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Motivation: teletraffic data

Unusual features: High variability, Heavy-tails, Self-similarity,
Dependence and correlation.
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Motivation: Queueing systems

◮ Interest: congestion problems, waiting times, system size...

◮ Basic assumptions (Poisson arrivals, exponential service times)
differs from reality: need for appropriate arrivals and service
models.

◮ The Markovian Arrival process captures the dependence
between arrivals → MAP/G/1.

◮ The BMAP/G/1 queueing system (Lucantoni, 1993):
Matrix-Analytic approach + transform inversion routines →
Stationary and Transient distributions for the queue and
waiting times.
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THE MARKOVIAN ARRIVAL PROCESS



Motivation The MAP The E -MAP Identifiability of the MAP2 Bayesian Inference for the MAP2 Conclusions & Extensions

Introduction

◮ Versatile Markovian point process (Neuts, 1979).

◮ Convenient representation: Batch Markovian Arrival
process or BMAP (Lucanoni et al. 1990).

1. Stationary BMAPs are dense in the family of stationary point
processes.

2. Keeps the tractability of the Poisson process.
3. Allows the inclusion of dependent interarrival times.
4. Non-exponential interarrival times.
5. Correlated batch sizes.

◮ Special cases:
1. Phase-type renewal processes (Erlang and Hyperexponential),
2. Markov-modulated Markov process: MMPP.
3. When all arrivals are of size 1, Markovian Arrival Process:

MAP.
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Definition

◮ Continuous Markov chain J(t), state space S = {1, . . . ,m}
and generator matrix D.

◮ Initial state i0 ∈ S given by an initial probability α.
◮ At the end of a sojourn time in state i , exponentially

distributed with parameter λi > 0, two possible transitions:
1. With probability pij1 the MAP enters state j ∈ S and a single

arrival occurs.
2. With probability pij0 the MAP enters state j without arrivals,

j 6= i

◮ The MAP process is characterized by the set {α,λ,P0,P1},
where λ = (λ1, . . . , λm), where

P0 =




0 p120 . . . p1m0

p210 0 . . . p2m0

. . . . . . . . . . . .
pm10 pm20 . . . 0


 , P1 =




p111 . . . p1m1

p211 . . . p2m1

. . . . . . . . .
pm11 . . . pmm1
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Graphical Illustration: MAP2
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Simulation of a MAP2

Simulation of 6 arrivals of a MAP2 characterized by

λ = (0.5, 4)

P0 =

(
0 0.3

0.3 0

)
, P1 =

(
0.4 0.3
0.2 0.5

)



Motivation The MAP The E -MAP Identifiability of the MAP2 Bayesian Inference for the MAP2 Conclusions & Extensions

Alternative characterization

◮ Rate matrices

D0 =




−λ1 λ1p120 . . . λ1p1m0

λ2p210 −λ2 . . . λ2p2m0

. . . . . . . . . . . .
λmpm10 λmpm21 . . . −λm


 ,D1 =




λ1p111 . . . λ1p1m1

λ2p211 . . . λ2p2m1

. . . . . . . . .
λmpm11 . . . λmpmm1




◮ D0 governs the transitions with no arrivals. D1 those with a
single arrival.

◮ Then, D = D0 + D1 is the generator of J(t).

◮ The MAP process is also characterized by the set
{α,λ,D0,D1}.

◮ Xk = state of the MAP at the time of the kth arrival, Yk =
time between the (k − 1)th and kth arrival. Then,
{Xk−1,Yk}

∞
k=1 is a Markov Renewal process.
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Quantities of interest

◮ π, stationary probability vector of the Markov process with
generator D.

◮ Fundamental rate: λ⋆ = πD1e.
◮ 1/λ⋆ is the mean interarrival time in the stationary MAP.
◮ T = time between successive arrivals in the stationary version.

Then,

FT (t) = P(T ≤ t) = (πD1e)
−1πD1(I−eD0t)(−D0)

−1L, t ≥ 0,

where

L =




λ1

(
1 −

∑
j 6=1 p1j0

)

λ2

(
1 −

∑
j 6=2 p2j0

)

...

λm

(
1 −

∑
j 6=m pmj0

)




.
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THE EFFECTIVE MARKOVIAN ARRIVAL PROCESS
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Introduction to the E − MAP

MAP ⇒ E-MAP ⇒ only times between arrivals are assumed to
be observed.
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Definition & Properties

◮ Effective transitions in a MAP ∼ transitions in the
corresponding E-MAP.

◮ Inference for the MAP | the E-MAP is partially observed.

◮ At the end of a sojourn time in i , (which is distributed as a
sum of exponentials) there are m possible transitions: with
probability p⋆

ij , for j = 1, . . . ,m, an arrival occurs and the
process is instantaneously restarted in state j .

◮ The E-MAP is characterized by {α,λ,P⋆}.

◮ The following properties are satisfied (Ramirez et al. 2008):

P1. (Transition probability matrix).

P⋆ = (I − P0)
−1P1.
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Definition & Properties

P2. (Holding times).

Let Hk represent the holding time in state k in a E-MAP.
Then,

FHk
(t) = P(Hk ≤ t) = ξk(I − eD0t)(−D0)

−1L,

where ξk is a vector of zeros with a single 1 in the kth
position.
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Definition & Properties

P3. (Holding times).

Let Hij be defined as the holding time in state i given that j

is the next visited state, in a E-MAP. Then,

FHij
(t) = P(Hij ≤ t) = ξi(I − eD0t)(−D0)

−1D1ξ
′
j

(
ξiP

⋆ξ′j
)−1

.



Motivation The MAP The E -MAP Identifiability of the MAP2 Bayesian Inference for the MAP2 Conclusions & Extensions

Definition & Properties

Remark.

The densities of Hk and Hij can be numerically approximated by

f
(h)
Hi

(t) ≈
FHi

(t + h) − FHi
(t − h)

2h
,

f
(h̃)
Hij

(t) ≈
FHij

(t + h̃) − FHij
(t − h̃)

2h̃
,

for some h, h̃ ≈ 0 so that f
(h)
Hi

(t) = f
(h′)
Hi

(t) and f
(h̃)
Hij

(t) = f
(h

′′

)
Hij

(t),

for all h′ ≤ h, h
′′

≤ h̃.
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Definition & Properties

P4. (Stationary distribution).

Let φ be the stationary distribution associated with the
matrix P⋆. Then φ is related to π by

φ = (πD1e)
−1πD1.

Thus,

FT (t) = P(T ≤ t) = φ(I − eD0t)(−D0)
−1L, t ≥ 0,
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ON IDENTIFIABILITY OF THE MAP
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Introduction

◮ Inference & identifiability problems.

Generator MAP {α,λ,P0,P1}
↓

t1, . . . , tn
↓

Estimated MAP {α̃, λ̃, P̃0, P̃1}

Q1. Is the MAP2 identifiable?
A1. Only if there does not exist another equivalent MAP2.
Q2. When are two MAP2s equivalent?
A2. When the corresponding effective processes or E-MAPs are

equivalent.
Q3. When are two E-MAPs equivalent?
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Formal definition

◮ Tn= holding time in the (n − 1)th transition in a E-MAP

= time between the (n − 1)th and nth arrival in a MAP.
◮ Definition 1.

Two MAPs {α,λ,P0,P1} and {α̃, λ̃, P̃0, P̃1} are equivalent if
and only if the corresponding E-MAPs {α,λ,P⋆} and
{α̃, λ̃, P̃⋆} are equivalent.

◮ Definition 2.

Two E-MAPs {α,λ,P⋆} and {α, λ̃, P̃⋆} are equivalent if and
only if

Tn
d
= T̃n, ∀n ≥ 1,

◮ Definition 3.
A MAP {α,λ,P0,P1} with corresponding E-MAP {α,λ,P⋆}
is identifiable if there does not exist a different MAP whose
associated E-MAP {α̃, λ̃, P̃⋆} is equivalent to {α,λ,P⋆}.
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{α̃, λ̃, P̃⋆} are equivalent.

◮ Definition 2.

Two E-MAPs {α,λ,P⋆} and {α, λ̃, P̃⋆} are equivalent if and
only if

Tn
d
= T̃n, ∀n ≥ 1,

◮ Definition 3.
A MAP {α,λ,P0,P1} with corresponding E-MAP {α,λ,P⋆}
is identifiable if there does not exist a different MAP whose
associated E-MAP {α̃, λ̃, P̃⋆} is equivalent to {α,λ,P⋆}.
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Remark

◮ Equivalence is expressed in a weak sense.

◮ Definition based on the marginal interarrival time distribution.

◮ However, for strong equivalence,

f (t1, . . . , tn|α,λ,P0,P1) = f (t1, . . . , tn|α̃, λ̃, P̃0, P̃1), ∀n.

◮ In a MAP the interarrival times are not independent (although
they are conditionally independent given the sequence of
visited states), and thus,

Weak equivalence 6∼ Strong equivalence.
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Remark: MMPP

Rydén (1996): the MMPP is identifiable (in strong sense) if and
only if the exponential rates are ordered.
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Two general results

◮ ϕTn+1
(s) =

m∑
i=1

α
(n)
i ϕHi

(s)=α(n)ϕH(s), where α(n) = α(P⋆)n.

◮ Result 1.

Tn
d
= T̃n, ∀n ≥ 1

⇐⇒

α(P⋆)nϕH(s)=α̃(P̃⋆)nϕeH
(s), ∀s, ∀n ≥ 0

◮ Result 2.
A necessary condition for two MAPs to be equivalent is

φϕH(s)=φ̃ϕeH
(s), ∀s,

where φ is the stationary probability vector of P⋆, governing
the state transitions in the E-MAP.
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General result for m = 2.

Let {α, λ, P0, P1} and {α̃, λ̃, P̃0, P̃1} define two MAP2s, with

corresponding E-MAP2s {α, λ, P⋆} and {α̃, λ̃, P̃⋆}, where φ and φ̃ are

the stationary probabilities associated to P⋆ and P̃⋆. Assume,

(i) P⋆ 6= Φ or P̃⋆ 6= Φ̃,

(ii) β1 6= 0, and β̃1 6= 0, where

β1 = λ1(p120 − 1) + λ2(1 − p210),

β̃1 = λ̃1(1 − p̃120) + λ̃2(p̃210 − 1).

Then, the MAP2s {α, λ, P0, P1}, {α̃, λ̃, P̃0, P̃1} are (weakly) equivalent if
and only if the following two conditions are fulfilled,

C1. φϕH(s)=φ̃ϕeH(s),

C2. (α, α̃) = (φ, φ̃). �
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Remarks

1. C1. is equivalent to T
d
= T̃ .

2. C2. implies that T1
d
= T2

d
= . . .

d
= Tn

d
= . . .

d
= T , and similarly

with T̃j , ∀j ≥ 1.
3. (Weak) equivalence between two MAP2s can be established

only if both MAP2s are in the stationary version.
4. It can be shown that

φϕH(s) =
a1s + d0

s2 + d1s + d0
,

where

a1 = φλ1(p120 − 1) + λ2(φ + p210 − 1 − φp210),

d1 = −(λ1 + λ2),

d0 = λ1λ2(1 − p120p210),

and thus, the result provides a simple way to test the weak
equivalence of two MAP2.
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Example

Consider the MAP2 defined by

λ = (0.5, 20), P0 =

(
0 0.3

0.3 0

)
, P1 =

(
0.6148 0.0852
0.0886 0.6114

)

and initial probability α=φ = 0.504.

Consider another MAP2 with parameters

λ = (0.8, 19.7), P0 =

(
0 0.7683

0.55 0

)
, P1 =

(
0.0513 0.1804
0.0873 0.3627

)

and initial probability α=φ = 0.201.
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Example

◮ It can be seen that φϕH(s) = φ̃ϕeH
(s), for all s.

◮ We are thus in the assumptions of the Theorem. This assures that
the processes are weakly equivalent.

◮ Figure: CDF of T , time until next arrival in the stationary version of
both MAP2s.
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BAYESIAN INFERENCE FOR THE MAP2
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Introduction

◮ Performance analysis for models incorporating MAPs:
well-developed area.

◮ Less progress on statistical estimation for such models.

◮ MMPP:
◮ Frequentist approaches: Heffes (1980), Rydén (1996),

Salvador et al. (2003).
◮ Bayesian approach: Fearnhead and Sherlock (2006).

Methodology based on the construction of the unobserved
components.

◮ BMAP: Klemm et al. (2003), EM to estimate the BMAP.

◮ Aim: Bayesian inference for the MAP2 using theoretical
results obtained for the E-MAP.
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Data & Parameters of the model

◮ We assume that the available data are the times between two
successive arrivals, t = (t1, . . . , tn) in a stationary MAP2.

◮ The underlying Markov process governing the different states
of the process, and the transition changes will be assumed to
be unobservable.

◮ Parameters:

λ = (λ1, λ2) : Exponential rates

p1 = (p120, p111, p121) : Transition probabilities from state 1

p2 = (p210, p211, p221) : Transition probabilities from state 2
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Prior distributions

◮ Independent gamma priors for λ1 and λ2,

λ1, λ2 ∼ G(α, β),

where we introduce the minimum order restriction λ1 < λ2 to
reduce problems due to lack of identifiability of the model.

◮ Dirichlet priors for the vector of probabilities,

p1,p2 ∼ D(ce),

where e is a unit vector of dimension 1 × 3.
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Likelihood

f (t|λ,p1,p2) =

2∑

in=1

. . .

2∑

i1=1

φi1p
⋆

i1i2
fHi1 i2

(t1)p
⋆

i2i3
fHi2 i3

(t2) . . . p⋆

in−1in
fHin−1in

(tn−1)fHin
(tn)

where,

φi = Stationary probability that the E-MAP is in state i .

p⋆

ij = Probability of a transition from i to j in the E-MAP.

fHij
(t) = Density of the holding time in a transition i → j , in the E-MAP.

fHi
(t) = Density of the holding time in state i in the E-MAP.
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Likelihood

It can be shown that

f (t|λ,p1,p2) = φ

n−1∏

i=1

F(ti )B(tn),

where

F(t) =

(
p⋆

11fH11
(t) p⋆

12fH12
(t)

p⋆

21fH21
(t) p⋆

22fH22
(t)

)
and B(t) =

(
fH1

(t)
fH2

(t)

)
.

Numerical complexity due to

1. Approximation of fHk
(t) and fHij

(t).

2. Product of n matrices.
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The posterior distribution

◮ Combining the likelihood & priors gives a non-conjugate
posterior distribution:

f (λ,p1,p2|t) ∝ π(λ1)π(λ2)π(p1)π(p2)f (t|λ,p1,p2).

◮ Metropolis-Hastings algorithm.

◮ Increase the acceptance rate: 3 blocks.
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The Metropolis-Hastings to estimate the MAP2

1. Draw a starting point λ(0), p
(0)
1 and p

(0)
2 from the

prior distributions.

2. For t = 2, . . . :
(a) Sample a proposal λ⋆ from a Log-Normal

distribution,

log(λ⋆) ∼ N
(
log(λ(t−1)), σ

)
.

Accept or reject.

(b) Sample a proposal p⋆

1 from a Dirichlet distribution

p⋆

1 ∼ D(d1e).

Accept or reject.

(c) Sample a proposal p⋆

2 from a Dirichlet distribution

p⋆

2 ∼ D(d2e).

Accept or reject.
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Performance: Simulated data 1

◮ 1000 simulated interarrival times from the stationary MAP2

λ = (3, 10), P0 =

(
0 0.2

0.25 0

)
, P1 =

(
0.35 0.45
0.35 0.4

)

◮

λ⋆ = 3.6509, log(f (t|λ,p1,p2)) = 328.8059

◮ 100 000 iterations, 50 000 burn-in

◮ d1 = d2 = 0.6

◮ Initially, σ = 1; Within the burn-in period: σ = 0.3

◮

λ0 = (1, 5), P0
0 =

(
0 0.0872

0.0270 0

)
, P0

1 =

(
0.1027 0.8101
0.6735 0.2995

)
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Arrival rate, Log-Likelihood, FT (t)
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Results

◮

λ⋆ = 3.6509

◮

E (λ⋆|·) = 3.6712

◮ Acceptance rate for λ: 14.63%

◮ Acceptance rate for p1, p2: 2.5%

◮ Computational time: ≈ 4h
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Performance: Simulated data 2

◮ 1000 simulated interarrival times from the stationary MMPP2

λ = (5, 20), P0 =

(
0 0.7

0.4 0

)
, P1 =

(
0.3 0
0 0.6

)

◮

λ⋆ = 4.6957, log(f (t|λ,p1,p2)) = 618.5995

◮ 100 000 iterations, 50 000 burn-in

◮ d1 = d2 = 0.6

◮ Initially, σ = 1; Within the burn-in period: σ = 0.3

◮

λ0 = (1, 5), P0
0 =

(
0 0.783

0.6739 0

)
, P0

1 =

(
0.217 0

0 0.3261

)
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Exponential rates
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Transition probabilities

The MMPP2 is identifiable, thus, small variability is expected for
the values of p1 and p2.
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E (p1|·) = (0.7866, 0.2134), E (p2|·) = (0.3722, 0.6278).
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Arrival rate, Log-Likelihood, FT (t)
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Real data set

50000 first interarrival times in seconds of a trace of 1 million ethernet
packets. Source:
http://www.xtremes.de/xtremes/xtremes/download/download.htm.
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Exponential rates
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CDF
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CONCLUSIONS & EXTENSIONS
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Conclusions

◮ First step in the study of the identifiability of MAPs.

◮ Deep study of the E-MAP.

◮ Results that assures weak equivalence.

◮ Bayesian method to estimate the MAP2.

◮ Easy to implement, based on our theoretical results.

◮ Good estimation results, suitable for real teletraffic data.
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Extensions

◮ Study identifiability of MAPs in the strong sense.

◮ Get a better acceptance rate for p1 and p2: play with
proposals.

◮ Compute the theoretical ACF of the E-MAP to test if the
dependence is captured.

◮ Bayesian inference for the MAP2/G/1 queueing system. (In
process).

◮ Extension to the BMAP.
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◮ Extension to the BMAP.
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