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Abstract

Two conditions are shown under which elliptical distributions are scale mixtures of
normal distributions with respect to probability distributions. The issue of finding
the mixing distribution function is also considered. As a unified theoretical frame-
work, it is also shown that any scale mixture of normal distributions is always a
term of a sequence of elliptical distributions, increasing in dimension, and that all
the terms of this sequence are also scale mixtures of normal distributions sharing
the same mixing distribution function. Some examples are shown as applications of
these concepts, showing the way of finding the mixing distribution function.
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1 Introduction

In this paper two conditions for an absolutely continuous elliptical distribution
to be a scale mixture of normal distributions, with respect to a probability dis-
tribution, are shown, and the issue of finding the mixing distribution function
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is approached; also, it is shown that any scale mixture of normal distributions
can be viewed as a term of a sequence of elliptical distributions. The proof of
the main results relies on the concept of an expansive sequence of elliptical dis-
tributions, that we state previously, and on the existence of some distributions
of higher dimensions shown by Gupta and Varga [8] and Eaton [4].

Scale mixtures of normal distributions are an important class of elliptical
distributions. They share good properties with normal distributions, are easy
to work with, and are useful to robustify statistical procedures usually based on
normal distributions. In a Bayesian framework, they can be used in simulation
methods. So, a characterization and a way to reduce elliptical distributions to
scale mixtures of normal distributions is very valuable.

There are many publications on elliptical distributions. For a comprehensive
study of elliptical distributions, Kelker [10], Chu [3], Cambanis et al. [2], Fang
et al. [5], Fang and Zhang [6], Gupta and Varga [8] can be seen. A survey
about absolutely continuous elliptical distributions can be found in Gómez et
al. [7].

Some results on scale mixtures of normal distributions and their relation-
ship with elliptical distributions can be found in Chu [3], Eaton [4], Fang et
al. [5], and Gupta and Varga [8,9]. Some of these approaches do not keep to
probability mixing distributions (as we do in this paper) but allow “weighting
functions” that can turn out to take negative values. Andrews and Mallows [1]
study conditions for a unidimensional symmetrical distribution to be a scale
mixture of normal distributions.

The first condition that we show for an absolutely continuous elliptical distrib-
ution to be a scale mixture of normal distribution is based upon the successive
derivatives of its functional parameter g, and includes the elliptical distribution
in a sequence. In this way, these results give an interpretation of derivatives
of g in a probabilistic framework, extend the theorem of Andrews and Mal-
lows [1], reinterpret, in the framework of mixtures of normals, proposition 1 of
Eaton [4] and supplement, in some sense, theorem 4.1.3 of Gupta and Varga
[8].

The second condition refers to Laplace transforms, and also shows the mixing
distribution function. These results particularize some aspects of a theorem
of Chu [3] (see also Gupta and Varga [8]) and extend the lemma in Andrews
and Mallows [1].

In section 2 we introduce the concepts of expansive and semi-expansive se-
quences of elliptical distributions and establish conditions under which an
elliptical distribution can be a term of an expansive sequence. These concepts
provide a general theoretical framework for the subsequent study of mixtures
of normal distributions.
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In section 3 the two conditions are shown. Finally, in section 4, some examples
and applications to the study of elliptical distributions are shown.

2 Sequences of elliptical distributions

We show the definition and some properties of elliptical distributions, intro-
duce the concepts of expansive and semi-expansive sequences of elliptical dis-
tributions, and study some of their properties.

2.1 Some properties of elliptical distributions

We deal with elliptical distributions that are absolutely continuous.

Definition 1 (Elliptical distribution). If µ is an n-dimensional vector, Σ
is an n×n positive definite symmetric matrix and g is a non-negative Lebesgue
measurable function on [0,∞) such that

0 <
Z ∞
0

t
n
2
−1g(t) dt <∞, (2.1)

then the n-dimensional density f given by

f(x;µ,Σ, g) =
Γ
³
n
2

´
π

n
2
R∞
0 t

n
2
−1g(t) dt

|Σ|− 1
2 g

³
(x− µ)0Σ−1 (x− µ)

´
(2.2)

is said to be elliptical with parameters µ, Σ and g. If vector X has density
(2.2), we say that X has the elliptical distribution (e.d.) En (µ,Σ, g) and write
X ∼ En (µ,Σ, g) .

We will refer to function g by the name of functional parameter.

The parametrization of an elliptical distribution is not strictly unique. Suppose
that X ∼ En (µ,Σ, g) ; then X ∼ En (µ∗,Σ∗, g∗) iff there exist two positive
numbers a and b, such that µ∗ = µ, Σ∗ = aΣ and g∗(t) = bg(at) for almost all
t ≥ 0 (Gómez et al. [7]; see also Fang and Zhang [6]).

We will say that two real functions g and g∗ are equivalent if g = bg∗ a.e. for
some b > 0; we will denote g ≡ g∗. Thus, the functional parameter g of an
e.d. En(µ,Σ, g) can be replaced with another g∗ (keeping the same parameters
µ and Σ) iff g∗ ≡ g.

For each vector x = (x1, ..., xn)
0 , we will denote x(p) = (x1, ..., xp)

0 , for p ≤ n;
also, Σ(p) will denote the upper-left p× p submatrix of the n× n matrix Σ.
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If X ∼ En (µ,Σ, g) and X(p) = (X1, ..., Xp)
0 , with p < n, then (see Gómez et

al. [7] and Fang and Zhang [6])

X(p) ∼ Ep
³
µ(p),Σ(p), g(p)

´
, (2.3)

where g(p) is the function given by

g(p)(t) =
Z ∞
0

w
n−p
2
−1g(t+ w) dw (2.4)

=
Z ∞
t
(w − t)

n−p
2
−1 g(w) dw. (2.5)

In particular, if p = n− 2, then

g(n−2)(t) =
Z ∞
t

g(w) dw (2.6)

and, thence, g0(n−2)(t) = −g(t) for each continuity point t of g. The following
lemma develops this subject. We denote by 0n×m the null n×m matrix and
by In the identity n× n matrix.

Lemma 2 (Derivative of marginal parameter). Let X ∼ En (0n×1, In, g)
and Y ∼ En+2

³
0(n+2)×1, In+2, h

´
for some n ≥ 1. Equality in distribution

X
d
= Y(n) holds iff g0 ≡ −h.

PROOF. Y(n) ∼ En
³
0n×1, In, h(n)

´
, where, from (2.6), h(n) (t) =

R∞
t h (w) dw;

therefore, h0(n) = −h a.e.

If X d
= Y(n), then g ≡ h(n) and g0 ≡ h0(n) ≡ −h.

Reciprocally, if g0 ≡ −h, then there is a positive number b such that bg0 =
−h = h0(n) a.e. and, consequently, bg = h(n) + c a.e., where c is a constant.
But c = 0 because bg and h(n) are functional parameters of n-dimensional
e.d.’s, and then, from (2.1),

R∞
0 t

n
2
−1bg (t) dt <∞ and

R∞
0 t

n
2
−1h(n) (t) dt <∞;

therefore,Z ∞
0

t
n
2
−1c dt =

Z ∞
0

t
n
2
−1bg (t) dt−

Z ∞
0

t
n
2
−1h(n) (t) dt <∞,

and it is possible only if c = 0. Thence bg = h(n) a.e. and X ∼ En(0n×1, In,
h(n)). 2

2.2 Expansive and semi-expansive sequences

The concepts of expansive and semi-expansive sequences of elliptical distribu-
tions are introduced. A sequence is expansive (alternatively: semi-expansive)
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if each one of its terms is equivalent to a marginal distribution of the next
term (alt.: of the term following the next term). These concepts allow us to
establish relations between the derivatives of the functional parameter of a
distribution and the functional parameters of some distributions posterior to
it in the sequence. And this permits us to derive conditions under which e.d.’s
are scale mixtures of normal distributions.

Theorem 4 shows a condition for a sequence of e.d.’s to be semi-expansive and
theorem 6 shows a condition for terms of expansive sequences.

When a term of a sequence is a vector or a matrix we use superscripts to
denote its position in the sequence and subscripts to denote its components.

Definition 3 (Expansive and semi-expansive sequences). For all m ∈
{1, 2, ...}, let Em (µm,Σm, gm) be an m-dimensional elliptical distribution and
let Xm = (Xm

1 , ...,X
m
m )

0 ∼ Em (µm,Σm, gm) .

(i) The sequence of distributions {Em (µm,Σm, gm)} is said to be expansive if,
for all m ∈ {1, 2, ...},

Xm d
= Xm+1

(m) =
³
Xm+1
1 , ..., Xm+1

m

´0
, (2.7)

namely, if the distribution of vector Xm is equal to the (marginal) distribution
of a subvector of vector Xm+1.

(ii) The sequence {Em (µm,Σm, gm)} is said to be semi-expansive if, for all
m ∈ {1, 2, ...},

Xm d
= Xm+2

(m) =
³
Xm+2
1 , ..., Xm+2

m

´0
. (2.8)

Clearly, all expansive sequences are semi-expansive and a semi-expansive se-
quence is expansive if, in addition, Xm d

= Xm+1
(m) for all odd m.

The next theorem shows a condition, based on the functional parameter g, for
a sequence to be semi-expansive.

(On notation: we use sometimes signs such as ġ or g̈ simply to denote functions,
with no reference to derivatives.)

Theorem 4 (Condition for semi-expansivity). The sequence of e.d.’s
{Em (0m×1, Im, gm)} is semi-expansive iff there exists a sequence {g∗m} of func-
tions such that

g∗m ≡ gm, (2.9)

g∗m+2 = − (g∗m)0 , (2.10)

for all m ∈ {1, 2, ...} and t > 0.

5



PROOF. (The if part) For allm, letXm = (Xm
1 , ..., X

m
m )

0 ∼ Em (0m×1, Im, gm) .
From (2.9) and (2.10) we have g0m ≡ −gm+2; hence, by virtue of lemma 2,
Xm d

= Xm+2
(m) .

(The only if part) For all m ∈ {1, 2, ...}, let Xm ∼ Em (0m×1, Im, gm) .

First, we are going to obtain differentiable functions g̈m such that g̈m ≡ gm. For
all m, by virtue of (2.8) and (2.3) (see also (2.6)), Xm ∼ Em (0m×1, Im, ġm) ,
with ġm(t) =

R∞
t gm+2(w) dw; hence ġm ≡ gm; and function ġm is contin-

uous. Again by (2.8) and (2.3), we obtain that ġm ≡ g̈m, where g̈m(t) =R∞
t ġm+2(w) dw. Thus gm ≡ g̈m, and function g̈m is differentiable.

For all m, by obtaining again another equivalent function by means of (2.8)
and (2.3), we find that there exists a constant bm+2 > 0 such that g̈m(t) =
bm+2

R∞
t g̈m+2(w) dw and, consequently, g̈0m = −bm+2g̈m+2.We add b1 = b2 = 1,

and for all k ∈ {0, 1, 2, ...} we define functions g∗1+2k and g∗2+2k as follows:

g∗1+2k =

 kY
j=0

b1+2j

 g̈1+2k,

g∗2+2k =

 kY
j=0

b2+2j

 g̈2+2k.

All the elements of sequence {g∗m} satisfy (2.9), because g∗m ≡ g̈m ≡ gm. We
check that they also satisfy (2.10). For all k ∈ {0, 1, 2, ...} we have that

³
g∗1+2k

´0
=

 kY
j=0

b1+2j

 g̈01+2k =

 kY
j=0

b1+2j

 (−b1+2k+2g̈1+2k+2) =
= −

k+1Y
j=0

b1+2j

 g̈1+2(k+1) = −g∗1+2k+2.

Similarly, it is proved that
³
g∗2+2k

´0
= −g∗2+2k+2. 2

By applying iteratively (2.10) for m = 1, 3, 5, ... and then for m = 2, 4, 6, ...
we see that a sequence {Em (0m×1, Im, gm)} is semi-expansive iff there exist
functions g∗m ≡ gm such that

g∗1+2k = (−1)k (g∗1)(k) , (2.11)

g∗2+2k = (−1)k (g∗2)(k) , (2.12)

for k ∈ {1, 2, ...}.
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We notice, by (2.11) and (2.12), that a semi-expansive sequence {Em
(0m×1, Im, gm)} is determined by g1 and g2. It is also determined by any pair
of terms gn1 and gn2, with n1 even and n2 odd, of the sequence {gm} , because
from them equivalent functions to g1 and g2 can be obtained by applying any
of the expressions (2.4) or (2.5).

An expansive sequence {Em (0m×1, Im, gm)} is determined by any term, gn, of
the sequence {gm}, because from this one equivalent functions to g1, g3 and
g2 can be obtained successively by applying (2.4) or (2.5), (2.11), and (2.4) or
(2.5), respectively.

To prove theorem 6 we need to establish first the following lemma.

Lemma 5 (Distributions of higher dimension). Let En (µ,Σ, g) be an el-
liptical distribution, with n ≥ 1. If

(−1)k g(k)(t) ≥ 0 (2.13)

for k ∈ {1, 2, ...} and t > 0, then, for all k ∈ {0, 1, 2, ...},

0 <
Z ∞
0

t
n+2k
2
−1 (−1)k g(k)(t) dt <∞ (2.14)

and, hence, the distribution En+2k
³
µn+2k,Σn+2k, gn+2k

´
, with

gn+2k = (−1)k g(k),
does exist for each vector µn+2k ∈ Rn+2k and each positive definite symmetric
(n+ 2k)× (n+ 2k) matrix Σn+2k.

PROOF. We prove (2.14) by induction on k. From (2.1), the statement is
true for k = 0. Let, now, k > 0; we suppose that the statement is true for
k − 1 and we prove it for k. By integrating by parts we haveZ ∞

0
t
n+2k
2
−1 (−1)k g(k)(t) dt = (2.15)

= lim
t→0 t

n+2k
2
−1 (−1)k−1 g(k−1)(t) (2.16)

− lim
t→∞ t

n+2k
2
−1 (−1)k−1 g(k−1)(t) (2.17)

+

Ã
n+ 2k

2
− 1

!Z ∞
0

t
n+2(k−1)

2
−1 (−1)k−1 g(k−1)(t) dt. (2.18)

The integrals in (2.15) and (2.18) exist and are non-negative. Hence, there
exist the limits (2.16) and (2.17). Clearly, they are not negative. We prove
that both limits are zero by reduction to absurd.
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If the limit (2.16) would be equal to c > 0, there should be a point t1 > 0 such
that for every t ∈ (0, t1) it would be tn+2k2

−1 (−1)k−1 g(k−1)(t) > c
2
; thence it

would be Z ∞
0

t
n+2(k−1)

2
−1 (−1)k−1 g(k−1)(t) dt ≥ c

2

Z t1

0

1

t
dt =∞,

which is false, by the recurrence hypothesis.

Similarly, if the limit (2.17) would be equal to c > 0, it would be a t1 such
that Z ∞

0
t
n+2(k−1)

2
−1 (−1)k−1 g(k−1)(t) dt ≥ c

2

Z ∞
t1

1

t
dt =∞.

Therefore, the integral (2.15) is equal to the addend (2.18), which, by the
recurrence hypothesis, is positive and finite. 2

The next theorem shows that an e.d. En (µ,Σ, g) can be a term of an expan-
sive sequence iff the successive derivatives of its functional parameter g are
alternatively positive and negative.

Theorem 6 (Condition for terms of expansive sequences). Let En(µ,
Σ, g) be an elliptical distribution, with n ≥ 1.

There is an expansive sequence of e.d.’s whose n-th term is the distribution
En (µ,Σ, g) iff there is a function g̈ = g a.e. such that

(−1)k g̈(k)(t) ≥ 0 (2.19)

for k ∈ {0, 1, 2, ...} and t > 0.

In this case, one such sequence is the sequence {Em (µm,Σm, gm)} given by the
following specifications:

µm =


µ(m) if m ≤ nµ
µ0 00(m−n)×1

¶0
if m > n

(2.20)

Σm =


Σ(m) if m ≤ nΣ 0n×m

0m×n Im−n

 if m > n
(2.21)

For m < n

gm(t) =
Z ∞
t
(w − t)

n−m
2
−1 g̈(w) dw; (2.22)
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and for k ∈ {0, 1, 2, ...}

gn+2k = (−1)k g̈(k), (2.23)

gn+2k+1(t) = (−1)k+1
Z ∞
t
(w − t)−

1
2 g̈(k+1)(w) dw. (2.24)

PROOF. First we prove that if condition (2.19) is satisfied then (2.20)—
(2.24) really describe a distribution Em (µm,Σm, gm) for every m, and that
sequence {Em (µm,Σm, gm)} is expansive and its n-th term is the distribution
En (µ,Σ, g) .

Let Xn = (Xn
1 , ..., X

n
n)
0 ∼ En (µ,Σ, g) . Obviously, Xn ∼ En (µ,Σ, g̈) . For

any m < n there exists the distribution Em (µm,Σm, gm) because this is
just the distribution of subvector Xn

(m). There exists also the distribution
En (µn,Σn, gn) ; it is the same as En (µ,Σ, g) .

For k ∈ {1, 2, ...}, by virtue of lemma 5, there exists the distribution En+2k³
µn+2k,Σn+2k, gn+2k

´
, specified by (2.20), (2.21) and (2.23). We also see that

for k ∈ {0, 1, 2, ...} there exists the distribution En+2k+1
³
µn+2k+1,Σn+2k+1,

gn+2k+1) , specified by (2.20), (2.21) and (2.24): ifXn+2k+2 ∼ En+2k+2
³
µn+2k+2,

Σn+2k+2, gn+2k+2
´
, then, from (2.3), the distribution of subvector Xn+2k+2

(n+2k+1) =³
Xn+2k+2
1 , ..., Xn+2k+2

n+2k+1

´
is just En+2k+1

³
µn+2k+1,Σn+2k+1, gn+2k+1

´
.

Hence, there exists the sequence {Em (µm,Σm, gm)} , and its n-th term is the
distribution En (µ,Σ, g) .

Let us see that sequence {Em (µm,Σm, gm)} is expansive. For all m, let Xm ∼
Em (µ

m,Σm, gm) . For m < n we have Xm d
= Xn

(m)
d
= Xm+1

(m) ; and for k ∈
{0, 1, 2, ...} we have that Xn+2k+1 d

= Xn+2k+2
(n+2k+1). To see that X

n+2k d
= Xn+2k+1

(n+2k)

we may suppose, without loss of generality, that µ = 0n×1 and Σ = In; then, by
virtue of (2.23) and lemma 2, we have that Xn+2k d

= Xn+2k+2
(n+2k) , and X

n+2k+2
(n+2k)

d
=

Xn+2k+1
(n+2k) .

Now we prove the reciprocal. Let {Em (µm,Σm, gm)} be an expansive se-
quence whose n-th term is the distribution En (µ,Σ, g) . Then the sequence
{Em (0m×1, Im, gm)} is expansive, too, and, by virtue of theorem 4, there ex-
ists a sequence of functions {g∗m} satisfying (2.9) and (2.10) for every m. Since
(2.9) is verified form = n, there exists a constant b > 0 such that g = gn = bg∗n
a.e. Let g̈ = bg∗n and, for all m, let g̈m = bg∗m. It is obvious that g̈ = g a.e. and,
besides, for all k, (−1)k g̈(k) = (−1)k (bg∗n)(k) = b (−1)k (g∗n)(k) = bg∗n+2k ≥ 0,
where the last equality is obtained by induction on k, starting at k = 0 and
by applying (2.10). 2
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Note that if function g mentioned in theorem (6) is continuous on (0,∞) ,
then we need not use function g̈, and we can put g instead of g̈ in expressions
(2.19) and (2.22)—(2.24).

Notice how expressions (2.23) and (2.24) allow us to interpret the functional
parameters gm, for m ≥ n, in the sequence {Em (µm,Σm, gm)} , in terms of the
successive derivatives of parameter g.

3 Elliptical distributions as scale mixtures of normal distributions

We approach the issue of characterizing the e.d.’s that are scale mixtures of
normal distributions and the one of finding the corresponding mixing distrib-
ution function.

Firstly, some basic definitions and results concerning scale mixtures of normal
distributions are shown. Then we show a characterization of elliptical distribu-
tions that are scale mixtures of normal distributions and put them in relation
with expansive sequences of e.d.’s. Next we show a second characterization
and deal with the subject of finding the mixing distribution function.

3.1 Basics on scale mixtures of normal distributions and related elliptical
distributions

We denote Nn ( · ;µ,Σ) the n-dimensional normal density with parameters µ
and Σ; we write X ∼ Nn (µ,Σ) if vector X has density Nn ( · ;µ,Σ) .

Definition 7 (Scale mixture of normal distributions). If µ is an n-di-
mensional vector, Σ is an n× n positive definite symmetric matrix and H is
a (unidimensional) probability distribution function such that H(0) = 0, then
the n-dimensional density f given by

f(x;µ,Σ, H) =

=
Z ∞
0

Nn

³
x;µ, v2Σ

´
dH(v) (3.1)

= (2π)−
n
2 |Σ|− 1

2

Z ∞
0

v−n exp
½
−1
2
v−2 (x− µ)0Σ−1 (x− µ)

¾
dH(v) (3.2)

is said to be a scale mixture of normal densities {Nn (x;µ, v
2Σ) | v ∈ (0,∞)}

with mixing distribution function H. If vector X has density (3.1), we say that
the distribution of X is the scale mixture of normal distributions (s.m.n.d.)
SMNn (µ,Σ, H) and write X ∼ SMNn (µ,Σ,H) .
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Note that in the above definition we use only probability distribution functions
as mixing distributions. Some wider approaches to the idea of mixture (see for
instance Chu [3]) allow the use of another kind of weighting function.

For each vector x 6= µ, we have f(x;µ,Σ,H) < ∞, since function Nn(x;µ,
v2Σ), as a function of v, is bounded, because it is continuous and both its
limits, at 0 and at ∞, are 0. On the contrary, the value

f(µ;µ,Σ,H) = (2π)−
n
2 |Σ|− 1

2

Z ∞
0

v−n dH(v), (3.3)

which is proportional to the moment
R∞
0 v−n dH(v), may be ∞.

A vector X = (X1, ..., Xn)
0 has the distribution SMNn (µ,Σ,H) iff it admits

the following equality in distribution

X
d
= µ+ V Z, (3.4)

where Z ∼ Nn (0,Σ) and V, the mixture variable, is a unidimensional random
variable independent of Z and having distribution function H.

Then, the distribution ofX conditional to V = v is (X | V = v) ∼Nn (µ, v
2Σ) .

If X(p) = (X1, ..., Xp)
0 , with p ≤ n, then the distribution of X(p) conditional

to V is
³
X(p) | V = v

´
∼ Np

³
µ(p), v

2Σ(p)
´
. Hence,

X(p) ∼ SMNp

³
µ(p),Σ(p),H

´
, (3.5)

where the mixing distribution function is H, the same as for X.

From (3.2) we see that any scale mixture of normal distribution is an elliptical
distribution (this subject will be developed in corollary 9). The reciprocal
is not true; some counterexamples are shown in section 4. A first general
characterization of e.d.’s that are s.m.n.d.’s can be stated in terms of the
usual quadratic form as follows.

Let X ∼ En(µ,Σ, g). It is known that X has a stochastic representation of the
form

X
d
= µ+A0Q

1
2U (n), (3.6)

(see details in Gómez et al. [7] and Fang and Zhang [6]) withQ = (X − µ)0Σ−1

(X − µ) . If we compare (3.6) with (3.4) we deduce that X ∼ SMNn (µ,Σ, H)
iff

Q
d
= V 2J2, (3.7)

where V is the mixture variable, whose distribution function is H, and J is
a variable independent of V, with J2 ∼ χ2n; this is equivalent to saying that
the density of Q is a mixture of gamma densities

n
G
³
1
2
v−2, n

2

´
| v ∈ (0,∞)

o
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with mixing distribution function H. (See also Gupta and Varga [8], Corollary
4.1.4.2.)

In this case, from (3.7), the moments of the modular variable R d
= Q

1
2 and

those of vector X (see Gómez et al. [7]) can be expressed as functions of the
moments of the mixture variable V :

E [Rs] = 2
s
2

Γ
³
n+s
2

´
Γ
³
n
2

´ E [V s] ,

Var [X] = E
h
V 2
i
Σ,

γ2 [X] = n(n+ 2)
E [V 4]

(E [V 2])2
,

where Var[X] and γ2 [X] denote the covariance matrix and the kurtosis coef-
ficient (see Mardia et al. [11]) of vector X, respectively.

Two more practical characterizations of e.d.’s that are s.m.n.d.’s are shown in
the following sections.

3.2 A necessary and sufficient condition

Elliptical distributions that are scale mixtures of normal distributions are
characterized and put in relation with expansive sequences of elliptical distri-
butions.

The next theorem shows that a necessary and sufficient condition for an
e.d. En (µ,Σ, g) to be a s.m.n.d. is the alternation of sign of the successive
derivatives of its functional parameter g; this is just the same condition es-
tablished in theorem 6 for being a term of an expansive sequence. The partic-
ularization of theorem 8 to n = 1 coincides with the theorem established in
Andrews and Mallows [1] for univariate symmetrical distributions.

Theorem 8 (Condition for being a mixture). Let En (µ,Σ, g) be an el-
liptical distribution, with n ≥ 1, and let X = (X1, ..., Xn)

0 ∼ En (µ,Σ, g) .
There is a mixing distribution function H such that

X ∼ SMNn (µ,Σ, H)

iff there exists a function g̈ = g a.e. such that

(−1)k g̈(k)(t) ≥ 0 (3.8)

for k ∈ {0, 1, 2, ...} and t > 0.

12



PROOF. (i) (The if part) By virtue of theorem 6, there exists an expan-
sive sequence of e.d.’s {Em (µm,Σm, gm)} , whose n-th term is the distribution
En (µ,Σ, g). Therefore, there exists, by virtue both of theorem 4.1.3 of Gupta
and Varga [8] and theorem 2 of Eaton [4], a mixture function H, such that
X ∼ SMNn (µ,Σ,H) .

(The only if part) If distribution En (µ,Σ, g) is a s.m.n.d., then the cited
theorem of Gupta and Varga [8] implies that there exists an expansive sequence
of e.d.’s {Em (µm,Σm, gm)} whose n-th term is the distribution En (µ,Σ, g) .
The result follows now from theorem 6. 2

Note that, once again, if function g is continuous we can do without the
function g̈ and directly put g in (3.8).

The next corollary shows that any s.m.n.d. SMNn (µ,Σ,H) is also an e.d.
En (µ,Σ, g) , included in a sequence of e.d.’s having functional parameters that
are functions of the successive derivatives of g, and which are also s.m.n.d.’s,
all with the same mixing distribution function H.

Corollary 9 (Mixtures inside sequences). Let SMNn (µ,Σ, H) be a scale
mixture of normal distributions, with n ≥ 1.

(i) A vector X satisfies X ∼ SMNn (µ,Σ,H) iff X ∼ En (µ,Σ, g) , with

g(t) =
Z ∞
0

v−n exp
½
−1
2
v−2t

¾
dH(v). (3.9)

(ii) The sequence {Em (µm,Σm, gm)} of elliptical distributions described by
(2.20)—(2.24), replacing g̈ with g, is expansive, its n-th term is the distrib-
ution En (µ,Σ, g) and, in addition, it verifies that if Xm ∼ Em (µm,Σm, gm)
then

Xm ∼ SMNm (µ
m,Σm,H) ,

where H is the same mixture function as in SMNn (µ,Σ,H) .

PROOF. (i) It follows immediately from (3.2).

(ii) Function g satisfies (3.8), therefore, by virtue of theorem 6, the sequence
{Em (µm,Σm, gm)} is expansive and its n-th term is the distribution En (µ,Σ, g).
Besides, for all m, if Xm ∼ Em (µ

m,Σm, gm) then there exists, by virtue of
theorem 4.1.3 of Gupta and Varga [8], a mixing function Hm such that Xm ∼
SMNm (µ

m,Σm,Hm) . Now, the mixing function Hm is the same for all m,
because if m < r then Xm is distributed as a sub-vector of Xr and (see (3.5))
Hm = Hr.Hence, for allm, Hm = Hn = H andXm ∼ SMNm (µ

m,Σm,H) . 2

13



Remark. Let En (µ,Σ, g) be an e.d. equivalent to SMNn (µ,Σ,H) . The func-
tional parameters gm of the distributions of the sequence alluded in corollary
9(ii) can be obtained from g1 and g2 in this way:

g1+2k = (−1)k g(k)1 ,

g2+2k = (−1)k g(k)2 ,

for k ∈ {1, 2, ...}. As for the starting points, g1 and g2, if n > 2 then g1(t) =R∞
t (w − t)

n−1
2
−1 g(w) dw and g2(t) =

R∞
t (w − t)

n−2
2
−1 g(w) dw; if n = 1, and

we suppose that g = g1 is continuous (in any case, we can replace g with
anyone of its equivalents: the function g̈ of theorem 8 or the function defined by
(3.9)), we make g3 = −g0 and calculate g2 as g2(t) = R∞

t (w − t)−
1
2 g3(w) dw =

− R∞t (w − t)−
1
2 g0(w) dw; and if n = 2, we make g1(t) =

R∞
t (w − t)−

1
2 g(w) dw

and, if g is not continuous, we can calculate g2 as g2(t) = − R∞t (w − t)−
1
2 g01(w)

dw.

3.3 A second condition; calculation of the mixing distribution function

If a given e.d. En(µ,Σ, g) is known to be a s.m.n.d. SMNn (µ,Σ, H) the issue
arises of finding the corresponding mixing distribution function H. According
to definition 7, this should be a probability distribution function. We obtain
H from the inverse Laplace transform of the functional parameter g. In this
way, the corresponding s.m.n.d. is fully determined.

Theorem 10, based upon theorem 8, shows first that a condition for an e.d.
En(µ,Σ, g) to be a s.m.n.d., in the sense of definition 7, is that its functional
parameter is the Laplace transform of a distribution functionM of a measure
with support in (0,∞) . The theorem also shows the relation between the
mixing distribution function H and the distribution function M. Thus the
theorem particularizes some aspects of a theorem of Chu [3] (see also Gupta
and Varga [8]) and extends the lemma in Andrews and Mallows [1].

Theorem 10 (Condition; mixing distribution function). Let En(µ,Σ,
g) be an elliptical distribution, with n ≥ 1, and let X ∼ En (µ,Σ, g) . There
is a mixing distribution function H such that X ∼ SMNn (µ,Σ, H) iff there
exists a measure distribution function M, with M(x) = 0 for x ≤ 0, such that

g(t) =
Z ∞
0

e−ty dM (y) (3.10)

for almost all t, namely, such that g is equivalent to the Laplace transform
of M a.e. In this case, the mixing distribution function H is related to the
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distribution function M as follows:

M(y) =

R∞
0 t

n
2
−1g(t) dt

Γ
³
n
2

´ Z
(0,y]

³
−un

2

´
dH

³
(2u)−

1
2

´
. (3.11)

PROOF. If (3.10) holds then, for k ∈ {0, 1, 2, ...} and t > 0,

(−1)k g(k)(t) =
Z ∞
0

yke−tydM(y) ≥ 0,

and X ∼ SMNn (µ,Σ, H) for some mixing distribution function H.

If X ∼ SMNn (µ,Σ,H) , then, by equating (2.2) to (3.2) we obtain that

g (t) =

R∞
0 s

n
2
−1g(s) ds

2
n
2Γ

³
n
2

´ Z ∞
0

v−n exp
½
−1
2
v−2t

¾
dH(v) (3.12)

for almost all t, and now, by making the change u = 1
2
v−2, we obtain

g (t) =

R∞
0 s

n
2
−1g(s) ds

Γ
³
n
2

´ Z ∞
0
exp {−tu}

³
−un

2

´
dH

³
(2u)−

1
2

´
(3.13)

=
Z ∞
0

e−ty dM (y)

for almost all t, where M is as in (3.11). 2

If we know the inverse Laplace transformM of g, we may use (3.11) to find H,
as we will show in section 4. Furthermore, the next corollary shows an explicit
expression for the density h of H, whenever it exists. It is obtained easily by
differentiating in (3.11).

Corollary 11 (Mixing density function). Suppose that (3.10) (and (3.11))
holds. Then distribution H is absolutely continuous, with density h, iff M is
absolutely continuous. In this case

g(t) =
Z ∞
0

e−tym (y) dy

with m(y) =M 0 (y) a.e., for almost all t, and

m (y) =

R∞
0 s

n
2
−1g(s) ds

2
3
2Γ
³
n
2

´ y
n−3
2 h

³
(2y)−

1
2

´
, (3.14)
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a.e. and, therefore,

h (v) =
2
n
2Γ

³
n
2

´
R∞
0 t

n
2
−1g(t) dt

vn−3m
µ
1

2
v−2

¶
. (3.15)

Remark. Some results about the moment
R∞
0 v−n dH (v) can be obtained. If

(3.10) (and (3.11)) holds then (see (3.12) and also (3.3))

Z ∞
0

v−n dH (v) =
2
n
2Γ

³
n
2

´
R∞
0 s

n
2
−1g(s) ds

× g(0)

= (2π)
n
2 |Σ| 12 f(µ;µ,Σ, g).

It will be
R∞
0 v−n dH (v) <∞ iff g (0) <∞ or, equivalently, if f(µ;µ,Σ, g) <

∞.

Remark. FunctionM, given by (3.11), is a distribution function of a measure.
Its limit at infinity is limy→∞M(y) = g(0) (put t = 0 in (3.13) and compare
with (3.11)). Therefore, M is a distribution function of a finite measure iff
g(0) <∞ (or

R∞
0 v−n dH (v) <∞ or f(µ;µ,Σ, g) < 0). In this case, if we have

chosen the functional parameter g so that g(0) = 1 (the reparametrization
g∗(t) = g(t)/g(0) can do it), functionM is a probability distribution function.

4 Some examples and applications

First, in light of the obtained results, we are going to realize the utility of the
previous concepts for a comprehensive treatment of the relationship between
e.d.’s and s.m.n.d.’s.

Next, we consider three families of elliptical distributions and study their
possible representation as scale mixtures of normal distributions.

We put q(x) = (x− µ)0Σ−1 (x− µ) .

4.1 Examples of mixtures

A degenerate mixture. If we make H(v) = I[v0,∞)(v) (the distribution func-
tion of a probability degenerate in v0), for some v0 ∈ (0,∞) , in (3.1), then
f ( · ;µ,Σ,H) is the normal density Nn ( · ;µ, v20Σ) . This is an elliptical den-
sity with functional parameter g(t) = exp

n
−1
2
v−20 t

o
. We may check that g,

in fact, satisfies (3.8): (−1)k g(k)(t) = 2−kv−2k0 e−
1
2
v−20 t ≥ 0. Also, the results
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of section 3.3 permit us to get back H from g. In this case, g is the Laplace
transform of distribution function M(y) = I[2−1v−20 ,∞) (y) . From (3.11) we
have that

Ih
1

2v2
0

,∞
´ (y) = 2n2 vn0 Z

(0,y]

³
−un

2

´
dH

³
(2u)−

1
2

´
= vn0

Zh
(2y)−

1
2 ,∞

´ v−n dH (v) ,
and hence

R
[z,∞) v

−n dH (v) = v−n0 I(−∞,v0] (z) . This implies that PH ((−∞, v0))
= PH ((v0,∞)) = 0 and PH ({v0}) = 1, where PH is the probability whose
distribution function is H. Therefore, H(v) = I[v0,∞)(v).

A uniform mixture. If n = 3 and H has density h(v) = I(0,1)(v), then

f(x;µ,Σ, H) = (2π)−
3
2 |Σ|− 1

2 (q(x))−1 exp
n
−1
2
q(x)

o
for x 6= µ and f(µ;µ,Σ,

H) = ∞. This is an elliptical density with functional parameter g(t) =

t−1 exp
n
−1
2
t
o
. Again we may check: (−1)k g(k)(t) = k!t−(k+1)e−

t
2
Pk

j=0
1
j!

³
t
2

´j
≥ 0. And we also can get back H from g: by making use of the inverse
Laplace transform we obtain that m(y) = I( 12 ,∞) (y) , and from (3.15) we

get h (v) = I(0,1) (v). Note that in this case M (y) = yI[ 12 ,∞) (y), and then

limy→∞M(y) = f(µ;µ,Σ, H) =∞.

A Pareto mixture. If n = 3 and H has density h(v) = v−2I[1,∞)(v), then the

mixture density (3.1) is just the E3 (µ,Σ, g) density with g(t) = t−2
³
2− (2 + t)

exp
n
−1
2
t
o´
for t > 0. In this case we have f(µ;µ,Σ,H) = 2−

7
2π−

3
2 |Σ|− 1

2 <

∞. Again we check: (−1)k g(k)(t) = 2 (k+1)!
tk+2

µ
1− e−

t
2
Pk+1

j=0
1
j!

³
t
2

´j¶ ≥ 2 (k+1)!
tk+2µ

1− e−
t
2
P∞

j=0
1
j!

³
t
2

´j¶
= 0. Now we obtain H from g: by making use of the

inverse Laplace transform we obtain that m(y) = 2yI(0, 12)
(y) , and now (3.15)

yields h (v) = v−2I[1,∞) (v) . In this case limy→∞M(y) <∞ and f(µ;µ,Σ,H) <
∞, too.

4.2 Application to the study of elliptical distributions

Pearson type VII distribution. For any positive integer n, let

f(x) =
Γ
³
m+n
2

´
(mπ)

n
2 Γ

³
m
2

´ |Σ|−1
2

³
1 +m−1q (x)

´−m+n
2 (4.1)

for some m ∈ (0,∞) . This is a En (µ,Σ, g) density with g(t) =
³
1 + t

m

´−m+n
2 .

We have

(−1)k g(k)(t) =
µ
1 +

t

m

¶−m+n
2
−k Γ

³
m+n
2
+ k

´
m

m+n
2 Γ(m+n

2
)
≥ 0;
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therefore, (4.1) is a SMNn (µ,Σ, H) density for some H.We obtain H from g:

the use of Laplace transform yields m(y) = m
m+n
2

³
Γ
³
m+n
2

´´−1
e−myy

m+n
2
−1,

and from (3.15) we get h (v) = m
m
2

³
Γ
³
m
2

´´−1
2−(

m
2
−1) exp

n
−1
2
mv−2

o
v−m−1.

If V is the mixture variable, then W = mV −2 has the gamma G
³
1
2
, m
2

´
distri-

bution. If m is an integer, then (4.1) is a Student’s t density, and variable W
has the χ2m distribution. If m = 1, (4.1) is a Cauchy density.

Pearson type II distribution. For any n, let

f(x) =
Γ
³
n
2
+m+ 1

´
π

n
2Γ (m+ 1)

|Σ|−1
2 (1− q (x))m I[0,1) (q (x)) ,

for some m ∈ (−1,∞) . This an instance of an e.d. that is not a s.m.n.d.,
because its functional parameter, g(t) = (1− t)m I[0,1)(t), does not satisfy
condition (3.8), for the lack of continuity at 1 of some of its derivatives g(k).
Actually, g(k)(1+) = 0 for all m ∈ (−1,∞) ; but, for m < 0, we have g(1−) =
∞; for any non-negative integer m, we have g(m)(1−) = (−1)mm!; and for
positive non-integer m, g(bmc)(1−) is∞ if the integer part, bmc , of m is even,
and is −∞ if bmc is odd.

Logistic distribution. Here a density is shown that, as opposed to the previ-
ous distribution, is positive everywhere, but is not a scale mixture of normal
densities either. For any n we consider the density (see Fang et al. [5])

f(x) =
Γ
³
n
2

´
π

n
2
R∞
0 t

n
2
−1 e−t

(1+e−t)2dt
|Σ|− 1

2
exp {−q (x)}

(1 + exp {−q (x)})2 .

Here g(t) = e−t (1 + e−t)−2 and condition (3.8) is not satisfied, because
(−1)2 g(2)(t) = e−t (1 + e−2t − 4e−t) (1 + e−t)−4 < 0 for t ∈

³
0,− ln

³
2−√3

´´
.
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