAP</i><br>00<br>00000 | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the $MAP_2$<br>0000000<br>0000000<br>000 | Conclusions & Extensions |
|----------------------|------------------------------|---------------------------------|-----------------------------------------|-----------------------------------------------------------------|--------------------------|
|                      |                              |                                 |                                         |                                                                 |                          |

#### Contents

- ► Motivation: teletraffic data and queueing systems.
- The Markovian Arrival Process (MAP) and the Effective Markovian Arrival Process (E-MAP).

- ► Identifiability of the MAP.
- Bayesian Inference for the MAP<sub>2</sub>.
- ► Conclusions & Extensions.

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

## MOTIVATION

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| •          | 0<br>00000 | 00<br>00000 | 0000<br>00000                           | 0000000<br>0000000<br>000                   | 0000                     |

#### Motivation: teletraffic data

<u>Unusual features</u>: High variability, Heavy-tails, Self-similarity, Dependence and correlation.





- Interest: congestion problems, waiting times, system size...
- Basic assumptions (Poisson arrivals, exponential service times) differs from reality: need for appropriate arrivals and service models.
- ► The Markovian Arrival process captures the dependence between arrivals → MAP/G/1.
- ► The BMAP/G/1 queueing system (Lucantoni, 1993): Matrix-Analytic approach + transform inversion routines → Stationary and Transient distributions for the queue and waiting times.

▲日▼▲□▼▲□▼▲□▼ □ ののの



- ▶ Interest: congestion problems, waiting times, system size...
- Basic assumptions (Poisson arrivals, exponential service times) differs from reality: need for appropriate arrivals and service models.
- ► The Markovian Arrival process captures the dependence between arrivals  $\rightarrow MAP/G/1$ .
- ► The BMAP/G/1 queueing system (Lucantoni, 1993): Matrix-Analytic approach + transform inversion routines → Stationary and Transient distributions for the queue and waiting times.

| Motivation | The MAP | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|---------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| •          | 00000   | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

- Interest: congestion problems, waiting times, system size...
- Basic assumptions (Poisson arrivals, exponential service times) differs from reality: need for appropriate arrivals and service models.
- ► The Markovian Arrival process captures the dependence between arrivals → MAP/G/1.
- ► The BMAP/G/1 queueing system (Lucantoni, 1993): Matrix-Analytic approach + transform inversion routines → Stationary and Transient distributions for the queue and waiting times.

| Motivation | The MAP | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|---------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| •          | 00000   | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

- Interest: congestion problems, waiting times, system size...
- Basic assumptions (Poisson arrivals, exponential service times) differs from reality: need for appropriate arrivals and service models.
- ► The Markovian Arrival process captures the dependence between arrivals → MAP/G/1.
- ► The BMAP/G/1 queueing system (Lucantoni, 1993): Matrix-Analytic approach + transform inversion routines → Stationary and Transient distributions for the queue and waiting times.

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

#### THE MARKOVIAN ARRIVAL PROCESS

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

| Motivation | The MAP | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|---------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 00000   | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

#### ► Versatile Markovian point process (Neuts, 1979).

 Convenient representation: Batch Markovian Arrival process or BMAP (Lucanoni et al. 1990).

- 1. Stationary *BMAP*s are **dense** in the family of stationary point processes.
- 2. Keeps the tractability of the Poisson process.
- 3. Allows the inclusion of dependent interarrival times.
- 4. Non-exponential interarrival times.
- 5. Correlated batch sizes.
- ► Special cases:
  - 1. Phase-type renewal processes (Erlang and Hyperexponential),
  - 2. Markov-modulated Markov process: MMPP.
  - 3. When all arrivals are of size 1, Markovian Arrival Process: *MAP*.

| Motivation The MAP |       |               | Bayesian Inference for the $MAP_2$ |      |
|--------------------|-------|---------------|------------------------------------|------|
| 0 • • 00000        | 00000 | 0000<br>00000 | 0000000<br>0000000<br>000          | 0000 |

- ► Versatile Markovian point process (Neuts, 1979).
- Convenient representation: Batch Markovian Arrival process or BMAP (Lucanoni et al. 1990).
  - 1. Stationary *BMAP*s are **dense** in the family of stationary point processes.
  - 2. Keeps the tractability of the Poisson process.
  - 3. Allows the inclusion of **dependent** interarrival times.
  - 4. Non-exponential interarrival times.
  - 5. Correlated batch sizes.
- Special cases:
  - 1. Phase-type renewal processes (Erlang and Hyperexponential),
  - 2. Markov-modulated Markov process: MMPP.
  - 3. When all arrivals are of size 1, Markovian Arrival Process: *MAP*.

| Motivation The MAP |       |               | Bayesian Inference for the $MAP_2$ |      |
|--------------------|-------|---------------|------------------------------------|------|
| 0 • • 00000        | 00000 | 0000<br>00000 | 0000000<br>0000000<br>000          | 0000 |

- ► Versatile Markovian point process (Neuts, 1979).
- Convenient representation: Batch Markovian Arrival process or BMAP (Lucanoni et al. 1990).
  - 1. Stationary *BMAP*s are **dense** in the family of stationary point processes.
  - 2. Keeps the tractability of the Poisson process.
  - 3. Allows the inclusion of **dependent** interarrival times.
  - 4. Non-exponential interarrival times.
  - 5. Correlated batch sizes.
- Special cases:
  - 1. Phase-type renewal processes (Erlang and Hyperexponential),
  - 2. Markov-modulated Markov process: MMPP.
  - 3. When all arrivals are of size 1, Markovian Arrival Process: *MAP*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>●0000 | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

- ► Continuous Markov chain J(t), state space S = {1,...,m} and generator matrix D.
- ▶ Initial state  $i_0 \in S$  given by an initial probability  $\alpha$ .
- At the end of a sojourn time in state *i*, exponentially distributed with parameter λ<sub>i</sub> > 0, two possible transitions:
  - 1. With probability  $p_{ij1}$  the *MAP* enters state  $j \in S$  and a **single** arrival occurs.
  - 2. With probability  $p_{ij0}$  the *MAP* enters state *j* without arrivals,  $j \neq i$
- ► The *MAP* process is characterized by the set { $\alpha$ ,  $\lambda$ ,  $P_0$ ,  $P_1$ }, where  $\lambda = (\lambda_1, \dots, \lambda_m)$ , where

$$P_{0} = \begin{pmatrix} 0 & p_{120} & \dots & p_{1m0} \\ p_{210} & 0 & \dots & p_{2m0} \\ \dots & \dots & \dots & \dots \\ p_{m10} & p_{m20} & \dots & 0 \end{pmatrix}, \qquad P_{1} = \begin{pmatrix} p_{111} & \dots & p_{1m1} \\ p_{211} & \dots & p_{2m1} \\ \dots & \dots & \dots \\ p_{m11} & \dots & p_{mm1} \end{pmatrix}$$

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>●0000 | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

- ► Continuous Markov chain J(t), state space S = {1,...,m} and generator matrix D.
- Initial state  $i_0 \in S$  given by an initial probability  $\alpha$ .
- At the end of a sojourn time in state *i*, exponentially distributed with parameter λ<sub>i</sub> > 0, two possible transitions:
  - 1. With probability  $p_{ij1}$  the *MAP* enters state  $j \in S$  and a single arrival occurs.
  - 2. With probability  $p_{ij0}$  the *MAP* enters state *j* without arrivals,  $j \neq i$
- ► The *MAP* process is characterized by the set { $\alpha$ ,  $\lambda$ ,  $P_0$ ,  $P_1$ }, where  $\lambda = (\lambda_1, \dots, \lambda_m)$ , where

$$P_{0} = \begin{pmatrix} 0 & p_{120} & \dots & p_{1m0} \\ p_{210} & 0 & \dots & p_{2m0} \\ \dots & \dots & \dots & \dots \\ p_{m10} & p_{m20} & \dots & 0 \end{pmatrix}, \qquad P_{1} = \begin{pmatrix} p_{111} & \dots & p_{1m1} \\ p_{211} & \dots & p_{2m1} \\ \dots & \dots & \dots \\ p_{m11} & \dots & p_{mm1} \end{pmatrix}$$

| o c | 5 | 00 | 0000 | Bayesian Inference for the <i>MAP</i> <sub>2</sub><br>0000000<br>0000000<br>000 | Conclusions & Extensions |
|-----|---|----|------|---------------------------------------------------------------------------------|--------------------------|
|     |   |    |      |                                                                                 |                          |

- ► Continuous Markov chain J(t), state space S = {1,..., m} and generator matrix D.
- Initial state  $i_0 \in S$  given by an initial probability  $\alpha$ .
- At the end of a sojourn time in state *i*, exponentially distributed with parameter λ<sub>i</sub> > 0, two possible transitions:
  - 1. With probability  $p_{ij1}$  the *MAP* enters state  $j \in S$  and a single arrival occurs.
  - 2. With probability  $p_{ij0}$  the *MAP* enters state *j* without arrivals,  $j \neq i$
- ► The *MAP* process is characterized by the set { $\alpha$ ,  $\lambda$ ,  $P_0$ ,  $P_1$ }, where  $\lambda = (\lambda_1, \dots, \lambda_m)$ , where

$$P_{0} = \begin{pmatrix} 0 & p_{120} & \dots & p_{1m0} \\ p_{210} & 0 & \dots & p_{2m0} \\ \dots & \dots & \dots & \dots \\ p_{m10} & p_{m20} & \dots & 0 \end{pmatrix}, \qquad P_{1} = \begin{pmatrix} p_{111} & \dots & p_{1m1} \\ p_{211} & \dots & p_{2m1} \\ \dots & \dots & \dots \\ p_{m11} & \dots & p_{mm1} \end{pmatrix}$$

| Motivation<br>0<br>0 | The <i>MAP</i><br>○<br>●0000 | The <i>E-MAP</i><br>00<br>00000 | Identifiability of the MAP <sub>2</sub><br>0000<br>00000 | Bayesian Inference for the <i>MAP</i> <sub>2</sub><br>0000000<br>0000000<br>000 | Conclusions & Extensions<br>0000 |
|----------------------|------------------------------|---------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------|
|                      |                              |                                 |                                                          |                                                                                 |                                  |

- ► Continuous Markov chain J(t), state space S = {1,..., m} and generator matrix D.
- Initial state  $i_0 \in S$  given by an initial probability  $\alpha$ .
- At the end of a sojourn time in state *i*, exponentially distributed with parameter λ<sub>i</sub> > 0, two possible transitions:
  - 1. With probability  $p_{ij1}$  the *MAP* enters state  $j \in S$  and a single arrival occurs.
  - 2. With probability  $p_{ij0}$  the *MAP* enters state *j* without arrivals,  $j \neq i$
- ► The MAP process is characterized by the set {α, λ, P<sub>0</sub>, P<sub>1</sub>}, where λ = (λ<sub>1</sub>,..., λ<sub>m</sub>), where

$$P_{0} = \begin{pmatrix} 0 & p_{120} & \dots & p_{1m0} \\ p_{210} & 0 & \dots & p_{2m0} \\ \dots & \dots & \dots & \dots \\ p_{m10} & p_{m20} & \dots & 0 \end{pmatrix}, \qquad P_{1} = \begin{pmatrix} p_{111} & \dots & p_{1m1} \\ p_{211} & \dots & p_{2m1} \\ \dots & \dots & \dots \\ p_{m11} & \dots & p_{mm1} \end{pmatrix}$$

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>0●000 | 00<br>00000 | 0000                                    | 000000<br>0000000<br>000                    | 0000                     |

### Graphical Illustration: MAP<sub>2</sub>



◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

#### Simulation of a $MAP_2$

Simulation of 6 arrivals of a  $MAP_2$  characterized by

$$\lambda = (0.5, 4)$$

$$P_0 = \begin{pmatrix} 0 & 0.3 \\ 0.3 & 0 \end{pmatrix}, \qquad P_1 = \begin{pmatrix} 0.4 & 0.3 \\ 0.2 & 0.5 \end{pmatrix}$$



▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>000●0 | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

Rate matrices

$$D_0 = \begin{pmatrix} -\lambda_1 & \lambda_1 p_{120} & \dots & \lambda_1 p_{1m0} \\ \lambda_2 p_{210} & -\lambda_2 & \dots & \lambda_2 p_{2m0} \\ \dots & \dots & \dots & \dots \\ \lambda_m p_{m10} & \lambda_m p_{m21} & \dots & -\lambda_m \end{pmatrix}, D_1 = \begin{pmatrix} \lambda_1 p_{111} & \dots & \lambda_1 p_{1m1} \\ \lambda_2 p_{211} & \dots & \lambda_2 p_{2m1} \\ \dots & \dots & \dots \\ \lambda_m p_{m11} & \dots & \lambda_m p_{mm1} \end{pmatrix}$$

- ▶ D<sub>0</sub> governs the transitions with no arrivals. D<sub>1</sub> those with a single arrival.
- Then,  $D = D_0 + D_1$  is the generator of J(t).
- The MAP process is also characterized by the set {α, λ, D<sub>0</sub>, D<sub>1</sub>}.

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>000●0 | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

Rate matrices

$$D_0 = \begin{pmatrix} -\lambda_1 & \lambda_1 p_{120} & \dots & \lambda_1 p_{1m0} \\ \lambda_2 p_{210} & -\lambda_2 & \dots & \lambda_2 p_{2m0} \\ \dots & \dots & \dots & \dots \\ \lambda_m p_{m10} & \lambda_m p_{m21} & \dots & -\lambda_m \end{pmatrix}, D_1 = \begin{pmatrix} \lambda_1 p_{111} & \dots & \lambda_1 p_{1m1} \\ \lambda_2 p_{211} & \dots & \lambda_2 p_{2m1} \\ \dots & \dots & \dots \\ \lambda_m p_{m11} & \dots & \lambda_m p_{mm1} \end{pmatrix}$$

- ▶ D<sub>0</sub> governs the transitions with no arrivals. D<sub>1</sub> those with a single arrival.
- Then,  $D = D_0 + D_1$  is the generator of J(t).
- The MAP process is also characterized by the set {α, λ, D<sub>0</sub>, D<sub>1</sub>}.

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>000●0 | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

Rate matrices

$$D_0 = \begin{pmatrix} -\lambda_1 & \lambda_1 p_{120} & \dots & \lambda_1 p_{1m0} \\ \lambda_2 p_{210} & -\lambda_2 & \dots & \lambda_2 p_{2m0} \\ \dots & \dots & \dots & \dots \\ \lambda_m p_{m10} & \lambda_m p_{m21} & \dots & -\lambda_m \end{pmatrix}, D_1 = \begin{pmatrix} \lambda_1 p_{111} & \dots & \lambda_1 p_{1m1} \\ \lambda_2 p_{211} & \dots & \lambda_2 p_{2m1} \\ \dots & \dots & \dots \\ \lambda_m p_{m11} & \dots & \lambda_m p_{mm1} \end{pmatrix}$$

- D<sub>0</sub> governs the transitions with no arrivals. D<sub>1</sub> those with a single arrival.
- Then,  $D = D_0 + D_1$  is the generator of J(t).
- The MAP process is also characterized by the set {α, λ, D<sub>0</sub>, D<sub>1</sub>}.

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>000●0 | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

Rate matrices

$$D_0 = \begin{pmatrix} -\lambda_1 & \lambda_1 p_{120} & \dots & \lambda_1 p_{1m0} \\ \lambda_2 p_{210} & -\lambda_2 & \dots & \lambda_2 p_{2m0} \\ \dots & \dots & \dots & \dots \\ \lambda_m p_{m10} & \lambda_m p_{m21} & \dots & -\lambda_m \end{pmatrix}, D_1 = \begin{pmatrix} \lambda_1 p_{111} & \dots & \lambda_1 p_{1m1} \\ \lambda_2 p_{211} & \dots & \lambda_2 p_{2m1} \\ \dots & \dots & \dots \\ \lambda_m p_{m11} & \dots & \lambda_m p_{mm1} \end{pmatrix}$$

- D<sub>0</sub> governs the transitions with no arrivals. D<sub>1</sub> those with a single arrival.
- Then,  $D = D_0 + D_1$  is the generator of J(t).
- ► The MAP process is also characterized by the set {α, λ, D<sub>0</sub>, D<sub>1</sub>}.

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>000●0 | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

Rate matrices

$$D_0 = \begin{pmatrix} -\lambda_1 & \lambda_1 p_{120} & \dots & \lambda_1 p_{1m0} \\ \lambda_2 p_{210} & -\lambda_2 & \dots & \lambda_2 p_{2m0} \\ \dots & \dots & \dots & \dots \\ \lambda_m p_{m10} & \lambda_m p_{m21} & \dots & -\lambda_m \end{pmatrix}, D_1 = \begin{pmatrix} \lambda_1 p_{111} & \dots & \lambda_1 p_{1m1} \\ \lambda_2 p_{211} & \dots & \lambda_2 p_{2m1} \\ \dots & \dots & \dots \\ \lambda_m p_{m11} & \dots & \lambda_m p_{mm1} \end{pmatrix}$$

- D<sub>0</sub> governs the transitions with no arrivals. D<sub>1</sub> those with a single arrival.
- Then,  $D = D_0 + D_1$  is the generator of J(t).
- ► The MAP process is also characterized by the set {α, λ, D<sub>0</sub>, D<sub>1</sub>}.

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

#### Quantities of interest

- π, stationary probability vector of the Markov process with generator D.
- Fundamental rate:  $\lambda^* = \pi D_1 \mathbf{e}$ .
- ▶  $1/\lambda^*$  is the mean interarrival time in the stationary *MAP*.
- ► T = time between successive arrivals in the stationary version. Then,

$$F_{T}(t) = P(T \le t) = (\pi D_{1}\mathbf{e})^{-1}\pi D_{1}(I - e^{D_{0}t})(-D_{0})^{-1}L, \quad t \ge 0,$$

where

$$L = \begin{pmatrix} \lambda_1 \left( 1 - \sum_{j \neq 1} p_{1j0} \right) \\ \lambda_2 \left( 1 - \sum_{j \neq 2} p_{2j0} \right) \\ \vdots \\ \lambda_m \left( 1 - \sum_{j \neq m} p_{mj0} \right) \end{pmatrix}.$$

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

#### Quantities of interest

- ▶  $\pi$ , stationary probability vector of the Markov process with generator *D*.
- Fundamental rate:  $\lambda^* = \pi D_1 \mathbf{e}$ .
- ▶  $1/\lambda^*$  is the mean interarrival time in the stationary *MAP*.
- ► T = time between successive arrivals in the stationary version. Then,

$$F_T(t) = P(T \le t) = (\pi D_1 \mathbf{e})^{-1} \pi D_1 (I - e^{D_0 t}) (-D_0)^{-1} L, \quad t \ge 0,$$

where

$$L = \begin{pmatrix} \lambda_1 \left( 1 - \sum_{j \neq 1} p_{1j0} \right) \\ \lambda_2 \left( 1 - \sum_{j \neq 2} p_{2j0} \right) \\ \vdots \\ \lambda_m \left( 1 - \sum_{j \neq m} p_{mj0} \right) \end{pmatrix}.$$

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

#### Quantities of interest

- ▶  $\pi$ , stationary probability vector of the Markov process with generator *D*.
- Fundamental rate:  $\lambda^{\star} = \pi D_1 \mathbf{e}$ .
- ▶  $1/\lambda^*$  is the mean interarrival time in the stationary *MAP*.
- ► T = time between successive arrivals in the stationary version. Then,

$$F_T(t) = P(T \le t) = (\pi D_1 \mathbf{e})^{-1} \pi D_1 (I - e^{D_0 t}) (-D_0)^{-1} L, \quad t \ge 0,$$

where

$$L = \begin{pmatrix} \lambda_1 \left( 1 - \sum_{j \neq 1} p_{1j0} \right) \\ \lambda_2 \left( 1 - \sum_{j \neq 2} p_{2j0} \right) \\ \vdots \\ \lambda_m \left( 1 - \sum_{j \neq m} p_{mj0} \right) \end{pmatrix}.$$

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

#### THE EFFECTIVE MARKOVIAN ARRIVAL PROCESS



#### Introduction to the E - MAP

# $MAP \Rightarrow E\text{-}MAP \Rightarrow$ only times between arrivals are assumed to be observed.



| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

- ► *Effective* transitions in a *MAP* ~ transitions in the corresponding *E-MAP*.
- ▶ Inference for the MAP | the E-MAP is partially observed.
- At the end of a sojourn time in *i*, (which is distributed as a sum of exponentials) there are *m* possible transitions: with probability p<sup>\*</sup><sub>ij</sub>, for *j* = 1,...,*m*, an arrival occurs and the process is instantaneously restarted in state *j*.
- The *E-MAP* is characterized by  $\{\alpha, \lambda, P^{\star}\}$ .
- The following properties are satisfied (Ramirez et al. 2008):
   P1. (Transition probability matrix).

$$P^* = (I - P_0)^{-1} P_1.$$

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

- ► *Effective* transitions in a *MAP* ~ transitions in the corresponding *E-MAP*.
- ▶ Inference for the MAP | the E-MAP is partially observed.
- At the end of a sojourn time in *i*, (which is distributed as a sum of exponentials) there are *m* possible transitions: with probability p<sup>\*</sup><sub>ij</sub>, for *j* = 1,...,*m*, an arrival occurs and the process is instantaneously restarted in state *j*.
- The *E-MAP* is characterized by  $\{\alpha, \lambda, P^{\star}\}$ .
- The following properties are satisfied (Ramirez et al. 2008): P1. (Transition probability matrix).

$$P^{\star} = (I - P_0)^{-1} P_1.$$

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

P2. (Holding times).

Let  $H_k$  represent the **holding time** in state k in a E-MAP. Then,

$$F_{H_k}(t) = P(H_k \le t) = \xi_k (I - e^{D_0 t}) (-D_0)^{-1} L,$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

where  $\xi_k$  is a vector of zeros with a single 1 in the *k*th position.

| Motivation | The MAP    | The E-MAP | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-----------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00000     | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

P3. (Holding times).

Let  $H_{ij}$  be defined as the **holding time** in state *i given that j* is the next visited state, in a *E-MAP*. Then,

$$F_{H_{ij}}(t) = P(H_{ij} \le t) = \xi_i (I - e^{D_0 t}) (-D_0)^{-1} D_1 \xi'_j (\xi_i P^* \xi'_j)^{-1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

| Motivation | The MAP    | The E-MAP | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-----------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00000     | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

#### Remark.

The densities of  $H_k$  and  $H_{ij}$  can be numerically approximated by

$$egin{array}{rll} f_{\mathcal{H}_i}^{(h)}(t) &pprox & rac{F_{\mathcal{H}_i}(t+h)-F_{\mathcal{H}_i}(t-h)}{2h}, \ f_{\mathcal{H}_{ij}}^{( ilde{h})}(t) &pprox & rac{F_{\mathcal{H}_{ij}}(t+ ilde{h})-F_{\mathcal{H}_{ij}}(t- ilde{h})}{2 ilde{h}}, \end{array}$$

for some  $h, \tilde{h} \approx 0$  so that  $f_{H_i}^{(h)}(t) = f_{H_i}^{(h')}(t)$  and  $f_{H_{ij}}^{(\tilde{h})}(t) = f_{H_{ij}}^{(h'')}(t)$ , for all  $h' \leq h, h'' \leq \tilde{h}$ .

▲日▼▲□▼▲□▼▲□▼ □ ののの

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

P4. (Stationary distribution).

Let  $\phi$  be the stationary distribution associated with the matrix  $P^*$ . Then  $\phi$  is related to  $\pi$  by

$$\phi = (\pi D_1 \mathbf{e})^{-1} \pi D_1.$$

Thus,

$$F_T(t) = P(T \le t) = \phi(I - e^{D_0 t})(-D_0)^{-1}L, \quad t \ge 0,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

#### ON IDENTIFIABILITY OF THE MAP

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | <b>0000</b><br>00000                    | 0000000<br>0000000<br>000                   | 0000                     |

► Inference & *identifiability* problems.

```
Generator MAP \{\alpha, \lambda, P_0, P_1\}

\downarrow

t_1, \dots, t_n

\downarrow

Estimated MAP \{\widetilde{\alpha}, \widetilde{\lambda}, \widetilde{P}_0, \widetilde{P}_1\}
```

- Q1. Is the  $MAP_2$  identifiable?
- A1. Only if there does not exist another equivalent MAP<sub>2</sub>.
- Q2. When are two  $MAP_2s$  equivalent?
- A2. When the corresponding *effective* processes or *E-MAPs* are *equivalent*.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Q3. When are two E-MAPs equivalent?

| Motivation The MAR | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|--------------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0 0<br>0 00000     | 00<br>00000 | <b>0000</b><br>00000                    | 0000000<br>0000000<br>000                   | 0000                     |

► Inference & *identifiability* problems.

```
Generator MAP \{\alpha, \lambda, P_0, P_1\}

\downarrow

t_1, \dots, t_n

\downarrow

Estimated MAP \{\widetilde{\alpha}, \widetilde{\lambda}, \widetilde{P}_0, \widetilde{P}_1\}
```

#### Q1. Is the $MAP_2$ identifiable?

- A1. Only if there does not exist another equivalent MAP<sub>2</sub>.
- Q2. When are two *MAP*<sub>2</sub>s equivalent?
- A2. When the corresponding *effective* processes or *E-MAPs* are *equivalent*.

▲日▼▲□▼▲□▼▲□▼ □ ののの

| Motivation The MAR | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|--------------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0 0<br>0 00000     | 00<br>00000 | <b>0000</b><br>00000                    | 0000000<br>0000000<br>000                   | 0000                     |

► Inference & *identifiability* problems.

```
Generator MAP \{ \alpha, \lambda, P_0, P_1 \}

\downarrow

t_1, \dots, t_n

\downarrow

Estimated MAP \{ \widetilde{\alpha}, \widetilde{\lambda}, \widetilde{P}_0, \widetilde{P}_1 \}
```

- Q1. Is the  $MAP_2$  identifiable?
- A1. Only if there does not exist another equivalent  $MAP_2$ .
- Q2. When are two *MAP*<sub>2</sub>s equivalent?
- A2. When the corresponding *effective* processes or *E-MAPs* are *equivalent*.

▲日▼▲□▼▲□▼▲□▼ □ ののの

| Motivation The MAP | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|--------------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0 0<br>0 00000     | 00<br>00000 | <b>0000</b><br>00000                    | 0000000<br>0000000<br>000                   | 0000                     |

► Inference & *identifiability* problems.

```
Generator MAP \{ \alpha, \lambda, P_0, P_1 \}

\downarrow

t_1, \dots, t_n

\downarrow

Estimated MAP \{ \widetilde{\alpha}, \widetilde{\lambda}, \widetilde{P}_0, \widetilde{P}_1 \}
```

- Q1. Is the  $MAP_2$  identifiable?
- A1. Only if there does not exist another equivalent  $MAP_2$ .
- Q2. When are two  $MAP_2s$  equivalent?
- A2. When the corresponding *effective* processes or *E-MAP*s are *equivalent*.

▲日▼▲□▼▲□▼▲□▼ □ ののの

| Motivation The MAP | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|--------------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0 0<br>0 00000     | 00<br>00000 | <b>0000</b><br>00000                    | 0000000<br>0000000<br>000                   | 0000                     |

► Inference & *identifiability* problems.

```
Generator MAP \{ \alpha, \lambda, P_0, P_1 \}

\downarrow

t_1, \dots, t_n

\downarrow

Estimated MAP \{ \widetilde{\alpha}, \widetilde{\lambda}, \widetilde{P}_0, \widetilde{P}_1 \}
```

- Q1. Is the  $MAP_2$  identifiable?
- A1. Only if there does not exist another equivalent  $MAP_2$ .
- Q2. When are two  $MAP_2s$  equivalent?
- A2. When the corresponding *effective* processes or *E-MAP*s are *equivalent*.

| Motivation The MAP | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|--------------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0 0<br>0 00000     | 00<br>00000 | <b>0000</b><br>00000                    | 0000000<br>0000000<br>000                   | 0000                     |

► Inference & *identifiability* problems.

```
\begin{array}{c} \text{Generator } \textit{MAP} \left\{ \alpha, \lambda, \textit{P}_{0}, \textit{P}_{1} \right\} \\ \downarrow \\ t_{1}, \ldots, t_{n} \\ \downarrow \\ \text{Estimated } \textit{MAP} \left\{ \widetilde{\alpha}, \widetilde{\lambda}, \widetilde{\textit{P}}_{0}, \widetilde{\textit{P}}_{1} \right\} \end{array}
```

- Q1. Is the  $MAP_2$  identifiable?
- A1. Only if there does not exist another equivalent  $MAP_2$ .
- Q2. When are two  $MAP_2s$  equivalent?
- A2. When the corresponding *effective* processes or *E-MAP*s are *equivalent*.

| Motivatio | n The MAP | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|-----------|-----------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0         | 00000     | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

►  $T_n$  = holding time in the (n-1)th transition in a E-MAP = time between the (n-1)th and *n*th arrival in a MAP.

### **Definition** 1.

- Two *MAPs*  $\{\alpha, \lambda, P_0, P_1\}$  and  $\{\widetilde{\alpha}, \widetilde{\lambda}, \widetilde{P}_0, \widetilde{P}_1\}$  are equivalent if and only if the corresponding *E-MAPs*  $\{\alpha, \lambda, P^*\}$  and  $\{\widetilde{\alpha}, \widetilde{\lambda}, \widetilde{P}^*\}$  are equivalent.
- ► Definition 2.

Two *E-MAP*s  $\{ lpha, \lambda, P^* \}$  and  $\{ lpha, \widetilde{\lambda}, \widetilde{P}^* \}$  are equivalent if and only if

$$T_n \stackrel{d}{=} \widetilde{T}_n, \quad \forall n \ge 1,$$

#### Definition 3.

A MAP { $\alpha, \lambda, P_0, P_1$ } with corresponding E-MAP { $\alpha, \lambda, P^*$ } is identifiable if there does not exist a different MAP whose associated E-MAP { $\widetilde{\alpha}, \widetilde{\lambda}, \widetilde{P}^*$ } is equivalent to { $\alpha, \lambda, P^*$ }.

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

▶  $T_n$  = holding time in the (n-1)th transition in a E-MAP = time between the (n-1)th and *n*th arrival in a MAP.

### Definition 1.

Two *MAP*s  $\{\alpha, \lambda, P_0, P_1\}$  and  $\{\widetilde{\alpha}, \widetilde{\lambda}, \widetilde{P}_0, \widetilde{P}_1\}$  are equivalent if and only if the corresponding *E-MAP*s  $\{\alpha, \lambda, P^*\}$  and  $\{\widetilde{\alpha}, \widetilde{\lambda}, \widetilde{P}^*\}$  are equivalent.

**Definition 2**.

Two *E-MAP*s  $\{lpha, oldsymbol{\lambda}, P^{\star}\}$  and  $\{lpha, \widetilde{oldsymbol{\lambda}}, \widetilde{P}^{\star}\}$  are equivalent if and only if

$$T_n \stackrel{d}{=} \widetilde{T}_n, \quad \forall n \ge 1,$$

#### Definition 3.

A MAP { $\alpha, \lambda, P_0, P_1$ } with corresponding E-MAP { $\alpha, \lambda, P^*$ } is identifiable if there does not exist a different MAP whose associated E-MAP { $\widetilde{\alpha}, \widetilde{\lambda}, \widetilde{P}^*$ } is equivalent to { $\alpha, \lambda, P^*$ }.

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

►  $T_n$  = holding time in the (n-1)th transition in a E-MAP = time between the (n-1)th and *n*th arrival in a MAP.

### Definition 1.

Two *MAP*s  $\{\alpha, \lambda, P_0, P_1\}$  and  $\{\widetilde{\alpha}, \widetilde{\lambda}, \widetilde{P}_0, \widetilde{P}_1\}$  are equivalent if and only if the corresponding *E-MAP*s  $\{\alpha, \lambda, P^*\}$  and  $\{\widetilde{\alpha}, \widetilde{\lambda}, \widetilde{P}^*\}$  are equivalent.

**Definition 2**.

Two *E-MAP*s  $\{\alpha, \lambda, P^{\star}\}$  and  $\{\alpha, \widetilde{\lambda}, \widetilde{P}^{\star}\}$  are equivalent if and only if

$$T_n \stackrel{d}{=} \widetilde{T}_n, \quad \forall n \ge 1,$$

#### Definition 3.

A MAP  $\{\alpha, \lambda, P_0, P_1\}$  with corresponding E-MAP  $\{\alpha, \lambda, P^*\}$ is identifiable if there does not exist a different MAP whose associated E-MAP  $\{\widetilde{\alpha}, \widetilde{\lambda}, \widetilde{P}^*\}$  is equivalent to  $\{\alpha, \lambda, P^*\}$ .

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

►  $T_n$  = holding time in the (n-1)th transition in a E-MAP = time between the (n-1)th and *n*th arrival in a MAP.

### Definition 1.

Two *MAP*s  $\{\alpha, \lambda, P_0, P_1\}$  and  $\{\widetilde{\alpha}, \widetilde{\lambda}, \widetilde{P}_0, \widetilde{P}_1\}$  are equivalent if and only if the corresponding *E-MAP*s  $\{\alpha, \lambda, P^*\}$  and  $\{\widetilde{\alpha}, \widetilde{\lambda}, \widetilde{P}^*\}$  are equivalent.

**Definition 2**.

Two *E-MAP*s  $\{\alpha, \lambda, P^{\star}\}$  and  $\{\alpha, \widetilde{\lambda}, \widetilde{P}^{\star}\}$  are equivalent if and only if

$$T_n \stackrel{d}{=} \widetilde{T}_n, \quad \forall n \ge 1,$$

#### Definition 3.

A *MAP* { $\alpha, \lambda, P_0, P_1$ } with corresponding *E-MAP* { $\alpha, \lambda, P^*$ } is identifiable if there does not exist a different *MAP* whose associated *E-MAP* { $\widetilde{\alpha}, \widetilde{\lambda}, \widetilde{P}^*$ } is equivalent to { $\alpha, \lambda, P^*$ }.

| Motivation | The MAP | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|---------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 00000   | 00<br>00000 | <b>0000</b>                             | 0000000<br>0000000<br>000                   | 0000                     |

# Remark

- Equivalence is expressed in a *weak* sense.
- Definition based on the marginal interarrival time distribution.
- ▶ However, for *strong* equivalence,

$$f(t_1,\ldots,t_n|\alpha,\lambda,P_0,P_1)=f(t_1,\ldots,t_n|\widetilde{\alpha},\widetilde{\lambda},\widetilde{P}_0,\widetilde{P}_1), \quad \forall n.$$

In a MAP the interarrival times are not independent (although they are conditionally independent given the sequence of visited states), and thus,

Weak equivalence  $\not\sim$  Strong equivalence.

▲日▼▲□▼▲□▼▲□▼ □ ののの

| 0         0         00         00€0         000000         00000           0         000000         000000         000000         000000         00000           0         000000         000000         000000         00000         00000 | Motivatio | n The MAP  | The E-MAP | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|-----------|-----------------------------------------|---------------------------------------------|--------------------------|
|                                                                                                                                                                                                                                             | 0         | 0<br>00000 |           |                                         | 000000                                      | 0000                     |

# Remark

- Equivalence is expressed in a *weak* sense.
- > Definition based on the marginal interarrival time distribution.
- However, for strong equivalence,

$$f(t_1,\ldots,t_n|\alpha,\lambda,P_0,P_1)=f(t_1,\ldots,t_n|\widetilde{\alpha},\widetilde{\lambda},\widetilde{P}_0,\widetilde{P}_1), \quad \forall n.$$

In a MAP the interarrival times are not independent (although they are conditionally independent given the sequence of visited states), and thus,

Weak equivalence  $\not\sim$  Strong equivalence.

▲日▼▲□▼▲□▼▲□▼ □ ののの

| 0         0         00         00€0         000000         00000           0         000000         000000         000000         000000         00000           0         000000         000000         000000         00000         00000 | Motivatio | n The MAP  | The E-MAP | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|-----------|-----------------------------------------|---------------------------------------------|--------------------------|
|                                                                                                                                                                                                                                             | 0         | 0<br>00000 |           |                                         | 000000                                      | 0000                     |

## Remark

- Equivalence is expressed in a *weak* sense.
- > Definition based on the marginal interarrival time distribution.
- However, for strong equivalence,

$$f(t_1,\ldots,t_n|\alpha,\lambda,P_0,P_1)=f(t_1,\ldots,t_n|\widetilde{\alpha},\widetilde{\lambda},\widetilde{P}_0,\widetilde{P}_1), \quad \forall n.$$

In a MAP the interarrival times are not independent (although they are conditionally independent given the sequence of visited states), and thus,

Weak equivalence  $\not\sim$  Strong equivalence.

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000                                    | 000000<br>0000000<br>000                    | 0000                     |

## Remark: MMPP



Rydén (1996): the *MMPP* is identifiable (in strong sense) if and only if the exponential rates are ordered.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000<br>00000                           | 0000000<br>0000000<br>000                   | 0000                     |

## Two general results

• 
$$\varphi_{T_{n+1}}(s) = \sum_{i=1}^{m} \alpha_i^{(n)} \varphi_{H_i}(s) = \alpha^{(n)} \varphi_{\mathsf{H}}(s), \text{ where } \alpha^{(n)} = \alpha (P^{\star})^n.$$

**Result** 1.

$$T_n \stackrel{d}{=} \widetilde{T}_n, \quad \forall n \ge 1$$

$$lpha(P^{\star})^{n}arphi_{\mathsf{H}}(s) {=} \widetilde{lpha}(\widetilde{P}^{\star})^{n}arphi_{\widetilde{\mathsf{H}}}(s), \quad \forall s, \quad \forall n \geq 0$$

**Result 2**.

A necessary condition for two MAPs to be equivalent is

$$\phi\varphi_{\mathbf{H}}(s) = \widetilde{\phi}\varphi_{\widetilde{\mathbf{H}}}(s), \quad \forall s,$$

where  $\phi$  is the stationary probability vector of  $P^*$ , governing the state transitions in the *E-MAP*.

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000<br>00000                           | 0000000<br>0000000<br>000                   | 0000                     |

## Two general results

• 
$$\varphi_{\mathcal{T}_{n+1}}(s) = \sum_{i=1}^{m} \alpha_i^{(n)} \varphi_{\mathcal{H}_i}(s) = \alpha^{(n)} \varphi_{\mathcal{H}}(s), \text{ where } \alpha^{(n)} = \alpha (P^*)^n.$$

Result 1.

$$T_n \stackrel{d}{=} \widetilde{T}_n, \quad \forall n \ge 1$$
 $\iff$ 
 $\alpha(P^\star)^n \varphi_{\mathbf{H}}(s) = \widetilde{lpha}(\widetilde{P}^\star)^n \varphi_{\widetilde{\mathbf{H}}}(s), \quad \forall s, \quad \forall n \ge 0$ 

**Result 2**.

A necessary condition for two MAPs to be equivalent is

$$\phi \varphi_{\mathsf{H}}(s) = \widetilde{\phi} \varphi_{\widetilde{\mathsf{H}}}(s), \quad \forall s,$$

where  $\phi$  is the stationary probability vector of  $P^*$ , governing the state transitions in the *E-MAP*.

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000<br>00000                           | 0000000<br>0000000<br>000                   | 0000                     |

## Two general results

• 
$$\varphi_{\mathcal{T}_{n+1}}(s) = \sum_{i=1}^{m} \alpha_i^{(n)} \varphi_{\mathcal{H}_i}(s) = \alpha^{(n)} \varphi_{\mathcal{H}}(s), \text{ where } \alpha^{(n)} = \alpha (P^*)^n.$$

Result 1.

$$T_n \stackrel{d}{=} \widetilde{T}_n, \quad \forall n \ge 1$$
 $\iff$ 
 $\alpha(P^*)^n \varphi_{\mathbf{H}}(s) = \widetilde{lpha}(\widetilde{P}^*)^n \varphi_{\widetilde{\mathbf{H}}}(s), \quad \forall s, \quad \forall n \ge 0$ 

#### Result 2.

A necessary condition for two MAPs to be equivalent is

$$\phi \varphi_{\mathsf{H}}(s) = \widetilde{\phi} \varphi_{\widetilde{\mathsf{H}}}(s), \quad \forall s,$$

where  $\phi$  is the stationary probability vector of  $P^*$ , governing the state transitions in the *E-MAP*.

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

## General result for m = 2.

Let  $\{\alpha, \lambda, P_0, P_1\}$  and  $\{\widetilde{\alpha}, \widetilde{\lambda}, \widetilde{P}_0, \widetilde{P}_1\}$  define two MAP<sub>2</sub>s, with corresponding E-MAP<sub>2</sub>s  $\{\alpha, \lambda, P^*\}$  and  $\{\widetilde{\alpha}, \widetilde{\lambda}, \widetilde{P}^*\}$ , where  $\phi$  and  $\widetilde{\phi}$  are the stationary probabilities associated to  $P^*$  and  $\widetilde{P}^*$ . Assume,

(i) 
$$P^{\star} \neq \mathbf{\Phi}$$
 or  $\widetilde{P}^{\star} \neq \widetilde{\mathbf{\Phi}}$ ,

(ii) 
$$\beta_1 \neq 0$$
, and  $\tilde{\beta}_1 \neq 0$ , where

$$\begin{aligned} \beta_1 &= \lambda_1(p_{120}-1) + \lambda_2(1-p_{210}), \\ \widetilde{\beta}_1 &= \widetilde{\lambda}_1(1-\widetilde{p}_{120}) + \widetilde{\lambda}_2(\widetilde{p}_{210}-1). \end{aligned}$$

Then, the MAP<sub>2</sub>s { $\alpha, \lambda, P_0, P_1$ }, { $\tilde{\alpha}, \tilde{\lambda}, \tilde{P}_0, \tilde{P}_1$ } are (*weakly*) equivalent if and only if the following two conditions are fulfilled,

C1. 
$$\phi \varphi_{\mathbf{H}}(s) = \widetilde{\phi} \varphi_{\widetilde{\mathbf{H}}}(s),$$
  
C2.  $(\alpha, \widetilde{\alpha}) = (\phi, \widetilde{\phi}).$ 

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

# Remarks

- 1. C1. is equivalent to  $T \stackrel{d}{=} \widetilde{T}$ .
- 2. C2. implies that  $T_1 \stackrel{d}{=} T_2 \stackrel{d}{=} \dots \stackrel{d}{=} T_n \stackrel{d}{=} \dots \stackrel{d}{=} T$ , and similarly with  $\widetilde{T}_j$ ,  $\forall j \ge 1$ .
- 3. (Weak) equivalence between two  $MAP_2s$  can be established only if both  $MAP_2s$  are in the stationary version.
- 4. It can be shown that

$$\phi arphi_{\mathsf{H}}(s) = rac{a_1s+d_0}{s^2+d_1s+d_0},$$

where

$$\begin{aligned} a_1 &= \phi \lambda_1 (p_{120} - 1) + \lambda_2 (\phi + p_{210} - 1 - \phi p_{210}), \\ d_1 &= -(\lambda_1 + \lambda_2), \\ d_0 &= \lambda_1 \lambda_2 (1 - p_{120} p_{210}), \end{aligned}$$

and thus, the result provides a simple way to test the weak equivalence of two  $MAP_2$ .

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
|            | 0<br>00000 | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

## Example

Consider the  $MAP_2$  defined by

$$\lambda = (0.5, 20), \qquad P_0 = \begin{pmatrix} 0 & 0.3 \\ 0.3 & 0 \end{pmatrix}, \qquad P_1 = \begin{pmatrix} 0.6148 & 0.0852 \\ 0.0886 & 0.6114 \end{pmatrix}$$

and initial probability  $\alpha {=} \phi =$  0.504.

Consider another MAP<sub>2</sub> with parameters

$$oldsymbol{\lambda} = (0.8, 19.7), \qquad P_0 = \left( egin{array}{cc} 0 & 0.7683 \\ 0.55 & 0 \end{array} 
ight), \qquad P_1 = \left( egin{array}{cc} 0.0513 & 0.1804 \\ 0.0873 & 0.3627 \end{array} 
ight)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

and initial probability  $\alpha = \phi = 0.201$ .

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

## Example

- It can be seen that  $\phi \varphi_H(s) = \widetilde{\phi} \varphi_{\widetilde{H}}(s)$ , for all s.
- ▶ We are thus in the assumptions of the Theorem. This assures that the processes are weakly equivalent.
- Figure: CDF of T, time until next arrival in the stationary version of both MAP<sub>2</sub>s.



| Motivation | The MAP | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|---------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          |         | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

## BAYESIAN INFERENCE FOR THE MAP<sub>2</sub>

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで



- Performance analysis for models incorporating MAPs: well-developed area.
- Less progress on statistical estimation for such models.
- ► MMPP:
  - Frequentist approaches: Heffes (1980), Rydén (1996), Salvador et al. (2003).
  - Bayesian approach: Fearnhead and Sherlock (2006).
     Methodology based on the construction of the unobserved components.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- ▶ *BMAP*: Klemm et al. (2003), EM to estimate the *BMAP*.
- ► Aim: Bayesian inference for the *MAP*<sub>2</sub> using theoretical results obtained for the *E-MAP*.



- Performance analysis for models incorporating MAPs: well-developed area.
- Less progress on statistical estimation for such models.
- ► MMPP:
  - Frequentist approaches: Heffes (1980), Rydén (1996), Salvador et al. (2003).
  - Bayesian approach: Fearnhead and Sherlock (2006).
     Methodology based on the construction of the unobserved components.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- ▶ *BMAP*: Klemm et al. (2003), EM to estimate the *BMAP*.
- ► Aim: Bayesian inference for the *MAP*<sub>2</sub> using theoretical results obtained for the *E-MAP*.



- Performance analysis for models incorporating MAPs: well-developed area.
- Less progress on statistical estimation for such models.
- ► MMPP:
  - Frequentist approaches: Heffes (1980), Rydén (1996), Salvador et al. (2003).
  - Bayesian approach: Fearnhead and Sherlock (2006).
     Methodology based on the construction of the unobserved components.
- ▶ *BMAP*: Klemm et al. (2003), EM to estimate the *BMAP*.
- ► Aim: Bayesian inference for the *MAP*<sub>2</sub> using theoretical results obtained for the *E-MAP*.



### Data & Parameters of the model

- We assume that the available data are the times between two successive arrivals,  $\mathbf{t} = (t_1, \dots, t_n)$  in a **stationary**  $MAP_2$ .
- The underlying Markov process governing the different states of the process, and the transition changes will be assumed to be unobservable.
- Parameters:

$$oldsymbol{\lambda} = (\lambda_1, \lambda_2)$$
 : Exponential rates

$$\mathbf{p}_1 = (p_{120}, p_{111}, p_{121})$$
:

$$\mathbf{p}_2 = (p_{210}, p_{211}, p_{221})$$
:

Transition probabilities from state 1 Transition probabilities from state 2



# **Prior distributions**

• Independent gamma priors for  $\lambda_1$  and  $\lambda_2$ ,

 $\lambda_1, \lambda_2 \sim \mathcal{G}(\alpha, \beta),$ 

where we introduce the minimum order restriction  $\lambda_1 < \lambda_2$  to reduce problems due to lack of identifiability of the model.

Dirichlet priors for the vector of probabilities,

 $\mathbf{p}_1, \mathbf{p}_2 \sim D(c\mathbf{e}),$ 

▲日▼▲□▼▲□▼▲□▼ □ ののの

where **e** is a unit vector of dimension  $1 \times 3$ .



# **Prior distributions**

• Independent gamma priors for  $\lambda_1$  and  $\lambda_2$ ,

 $\lambda_1, \lambda_2 \sim \mathcal{G}(\alpha, \beta),$ 

where we introduce the minimum order restriction  $\lambda_1 < \lambda_2$  to reduce problems due to lack of identifiability of the model.

Dirichlet priors for the vector of probabilities,

$$\mathbf{p}_1, \mathbf{p}_2 \sim D(c\mathbf{e}),$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

where  $\mathbf{e}$  is a unit vector of dimension  $1 \times 3$ .

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000                                    | 000000<br>000000<br>000                     | 0000                     |

## Likelihood

$$f(\mathbf{t}|\boldsymbol{\lambda},\mathbf{p}_{1},\mathbf{p}_{2}) = \sum_{i_{n}=1}^{2} \dots \sum_{i_{1}=1}^{2} \phi_{i_{1}} p_{i_{1}i_{2}}^{\star} f_{H_{i_{1}i_{2}}}(t_{1}) p_{i_{2}i_{3}}^{\star} f_{H_{i_{2}i_{3}}}(t_{2}) \dots p_{i_{n-1}i_{n}}^{\star} f_{H_{i_{n-1}i_{n}}}(t_{n-1}) f_{H_{i_{n}}}(t_{n})$$

#### where,

 $\phi_i$  = Stationary probability that the E-MAP is in state *i*.

$$p_{ij}^{\star}$$
 = Probability of a transition from *i* to *j* in the E-MAP.

 $f_{H_{ii}}(t) =$  Density of the holding time in a transition  $i \rightarrow j$ , in the E-MAP.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

 $f_{H_i}(t)$  = Density of the holding time in state *i* in the E-MAP.

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

# Likelihood

It can be shown that

$$f(\mathbf{t}|\boldsymbol{\lambda},\mathbf{p}_1,\mathbf{p}_2) = \phi \prod_{i=1}^{n-1} \mathcal{F}(t_i) \mathcal{B}(t_n),$$

where

$$\mathcal{F}(t) = \left(\begin{array}{cc} p_{11}^{\star} f_{\mathcal{H}_{11}}(t) & p_{12}^{\star} f_{\mathcal{H}_{12}}(t) \\ p_{21}^{\star} f_{\mathcal{H}_{21}}(t) & p_{22}^{\star} f_{\mathcal{H}_{22}}(t) \end{array}\right) \quad \text{and} \quad \mathcal{B}(t) = \left(\begin{array}{c} f_{\mathcal{H}_{1}}(t) \\ f_{\mathcal{H}_{2}}(t) \end{array}\right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Numerical complexity due to

- 1. Approximation of  $f_{H_k}(t)$  and  $f_{H_{ii}}(t)$ .
- 2. Product of *n* matrices.



## The posterior distribution

 Combining the likelihood & priors gives a non-conjugate posterior distribution:

 $f(\boldsymbol{\lambda}, \mathbf{p}_1, \mathbf{p}_2 | \mathbf{t}) \propto \pi(\lambda_1) \pi(\lambda_2) \pi(\mathbf{p}_1) \pi(\mathbf{p}_2) f(\mathbf{t} | \boldsymbol{\lambda}, \mathbf{p}_1, \mathbf{p}_2).$ 

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Metropolis-Hastings algorithm.
- Increase the acceptance rate: 3 blocks.

| Motivation | The MAP | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|---------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 00000   | 00<br>00000 | 0000                                    | 000000<br>0000000<br>000                    | 0000                     |

### The Metropolis-Hastings to estimate the MAP<sub>2</sub>

- 1. Draw a starting point  $\lambda^{(0)}$ ,  $\mathbf{p}_1^{(0)}$  and  $\mathbf{p}_2^{(0)}$  from the prior distributions.
- 2. For t = 2, ...:
  - (a) Sample a proposal  $\lambda^{\star}$  from a *Log-Normal* distribution,

$$\log(\boldsymbol{\lambda}^{\star}) \sim N\left(\log(\boldsymbol{\lambda}^{(t-1)}), \sigma\right).$$

Accept or reject.

(b) Sample a proposal  $\boldsymbol{p}_1^\star$  from a Dirichlet distribution

$$\mathbf{p}_1^{\star} \sim \mathcal{D}(d_1 \mathbf{e}).$$

Accept or reject.

(c) Sample a proposal  $\boldsymbol{p}_2^\star$  from a Dirichlet distribution

$$\mathbf{p}_2^{\star} \sim \mathcal{D}(d_2 \mathbf{e}).$$

Accept or reject.

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000                                    | 000000<br>000000<br>000                     | 0000                     |

## Performance: Simulated data 1

▶ 1000 simulated interarrival times from the stationary MAP<sub>2</sub>

$$\lambda = (3, 10), \qquad P_0 = \begin{pmatrix} 0 & 0.2 \\ 0.25 & 0 \end{pmatrix}, \qquad P_1 = \begin{pmatrix} 0.35 & 0.45 \\ 0.35 & 0.4 \end{pmatrix}$$

$$\lambda^{\star} = 3.6509, \qquad \log(f(\mathbf{t}|\boldsymbol{\lambda}, \mathbf{p}_1, \mathbf{p}_2)) = 328.8059$$

100 000 iterations, 50 000 burn-in

• 
$$d_1 = d_2 = 0.6$$

►

▶ Initially,  $\sigma = 1$ ; Within the *burn-in* period:  $\sigma = 0.3$ 

$$\lambda^{0} = (1,5), \qquad P_{0}^{0} = \begin{pmatrix} 0 & 0.0872 \\ 0.0270 & 0 \end{pmatrix}, \qquad P_{1}^{0} = \begin{pmatrix} 0.1027 & 0.8101 \\ 0.6735 & 0.2995 \end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

| Motivation | The MAP | The E-MAP | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|---------|-----------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0       | 00        | 0000                                    | 000000                                      | 0000                     |
| 0          | 00000   | 00000     | 00000                                   | 000000                                      |                          |
|            |         |           |                                         | 000                                         |                          |

# Arrival rate, Log-Likelihood, $F_T(t)$



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000                                    | 000000<br>000000<br>000                     | 0000                     |

## Results

$$\lambda^{\star} = 3.6509$$

$$E(\lambda^{\star}|\cdot) = 3.6712$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

- Acceptance rate for  $\lambda$ : 14.63%
- Acceptance rate for p<sub>1</sub>, p<sub>2</sub>: 2.5%
- Computational time:  $\approx$  4h

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000                                    | 000000<br>0000000<br>000                    | 0000                     |

## Performance: Simulated data 2

▶ 1000 simulated interarrival times from the stationary *MMPP*<sub>2</sub>

$$\lambda = (5, 20), \qquad P_0 = \begin{pmatrix} 0 & 0.7 \\ 0.4 & 0 \end{pmatrix}, \qquad P_1 = \begin{pmatrix} 0.3 & \mathbf{0} \\ \mathbf{0} & 0.6 \end{pmatrix}$$

$$\lambda^{\star} = 4.6957, \qquad \log(f(\mathbf{t}|\boldsymbol{\lambda}, \mathbf{p}_1, \mathbf{p}_2)) = 618.5995$$

100 000 iterations, 50 000 burn-in

• 
$$d_1 = d_2 = 0.6$$

►

• Initially,  $\sigma = 1$ ; Within the *burn-in* period:  $\sigma = 0.3$ 

$$\lambda^0 = (1,5), \qquad P_0^0 = \left( \begin{array}{cc} 0 & 0.783 \\ 0.6739 & 0 \end{array} \right), \qquad P_1^0 = \left( \begin{array}{cc} 0.217 & 0 \\ 0 & 0.3261 \end{array} \right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

| Motivation | The MAP | The E-MAP | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|---------|-----------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 00000   | 00        | 0000                                    | 000000                                      | 0000                     |
| Ŭ          | 00000   | 00000     | 00000                                   | 000                                         |                          |

## Exponential rates





#### Transition probabilities

The  $MMPP_2$  is identifiable, thus, small variability is expected for the values of  $\mathbf{p}_1$  and  $\mathbf{p}_2$ .



 $E(\mathbf{p}_1|\cdot) = (0.7866, 0.2134),$ 

 $E(\mathbf{p}_2|\cdot) = (0.3722, 0.6278).$ 

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000                                    | 000000<br>000000<br>000                     | 0000                     |

# Arrival rate, Log-Likelihood, $F_T(t)$



◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへの



#### Real data set

50000 first interarrival times in seconds of a trace of 1 million ethernet packets. Source:

http://www.xtremes.de/xtremes/xtremes/download/download.htm.



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

### Exponential rates



・ロト・御ト・御下・ 声・ うえの

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000                                    |                                             | 0000                     |

# CDF



◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

| Motivation | The MAP    | The E-MAP   | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the MAP <sub>2</sub> | Conclusions & Extensions |
|------------|------------|-------------|-----------------------------------------|---------------------------------------------|--------------------------|
| 0          | 0<br>00000 | 00<br>00000 | 0000                                    | 0000000<br>0000000<br>000                   | 0000                     |

### **CONCLUSIONS & EXTENSIONS**

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

| Motivation     The MAP     The E-MAP     Identifiability of the MAP2     Bayesian Inference for the MAP2     Conclusions & Extensions       0     0     00     0000     00000     000000     000000     000000       0     00000     00000     00000     000000     000000     000000       0     00000     00000     000000     000000     000000 | 0 00 0000 00000 000000 000000 | 2 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---|
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---|

## Conclusions

- First step in the study of the identifiability of *MAP*s.
- Deep study of the E-MAP.
- Results that assures weak equivalence.
- Bayesian method to estimate the MAP<sub>2</sub>.
- Easy to implement, based on our theoretical results.
- ► Good estimation results, suitable for real teletraffic data.

▲日▼▲□▼▲□▼▲□▼ □ ののの

| 0 00000 00000 00000 00000 000000<br>000 |
|-----------------------------------------|
|-----------------------------------------|

## Conclusions

- First step in the study of the identifiability of *MAP*s.
- Deep study of the E-MAP.
- Results that assures weak equivalence.
- Bayesian method to estimate the MAP<sub>2</sub>.
- Easy to implement, based on our theoretical results.
- Good estimation results, suitable for real teletraffic data.

▲日▼▲□▼▲□▼▲□▼ □ ののの



- Study identifiability of *MAP*s in the strong sense.
- ▶ Get a better acceptance rate for p<sub>1</sub> and p<sub>2</sub>: play with proposals.
- Compute the theoretical ACF of the *E-MAP* to test if the dependence is captured.
- ▶ Bayesian inference for the *MAP*<sub>2</sub>/*G*/1 queueing system. (In process).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Extension to the *BMAP*.



- Study identifiability of *MAP*s in the strong sense.
- ▶ Get a better acceptance rate for p<sub>1</sub> and p<sub>2</sub>: play with proposals.
- Compute the theoretical ACF of the *E-MAP* to test if the dependence is captured.
- ▶ Bayesian inference for the *MAP*<sub>2</sub>/*G*/1 queueing system. (In process).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Extension to the *BMAP*.



- Study identifiability of *MAP*s in the strong sense.
- ▶ Get a better acceptance rate for p<sub>1</sub> and p<sub>2</sub>: play with proposals.
- Compute the theoretical ACF of the *E-MAP* to test if the dependence is captured.
- ▶ Bayesian inference for the *MAP*<sub>2</sub>/*G*/1 queueing system. (In process).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Extension to the *BMAP*.



- Study identifiability of *MAP*s in the strong sense.
- ▶ Get a better acceptance rate for p<sub>1</sub> and p<sub>2</sub>: play with proposals.
- Compute the theoretical ACF of the E-MAP to test if the dependence is captured.
- ► Bayesian inference for the MAP<sub>2</sub>/G/1 queueing system. (In process).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @





- Study identifiability of *MAP*s in the strong sense.
- ▶ Get a better acceptance rate for p<sub>1</sub> and p<sub>2</sub>: play with proposals.
- Compute the theoretical ACF of the E-MAP to test if the dependence is captured.
- ► Bayesian inference for the MAP<sub>2</sub>/G/1 queueing system. (In process).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Extension to the *BMAP*.

| Motivation<br>0<br>0 | The <i>MAP</i><br>0<br>00000 | The <i>E-MAP</i><br>00<br>00000 | Identifiability of the MAP <sub>2</sub><br>0000<br>00000 | Bayesian Inference for the $MAP_2$<br>0000000<br>0000000<br>000 | Conclusions & Extensions<br>00€0 |
|----------------------|------------------------------|---------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|----------------------------------|
|                      |                              |                                 |                                                          |                                                                 |                                  |

# Bibliography

- Lucantoni, D. (1991). New results on the single server queue with a batch Markovian arrival process. *Stochastic Models*, 7, 1–46.
- Lucantoni, D. (1993). The BMAP/G/1 Queue: A Tutorial. Models and Techniques for performance Evaluation of Computer and Communications Systems, Eds., L. Donatiello and R. Nelson, Springer Verlag.
- Neuts, M.F. (1979). A versatile Markovian point process. Journal of Applied Probability, 16, 764–779.
- Fearnhead, P., and Sherlock, C. (2006). An exact Gibbs sampler for the Markov-modulated Poisson process. *Journal of the Royal Statististical Society: Series B*, **65**, Part 5, 767–784.

| Mot<br>0<br>0 | tivation | The <i>MAP</i><br>0<br>00000 | The <i>E-MAP</i><br>00<br>00000 | Identifiability of the MAP <sub>2</sub> | Bayesian Inference for the $MAP_2$<br>0000000<br>0000000<br>000 | Conclusions & Extensions |
|---------------|----------|------------------------------|---------------------------------|-----------------------------------------|-----------------------------------------------------------------|--------------------------|
|               |          |                              |                                 |                                         | 000                                                             |                          |

# Bibliography

- Ramírez, P., Lillo, R.E. and Wiper, M.P. (2008). On identifiability of *MAP* processes. Working Paper 08-46, Statistics and Econometrics Series 13, Universidad Carlos III de Madrid.
- Rydén, T. (1996). On identifiability and order of continous-time aggregated Markov chains, Markov-modulated Poisson processes, and phase-type distributions. *Journal of Applied Probability*, **33**, 640–653.

 Rydén, T. (1996). An EM algorithm for estimation in Markov-modulated Poisson processes. *Computational Statistics & Data Analysis*, 21(4), 431–447.