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Abstract

To evaluate the impact of model inaccuracies over the network’s output, after the evidence propagation,
in a Gaussian Bayesian network, a sensitivity measure is introduced. This sensitivity measure is the
Kullback–Leibler divergence and yields different expressions depending on the type of parameter to be
perturbed, i.e. on the inaccurate parameter.

In this work, the behavior of this sensitivity measure is studied when model inaccuracies are extreme,
i.e. when extreme perturbations of the parameters can exist. Moreover, the sensitivity measure is evaluated
for extreme situations of dependence between the main variables of the network and its behavior with
extreme inaccuracies. This analysis is performed to find the effect of extreme uncertainty about the initial
parameters of the model in a Gaussian Bayesian network and about extreme values of evidence. These ideas
and procedures are illustrated with an example.
c© 2008 Elsevier Inc. All rights reserved.

AMS 2000 subject classifications: 62F15; 62F35
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Introduction

A Bayesian network is a probabilistic graphical model where a directed acyclic graph (DAG)
represents a set of variables with its dependence structure. The nodes are random variables and
the edges give dependencies between the variables. A set of conditional distributions of each
variable, given its parents, completes the joint description of the variables.
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Bayesian networks have been studied by some authors, like Pearl [1], Lauritzen [2],
Heckerman [3] and Jensen [4], among others.

Depending on the type of variables in the problem, discrete, Gaussian and mixed Bayesian
networks can be described.

When a Bayesian network is considered, it is necessary to assign different values to the
probabilities of the network. In this step, there can be some uncertainty and then there can exist
some inaccurate parameters. Therefore, it is necessary to develop a sensitivity analysis to study
how sensitive the network’s output is to initial inaccurate parameters.

In the last few years, some methods of sensitivity analysis for Bayesian networks have been
developed; for example, for discrete Bayesian networks Laskey [5] presents a sensitivity analysis
based on computing the partial derivative of a posterior marginal probability with respect to a
given parameter, Coupé and van der Gaag [6] developed an efficient sensitivity analysis based
on inference algorithms, and Chan and Darwiche [7] introduced a sensitivity analysis based on
a distance measure. For Gaussian Bayesian networks, a sensitivity analysis based on symbolic
propagation was developed by Castillo and Kjærulff [8], and on the basis of the Kullback–Leibler
divergence, Gómez-Villegas, Maı́n and Susi [9] proposed a sensitivity measure for performing
the sensitivity analysis.

In this paper, we work with the sensitivity measure presented by Gómez-Villegas, Maı́n and
Susi [9] to study its behavior for extreme inaccuracies or perturbations of the parameters that
describe the Gaussian Bayesian network. Moreover, we describe the sensitivity measure and its
behavior for extreme inaccuracies, when the dependence between the variable of interest X i and
the evidential variable Xe is extreme, that is, when the squared coefficient of correlation between
X i and Xe is given by ρ2

ie = 0 and ρ2
ie = 1, considering different types of relative positioning of

these variables in the DAG.
This paper is organized as follows. In Section 1 definitions of Bayesian networks and Gaussian

Bayesian networks are introduced and the process of evidence propagation in Gaussian Bayesian
networks is reviewed. Also, we present the working example. In Section 2, the sensitivity
measure is defined and, depending on the parameter to be perturbed, different expressions
of the sensitivity measure are obtained, being able to detect the parameter that perturbs the
network’s output the most. In Section 3, we study the behavior of the sensitivity measure
for extreme perturbations of the initial parameters. In Section 4, we evaluate the sensitivity
measure considering extreme situations of dependence between X i and Xe given by the linear
correlation coefficient ρie and evaluate those cases with extreme perturbations of the parameters.
In Section 5, the sensitivity analysis with the working example is performed for some extreme
parameter perturbations considering different positions of the variable of interest X i and the
evidential variable Xe. Finally, in Section 6 some conclusions are presented.

1. Gaussian Bayesian networks and evidence propagation

A Bayesian network and a Gaussian Bayesian network are defined in this section and the
process of evidence propagation, one of the most important results in Bayesian networks, is
presented. Moreover, these concepts are illustrated with an example.

Definition 1. A Bayesian network is a pair (G, P) where G is a DAG, nodes being random
variables X = {X1, . . . , Xn} and edges probabilistic dependencies between variables, and
P = {p(x1|pa(x1)), . . . , p(xn|pa(xn))} is a set of conditional probability densities (one for
each variable) with pa(xi ) the set of parents of node X i in G.
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The joint probability density of X is

p(x) =

n∏
i=1

p(xi |pa(xi )). (1)

Definition 2. A Gaussian Bayesian network is a Bayesian network over X = {X1, . . . , Xn} where
the joint probability distribution is a multivariate normal distribution N (µ,Σ ), with density given

by f (x) = (2π)−n/2
|Σ |

−1/2 exp
{
−

1
2 (x − µ)′Σ−1(x − µ)

}
where µ is the n-dimensional mean

vector, Σ the positive definite covariance matrix of dimension n×n and |Σ | the determinant of Σ .

In a Gaussian Bayesian network, the conditional density associated with X i for i = 1, . . . , n
in Eq. (1) is the univariate normal distribution, with density f (xi |pa(xi )) ∼ N (µi +∑i−1

j=1 βi j (x j − µ j ), νi ) where βi j is the regression coefficient of X j in the regression of X i

on the parents of X i with pa(xi ) ⊆ {X1, . . . , X i−1}, and νi = Σi i − Σi Pa(xi )Σ
−1
Pa(xi)Σ

′

i Pa(xi )
is

the conditional variance of X i given its parents in the DAG.
It is usual to work with a variable of interest X i , so the network’s output is the information

about this variable of interest after the evidence propagation, i.e., the posterior marginal density
of X i .

The evidence propagation is one of the main results associated with Bayesian networks and
is the process of updating the probability distribution of the variables of the network introducing
the available information about the state of one or more variables, known as evidence variables.
Different algorithms have been proposed for propagating the evidence in Bayesian networks.

To perform the evidence propagation in a Gaussian Bayesian network an incremental method
is presented, updating one evidential variable at a time [10]. This method is based on computing
the conditional probability density of a multivariate normal distribution given the evidential
variable Xe. Then, considering the partition X = (Y, E), with Y the set of non-evidential
variables, X i ∈ Y being the variable of interest and E the evidential variable, the conditional
probability distribution of Y, given the evidence E = {Xe = e}, is a multivariate normal
distribution with parameters

µY|E=e
= µY + ΣYEΣ−1

E E (e − µE )

ΣY|E=e
= ΣYY − ΣYEΣ−1

E EΣEY.

Working with a variable of interest X i ∈ Y, after the evidence propagation, we obtain that

X i |E = e ∼ N (µ
Y|E=e
i , σ

Y|E=e
ii ) ≡ N

(
µi +

σie

σee
(e − µe), σi i −

σ 2
ie

σee

)
(2)

with the parameters before the evidence propagation µi and µe the means of X i and Xe, σi i and
σee the variances of X i and Xe, and σie the covariance of X i and Xe.

To illustrate these concepts of Gaussian Bayesian networks and evidence propagation, the
following example is introduced.

Example 3. The interest of the problem is in how a machine works. This machine is made up
of five elements, the variables of the problem, connected as the DAG presented in Fig. 1. The
element of interest in the machine is the last one (X5).
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Fig. 1. DAG of the Gaussian Bayesian network.

Let the time for which each element is working be a normal distribution; then X =

{X1, X2, X3, X4, X5} has a multivariate normal distribution given by X ∼ N (µ,Σ ), with the
conditional parameters described by the DAG

µ =


2
3
3
4
5

 ; Σ =


3 0 6 0 6
0 2 2 0 2
6 2 15 0 15
0 0 0 2 4
6 2 15 4 26

 .

To obtain Σ , the algorithm presented by Shachter and Kenley [11] is used.
Considering the evidence E = {X2 = 4}, after evidence propagation the distribution of

the variable of interest is X5|X2 = 4 ∼ N (6, 24) and the joint probability distribution is a
multivariate normal with parameters

µY|X2 =


2
4
4
6

 ; ΣY|X2 =


3 6 0 6
6 13 0 13
0 0 2 4
6 13 4 24

 .

2. Sensitivity analysis in Gaussian Bayesian networks

The sensitivity analysis proposed by Gómez-Villegas, Maı́n and Susi [9] consists in comparing
the network output of two different models: the original model N (µ,Σ ) and the perturbed model
obtained after adding a perturbation δ ∈ R to one inaccurate parameter of the model.

With an evidential variable Xe, whose value is known: E = {Xe = e}, the evidence
propagation is performed in the original model and in the perturbed model, obtaining the
network’s output as the marginal densities of interest f (xi |e), for the original model, and
f (xi |e, δ), for the perturbed model.

Finally, to evaluate the effect of adding a perturbation, the sensitivity measure is used. This
measure is the Kullback–Leibler discrepancy [12] used to compare these conditional densities of
the variable of interest after the evidence propagation. The Kullback–Leibler divergence for f
and f ′ density functions over the same domain is defined as follows:

K L( f (w), f ′(w)) =

∫
+∞

−∞

f (w) ln
f (w)

f ′(w)
dw.
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This measure has been used from the beginning in statistical inference by Jeffreys, Fisher
and Lindley. It takes into account the whole behavior of the distributions to be considered.
Furthermore, it is very useful when there is no idea about which properties of the variable of
interest will be used.

The sensitivity measure is defined as follows.

Definition 4. Let (G, P) be a Gaussian Bayesian network N (µ,Σ ). Let f (xi |e) be the marginal
density of interest after evidence propagation and f (xi |e, δ) the same density when the
perturbation δ is added to one parameter of the initial model. Then, the sensitivity measure is
defined by

S p j ( f (xi |e), f (xi |e, δ)) =

∫
+∞

−∞

f (xi |e) ln
f (xi |e)

f (xi |e, δ)
dxi (3)

where the subscript p j is the inaccurate parameter and δ the proposed perturbation, being the
new value of the parameter pδ

j = p j + δ.

For small values of the sensitivity measure it is possible to conclude that the Gaussian
Bayesian network is robust against the kind of perturbation proposed.

Considering the parameters of the mean vector and the parameters of the covariance matrix
as different, and having ρ2

ie ∈ (0, 1), the following results are obtained. These results are
generally true for conditional distributions in the case of a joint multivariate normal distribution;
however their full meaning is reached for Gaussian Bayesian Networks. In fact the conditional
distribution, given some evidence, is the output in this kind of representation. Since the main
point is to carry out a sensitivity analysis, the effect of perturbations on the conditional
distributions has to be studied.

2.1. Mean vector inaccuracy

Depending on the element of µ to be perturbed, the perturbation can affect the mean of the
variable of interest X i ∈ Y, the mean of the evidential variable Xe ∈ E or the mean of any other
variable X j ∈ Y with j 6= i .

Proposition 5. Considering the perturbation δ ∈ R added to any element of the mean vector µ,
and having ρ2

ie ∈ (0, 1), the sensitivity measure (3) is as follows:

(i) When the perturbation is added to the mean of X i , then µδ
i = µi + δ; the density of

the variable of interest after the evidence propagation is X i |E = e, δ ∼ N (µ
Y |E=e
i +

δ, σ
Y |E=e
ii ), where

Sµi ( f (xi |e), f (xi |e, δ)) =
δ2

2σ
Y |E=e
ii

.

(ii) If the perturbation is added to the mean of the evidential variable, µδ
e = µe + δ; the

posterior density of the variable of interest after the evidence propagation is X i |E = e, δ ∼

N
(
µ

Y |E=e
i −

σie
σee

δ, σ
Y |E=e
ii

)
, and

Sµe ( f (xi |e), f (xi |e, δ)) =
δ2

2σ
Y |E=e
ii

(
σie

σee

)2

.
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(iii) The perturbation δ added to the mean of any other non-evidential variable, different from the
variable of interest, has no influence over X i ; then f (xi |e, δ) = f (xi |e) and the sensitivity
measure is zero.

When the evidence about Xe is inaccurate, with eδ
= e + δ, the sensitivity measure obtained

is similar to Sµe ( f (xi |e), f (xi |e, δ)). Therefore, this case is studied when the mean of the
evidential variable is inaccurate.

2.2. Covariance matrix inaccuracy

When the covariance matrix is perturbed, the structure of the network can change. These
changes are in the precision matrix of the perturbed network, i.e., in the inverse covariance matrix
considering the perturbation δ.

To guarantee the normality of the network, Σ δ and ΣY|E=e,δ must be positive definite
matrices; this restriction, imposed in the following proposition, yields different constraints for
the perturbation δ.

Proposition 6. Adding the perturbation δ ∈ R to the covariance matrix Σ , with ρ2
ie ∈ (0, 1), the

sensitivity measure (3) is as follows:

(i) If the perturbation is added to the variance of the variable of interest, then σ δ
i i = σi i +δ with

δ > −σi i +
σ 2

ie
σee

and after the evidence propagation X i |E = e, δ ∼ N
(
µ

Y |E=e
i , σ

Y |E=e,δ
i i

)
where σ

Y |E=e,δ
i i = (σi i + δ) −

σ 2
ie

σee
and

Sσi i ( f (xi |e), f (xi |e, δ)) =
1
2

[
ln

(
1 +

δ

σ
Y |E=e
ii

)
−

δ

σ
Y |E=e,δ
i i

]
.

(ii) When the perturbation is added to the variance of the evidential variable, with σ δ
ee = σee +δ

and δ > −σee(1 − maxX j ∈Y ρ2
je) with ρ je the corresponding correlation coefficient, the

posterior density of interest is X i |E = e, δ ∼ N
(
µ

Y |E=e,δ
i , σ

Y |E=e,δ
i i

)
with µ

Y |E=e,δ
i =

µi +
σ 2

ie
σee+δ

(e − µe) and σ
Y |E=e,δ
i i = σi i −

σ 2
ie

σee+δ
and the sensitivity measure is given by

Sσee ( f (xi |e), f (xi |e, δ))

=
1
2

ln

(
σ

Y |E=e,δ
i i

σ
Y |E=e
ii

)
+

σ 2
ie

σee

(
−δ

σee+δ

) (
1 + (e − µe)

2
(

−δ
(σee+δ)σee

))
σ

Y |E=e,δ
i i

 .

(iii) The perturbation δ added to the variance of any other non-evidential variable X j ∈ Y with
j 6= i , with σ δ

j j = σ j j + δ, has no influence over X i ; then f (xi |e, δ) = f (xi |e) and the
sensitivity measure is zero.

(iv) When the covariance of the variable of interest X i and the evidential variable Xe is
perturbed, σ δ

ie = σie + δ = σ δ
ei and, considering the restriction over δ given as

−σie −
√

σi iσee < δ < −σie +
√

σi iσee, then X i |E = e, δ ∼ N
(
µ

Y |E=e,δ
i , σ

Y |E=e,δ
i i

)
with

µ
Y |E=e,δ
i = µi +

(σie+δ)
σee

(e − µe) and σ
Y |E=e,δ
i i = σi i −

(σie+δ)2

σee
. The sensitivity measure
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obtained is

Sσie ( f (xi |e), f (xi |e, δ))

=
1
2

ln

(
1 −

δ2
+ 2σieδ

σeeσ
Y |E=e
ii

)
+

σ
Y |E=e
ii +

(
δ

σee
(e − µe)

)2

σ
Y |E=e,δ
i i

− 1

 .

(v) The perturbation δ added to any other covariance, i.e., of X i and any other non-evidential
variable X j , or of the evidence variable Xe and X j ∈ Y with j 6= i , has no influence over
the variable of interest; then f (xi |e, δ) = f (xi |e) and the sensitivity measure is zero.

The proof and more details about the sensitivity analysis proposed with an example can be
seen in Gómez-Villegas, Maı́n and Susi [9].

3. Extreme behavior of the sensitivity measure

To know the effect of extreme uncertainty about the initial parameters of the network, we study
the behavior of the sensitivity measure for extreme perturbations with the limit of the sensitivity
measure. In this case, the squared correlation coefficient of X i and Xe considered is ρ2

ie ∈ (0, 1).

Proposition 7. When the perturbation added to the mean vector is extreme and ρ2
ie ∈ (0, 1), the

sensitivity measure is extreme too and it is:

(i) (a) limδ→±∞ Sµi ( f (xi |e), f (xi |e, δ)) = +∞,
(b) limδ→0 Sµi ( f (xi |e), f (xi |e, δ)) = 0;

(ii) (a) limδ→±∞ Sµe ( f (xi |e), f (xi |e, δ)) = +∞,
(b) limδ→0 Sµe ( f (xi |e), f (xi |e, δ)) = 0.

Proof. If follows directly. �

Therefore the limit for an extreme value of the evidence e corresponds to the case (ii).

Proposition 8. When the extreme perturbation is added to the elements of the covariance matrix
and ρ2

ie ∈ (0, 1), the sensitivity measure is as follows:

(i) (a) limδ→+∞ Sσi i ( f (xi |e), f (xi |e, δ)) = +∞ but Sσi i ( f (xi |e), f (xi |e, δ)) = o(δ),

(b) limδ→Mi i Sσi i ( f (xi |e), f (xi |e, δ)) = +∞ with Mi i = −σi i +
σ 2

ie
σee

= −σi i
(
1 − ρ2

ie

)
,

(c) limδ→0 Sσi i ( f (xi |e), f (xi |e, δ)) = 0;

(ii) (a) limδ→+∞ Sσee ( f (xi |e), f (xi |e, δ)) =
1
2

[
− ln

(
1 − ρ2

ie

)
− ρ2

ie

(
1 −

(e−µe)
2

σee

)]
,

(b)
lim

δ→Mee
Sσee ( f (xi |e), f (xi |e, δ))

=
1
2

[
ln

(
M∗

ee − ρ2
ie

M∗
ee(1 − ρ2

ie)

)
+

ρ2
ie(1 − M∗

ee)

M∗
ee − ρ2

ie

(
1 +

(e − µe)
2

σee

(
1 − M∗

ee

M∗
ee

))]
where Mee = −σee(1 − M∗

ee) and M∗
ee = maxX j ∈Y ρ2

je;

if M∗
ee = ρ2

ie then limδ→Mee Sσee ( f (xi |e), f (xi |e, δ)) = +∞,

(c) limδ→0 Sσee ( f (xi |e), f (xi |e, δ)) = 0;
(iii) (a) limδ→M1

ie
Sσie ( f (xi |e), f (xi |e, δ)) = +∞ with M1

ie = −σie −
√

σi iσee,
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(b) limδ→M2
ie

Sσie ( f (xi |e), f (xi |e, δ)) = +∞ with M2
ie = −σie +

√
σi iσee,

(c) limδ→0 Sσie ( f (xi |e), f (xi |e, δ)) = 0.

Proof. (i) (a) and (c) follow directly.

(b) When σ δ
i i = σi i + δ the new variance of X i is σ

Y|E=e,δ
i i = σ

Y|E=e
ii + δ.

Considering σ
Y|E=e,δ
i i > 0 then δ > −σ

Y|E=e
ii .

Defining Mi i = −σ
Y|E=e
ii and with x = σ

Y|E=e
ii + δ, we have

lim
δ→Mi i

Sσi i ( f (xi |e), f (xi |e, δ))

= lim
x→0

1
2

[
ln x − ln σ

Y|E=e
ii −

x − σ
Y|E=e
ii

x

]
= +∞.

(ii) (a) limδ→+∞ Sσee ( f (xi |e), f (xi |e, δ)) =
1
2

ln
(

σi i

σ
Y |E=e
ii

)
+

−
σ2

ie
σee

(
1−

(e−µe)2
σee

)
σi i

 with

σ
Y |E=e
ii = σi i (1 − ρ2

ie) and ρ2
ie =

σ 2
ie

σi i σee
; then

lim
δ→+∞

Sσee ( f (xi |e), f (xi |e, δ)) =
1
2

[
− ln

(
1 − ρ2

ie

)
− ρ2

ie

(
1 −

(e − µe)
2

σee

)]
(b) When σ δ

ee = σee + δ, the new conditional variance for all non-evidential variables is

σ
Y |E=e,δ
j j = σ j j −

σ 2
je

σee+δ
. If it is imposed that σ

Y |E=e,δ
j j > 0 for all X j ∈ Y then δ must

satisfy following condition: δ > −σee(1 − maxX j ∈Y ρ2
je).

Defining M∗
ee = maxX j ∈Y ρ2

je and Mee = −σee(1 − M∗
ee),

lim
δ→Mee

Sσee ( f (xi |e), f (xi |e, δ))

= lim
δ→Mee

1
2

ln

σi i −
σ 2

ie
σee+δ

σi i −
σ 2

ie
σee

+

σ 2
ie

σee

(
−δ

σee+δ

) (
1 + (e − µe)

2
(

−δ
(σee+δ)σee

))
σi i −

σ 2
ie

σee+δ


=

1
2

ln

(
σi iσee M∗

ee − σ 2
ie

M∗
ee(σi iσee − σ 2

ie)

)
+

σ 2
ie

σee

(
1−M∗

ee
M∗

ee

) (
1 +

(e−µe)
2

σee

(
1−M∗

ee
M∗

ee

))
(

σi i
M∗

ee

)
M∗

ee − ρ2
ie


=

1
2

[
ln

(
M∗

ee − ρ2
ie

M∗
ee(1 − ρ2

ie)

)
+

ρ2
ie(1 − M∗

ee)

M∗
ee − ρ2

ie

(
1 +

(e − µe)
2

σee

(
1 − M∗

ee

M∗
ee

))]
.

If M∗
ee = ρ2

ie 6= 0 then Mee = −σee(1 − ρ2
ie) = −σee +

σ 2
ie

σi i
; it follows that

lim
δ→Mee

Sσee ( f (xi |e), f (xi |e, δ))

= lim
δ→Mee

1
2

[
ln

(
M∗

ee − ρ2
ie

M∗
ee(1 − ρ2

ie)

)
+

ρ2
ie(1 − M∗

ee)

M∗
ee − ρ2

ie

×

(
1 +

(e − µe)
2

σee

(
1 − M∗

ee

M∗
ee

))]
= +∞



Author's personal copy
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because for K , M > 0

lim
x→0
x>0

[
ln

x

M
+

K

x

]
= lim

x→0

1
x

[
x ln

x

M
+ K

]
= lim

x→0

1
x

[
ln x

M
1
x

+ K

]
= +∞.

(c) It follows directly for the case M∗
ee = 1.

(iii) (a) For σ δ
ie = σie + δ, the new conditional variance is σ

Y |E=e,δ
i i = σi i −

(σie+δ)2

σee
; then, if

σ
Y |E=e,δ
i i > 0 is imposed, δ must satisfy the following condition: −σie −

√
σi iσee <

δ < −σie +
√

σi iσee.

First, defining M2
ie = −σie+

√
σi iσee, it is possible to calculate limδ→M2

ie
Sσie ( f (xi |e),

f (xi |e, δ)). But δ → M2
ie is equivalent to

(
δ2

+ 2σieδ
)

→ σeeσ
Y |E=e
ii and given that

Sσie ( f (xi |e), f (xi |e, δ))

=
1
2

ln

(
σeeσ

Y |E=e
ii − (δ2

+ 2σieδ)

σeeσ
Y |E=e
ii

)
+

σeeσ
Y |E=e
ii +

(
δ

σee
(e − µe)

)2

σeeσ
Y |E=e
ii − (δ2 + 2σieδ)

− 1


and using limx→0

[
ln x +

k
x

]
= +∞ for every k, then

lim
δ→M2

ie

Sσie ( f (xi |e), f (xi |e, δ)) = +∞.

(b) Analogously to (a).
(c) It follows directly. �

The results obtained are the expected ones, except when the extreme perturbation is added to
the evidential variance having a finite limit. This is because the state of the evidential variable is
known and the variance of this variable has a limited effect on the variable of interest. In this case,
the posterior density of interest with the perturbation in the model f (xi |e, δ) is not so different to
the posterior density of interest without the perturbation f (xi |e). Therefore, although an extreme
perturbation added to the evidential variance can exist, the sensitivity measure tends to a finite
value.

4. Extreme dependence between the variable of interest and the evidential variable

In this section we evaluate some particular cases of the sensitivity measure and its extreme
behavior, depending on the relations between the variable of interest X i and the evidential
variable Xe.

Then, considering extreme values for the squared linear correlation coefficient, for example
ρ2

ie = 0, X i and Xe are independent and the connection between these variables in the DAG must
be a converging connection (only this connection considers independence between the variables).
On the other hand, with ρ2

ie = 1, the connection in the DAG between X i and Xe can be a serial
or diverging connection, with a linear dependence relation between X i and Xe.

If X i and Xe are independent, when the evidence propagation is done, the information about
Xe does not affect the variable of interest; then after the evidence propagation µ

Y |E=e
i = µi and

σ
Y |E=e
ii = σi i .

In this case, only when the perturbation is added to the parameters of X i is the sensitivity
measure not zero. Moreover, when the covariance between X i and Xe is perturbed, the relation
between those variables changes to σie = δ and therefore the structure of the network changes.
In those cases the sensitivity measure is obtained considering σie = 0 in Propositions 5 and 6.
Any other perturbation of the parameters of the network does not disturb the results about X i .
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The other extreme case for the squared correlation coefficient is ρ2
ie = 1. In this case, any

perturbation associated with the initial parameters of X i or Xe changes significantly the results
concerning X i ; then the sensitivity measure computed in all cases is infinity. Therefore, for a
linear relation between the evidential variable and the variable of interest, and then a maximum
value of ρ2

ie, the sensitivity measure is also extreme.
When X i and Xe are independent, only perturbations associated with the parameters of X i

can disturb the network’s output, and if the perturbations are extreme, the sensitivity measure is
also extreme. However, for ρ2

ie = 1, any perturbation added to the parameters of X i or Xe greatly
affects the network’s output, the sensitivity measure being infinity.

5. Working example

Example 9. Consider the Gaussian Bayesian network in Example 3. Experts disagree with the
parameters assigned to the joint probability distribution and they want to quantify the effect of
inaccuracy when some extreme perturbations of the parameters are proposed.

Let the mean and the variance of the variable of interest X5 be µ
δ5
5 = −20 = µ5 + δ5

(with δ5 = −25) and σ
δ55
55 = 3 (with δ55 = −23). Let the mean and the variance of the evidential

variable X2 be given by µ
δ2
2 = 30 = µ2+δ2 (with δ2 = 27) and σ

δ22
22 = 0.27 (with δ22 = −1.73).

Finally, let σ
δ52
52 = 3 with δ52 = 1.

The sensitivity measure yielded for these inaccuracy parameters is

Sµ5( f (x5|X2 = 4), f (x5|X2 = 4, δ5)) = 13.02

Sσ55( f (x5|X2 = 4), f (x5|X2 = 4, δ55)) = 9.91

Sµ2( f (x5|X2 = 4), f (x5|X2 = 4, δ2)) = 15.19

Sσ22( f (x5|X2 = 4), f (x5|X2 = 4, δ22)) = 2.03

(where 2.1213 is the limit of the sensitivity measure when δ22 tends to Mee);

Sσ52( f (x5|X2 = 4), f (x5|X2 = 4, δ52)) = 0.009.

It can be pointed out that although there can exist more perturbed parameters, those
inaccuracies do not disturb the network’s output.

To show the behavior of the measure, we present the sensitivity measures as a function of the
perturbation δ in Fig. 2.

In this case, it can be noted that the sensitivity measure of the mean of X i is the same as the
sensitivity measure of the mean of Xe, because of the initial parameters that have been chosen.

As can be seen in the example, the sensitivity measure grows when the perturbation is large.
When the evidential variance is perturbed it is necessary to compute the limit of the measure to
know whether the perturbation proposed is also large.

Example 10. Consider the Gaussian Bayesian network given in Fig. 1, the variable of interest
being X1, with the same evidential variable X2. The variables X1 and X2 are in a converging
connection in the graph, being independent variables. In this case, if any parameter different to
µ1, σ11 or σ12 is perturbed, this inaccuracy does not affect the posterior density of X1; then the
sensitivity measure is zero. However, if µ1, σ11 or σ12 are perturbed, the sensitivity measure is
different to zero.

Therefore, in this case it is important to be very careful in assigning the parameters of the
variable of interest X1.



Author's personal copy
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Fig. 2. Sensitivity measures obtained in the example for any perturbation.

6. Conclusions

In this paper the behavior of the sensitivity measure introduced by Gómez-Villegas, Maı́n
and Susi [9] has been studied. This measure is useful for evaluating the impact of parameter
inaccuracies in a Gaussian Bayesian network over the density of interest after the evidence
propagation, when the inaccuracies are extreme. With this analysis it is possible to prove that this
is a well-defined measure for developing a sensitivity analysis in a Gaussian Bayesian network
even if the proposed perturbations are extreme.

The results obtained are the expected ones. When the evidential variance is inaccurate with
a large perturbation associated with this value, there exists a finite value as the limit of the
sensitivity measure. This is because the evidence about this variable explains the behavior of
the variable of interest regardless of its inaccurate variance.

Moreover, in all possible cases for the sensitivity measure, if the perturbation added to a
parameter is very small, tending to zero, the sensitivity measure is also zero.

Furthermore, it is possible to evaluate the sensitivity measure in some particular cases
depending on the dependence relation between the variable of interest X i and the evidential
variable Xe. In that way, ρ2

ie ∈ (0, 1) and also extreme values of the linear squared correlation
coefficient (ρ2

ie = 0 and ρ2
ie = 1) are considered, having different types of connections in the

DAG.
If there is no relation between X i and Xe, the connection in the graph is a converging

connection. Therefore the evidence and any perturbations added to parameters of the evidential
variable Xe do not affect the information about the variable of interest X i . In this case, the
sensitivity measure is different to zero only when the parameters of X i are inaccurate.

For a linear relation between X i and Xe, with ρ2
ie = 1, having a serial or diverging connection

in the DAG, the sensitivity measure is infinity because any perturbation about X i or Xe produces
an important effect over the network’s output. Therefore, if Xe is so related to X i , then any
perturbation added to the parameters that describe these variables makes the sensitivity measure
extreme.
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