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a b s t r a c t

Bayesian networks (BNs) have become an essential tool for reasoning under uncertainty
in complex models. In particular, the subclass of Gaussian Bayesian networks (GBNs)
can be used to model continuous variables with Gaussian distributions. Here we focus
on the task of learning GBNs from data. Factorization of the multivariate Gaussian
joint density according to a directed acyclic graph (DAG) provides an alternative and
interchangeable representation of a GBN by using the Gaussian conditional univariate
densities of each variable given its parents in the DAG. With this latter conditional
specification of a GBN, the learning process involves determination of the mean vector,
regression coefficients and conditional variances parameters. Some approaches have been
proposed to learn these parameters from a Bayesian perspective using different priors,
and therefore some hyperparameter values are tuned. Our goal is to deal with the usual
prior distributions given by the normal/inverse gamma form and to evaluate the effect of
prior hyperparameter choice on the posterior distribution. As usual in Bayesian robustness,
a large class of priors expressed by many hyperparameter values should lead to a small
collection of posteriors. From this perspective and using Kullback–Leibler divergence to
measure prior and posterior deviations, a local sensitivity measure is proposed to make
comparisons. If a robust Bayesian analysis is developed by studying the sensitivity of
Bayesian answers to uncertain inputs, this method will also be useful for selecting robust
hyperparameter values.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Bayesian networks (BNs) are graphical probabilistic models of interactions between a set of variables for which the
joint probability distribution can be described in graphical terms. BNs consist of qualitative and quantitative parts (G, P ).
The qualitative part, G, comprises a directed acyclic graph (DAG) useful for defining dependence and independence
among variables X = {X1, . . . , Xp}. The DAG shows the set of variables of the model at nodes, and the presence of
arcs represents the dependence between variables. In the quantitative part, P , it is necessary to determine the set of
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parameters that describes the conditional probability distribution of each variable, given its parents in the DAG, to compute
the joint probability distribution of the model as a factorization. Then, the set P defines the associated joint probability
distribution

P(X) =

p
i=1

P(Xi|pa(Xi))

with P = {P(X1|pa(X1)), . . . , P(Xp|pa(Xp))}.
Among others, BNs have been studied by Pearl [15], Lauritzen [14], Cowell et al. [3] and Jensen et al. [12].
In this work, we focus on a subclass of BNs known as Gaussian Bayesian networks (GBNs). GBNs have been treated by

authors like Shachter, et al. [17], Castillo, et al. [1,2], Dobra, et al. [6] and Cowell, et al. [3].
GBNs are defined as BNs for which the probability density of X = (X1, . . . , Xp)

′ is a multivariate normal distribution
Np(µ, Σ), where µ is the p-dimensional mean vector and Σ is a p × p positive definite covariance matrix for which the
dependence structure is shown in a DAG. Then the joint density can be factorized using the conditional probability densities
for every Xi (i = 1, . . . , p) given its parents in the DAG, pa(Xi) ⊂ {X1, . . . , Xi−1}. These are univariate normal distributions
with density

f (xi|pa(Xi)) ∼ N1


xi|µi +

i−1
j=1

βji(xj − µj), vi


,

whereµi themean of Xi, βji are the regression coefficients of Xi with respect to Xj ∈ pa(Xi), and vi is the conditional variance
of Xi given its parents. Remark that the presence of arcs represents the dependence between variables, therefore βji = 0 if
and only if there is no link from Xj to Xi, with j < i.

The conditional and joint specifications of a GBN are interchangeable and we can work equivalently with both
parameterizations considering 6 = [(I − B)−1

]
′D(I − B)−1 [17], where D is the diagonal matrix D = diag(v) with the

conditional variances v′
= (v1, . . . , vp) and B is a strictly upper triangular matrix with the regression coefficients βji with

j = 1, . . . , i − 1.
The problems of learning both sets of parameters are also equivalent if some particular prior distributions are

used.
In general, building a BN is a difficult task because it requires the user to specify the quantitative and qualitative parts of

the network. Expert knowledge is important for fixing the dependence structure between the variables of the network and
for determining a large set of parameters. In this process, it is possible to work with a database of cases, but the experience
and knowledge of experts is also necessary. In GBNs the conditional specification of the model is manageable for experts,
because they only have to describe univariate distributions. Then for each Xi variable (node i in the DAG) it is necessary to
specify the mean, the regression coefficients between Xi and each parent Xj ∈ pa(Xi), and the conditional variance of Xi
given its parents.

Literature about sensitivity analysis in GBNs is not extensive. Authors like Castillo & Kjærulff [2] or Gómez-Villegas
et al. [8–10], have studied the problem of uncertainty in parameters assignments in GBNs. Castillo & Kjærulff [2] performed a
one-way sensitivity analysis to investigate the impact of small changes in the network parameters, µ and Σ, by computing
partial derivatives of output probability of interest with respect to inaccurate parameters. A local sensitivity analysis is
developed to evaluate small changes in the parameters. Gómez-Villegas et al. [8] proposed a one-way sensitivity analysis
to evaluate the impact of small and large changes in the parameters over the network’s output. Then, a global sensitivity
measure is proposed to study the discrepancy of the output distribution of interest between two models, the initial and a
perturbed model. Both analyses deal with variations in one parameter at a time holding the others fixed. Then, both are
one-way sensitivity analyses.

As a generalization of the latter approach, Gómez-Villegas et al. [10] presented an n-way sensitivity analysis to evaluate
uncertainty about a set of parameters.

Our objective here is to investigate uncertainty about the parameters of the conditional specification. To achieve this, we
study the effect of different values for the prior hyperparameters on the posterior distribution.

The problem of Bayesian learning in this context has been handled with different approximations [6,7]. We work with
the most commonly used, the normal/inverse gamma prior.

We study the effect of hyperparameter selection using Kullback–Leibler (KL) divergence [13]. This measure is used to
define an appropriate local sensitivity measure to compare small prior and posterior deviations. From the results obtained
it is possible to decide the values to chose for the hyperparameters considered.

The remainder of the paper is organized as follows. Section 2 introduces the problem assessment and the distributions
considered. Section 3 is devoted to calculation of KL divergence measures. A local sensitivity measure is introduced in
Section 4. Section 5 includes some examples and conclusions are drawn in Section 6.
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2. Preliminary framework

The model of interest is the conditional specification of a GBN with parameters {µ, B,D}, where

µ =

µ1
...

µp

 B =


0 β12 . . . β1p

. . .

. . . βp−1p

0 0

 and D =

v1 0
. . .

0 vp


being µ the p-dimensional mean vector, B a strictly upper triangular matrix with the regression coefficients βji with
j = 1, . . . , i − 1 and D a diagonal matrix with the conditional variances vi where i = 1, . . . , p.

Without loss of generality and to simplify further developments, we suppose µ = 0. Then the parameters to be
considered are the regression coefficients and the conditional variances of each Xi given its parents in the DAG.

It can be pointed out that if βji = 0, there is no link from Xj to Xi, then Xj is not a parent of Xi (for j < i). Therefore, for each
variable Xi and their parents pa(Xi) ⊂ {X1, . . . , Xi−1} we have a vector of dimension i − 1 with the regression coefficients
for the parents and zeros for the nodes in {X1, . . . , Xi−1} not connected to Xi.

Denoting the columns of B matrix by βi = (β1i, . . . , βi−1i)
′ for i > 1, the conditional specification is now given by

{v1, βi, vi}i>1, where v1 is the marginal variance of X1.
In the next subsections, we compute the prior distributions, likelihood functions and posterior distributions for the

parameters {v1, βi, vi}i>1. Orphan nodes (nodes or variables without parents in the DAG) are considered different from
nodes with parents in the DAG. Thus, all the distributions of interest are determined for both cases.

2.1. Nodes with parents

Consider a general node Xi with a nonempty set of parents pa (Xi) ⊂ {X1, . . . , Xi−1}. Then we can establish the following
distributions.

2.1.1. Prior distribution
From normal standard theory, an inverted Wishart is used as a prior distribution for the covariance matrix, and then

a Wishart prior for the precision matrix Σ−1
∼ Wp(λ, τ−1Ip), where Ip is the identity matrix. It is well known that the

normal-Wishart distribution is a conjugate family for multivariate-Normal sampling [4]. Also it has to be used as the only
prior for GBNs if global parameters independence is assumed [7]. It can be shown that the implied prior distributions of the
normal/inverse gamma form are βi | vi ∼ Ni−1


0, τ−1viIi−1


with the hyperparameter τ > 0 and vi ∼ IG


λ+i−p

2 , τ
2


, i.e., an

inverse gamma with hyperparameters λ > p and the previous τ > 0. Then the joint prior distribution can be computed as

π(βi, vi) = π(βi | vi)π(vi), βi ∈ Ri−1 and vi > 0.

The corresponding prior distributions are

π(βi|vi)vi>0 ∝


τ

vi

 i−1
2

exp

−

τ

2vi
β ′

iβi


, βi ∈ Ri−1

π(vi) ∝

exp

−

τ
2vi


v


λ+i−p

2 +1


i

, vi > 0.

In Section 3 we propose a divergence measure to evaluate uncertainty about the hyperparameters λ and τ in terms of
additive perturbations δ ∈ R+, where λ + δ and τ + δ are the perturbed hyperparameters. A symmetric study can be
developed for negative perturbations with the corresponding restrictions.

If we are perturbing the first hyperparameter of the inverse gamma distribution, then λ is perturbed by adding δ. If
we are perturbing the second hyperparameter of the inverse gamma distribution, which also appears in the variability of
the normal distribution, then τ hyperparameter is perturbed by adding δ. Hereafter, λ and τ denote the first and second
hyperparameters, respectively, of the inverse gamma distribution.

2.1.2. Likelihood function
Suppose that we observe a random sample of size n giving the data matrix x11 . . . x1i . . . x1p

...
...

...
xn1 . . . xni . . . xnp

 .



Author's personal copy

M.A. Gómez-Villegas et al. / Journal of Multivariate Analysis 124 (2014) 214–225 217

For the variable Xi we have to consider the observations of its parents pa (Xi)

Xpai =

x11 . . . x1i−1
...

...
xn1 . . . xni−1


and of Xi, xi = (x1i, . . . , xni)′ and the regression model xi = Xpaiβi + εi (i = 2, . . . , p) with εi ∼ Nn(0, viIn). Then the

likelihood function is

L(βi, vi; xi, Xpai) ∝ vi
−

n
2 exp


−

1
2vi


(n − (i − 1))S2i + (βi −β̂ i)

′X ′

paiXpai(βi −β̂ i)


,

where βi ∈ Ri−1, vi > 0 and

β̂i =

X ′

paiXpai

−1 X ′

paixi

S2i =


xi − Xpai β̂i

′ 
xi − Xpai β̂i


n − (i − 1)

=
x′

ixi − x′

iXpai


X ′
paiXpai

−1 X ′
paixi

n − (i − 1)
.

2.1.3. Posterior distribution
The joint posterior distribution is [6]

π(βi, vi | xi, Xpai) ∝ ci exp

−

1
2vi


τ + qi + (βi − β̃i)

′Mi(βi − β̃i)


, βi ∈ Ri−1, vi > 0

with ci =
τ
i−1
2

v

λ+(i−p)+(i−1)+n
2 +1

i

, qi = x′

ixi − x′

iXpai (Mi)
−1 X ′

paixi,Mi = τ Ii−1 + X ′
paiXpai and β̃i = M−1

i X ′
paixi.

It immediately follows that the posterior densities of the parameters in the model, being π(βi | vi, xi, Xpai) a Normal

distribution Ni−1


β̃i, vi (Mi)

−1

and π(vi | xi, Xpai) an Inverse Gamma distribution IG


λ+(i−p)+n

2 ,
τ+qi
2


.

2.2. Orphan nodes

When a node Xi has no parents in the DAG, the parameter to be studied is only vi.

2.2.1. Prior distribution, likelihood function and posterior distribution
If a node Xi has no parents, the normal distribution to be considered is the marginal N1 (0, vi) and the prior distribution

has to be π (vi) ∼ IG


λ+i−p
2 , τ

2


.

The data are the observations of Xi given by xi = (x1i, . . . , xni)′. Then the likelihood function is

L(vi; xi) ∝ v
−

n
2

i exp

−

1
2vi


x′

ixi


, vi > 0.

Therefore, the posterior distribution of the parameter to be considered is

π(vi | xi) ∝ v
−

λ+(i−p)+n
2 +1

i exp

−

1
2vi


τ + x′

ixi


, vi > 0.

3. Divergence measure

In this section we compute the KL divergence to evaluate uncertainty in hyperparameters in terms of additive
perturbations, δ ∈ R+. The objective is to evaluate the effect of different perturbed hyperparameters (λ and τ ) by
means of the KL divergence. Throughout this work, perturbed models obtained by adding a δ ∈ R+ perturbation to the
hyperparameters are denoted by π δ(·). The original model corresponds to δ = 0.

To evaluate joint distributions, the next result relating marginal and conditional divergences is used:

DKL(f δ (x, y) | f (x, y)) = DKL

f δ(y) | f (y)


+


f (y)DKL(f δ(x | y) | f (x | y))dy. (1)

Given that the joint prior and posterior distributions are of the same form π(β, v) = π (β | v) π (v), (1) can be applied
to the prior and posterior distributions by comparing the original and perturbed models.
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Table 1
Prior and posterior distributions for the original and perturbed models.

Original model Perturbed model

Prior distribution

π(vi) ∼ IG


λ+(i−p)
2 , τ

2


π δ(vi) ∼ IG


λ+δ+(i−p)

2 , τ
2


Posterior distribution

π(vi | xi, Xpai ) ∼ IG


λ+(i−p)+n
2 ,

τ+qi
2


π δ(vi | xi, Xpai ) ∼ IG


λ+δ+(i−p)+n

2 ,
τ+qi
2


Table 2
Prior and posterior distributions for the original and perturbed models.

Original model Perturbed model

Prior distribution

π(vi) ∼ IG


λ+i−p
2 , τ

2


π δ(vi) ∼ IG


λ+i−p

2 , τ+δ
2


π (βi | vi) ∼ Ni−1


0, τ−1viIi−1


π δ (βi | vi) ∼ Ni−1


0, (τ + δ)−1 viIi−1


Posterior distribution

π(vi | xi, Xpai ) ∼ IG


λ+(i−p)+n
2 ,

τ+qi
2


π δ(vi | xi, Xpai ) ∼ IG


λ+(i−p)+n

2 ,
τ+δ+qδ

i
2


with

qδ
i = x′

ixi − x′

iXpai


Mδ

i

−1 X ′
pai xi andMδ

i = (τ + δ)Ii−1 + X ′
paiXpai

π(βi | vi, xi, Xpai ) ∼ Ni−1


β̃i, vi (Mi)

−1


π δ(βi | vi, xi, Xpai ) ∼ Ni−1


β̃δ
i , vi


Mδ

i

−1

with

β̃δ
i = (Mδ

i )
−1X ′

pai xi

3.1. Nodes with parents

Let Xi be a general node with a nonempty set of parents pa (Xi) ⊂ {X1, . . . , Xi−1}. To compute the prior and posterior
KL divergence between joint distributions of the original and perturbed models, we consider different perturbed models
depending on the hyperparameter to be perturbed.

3.1.1. Perturbed first hyperparameter of the inverse gamma distribution
In this case, the perturbedmodel is obtained by adding δ to the hyperparameter λ, which only appears in the distribution

of the parameter vi. Then, using (1), the KL divergence of the joint distribution corresponds to the marginal distribution of
vi. Prior and posterior distributions for the original and perturbed models are shown in Table 1.

The KL divergence between prior densities is computed as

DKLprior = DKL(π
δ(βi, vi) | π(βi, vi)) = DKL(π

δ(vi) | π(vi))

DKLprior = log
Γ


λ+δ+(i−p)

2


Γ


λ+(i−p)

2

 −


δ

2


Ψ


λ + (i − p)

2


, (2)

where Ψ (x) is the digamma function.
The KL divergence between posterior densities is

DKLposterior = DKL(π
δ(βi, vi | xi, Xpai) | π(βi, vi | xi, Xpai)) = DKL(π

δ(vi | xi, Xpai) | π(vi | xi, Xpai))

DKLposterior = log
Γ


λ+δ+(i−p)+n

2


Γ


λ+(i−p)+n

2

 −


δ

2


Ψ


λ + (i − p) + n

2


. (3)

3.1.2. Perturbed second hyperparameter of the inverse gamma distribution
The perturbed model is obtained by adding δ to the hyperparameter τ . This hyperparameter appears in the distribution

of parameters βi and vi.
The prior and posterior distributions for the original and perturbed models are shown in Table 2 and then we calculate

the KL divergence.
Therefore, the KL divergence between joint prior densities is given by

DKLprior = DKL(π
δ(βi, vi) | π(βi, vi))

DKLprior =


i +

λ − (p + 1)
2


δ

τ


− log


1 +

δ

τ


. (4)
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The expression obtained for the KL divergence between posterior densities is

DKLposterior = DKL(π
δ(βi, vi|xi, Xpai) | π(βi, vi|xi, Xpai))

DKLposterior =
1
2


ln

|Mi|Mδ
i

 + δtr

M−1

i


+

λ + (i − p) + n
τ + qi

δ2β̃T
i


Mδ

i

−1
β̃i



+
λ + (i − p) + n

2


δ +


qδ
i − qi


τ + qi

− log


1 +

δ +

qδ
i − qi


τ + qi


. (5)

Details on the calculations can be found in Appendix A.

3.2. Orphan nodes

The previous calculations are used to evaluate differences between distributions in the case in which the set of parents
of orphan nodes is empty.

Although the only parameter to consider in this case is vi, again we have to consider two different perturbed models,
depending on the perturbed hyperparameter, λ or τ .

3.2.1. Perturbed first hyperparameter of the inverse gamma distribution
When uncertainty is about hyperparameter λ, the results are the same as for nodes with parents.

3.2.2. Perturbing second hyperparameter of the inverse gamma distribution
Finally, when uncertainty is about τ and the perturbed model is obtained by adding δ to the hyperparameter τ , the KL

divergence between prior distributions is the first summand of the expression for nodes with parents:

DKLprior = DKL(π
δ(vi) | π(vi))

DKLprior =
λ + (i − p)

2


δ

τ


− log


1 +

δ

τ


. (6)

The KL divergence between posterior distributions is given by

DKLposterior = DKL(π
δ(vi|xi) | π(vi|xi))

DKLposterior =
λ + (i − p) + n

2


δ

τ + x′

ixi
− log


1 +

δ

τ + x′

ixi


. (7)

4. Sensitivity measure

To assess the sensitivity of the posterior to prior variations given by small perturbations in the hyperprior parameters,
we consider a local sensitivity measure under KL divergence [5,11], given by

Sens = lim
δ→0

DKLposterior

DKLprior
= lim

δ→0

DKL(π
δ(βi, vi | xi, Xpai) | π(βi, vi | xi, Xpai))

DKL(π δ(βi, vi) | π(βi, vi))
.

This local sensitivity measure is defined to compare prior and posterior deviations. With this measure it is possible to
establish a range of values for the hyperparameters to achieve a sensitivity measure of less than one. This is desirable to
obtain a posterior effect for hyperparameter perturbations smaller than the prior. As shown in this subsection, this condition
is always satisfied for the hyperparameter λ, whereas the hyperparameter τ needs a particular analysis for each case.

4.1. Nodes with parents

For node Xi with a nonempty set of parents, the sensitivity measures obtained for different perturbed models are
described below.

4.1.1. Perturbed first hyperparameter of the inverse gamma distribution
The next result is obtained by computing the sensitivity measure when uncertainty is about λ to compare prior (2) and

posterior (3) deviations:

Sens (λ) =

Ψ ′


λ+(i−p)+n

2


Ψ ′


λ+(i−p)

2

 < 1,

where Ψ ′ is the trigamma function.
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Fig. 1. Directed acyclic graph representation of the Gaussian Bayesian network of interest.

This is always less than one because the trigamma function Ψ ′ (x) is monotone decreasing and is also monotonically
dominatedwhen the node index increases. As can be seen, the discrepancy between posterior distributions is the numerator
of this expression and similarly the discrepancy between prior distributions is the denominator. This quotient less than
one, is a very interesting result from a robust Bayesian perspective, because final distributions are more similar than initial
distributions and therefore, the posterior effect for hyperparameter perturbation is smaller than the prior. If we have a value
larger than one, some problems of sensitivity of conclusions to assumptions may occur. For a discussion about this concepts
from a Bayesian perspective see [18]. In this case of uncertainty about first hyperparameter of inverse gamma distribution
in nodes with parents, the condition is always satisfied for any hyperparameter λ (for details, see Appendix B).

4.1.2. Perturbed second hyperparameter of the inverse gamma distribution
When there is uncertainty about τ , the sensitivity measure that compares the divergence of prior (4) and posterior (5) is

Sens (τ ) =
τ 2

(λ + (i − p) + (i − 1))


i−1
k=1

1

(λk + τ)2
+

λ + (i − p) + n
τ + qi

2β̃
′

iM
−1
i β̃i



+
λ + (i − p) + n

λ + (i − p) + (i − 1)
τ 2

(τ + qi)
2


1 + β̃

′

i β̃i

2
,

where {λk}k=1,...,i−1 are the eigenvalues of the X ′
paiXpai matrix and {λk + τ }k=1,...,i−1 are those forMi.

Optimal values of τ for a sensitivitymeasure of less than one can be analyzed for eachGBN. The calculations are presented
in Appendix B.

4.2. Orphan nodes

When node Xi has no parents in the DAG, the only perturbation to be analyzed corresponds to the hyperparameter τ
because the same results for nodes with parents can be applied to orphan nodes if λ is considered.

4.2.1. Perturbed second hyperparameter of the inverse gamma distribution
The sensitivity measure computed when there is uncertainty about the hyperparameter τ to compare the divergence for

prior (6) and posterior (7) is given by

Sens (τ ) =
λ + (i − p) + n

λ + (i − p)
τ 2

τ + x′

ixi
2 .

For details of the calculations, see Appendix C.

5. Experiments

Consider a GBN with parameters βji and vi, j < i, and a dependence structure given by the DAG in Fig. 1.
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Table 3
Sensitivity measure for different values of perturbed λ.

λ X1 X2 X3 X4 X5 X6 X7

8 0.002 0.003 0.004 0.004 0.005 0.006 0.007
15 0.008 0.009 0.010 0.011 0.012 0.013 0.014
25 0.018 0.019 0.020 0.021 0.022 0.023 0.024
50 0.0428 0.043 0.044 0.044 0.045 0.046 0.047

150 0.125 0.126 0.127 0.128 0.128 0.129 0.129
500 0.330 0.331 0.331 0.332 0.332 0.333 0.333

1,000 0.498 0.499 0.499 0.499 0.499 0.500 0.500
10,000 0.909 0.909 0.909 0.909 0.909 0.909 0.909

Fig. 2. Directed acyclic graph representation of the Gaussian Bayesian network of interest.

An artificial sample of size n = 1000 was simulated using R, an open source programming language and environment
for statistical computing and graphics [16]. With the sensitivity measure introduced in Section 4, the following results were
obtained for the two types of perturbation.
Sensitivity measure for perturbed first hyperparameter of the inverse gamma distribution

As observed in Table 3, the sensitivity measure for each variable is very similar for all nodes. Moreover, the measure
increases with values of λ but is always less than 1. Thus, an effect size requires a value of λ = 1000.
Sensitivity measure for perturbed second hyperparameter of the inverse gamma distribution

Fig. 2 shows the sensitivity measure obtained for τ > 0, in which different colored lines represent each variable and
node numbers are indicated by circles.

When Sens(τ ) < 1, the posterior KL divergence is less than the prior KL divergence for infinitely small perturbations.
Therefore, τ values for which Sens(τ ) < 1 are recommended. In Fig. 2 it is evident that X6 is the most sensitive node for all
values of τ ; thus, if its sensitivity measure is restricted to values less than one, the rest of the nodes will be controlled. The
red zone for recommended values corresponds to τ < 12.1304.

6. Conclusions

In this work we performed a sensitivity analysis to evaluate the effect of unknown prior hyperparameters in GBNs.
We used KL divergence to determine deviations of perturbed models from the original ones, for both prior and posterior
distributions. With those deviations, a local sensitivity measure to compare posterior and prior behavior for small
hyperparameter perturbations is proposed.

Determining the sensitivity to small changes inλ and τ hyperparameters is useful to study the robustness fromapractical
standpoint because from a robust Bayesian perspective, a range of values for the hyperparameters satisfying our sensitivity
measure of less than one is desirable to obtain a posterior effect for hyperparameter perturbations smaller than the prior.We
showed that this condition is always satisfied for the hyperparameter λ, whereas the hyperparameter τ needs a particular
analysis for each network.

With the sensitivity analysis proposed it is possible to determine the hyperparameters values when describing a GBN
with the conditional specification, to get a posterior effect for uncertain hyperparameters smaller than prior. Therefore,
this methodology introduces a new method for determining how to select the tuning parameter appropriately in Bayesian
learning of GBNs. We propose select the tuning parameter by introducing a measure of sensitivity for each node. Then,
Bayesian robustness is applied by requiring smaller posterior deviations than priors for each node. Finally an admissible
range of values for the tuning parameter is obtained and the maximum is selected.
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Appendix A

KL divergence for uncertainty in τ

Prior distributions:

DKLprior = DKL(π
δ(βi, vi) | π(βi, vi))

= DKL(π
δ(vi) | π(vi)) +


π(vi)DKL(π

δ (βi | vi) | π (βi | vi))dvi

=
(i − 1)

2


δ

τ


− log


1 +

δ

τ


+

λ + (i − p)
2


δ

τ


− log


1 +

δ

τ


=


i +

λ − (p + 1)
2


δ

τ


− log


1 +

δ

τ


.

Posterior distributions:

DKLposterior = DKL(π
δ(βi, vi | xi, Xpai) | π(βi, vi | xi, Xpai))

=


π(vi | xi, Xpai)DKL


π δ

βi | vi, xi, Xpai


| π


βi | vi, xi, Xpai


dvi

+DKL(π
δ(vi | xi, Xpai) | π(vi | xi, Xpai)) = (1) + (2).

The first summand is

(1) =
1
2

 log
|Mi|Mδ

i

 + tr

Mδ

i M
−1
i


− (i − 1) + (β̃i −β̃

δ

i )
′Mδ

i (β̃i −β̃
δ

i )

×


1
vi


τ+qi
2

 λ+(i−p)+n
2

Γ


λ+(i−p)+n

2

v
−


λ+(i−p)+n

2 +1


i exp

−

1
2vi

(τ + qi)

dvi

 .

Then with some calculations and using

•

Mδ
i = Mi + δIi−1 →


Mδ

i M
−1
i = Ii−1 + δM−1

i

M−1
i =


Mδ

i

−1 
Ii−1 + δM−1

i


→


M−1

i −

Mδ

i

−1
= δ


Mδ

i

−1
M−1

i

• tr

Mδ

i M
−1
i


= (i − 1) + δtr


M−1

i


• (β̃i − β̃δ

i )
′Mδ

i (β̃i − β̃δ
i ) = x′

iXpai


M−1

i −

Mδ

i

−1
′

Mδ
i


M−1

i −

Mδ

i

−1

X ′
paixi = δ2β̃ ′

i


Mδ

i

−1
β̃i

•
 1

vi


τ+qi
2

 λ+(i−p)+n
2

Γ


λ+(i−p)+n

2

 v
−


λ+(i−p)+n

2 +1


i exp

−

1
2vi

(τ + qi)

dvi =

λ+(i−p)+n
τ+qi

,

we obtain

(1) =
1
2


log

|Mi|Mδ
i

 + δtr

M−1

i


+

λ + (i − p) + n
τ + qi

δ2β̃ ′

i


Mδ

i

−1
β̃i


.

The last summand is

(2) =
λ + (i − p) + n

2


− log


1 +

δ +

qδ
i − qi


τ + qi


+

δ +

qδ
i − qi


τ + qi


.
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Adding these last equations, we obtain the divergence measure between the original and perturbed posterior distribu-
tions.

Appendix B

Sensitivity measures for nodes with parents

Uncertainty about λ:
In this case,

Sens (λ) = lim
δ→0

DKL(π
δ(βi, vi | xi, Xpai) | π(βi, vi | xi, Xpai))

DKL(π δ(βi, vi) | π(βi, vi))
= lim

δ→0

DKL(π
δ(vi | xi, Xpai) | π(vi | xi, Xpai))

DKL(π δ(vi) | π(vi))

= lim
δ→0

log
Γ


λ+δ+(i−p)+n

2


Γ


λ+(i−p)+n

2

 −


δ
2


Ψ


λ+(i−p)+n

2


log

Γ


λ+δ+(i−p)

2


Γ


λ+(i−p)

2

 −


δ
2


Ψ


λ+(i−p)

2

 = lim
δ→0

d
dδ Ψ


λ+(i−p)+n+δ

2


d
dδ Ψ


λ+(i−p)+δ

2



=

Ψ ′


λ+(i−p)+n

2


Ψ ′


λ+(i−p)

2

 < 1, where Ψ ′ is the trigamma function.

Uncertainty about τ :
First we can consider

Sens (τ ) = lim
δ→0

DKL(π
δ(βi, vi | xi, Xpai) | π(βi, vi | xi, Xpai))

DKL(π δ(βi, vi) | π(βi, vi))

= lim
δ→0

(1) + (2)
DKL(π δ(βi, vi) | π(βi, vi))

=

1∗

+

2∗

.

By calculating the two summands separately we obtain the limit.


1∗


= lim
δ→0

1
2


log |Mi|Mδ

i

 + δtr

M−1

i


+

λ+(i−p)+n
τ+qi

δ2β̃ ′

i


Mδ

i

−1
β̃i


λ+(i−p)+(i−1)

2


δ
τ


− log


1 +

δ
τ


= lim

δ→0

−
d
dδ log

Mδ
i

+ tr

M−1

i


+

λ+(i−p)+n
τ+qi

d
dδ


δ2β̃ ′

i


Mδ

i

−1
β̃i


(λ + (i − p) + (i − 1)) δ

τ(τ+δ).

Let {λk, ek}k=1,...,i−1 be the eigenvalues and eigenvectors of the X ′
paiXpai matrix. Then {λk + τ , ek}k=1,...,i−1 are the

corresponding ones for Mi and {λk + τ + δ, ek}k=1,...,i−1 for Mδ
i . Therefore, an eigenanalysis of the X ′

paiXpai matrix allows
us to find the limit in terms of these elements.


1∗


= lim
δ→0

−
d
dδ log

i−1
k=1

(λk + τ + δ) +

i−1
k=1

1
λk+τ

+
λ+(i−p)+n

τ+qi
d
dδ

δ2β̃ ′

iP


1

λ1 + τ + δ
· · · 0

...
. . .

...

0 · · ·
1

λi−1 + τ + δ

 P ′β̃i


(λ + (i − p) + (i − 1)) δ

τ(τ+δ),

where P =


e1

... · · ·
...ei−1


are the eigenvectors of the orthogonal matrix. Then

d
dδ

δ2β̃ ′

iP


1

λ1 + τ + δ
· · · 0

...
. . .

...

0 · · ·
1

λi−1 + τ + δ

 P ′β̃i


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=
d
dδ

δ2z ′

i


1

λ1 + τ + δ
· · · 0

...
. . .

...

0 · · ·
1

λi−1 + τ + δ

 zi



=
d
dδ

i−1
k=1

z2ikδ
2

λk + τ + δ
=

i−1
k=1

z2ik
δ2

+ 2δ (λk + τ)

λk + τ + δ
, with zi = P ′β̃i =

 zi1
...

zii−1

 .

Therefore,


1∗


= lim
δ→0

τ (τ + δ)


−

i−1
k=1

1
λk+τ+δ

+

i−1
k=1

1
λk+τ

+
λ+(i−p)+n

τ+qi

i−1
k=1

z2ik
δ2+2δ(λk+τ)

λk+τ+δ


δ (λ + (i − p) + (i − 1))

=
τ 2

(λ + (i − p) + (i − 1))


i−1
k=1

1

(λk + τ)2
+

λ + (i − p) + n
τ + qi

2β̃ ′

iM
−1
i β̃i


.

Conversely,


2∗


= lim
δ→0

λ+(i−p)+n
2


− log


1 +

δ+

qδ
i −qi


τ+qi


+

δ+

qδ
i −qi


τ+qi


λ+(i−p)+(i−1)

2


− log


1 +

δ
τ


+


δ
τ

 .

The previous limit can be obtained using the next general result with limx→0 h (x) = 0:

lim
x→0

− log

1 +

x+h(x)
c2


+

x+h(x)
c2

− log

1 +

x
c1


+


x
c1

 =
c21
c22

lim
x→0


1 +

d
dx

h (x)
2

and then
2∗


=
λ + (i − p) + n

λ + (i − p) + (i − 1)
τ 2

(τ + qi)2
lim
δ→0


1 +

d
dδ

qδ
i

2

.

Now we determine d
dδ q

δ
i :

qδ
i = x′

ixi − x′

iXpai


Mδ

i

−1
X ′

paixi,

and with an eigenanalysis of the X ′
paiXpai matrix and P as above, it follows that

x′

iXpai


Mδ

i

−1
X ′

paixi = x′

iXpaiP


1

λ1 + τ + δ
· · · 0

...
. . .

...

0 · · ·
1

λi−1 + τ + δ

 P ′X ′

paixi

=

i−1
k=1

w2
ik

λk + τ + δ

→δ→0 w′

i
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1

λ1 + τ
· · · 0

...
. . .

...

0 · · ·
1

λi−1 + τ

wi = x′
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 ,

with wi = P ′X ′
paixi =

 wi1
.
.
.

wii−1

.

Thus,

d
dδ


x′

iXpai


Mδ

i

−1
X ′

paixi


=

i−1
k=1

−w2
ik

(λk + τ + δ)2
→δ→0
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−w2
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(λk + τ)2
= −β̃ ′

i β̃i
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and

lim
δ→0


1 +

d
dδ

qδ
i

2

=


1 + β̃ ′

i β̃i

2
,

yielding
2∗


=
λ + (i − p) + n

λ + (i − p) + (i − 1)
τ 2

(τ + qi)2

1 + β̃ ′

i β̃i

2
.

As a final result, we obtain limδ→0
DKL(π

δ(βi,vi|xi,Xpai )|π(βi,vi|xi,Xpai ))
DKL(πδ(βi,vi)|π(βi,vi))

= (1∗) + (2∗).

Appendix C

Sensitivity measure for orphan nodes

Sens (τ ) = lim
δ→0

DKL(π
δ(vi | xi) | π(vi | xi))

DKL(π δ(vi) | π(vi))
= lim

δ→0

λ + (i − p) + n
λ + (i − p)

− log

1 +

δ

τ+x′ixi


+

δ

τ+x′ixi

− log

1 +

δ
τ


+


δ
τ


=

λ + (i − p) + n
λ + (i − p)

τ 2
τ + x′

ixi
2 .
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