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Sensitivity Analysis in Gaussian Bayesian Networks
Using a DivergenceMeasure

MIGUEL A. GÓMEZ-VILLEGAS1, PALOMA MAÍN1,
AND ROSARIO SUSI2

1Department of Statistics and Operational Research,
University Complutense of Madrid, Madrid, Spain
2Department of Statistics and Operational Research III,
University Complutense of Madrid, Madrid, Spain

This article develops a method for computing the sensitivity analysis in a Gaussian
Bayesian network. The measure presented is based on the Kullback–Leibler
divergence and is useful to evaluate the impact of prior changes over the posterior
marginal density of the target variable in the network. We find that some changes
do not disturb the posterior marginal density of interest. Finally, we describe a
method to compare different sensitivity measures obtained depending on where
the inaccuracy was. An example is used to illustrate the concepts and methods
presented.

Keywords Gaussian Bayesian network; Kullback–Leibler divergence; Sensitivity
analysis.

Mathematics Subject Classification Primary 62F15; Secondary 62F03.

1. Introduction

Bayesian network is a graphical probabilistic model that provides a graphical
framework of complex domains with lots of inter-related variables. Graphical
probabilistic models are used in some different fields like planning and control,
medical diagnosis, dynamic systems, and time-series, to name a few.

Bayesian networks have been studied by Pearl (1988), Lauritzen (1996), Castillo
et al. (1997a), Heckerman (1998), Jensen (2001) among others.

A Bayesian network is composed of two parts: a qualitative and quantitative
part. The qualitative part is a directed acyclical graph (DAG) where the nodes
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524 Gómez-Villegas et al.

represent variables under study and the arcs represent relations or dependences
between variables. The quantitative part of the Bayesian network is a joint
probability distribution written as a product of conditional probabilities that
describes the dependences between the variables shown in the qualitative part.
Variables can be discrete, continuous, or both, forming, respectively, a Discrete
Bayesian network, a Continuous Bayesian network, or a Mixed Bayesian network.
With both qualitative and quantitative parts we can compute, within a problem,
any prior or posterior probability of interest. Some authors like Lauritzen and
Spiegelhalter (1988) or Cowell et al. (1999) have presented efficient algorithms to
compute any probability of interest in a Bayesian network.

In order to construct the quantitative part of the Bayesian network, the help of
domain experts or available data to estimate the parameters is necessary. Generally,
this is a hard task because of the great number of parameters involved in the
problem, the partial knowledge of the problem, or the incompleteness of data, and
sometimes the assessment obtained is inaccurate. This inaccuracy has influence on
the network’s output.

To evaluate the Bayesian network’s output we can study the robustness of the
network with a sensitivity analysis, which is useful to know the impact of changes on
a network’s results. In general, sensitivity analysis of a mathematical model amounts
to investigating the effects of the inaccuracy in the model parameters on its output
(Coupé and van der Gaag, 2002).

In recent years, some sensitivity analysis techniques for Bayesian networks
have been developed. Among other authors, in Discrete Bayesian networks, Laskey
(1995) presents a sensitivity analysis based on computing the partial derivative of
a posterior marginal probability with respect to a given parameter, Coupé et al.
(2000) develop efficient sensitivity analysis based on inference algorithms, and Chan
and Darwiche (2005) introduce a sensitivity analysis based on a distance measure.
In Gaussian Bayesian networks, Castillo and Kjaerulff (2003) present a sensitivity
analysis based on symbolic propagation.

In this article, we utilize the Kullback–Leibler divergence as a sensitivity
measure to compute the sensitivity analysis in a Gaussian Bayesian network, and
we show how changes in the model parameters influence the posterior marginal
or conditional probability distributions after introducing evidence in the Gaussian
network. Moreover, we have developed a graphical method and an algorithm
to compare different values of the sensitivity measure obtained, to decide which
parameters are most influential.

The article is organized as follows. In Sec. 2 we briefly introduce definitions
of Bayesian networks and Gaussian Bayesian networks and present our
working example. In Sec. 3, we review how propagation in Gaussian Bayesian
networks can be performed. In Sec. 4, we explain the sensitivity analysis based
on the Kullback–Leibler divergence in the Gaussian Bayesian network, and
study the parameters which have no influence on the output network. In Sec. 5,
we run the sensitivity analysis over the working example and present a method
to determine the most influential parameters. Finally, the article ends with some
conclusions.

2. Gaussian Bayesian Networks

Formally, Bayesian networks can be defined as the following.
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Sensitivity in Bayesian Networks 525

Definition 2.1 (Bayesian Network). A Bayesian network is a couple (���)
where � is a directed acyclic graph (DAG), which nodes represent random
variables X = �X1� � � � � Xn� and edges represent probabilistic dependences,
� = �p�x1 �pa�x1��� � � � � p�xn�pa�xn��� is a set of conditional probability densities
(one for each variable) and pa�xi� is the set of parents of node Xi in �. The set �
defines the associated joint probability density as

p�x� =
n∏

i=1

p�xi�pa�xi��

Gaussian Bayesian networks have been treated by Shachter and Kenley (1989),
Castillo et al. (1997a), and Cowell et al. (1999), among others, and can be defined
by the following.

Definition 2.2 (Gaussian Bayesian Network). A Gaussian Bayesian network is a
Bayesian network with the joint probability density associated with its variables
X = �X1� � � � � Xn� being multivariate normal distribution N�����, given by

f�x� = �2	�−n/2���−1/2 exp
{
−1
2
�x− ��′�−1�x− ��

}
(2)

with � the n-dimensional mean vector and � the n× n covariance matrix.

Let X = �X1� � � � � Xn� be a set of n continuous variables with a multivariate
normal distribution N����� as the model before propagating the evidence, with
parameters � a n-dimensional mean vector and � a n× n positive definite
covariance matrix. The conditional density associated with Xi for i = 1� � � � � n
verifying Eq. (1), is the univariate normal distribution, given by

f�xi �pa�xi�� ∼ N

(
�i +

i−1∑
j=1


ij�xj − �j�� vi

)
� (3)

where 
ij is the regression coefficient of Xj on its parents, and
vi = �i − �iPa�xi�

�−1
Pa�xi�

�′
iPa�xi�

is the conditional variance of Xi given its parents.
Shachter and Kenley (1989) describe the transformation from vi and 
ij to the
precision matrix W = �−1.

Remark that 
ij = 0 if and only if there is no link from Xj to Xi.
The concept of Gaussian Bayesian network is illustrated with an example

presented by Castillo and Kjaerulff (2003) and that will be used throughout the
paper to illustrate the sensitivity analysis.

Example 2.1. The qualitative part of the network is the DAG reproduced in Fig. 1;
the node of interest, X4, is indicated by a double circle and the quantitative part of
the network is given by a multivariate normal distribution with two vector-valued
parameters, the mean vector �, and the covariance matrix �, that compose the joint
probability density.
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526 Gómez-Villegas et al.

Figure 1. DAG of the Gaussian Bayesian network.

The random variable �X1� X2� X3� X4� ∼ N����� with parameters

� =




3

4

9

14


 and � =




4 4 8 12

4 5 8 13

8 8 20 28

12 13 28 42


 �

In this case, Eq. (1) is given by

f�x1� x2� x3� x4� = f�x1�f�x2�x1�f�x3�x1�f�x4�x2� x3��

With the set of conditional probability densities defined by Eq. (3),
f�x1� ∼ N�3� 4�, f�x2 � x1� ∼ N�1+ x1� 1�, f�x3 � x1� ∼ N�3+ 2x1� 4�, f�x4 � x2� x3� ∼
N�1+ x2 + x3� 1�.

3. Evidence Propagation in Gaussian Bayesian Networks

Different algorithms have been presented to propagate evidence in Gaussian
Bayesian networks (Castillo et al., 1977b; Normand and Tritchler, 1992). We are
going to work with the propagation model presented by Castillo et al. (1977b)
based on computing the conditional probability density of a multivariate normal
distribution given the set of evidential variables. Therefore, considering the partition
X = �Y�E�′, the conditional probability distribution of Y, given the evidence E = e,
is multivariate normal with parameters

�Y�E=e = �Y + �YE�
−1
EE�e − �E� and �Y�E=e = �YY − �YE�

−1
EE�EY� (4)

After propagation, the set of nonevidential variables is Y = X\E. Considering
the set E with only one element, Y has n− 1 elements and the notation used will
be Y = �X1� � � � � Xn−1�, although Xn �= Xe. Moreover, Y�E = e ∼ N��Y�E=e� �Y�E=e�
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Sensitivity in Bayesian Networks 527

where the parameters are computed using the equations in (4), that is,

�Y�E=e =



�
Y �E=e
1

���

�
Y �E=e
n−1


 and �Y�E=e =




�
Y �E=e
11 �

Y �E=e
12 � � � �

Y �E=e
1n−1

�
Y �E=e
21 �

Y �E=e
22 � � � �

Y �E=e
2n−1

���
���

���

�
Y �E=e
n−11 �

Y �E=e
n−12 � � � �

Y �E=e
n−1n−1



� (5)

Working with this incremental method, i.e., updating one evidential variable
at a time, and with a target variable Xi ∈ Y , the posterior marginal density of the
variable of interest, Xi, knowing the evidence, is given by

Xi �E = e ∼ N
(
�
Y �E=e
i � �

Y �E=e
ii

) = N

(
�i +

�ie

�ee

�e− �e�� �ii −
�2
ie

�ee

)
� (6)

Thus, in Example 2.1 the posterior marginal density of the variable of interest
X4, given the evidence E ≡ �X2 = 9�, is

X4 �X2 = 9 ∼ N

(
27�

41
5

)
� (7)

And the joint density of the variables in Y = �X1� X3� X4�, given the
evidence E ≡ �X2 = 9�, is multivariate normal Y�X2 = 9 ∼ N

(
�Y�X2=9� �Y�X2=9� with

parameters

�Y�X2=9 =



7

17

27


 and �Y�X2=9 = 1

5



4 8 8

8 36 36

8 36 41


 �

4. Sensitivity Analysis and Non-Influential Parameters

When dealing with Gaussian Bayesian networks one is usually interested in the
conditional probability density, given the evidence, of the target variable, that is the
posterior probability density of the variable of interest f�xi�e�.

A key question with respect to Gaussian Bayesian networks is what is the effect
of changing a parameter �i, �ii, or �ij for all i� j.

To give an initial answer to this question, we add a perturbation � ∈ � to the
original parameter, so that the new value of the parameter becomes �i + �, �ii + �

or �ij + �. The perturbation is incorporated into the network before the evidence
propagation, i.e., to the prior distribution of the network. To evaluate the effect of
this change we work with the posterior marginal density of interest, thus, the effect
is evaluated after the propagation, comparing the posterior marginal density of the
target variable Xi before and after being perturbed.

Our aim is to know if this change has a large or a small influence or if it has
no influence on the distribution of interest. To compute this effect, we work with
the Kullback–Leibler (KL) divergence. This is one of the most common discrepancy
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528 Gómez-Villegas et al.

measures for comparing probability distributions (Kullback and Leibler, 1951), and
it is given by

KL�f�w�� f ′�w�� =
∫ �

−�
f�w� ln

f�w�

f ′�w�
dw

when f�w� and f ′�w� are two probability densities with the same support.
Therefore, to study the sensitivity in a Gaussian Bayesian network, we define

the sensitivity measure as the KL-divergence between the target posterior marginal
density before and after perturbation of the Gaussian Bayesian network, that is the
following.

Definition 4.1 (Sensitivity Measure). Let (���) be a Gaussian Bayesian network
N�����. Let f�xi�e� be the posterior marginal density of interest and f�xi�e� �� the
same density after perturbation � is added to one parameter of the model. The
sensitivity measure is defined by

Spj �f�xi�e�� f�xi�e� ��� =
∫ �

−�
f�xi�e� ln

f�xi�e�
f�xi�e� ��

dxi (8)

where the subscript pj is parameter being changed and � the proposed perturbation,
that is, the new value of the parameter is p�

j = pj + �.

The process for studying the sensitivity of the network consists of the following.
First, the network starts with n variables with parameters � and �. One of
these variables has a known value, that is the evidential variable Xe. With this
information, the propagation is performed and f�xi�e� is obtained. Then, adding a
perturbation � to the candidate parameter, the propagation is repeated updating Xe

again, and f�xi�e� �� is obtained. The effect of the change is obtained comparing
those density functions by means of the sensitivity measure.

Repeating the process with all candidate parameters, we obtain different
sensitivity measures and with this information we know which parameters have no
influence on the posterior distribution of interest, which ones have small influence,
and which parameters produce a large posterior perturbation. If the resulting
sensitivity measure is large, other experts opinions or new available data are
necessary to estimate the parameters more accurately.

To compute the sensitivity measure, we have to distinguish two different cases,
depending on the parameter, � or �, being considered.

4.1. Changes in the Mean Vector �

Three different situations are possible depending on the element of � being changed.
The perturbation can affect �i, i.e., the mean of the variable of interest Xi ∈ Y, the
mean of the evidence variable �e with E ≡ �Xe�, or the mean �j of any other variable
Xj ∈ Y with j �= i.

In those cases, the parameters of the model with � will be denoted �� (different
in each situation) and �� = � the covariance matrix in the original model.

4.1.1. Changes in the Mean of the Variable of Interest ��i�. In the model with
�, the perturbation is added to the mean of the variable of interest Xi, i.e.,
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Sensitivity in Bayesian Networks 529

�� = (
�1� � � � � �i + �� � � � � �n

)′
with � ∈ �. Remember that the model with � is

defined before evidence propagation.
After making the propagation E ≡ �Xe = e�, only the ith element of the

posterior mean vector depends on �. Therefore, the probability of interest associated
with the target variable is (see (5)):

Xi�E = e� � ∼ N
(
�
Y �E=e
i + �� �

Y �E=e
ii

)
� (9)

The sensitivity measure due to a perturbation � in the variable of interest is
given by

S�i�f�xi�e�� f�xi�e� ��� =
�2

2�Y �E=e
ii

(10)

where �
Y �E=e
ii = �ii − �2ie

�ee
.

4.1.2. Changes in the Mean of the Evidence Variable ��e�. In this situation,
�� = ��1� � � � � �i� � � � � �e + �� � � � � �n�

′. With the evidence propagation presented in
(4), we can see that this change will affect all the elements of the posterior
mean vector �Y �E=e�� and will not affect the posterior covariance matrix. Then, the
posterior distribution of Xi ∈ Y is

Xi�E = e� � ∼ N

(
�
Y �E=e
i − �ie

�ee

�� �
Y �E=e
ii

)
� (11)

The sensitivity due to a perturbation � in the evidence variable depends on �,
the posterior variance of the variable of interest �Y �E=e

ii , the variance of the evidence
variable �ee, and the covariance between the variable of interest and the evidence
variable �ie� and is given by

S�e�f�xi�e�� f�xi�e� ��� =
�2

2�Y �E=e
ii

(
�ie

�ee

)2

(12)

where �
Y �E=e
ii = �ii − �2ie

�ee
.

4.1.3. Changes in the Mean of any Non Evidential Variable ��j with j �= i�. Taking
into account the evidence propagation (4), we can see that if the inaccuracy is in
the mean of any non evidential variable Xj ∈ Y, this lack of precision will only
affect the variable Xj involved in this inaccuracy. Therefore, in this case where the
perturbation is added to the mean of Xj ∈ Y with j �= i, the change will not affect
the variable of interest Xi.

Now, the mean vector �� = ��1� � � � � �j + �� � � � � �i� � � � � �e� � � � � �n�
′.

After propagating the evidence E ≡ �Xe = e�, only the jth element of the
posterior mean vector depends on �. Thus, the posterior probability density of the
variable of interest Xi is the same as the original model, because � has no influence
over Xi, being the density of Xi�E = e� � the same as Xi�E = e ∼ N

(
�
Y �E=e
i � �

Y �E=e
i

)
,

and obviously, the sensitivity measure is zero.
Thus, we can conclude that, if there exists an interest in a specific variable Xi

and the mean of other non evidential variable Xj is inaccurate, after the evidence
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propagation, this lack of precision will not have influence over the variable of
interest Xi and will only affect the variable Xj .

4.2. Changes in the Covariance Matrix �

There are six possible different situations, depending on the parameter of the
covariance matrix � being changed; three if the perturbation is added to the
variances (elements in the diagonal of �) and another three if the perturbation is
added to the covariances of �.

In those cases, the parameters of the perturbed model will be �� = �, mean
vector of the original model, and �� different in each situation.

When the covariance matrix is perturbed, the structure of the network can
change. Those changes are presented in the precision matrix of the perturbed
network, that is, the inverse of the covariance matrix with perturbation �. The
sensitivity analysis is done by comparing the posterior information about the
variable of interest Xi with and without �, studying all possible situations.

4.2.1. Changes in the Variance of the Variable of Interest ��ii�. The variance of the
variable of interest Xi is perturbed, i.e., �

�
ii = �ii + � with � > −�ii + �2ie

�ee
and the rest

of elements remain as in the original model.
After the evidence propagation, only the ith element in the diagonal of the

covariance matrix depends on �. Then,

Xi�E = e� � ∼ N

(
�i +

�ii

�ee

�e− �e��
(
�ii + �

)− �2
ie

�ee

)
� (13)

The sensitivity measure depends on � and �
Y �E=e
ii , and is given by

S�ii �f�xi�e�� f�xi�e� ��� =
1
2

[
ln
(
1+ �

�
Y �E=e
ii

)
− �

�
Y �E=e��
ii

]
� (14)

where �
Y �E=e��
ii is the posterior variance of Xi in the model with �.

The model and the result of the sensitivity measure show that it is necessary to
impose the restriction � > −�ii + �2ie

�ee
.

4.2.2. Changes in the Variance of the Evidence Variable ��ee�. In this case, � is added
to the variance of the evidence variable Xe.

After the evidence propagation, the perturbation � affects all the elements
of the mean vector and the covariance matrix. Therefore, the model is Y�E = e�

� ∼ N
(
�Y�E=e��� �Y�E=e��

)
being �Y�E=e�� such that �

Y�E=e��
j = �j + �jj

�ee+�
�e− �e� with

j = 1� � � � � n− 1 and �Y�E=e�� with �
Y�E=e��
jk = �jk − �je�ek

�ee+�
to all possible values of j� k.

The posterior distribution of the variable of interest is

Xi�E = e� � ∼ N

(
�i +

�ie

�ee + �
�e− �e�� �ii −

�2
ie

�ee + �

)
� (15)
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The sensitivity measure with respect to a perturbation of the evidence variable
variance is given by

S�ee �f�xi�e�� f�xi�e� ��� =
1
2


ln(�

Y �E=e��
ii

�
Y �E=e
ii

)
+

�2ie
�ee

(
−�

�ee+�

)(
1+ �e− �e�

2
(

−�
��ee+���ee

))
�
Y �E=e��
ii


 �

(16)

To guarantee the structure of the network it is necessary that �Y �E=e�� be a positive
definite matrix.

4.2.3. Changes in the Variance of Any Non Evidential Variable ��jj with j �= i�. In the
last case of variances, the variance of any non evidential variable Xj ∈ Y different
from the target variable is perturbed, i.e., ��

jj = �j + �.
After the propagation, the change introduced only affects the variance of Xj .

Then, the posterior probability density of Xi is the same as the original model in
(6), because � has no influence over Xi, being f�xi�e� �� = f�xi�e�.

Clearly in this case the sensitivity measure is zero.
We can conclude that, if a non evidential variable Xj with the prior variance

inaccurate exists, this inaccuracy will not affect the results over the variable of
interest Xi and will only affect the posterior results about Xj .

4.2.4. Changes in the Covariance Between the Variable of Interest and the Evidence
Variable ��ie�. In this case the covariance between the variable of interest Xi ∈ Y
and the evidential variable Xe is perturbed, i.e., �

�
ie = �ie + � = ��

ei.
After the evidence propagation, � only affects the parameters related with

Xi, being the posterior mean �
Y �E=e��
i = �

Y �E=e
i + �

�ee
�e− �e�, the posterior variance

�
Y�E=e��
ii = �

Y �E=e
ii − �2+2�ie�

�ee
, and the posterior covariance between Xi and the rest of

non evidential variables �
Y�E=e��
ij = �

Y �E=e
ij − �je�

�ee
= �

Y�E=e��
ji where i �= j. The model

obtained is a multivariate normal distribution with the rest of elements in the
mean vector given by �

Y�E=e��
j = �

Y �E=e
j with j �= i and variances and covariances not

related to Xi given by �
Y�E=e��
jj = �

Y�E=e
jj where j �= i and �

Y�E=e��
jk = �

Y�E=e
jk with j �= i

and k �= i� Then, the posterior distribution of the variable of interest is

Xi�E = e� � ∼ N

(
�i +

��ie + ��

�ee

�e− �e�� �ii −
��ie + ��2

�ee

)
� (17)

The sensitivity measure depends on �, �ie, �ee� e� �e, and �
Y �E=e
i and is given by

S�ie �f�xi�e�� f�xi�e� ��� =
1
2


ln(1− �2 + 2�ie�

�ee�
Y �E=e
ii

)
+

�
Y �E=e
ii +

(
�
�ee
�e− �e�

)2

�
Y �E=e��
ii

− 1


 �

(18)

To guarantee the description of the network it is necessary to impose that �Y �E=e��

be a positive definite matrix.
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4.2.5. Changes in the Covariance Between the Variable of Interest and Other Non
Evidential Variable ��ij�. In this case, the covariance between the variable of interest
Xi ∈ Y and other non evidential variable Xj ∈ Y is perturbed, i.e., ��

ij = �ij + � = ��
ji.

After the evidence propagation, only the posterior covariance between Xi and Xj

is effected by the change, being �
Y �E=e��
ij = �

Y �E=e
ij + � = �

Y �E=e��
ji . Then, the posterior

probability density of Xi is f�xi�e� �� = f�xi�e� with Xi�E = e ∼ N
(
�
Y �E=e
i � �

Y �E=e
i

)
,

which implies a null sensitivity measure.
If the interest is in the posterior density of Xi, the inaccuracy in �ij does

not affect the mean and the variance of Xi although � appears in the posterior
covariance between Xi and Xj .

4.2.6. Changes in the Covariance Between the Evidence Variable and Other Non
Evidential Variable ��ej�. The covariance between Xe and Xj ∈ Y with j �= i is
perturbed, i.e., ��

ej = �ej + � = ��
je.

After the propagation, the perturbation appears only in the parameters related
to Xj , being the network multivariate normal with the posterior mean vector
�Y�E=e�� such that �

Y�E=e��
j = �

Y �E=e
j + �

�ee
�e− �e� and �

Y�E=e��
k = �

Y�E=e
k where k �= j;

and the covariance matrix �Y�E=e�� such that the posterior variance of Xj is given by

�
Y�E=e��
jj = �

Y �E=e
jj − �2+2�je�

�ee
and the covariances between Xj and any other variable

in Y are �
Y�E=e��
jk = �

Y �E=e
jk − �je�

�ee
= �

Y�E=e��
kj where k �= j; the rest of the elements of

�Y�E=e�� are the same as the model without �. Therefore, the posterior probability
density of the variable of interest Xi is the same as the model without perturbation,
i.e., the sensitivity measure is zero.

With those results associated with inexact elements in the mean vector and in
the covariance matrix, we can conclude that if we are interested in the posterior
density of the target variable Xi, inaccuracy in an element of any non evidential
variable Xj ∈ Y with j �= i will not affect the results about Xi, being the sensitivity
measure zero.

Moreover, changes in the mean vector only affects the posterior mean �Y�E=e

(not to �Y�E=e), therefore, the sensitivity measure can be large because we are
comparing two densities with different mean and the same variance. However,
changes in the covariance matrix can affect only the posterior variance of Xi, or the
posterior mean and variance of Xi.

5. Experimental Results and Selection of the Most Influential Parameter

Next, we use Example 2.1 to illustrate the results presented in the previous section.

Example 5.1. Consider the Gaussian Bayesian network given in Example 2.1.
Experts disagree with the mean �4 of the variable of interest X4, that could be
�
�1
4 = 10 = �4 + �1 (with �1 = −4); There are different opinions about the evidential

variable X2, because they think that �2 could be ��2
2 = 6 = �2 + �2 (with �2 = 2), and

that �22 could be �
�3
22 = 6 with �3 = 1; moreover, �23 could be �

�4
23 = 9 with �4 = 1

(the same to �32) and �24 could be �
�5
24 = 11 with �5 = −2 (the same as �42).

To know how this inaccuracy can influence the posterior marginal density of
the target variable X4� we study those changes one by one computing the sensitivity
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measure in each case, that is, comparing the posterior density presented in (7) with
the posterior density when �i is introduced in the model, with i = 1� � � � � 5.

First, it is necessary to verify the proposed values of �i, because after the
evidence propagation the covariance matrix must be a positive definite matrix.
This restriction only affects �3� �4, and �5. Checking the restriction over the
obtained posterior covariance matrix, �Y �X2=9��i with i = �3� 4� 5�� we can compute
the sensitivity measures as

• If the inaccuracy is in the variable of interest X4, given by �4 = 14+ �1 = 10
(�1 = −4), after the evidence propagation, the posterior marginal mean
decreases and the variance is the same as the one obtained in the model
without �1. The sensitivity measure is

S�4�f�x4�X2 = 9�� f�x4�X2 = 9� �1�� =
�21

2�Y �X2=9
44

= 0�9756�

• If the mean of the evidential variable is �2 = 4+ �2 = 6 (�2 = 2), after the
evidence propagation the posterior mean of X4 changes. The sensitivity
measure, comparing the posterior density of the variable of interest in the
network with and without �2, is

S�2�f�x4�X2 = 9�� f�x4�X2 = 9� �2�� =
�22

2�Y �X2=9
44

(
�42

�22

)2

= 1�6488�

• With �22 = 5+ �3 = 6 (�3 = 1), after the evidence propagation, the mean
decreases and the variance increases. Studying the inverse of the new
covariance matrix� we see that the independence relations have changed,
changing the structure of the network. The sensitivity measure is

S�22�f�x4�X2 = 9�� f�x4�X2 = 9� �3��

= 1
2


ln(�

Y �X2=9��3
44

�
Y �X2=9
44

)
+

�242
�22

( −�3
�22+�3

)(
1+ �e− �2�

2
(

−�3
��22+�3��22

))
�
Y �X2=9��3
44


 = 0�2275�

• Being �23 = 8+ �4 = 9 (�4 = 1) the posterior distribution of X4 is not
influenced by this change, although the design of the network changes.
Comparing the posterior density of X4 with and without �4 the sensitivity
measure is zero, that is,

S�23�f�x4�X2 = 9�� f�x4�X2 = 9� �4�� = 0�

• The last change is to consider �24 = 13+ �5 = 11 (�5 = −2), that produces
changes in the network. In the resulting model of X4�X2 the mean decreases
and the variance increases. The sensitivity measure is given by

S�24�f�x4�X2 = 9�� f�x4�X2 = 9� �5��

= 1
2

[
ln
(
1− �25 + 2�24�5

�22�
Y �X2=9
44

)
+ �

Y �X2=9
44 + (

�5
�22

�e− �2�
)2

�
Y �X2=9��5
44

− 1

]
= 0�2302�
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534 Gómez-Villegas et al.

Comparing the different sensitivity measures obtained (without consideration
of the zero measure), we have

S�22�f�x4�e�� f�x4�e� �3�� < S�24�f�x4�e�� f�x4�e� �5�� < S�4�f�x4�e�� f�x4�e� �1��
< S�2�f�x4�e�� f�x4�e� �2���

In this example we can see that when an element of the covariance matrix is
perturbed, the parameters of the posterior marginal density of X4 change, obtaining
a different mean and a larger variance than the posterior variance obtained for the
unperturbed model, therefore, when those densities are compared, the sensitivity
measure obtained is small, because the model with � contains the posterior model
without �. However, if an element of the mean vector, only the mean of the posterior
marginal density of X4 changes, then the mean in the new distribution is moved to
the left or to the right, depending the sign of �, and the variance is the same as
the one in the posterior model without �; therefore in those cases, the sensitivity
measure obtained is larger than in the other cases.

With those results, experts should review the information about the mean
of the evidence variable �2 because the change proposed gives the bigger
sensitivity measure obtained (S�2�f�x4�e�� f�x4�e� �2�� = 1�6488). Moreover, the
change proposed to �23 does not disturb the posterior marginal density of
interest. In the remaining cases, the sensitivity measures obtained are small
(S�f�x4�e�� f�x4�e� ��� ∈ �0� 1�), therefore, experts can decide if it is necessary to
review the information about X2 and the mean about X4.

If we suppose that there exist some inaccuracies in the model that are not
defined, we can draw the different sensitivity measures obtained for all possible
values of �� considering the sensitivity measure as a function of �:

S�4�f�x4�X2 = 9�� f�x4�X2 = 9� ��� = 5
82

�2

S�2�f�x4�X2 = 9�� f�x4�X2 = 9� ��� = 169
410

�2

S�22�f�x4�X2 = 9�� f�x4�X2 = 9� ���

= 1
2


ln( 5

41

(
42− 132

5+ �

))
+

132

5

(
−�
5+�

)(
1+ 25

(
−�

5�5+��

))
42− 132

5+�




S�24�f�x4�X2 = 9�� f�x4�X2 = 9� ���

= 1
2

[
ln
(
1− �2 + 26�

41

)
+

41
5 + �2

42− �13+��2

5

− 1

]

In Fig. 2 the resulting sensitivity measures are shown. We must take into
account that a restriction over the values of � exists because the posterior covariance
matrix must be positive definite, for that reason not all the values of � plotted could
be considered in the model. However, Fig. 2 is useful to know how the sensitivity
measure depends on �.

In Fig. 2 we see that if the perturbation of the variance of the evidential variable
(�22) is small and � < 0, it produces a large divergence, then this parameter must be
reviewed before changing it to another smaller value. If the value of the � introduced



D
ow

nl
oa

de
d 

B
y:

 [S
w

et
s 

C
on

te
nt

 D
is

tri
bu

tio
n]

 A
t: 

09
:5

2 
19

 J
ul

y 
20

07
 

Sensitivity in Bayesian Networks 535

Figure 2. Sensitivity measures obtained in the example for any � value.

in the covariance between the evidential variable and the variable of interest is small
and � > 0, then the sensitivity measure is large.

We can repeat the process to study all the parameters with influence over X4

given E ≡ �X2 = 9�. Plotting the sensitivity measures we can find the parameter that
produces the largest change in the posterior density of interest.

With this graphical method we can study the influence of � on the posterior
marginal density of X4 by means of the sensitivity measures.

To know what happens when the perturbation � is small, we can plot the
sensitivity measures delimiting the values of �. In Fig. 3 we plot the sensitivity
measures when � and the sensitivity measure are small, that is when � ∈ −3� 3� and
Spj < 10. We delimit the sensitivity measures of S�22 and S�24 because without this
constraint in the plot, we can not see what is happening with small values of the
sensitivity measures, that is with S�2 and S�4 .

In this plot, experts can formulate their different values to � and observe the
associated divergences. If the sensitivity measure is large and the value of � is valid,
the parameter must be reviewed with new available data or with some other experts’
information.

Next, we have implemented an algorithm (see Appendix 2) that will be useful
to know which elements of � or � should be reviewed again. The method consists
of computing all the sensitivity measures that can influence the target variable Xi

and comparing their values with a threshold s, fixed by the experts. If the sensitivity
measure is larger than the threshold s, then the parameter should be reviewed.

Before executing the algorithm, it is necessary to prove that the posterior
covariance matrix with �, for every � cases associated with inaccuracy in the
covariance matrix, is positive definite.

In the algorithm the sensitivity measure is first computed for � introduced in
the mean vector and later, in the covariance matrix. All the perturbations of the
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536 Gómez-Villegas et al.

Figure 3. Sensitivity measures when Spj ≤ 10 and � ∈ −3� 3�.

problem are introduced in one step, having a vector with all � values to be added
to the mean vector and a matrix with all � values to be added to the covariance
matrix. If a parameter is accurately defined, then the element with this position in the
� vector or in the � matrix will be zero. Likewise, the sensitivity measure is defined
with a vector for the sensitivity measures associated with inaccuracy in the mean
vector and with a matrix for the sensitivity measures associated with inaccuracy in
the covariance matrix. Therefore, if the sensitivity measure is zero, the parameter
with that position does not present inaccuracy. To compute any sensitivity value,
we work with the parameters of the initial model, the evidence e and the values of �.

Developing the algorithm with Example 5.1 and introducing a threshold value
s = 1: first, the sensitivity values related with elements of the mean vector will
be computed; later, the sensitivity values related with elements of the covariance
matrix will be computed. Finally, all the sensitivity measures are compared with
the threshold s = 1, obtaining “the mean in the position 2 should be reviewed;
S_M2� = 1�6488”, that is S�2 > 1� thus the parameter �2 should be studied again.

6. Conclusions

The method developed in this article is useful to compute the sensitivity measure
of the elements that characterize the Gaussian Bayesian network, quantifying
numerically the inaccuracies presented in the network.

The method is based on perturbing the parameters of the model and,
after the evidence propagation, computing the sensitivity measure, given by the
KL-divergence between the posterior density of interest computed before and after
perturbation. This is a simple method easy to perform a sensitivity analysis in a
Gaussian Bayesian network.

We find that only changes relative to the variable of interest and to the evidence
variable have influence on the posterior marginal density of the target variable.
Then, we described some changes in the mean vector and in the covariance matrix,
related to other non evidential variables, that do not affect the result of the posterior
marginal density of interest.
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Finally, some values of the sensitivity measures are compared. With this aim,
we have developed a graphical method and an algorithm. Therefore, we can study
which parameter gives the largest sensitivity measure. If the sensitivity measure is
large then it is necessary to evaluate again the information about the variable with
this parameter, with more available data or with some other experts’ information.
However, if this measure is small we can conclude that the network is robust and
that changes presented do not affect the final result over the variable of interest.

Appendix 1

In order to provide a proof of the sensitivity measures in all cases, it is
proved (Kullback and Leibler, 1951) that the KL-divergence, when the compared
probability densities are Gaussian, is

KL�f�w�� f ′�w�� = 1
2

[
ln
(
�2′

�2

)
+ �2

�2′ +
��′ − ��2

�2′ − 1
]

with f�w� as N��� �2� and f ′�w� as N��′� �2′�. Then,

Spi�f�xi�e�� f�xi�e� ��� =
1
2

[
ln
(
�
Y �E=e��
i

�
Y �E=e
i

)
+ �

Y �E=e
i + (

�
Y �E=e��
i − �

Y �E=e
i

)2
�
Y �E=e��
i

− 1

]

(10) S�i�f�xi�e�� f�xi�e� ��� =
1
2

[
ln
(
�
Y �E=e��
i

�
Y �E=e
i

)
+ �

Y �E=e
i + (

�
Y �E=e��
i − �

Y �E=e
i

)2
�
Y �E=e��
i

− 1

]

= �2

2�Y �E=e
i

with �
Y �E=e��
i = �

Y �E=e
i + � and �

Y �E=e��
i = �

Y �E=e
i

(12)S�e�f�xi�e�� f�xi�e� ��� =
1
2

[
ln
(
�
Y �E=e��
i

�
Y �E=e
i

)
+ �

Y �E=e
i + (

�
Y �E=e��
i − �

Y �E=e
i

)2
�
Y �E=e��
i

− 1

]

with �
Y �E=e��
i = �

Y �E=e
i − �ie

�ee
� and �

Y �E=e��
i = �

Y �E=e
i

= 1
2

[(− �ie
�ee
�
)2

�
Y �E=e��
i

]
= �2

2�Y �E=e
i

(
�ie

�ee

)2

(14) S�i�f�xi�e�� f�xi�e� ��� =
1
2

[
ln
(
�
Y �E=e��
i

�
Y �E=e
i

)
+ �

Y �E=e
i + (

�
Y �E=e��
i − �

Y �E=e
i

)2
�
Y �E=e��
i

− 1

]

with �
Y �E=e��
i = �

Y �E=e
i and

�
Y �E=e��
i = �

Y �E=e
i + � = 1

2

[
ln
(
1+ �

�
Y �E=e
i

)
+ �

Y �E=e
i

�
Y �E=e
i + �

− 1

]

= 1
2

[
ln
(
1+ �

�
Y �E=e
i

)
− �

�
Y �E=e��
i

]
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(16) S�ee �f�xi�e�� f�xi�e� ��� =
1
2

[
ln
(
�
Y �E=e��
i

�
Y �E=e
i

)
+ �

Y �E=e
i + (

�
Y �E=e��
i − �

Y �E=e
i

)2
�
Y �E=e��
i

− 1
]

= 1
2


ln

(
�
Y �E=e��
i

�
Y �E=e
i

)
+

�
Y �E=e
i + (

�
Y �E=e��
i − �

Y �E=e
i

)2
− �

Y �E=e��
i

�
Y �E=e��
i




with posterior parameters

�
Y �E=e��
i = �i +

�ie

�ee + �
�e− �e��

�
Y �E=e��
i = �ii −

�2
ie

�ee + �
�

and

�
Y �E=e
i = �i +

�ie

�ee

�e− �e��

�
Y �E=e
i = �i −

�2
ie

�ee

= 1
2

[
ln
(
�
Y �E=e��
i

�
Y �E=e
i

)
+ − �2ie

�ee
+ �2ie

�ee+�
+ (

�ie
�ee+�

�e− �e�− �ie
�ee
�e− �e�

)2
�
Y �E=e��
i

]

= 1
2

[
ln
(
�
Y �E=e��
i

�
Y �E=e
i

)
+

�2ie
�ee

( −�
�ee+�

)+ (
�ie�e− �e�

(
−�

��ee+���ee

))2

�
Y �E=e��
i

]

= 1
2

[
ln
(
�
Y �E=e��
i

�
Y �E=e
i

)
+

�2ie
�ee

(
−�

�ee+�

)(
1+ �e− �e�

2
(

−�
��ee+���ee

))
�
Y �E=e��
i

]

(18) S�ii �f�xi�e�� f�xi�e� ���

= 1
2

[
ln
(
�
Y �E=e��
i

�
Y �E=e
i

)
+ �

Y �E=e
i + (

�
Y �E=e��
i − �

Y �E=e
i

)2
�
Y �E=e��
i

− 1
]

with �
Y �E=e��
i = �

Y �E=e
i + �

�ee
�e− �e� and

�
Y �E=e��
i = �

Y �E=e
i − �2 + 2�ii�

�ee

= 1
2

[
ln
(
1− �2 + 2�ii�

�ee�
Y �E=e
i

)
+ �

Y �E=e
i + (

�
�ee
�e− �e�

)2
�
Y �E=e��
i

− 1
]
�
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Appendix 2

The algorithm that computes the sensitivity measures and determines the
parameters in the network is available at the URL: http://www.ucm.es/info/eue/
pagina/APOYO/RosarioSusiGarcia/S_algorithm.pdf
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