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Neural Network Architecture for Cognitive
Navigation in Dynamic Environments

José Antonio Villacorta-Atienza and Valeri A. Makarov

Abstract—Navigation in time-evolving environments with mov-
ing targets and obstacles requires cognitive abilities widely
demonstrated by even simplest animals. Nevertheless, it is a
long-standing challenging problem for artificial agents. Cognitive
autonomous robots coping with this problem must solve two
essential tasks: i) understand the environment in terms of “what
may happen” and “how I can deal with this”, and ii) learn
successful experiences for their further use in an automatic
subconscious way. The recently introduced concept of Compact
Internal Representation (CIR) provides the ground for both tasks.
CIR is a specific cognitive map, which compacts time-evolving
situations into static structures containing information necessary
for navigation. It belongs to the class of global approaches, i.e. it
finds trajectories to a target when they exist but also detects situ-
ations when no solution can be found. Here we extend the concept
on situations with mobile targets. Then using CIR as a core we
propose a closed-loop neural network architecture consisting of
“conscious” and “subconscious” pathways for efficient decision-
making. The conscious pathway provides solutions to novel
situations if the default subconscious pathway fails to guide the
agent to a target. Employing experiments with roving robots and
numerical simulations we show that the proposed architecture
provides the robot with cognitive abilities and enables reliable and
flexible navigation in realistic time-evolving environments. We
prove that the subconscious pathway is robust against uncertainty
in the sensory information. Thus if a novel situation is similar
but not identical to the previous experience (due to e.g. noisy
perception) then the subconscious pathway is able to provide an
effective solution.

Index Terms—Neural Networks, Dynamical Systems, Cogni-
tion, Internal Representation, Cognitive maps

I. INTRODUCTION

THE main advantage of animate mobile creatures with
respect to plants is the possibility to interact actively with

the environment. This postulates time as a vital dimension.
The agent best dealing with this “extra” dimension receives
an evolutionary advantage. Even simplest animals exhibit
surprisingly efficient behaviors in complex time-evolving en-
vironments (see e.g. [1], [2]). It has been argued that the
global brain function is geared towards the implementation of
intelligent motricity (see [3] for review). Therefore efforts in
creating artificial agents possessing cognitive abilities should
involve solutions found by Nature.

There exists growing experimental evidence that cognitive
motor skills developed by higher mammals are based on ef-
fective Internal Representation (IR) of the external world and
the body [4]–[7]. IR makes possible mental simulations, goal
planning, testing alternative behaviors and, as a consequence,
an intelligent decision-making [8]. However, the mechanisms
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behind IR are barely understood both from theoretical and
experimental viewpoints [9], [10].

In general IRs must be simple enough to enable their effi-
cient learning, storage in memory, classification, and retrieval.
Perception of the environment implies concurrence and conflu-
ence of diverse sensory modalities. Then the received complex
information about the external world must be properly reduced
and structured to create useful IR. Thus two main questions
arise:
• What information is vital for motor behavior?
• How can it be structured and stored in a neural network?
IR of static situations (all objects in the arena are immobile)

can be thought about as an abstract “copy” of the external
world. For the purpose of navigation an agent can just project
static obstacles and targets within the visual area into a
mental map and then plan a route to a target. The concept
of Artificial Potential Field (APF) provides an elegant and
mathematically simple implementation for this task (see [11]
for review). Khatib in his pioneering works (see [12] and
references therein) describes the philosophy of APF as follows.
The robot moves in a field of forces. The target is an attractive
pole while obstacles are repulsive surfaces. Thus targets and
obstacles are mapped into two-dimensional network of locally
coupled neurons as sources and sinks, respectively. Then the
diffusion process generates a potential field with maxima and
minima at the targets’ and obstacles’ positions, respectively.
The agent can reach a target by “climbing” against the gradient
of this potential field.

IR of dynamic situations (objects can move in the arena)
demands higher-level cognitive abilities. Generalizing the
static approach, one could generate a sequence of static IRs
made for each time instant like frames in a movie. The
APF approach has been also extended to account for such
quasi-static solutions [12]. Then different approaches were
proposed: recalculating the whole potential field each time
a change happens [13], or updating the boundary conditions
related to the moving obstacles [14]. This, however, has a
number of internal pitfalls: from the obvious increase of the
response time and virtually infinite memory capacity required
for learning dynamic situations, to the ambiguous dynamic
treatment of essentially static information. Another drawback
is the problem of local minima and inefficient path planning
[15].

Recently several alternative solutions to the IR problem have
been proposed (see e.g. [16], [17]). The derived navigational
rules imitate behaviors of insects and other simple organisms.
In particular, they explore random or chaotic search for a
target [18], path-integration to return home [19], recognition-
triggered response, maximization of the probability of infor-
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mation or memory increase over the path [20], [21]. However,
such approaches fit well and have been mainly applied in static
scenarios. In dynamic environments their performance decays
significantly.

Experimental studies of the role of the mammalian hip-
pocampus in spatial navigation inspired the concept of so
called cognitive maps [22]. Although neurophysiological basis
of this phenomenon in big part remains unclear growing
experimental evidence and numerical models show that the
activity of place cells is involved in navigation constructed
over cognitive maps (see e.g. [23], [24]). Briefly, a cognitive
map establishes a process that generates an absolute stationary
framework constructed from spatial relationships in the agent’s
environment. Then the agent can virtually move through the
map and reach the target. Thus a cognitive map is an essential
part of an IR. According to this concept, cognitive navigation
exploits spatial relations among objects in the map to extract
information necessary to move in the environment.

Many of the existing cognitive approaches to navigation are
based on topological maps. They represent the environment
as a graph with vertices and edges describing places and
spatial relations among them. This allows finding different
routes between two places [25]. However, the agent can only
use visited places or concatenate known routes. No novel
routes (e.g. shortcuts) can be generated in unexplored terrains.
Besides, different places must be clearly distinguished to be
mapped into different nodes and at the moment no satisfactory
solution exists to tackle this problem [25], [26]. Some of these
limitations have been overcome by survey navigation, which
embeds the perceived elements and their spatial relations into a
common system of reference. Then the robot can deduce new
spatial correlations and find novel trajectories. Advantages of
both topological and survey navigations have been exploited
in combined approaches [27].

Potentially, cognitive maps can provide sophisticated solu-
tions. However, the majority of the approaches are essentially
local and their advantages have been mostly reported in static
scenarios. In changing environments Yan and colleagues [28]
have shown that cognitive maps permit local in time and space
adaptation of the robot’s path. In general, local approach to the
path planning in dynamic environments is a common trend (see
[29] for review). The proposed strategies range from evolution-
ary APFs [30] to self-organizing and recurrent neural networks
[31], [32], passing through biologically-inspired models for
planning obstacle avoidance [33].

Local restrictions (see e.g. [34] for discussion) are usually
justified by arguing that the dynamics of objects in the
environment is often unknown. Hence the agent can rely on
movements defined locally in space and time only. Never-
theless in the majority of realistic situations (but see [15])
trajectories followed by at least inanimate objects can be
predicted quite accurately. Then anticipation is a vital ability
of animals, genetically coded and refined by experience and
training [35]. Thus cognitive navigation in animals challenges
the local approach. In order to model the behavior of higher
living beings we must call upon complementary cognitive
models capable of global internal representation of dynamic
situations.

Global solutions require prediction of the spatiotemporal
dynamics of the objects that can interact with the agent.
Different aproaches including extended particle swarm op-
timization [36], genetic algorithms [37], ant colony opti-
mization [38] have been proposed. However, when searching
trajectories alternative to the optimal path, these approaches
exhibit relatively poor performance and low versatility (see
[39] and references therein). The majority of these algorithms
assume immobile target and impose restrictions on the shape
of obstacles.

Finally a subtle but critical point for real autonomous be-
havior concerns another aspect of global solutions. According
to Conn and Kam [40], a global approach finds trajectories
to the target when they exist but also must detect situations
when no solution can be found. Thus the ability of detecting
deadlock situations is a critical difference between local and
genuine global approaches and the key for significant benefits
offered by global strategies in Nature. Indeed, an agent, e.g. a
predator, incapable of identifying a priori impractical solutions
will waste energy and resources putting its survival at risk.

Recently, for an efficient global description of complex
dynamic situations we introduced the concept of Compact
Internal Representation (CIR) [41]. CIR can be considered
as a global, in the sense of Conn and Kam, cognitive map
constructed over specific APF. The idea behind CIR stems
from the state-of-the-art cognitive maps and definition of
cognition as a construction of spatial relations among static
objects. CIR generalizes spatial relations to a new type of
effectively static elements existing in a special representation
of dynamic environments. Potential collisions of the agent,
obstacles, and targets are modeled by a dynamical system
and then the detected critical events are mapped into static
IR. Thus CIR compacts essentially time-evolving situations
and represents them as a static map containing information
necessary for navigation. Therefore it solves both above-stated
questions of the IR of dynamic situations.

Earlier we showed that CIRs can be easily stored and then
retrieved from an associative memory [42]. This provided a
theoretical basis for building an agent mimicking cognitive
abilities of higher animals. Such agent must possess “con-
scious” and “subconscious” pathways. While the conscious
pathway generates CIRs for novel situations, the subconscious
one learns experiences (situations and corresponding CIRs)
for further use in a quick and efficient manner. Thus the
agent acquires the ability of responding “without thinking”
to familiar situations.

In this work we further develop our concept, extend it to
mobile targets, and provide a novel neural network architecture
that now unifies understanding of the environment (conscious
pathway) and learning of experiences (subconscious pathway)
in a closed autonomous loop. By default the agent relies
on the subconscious pathway. If a perceived situation is
identical to one of the previously experienced or similar
but not identical (due to e.g. sensory uncertainty) then the
subconscious pathway is able to provide an effective solution.
However, if it fails to solve the problem, then the conscious
pathway is activated and generates solution to this significantly
novel scenario. To prove the feasibility of the CIR theory and
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of the proposed architecture we build a setup and perform
experiments with roving robots. Our data show that indeed
the CIR-based cognitive neural architecture provides the agent
with reliable and flexible behaviors. We also demonstrate
the robustness of the approach to random fluctuations in the
sensory information, which is a must for outdoor applications.

II. EXPERIMENTAL SETUP

In order to study the problem of cognitive near-range navi-
gation we built a setup (Figs. 1A and 1B) with roving robots
simulating an agent, one target, and two moving obstacles
in a white arena (150 × 150 cm). The programmable robots
(Moway, Minirobots S.L., Fig. 1A) were controlled through a
WiFi interface with customary written C# code managed by
Matlab (R2011a 64-bit, The MathWorks, Inc.) running on a
standard PC. Each robot can freely move with the velocity
ranging between 35 and 75 cm/s. The robot performing as a
cognitive agent moved with constant velocity 56 cm/s, while
obstacles had the velocities 45 cm/s and 70 cm/s. In order to
distinguish objects in the arena, black cardboard figures were
stuck over each robot (Fig. 1B): arrow-shaped over the agent,
circular shapes over the obstacles, and a strip over the target.
The visual information in the arena were captured by a zenithal
camera (Logitech, QuickCam Communicate STX). For object
recognition we used standard routines from the Matlab Image
Processing Toolbox. The snapshots of the arena were taken
at 50 Hz rate. Then all black objects were identified in
each frame. The objects were differentiated (agent, obstacles,
and targets) by the size of the black figures stuck over the
robots. The displacement of centroids were used for object
tracking and for determining their positions, velocities, and
accelerations using finite difference approximation.

A B

C D

Fig. 1. Experimental setup. A) Roving robot equipped with WiFi
interface aside of a 1e coin. B) Side view of a (150 × 150)
cm arena with four robots simulating an agent (arrow shape), two
obstacles (circular shapes), and a target (stripe). C) Top view of a
static situation (captured by a zenithal camera). The agent has a
goal to reach the target. Six consecutive frames marking the agent’s
positions are shown superimposed. D) Dynamic situation. A collision
occurs if the agent makes the decision from the initially perceived
visual information as in the static case (dots and arrows mark initial
positions and velocities, respectively).

Figures 1C and 1D show examples of static and dynamic
situations, respectively. In the static environment (Fig. 1C)
the visual information obtained at the initial time instant
determines the motor decision. The agent moves along a
straight trajectory and easily reaches the target. In a similar but
dynamic situation both obstacles cross the agent’s path (Fig.
1D). Then the same agent’s behavior would lead to a collision.
Thus this situation requires more sophisticated path planning
based on anticipation of the state of the environment in the
future. In the following sections we shall show how the CIR
concept can be used for this purpose.

III. TRAJECTORY MODELING NEURAL NETWORK
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Fig. 2. Prediction of trajectories of moving obstacles and targets. A)
Sketch of a recurrent neural network used for trajectory modeling.
B) Learning performance. Blue, red, and green triangles mark the
training quality with d = 95%, 99.5%, and 99.9%. Inset shows 50
(parabolic) trajectories used for training the TMNN. C) Prediction of
an experimental trajectory at different levels of the learning quality,
corresponding to triangles in (B). D) Mean and standard deviation
of the performance of the TMNN in predicting trajectories of 100
objects for three different values of the learning quality.

Generation of a CIR requires prediction (in the agent’s men-
tal time τ ) of the trajectories of near-range objects in the arena.
This task is performed by the Trajectory Modeling Neural
Network (TMNN). Figure 2A shows the implementation of
the TMNN. It consists of three recurrently coupled neurons
with external input ξ(k) ∈ R3 and output η(k + 1) ∈ R3,
where k denotes discrete mental time (i.e. τ = kh, where h
is the time step) [43]. The dynamics of the network is given
by

η(k + 1) =

{
ξ(k), if |ξ(k)| > δ
Wη(k), otherwise (1)

where W ∈ M3×3(R) is the coupling matrix and δ > 0
is the tolerance constant, which we introduced in this work
to avoid the noise instability (δ = 10−6 in experiments). To
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model trajectories in 2D we need two identical networks (or
one with six units) for x and y components.

For the sake of simplicity we assume that trajectories of
all objects in the environment can be described by quadratic
functions of time (prediction of more complex trajectories
is also possible, but see [41] for discussion). In order to
train the TMNN to recognize such routes we generated
a set of 50 random parabolic trajectories (Fig. 2B, inset)
and presented them to the network as external input in the
form ξ(k) = (x(k), v(k), a(k))T , i.e. the first three dynamic
moments of the trajectory (the same for y-component). The
velocity and acceleration are given by the finite differences:
v(k) = (x(k)−x(k−1))/h and a(k) = (v(k)− v(k−1))/h,
respectively. Note that such approximation does not introduce
additional error due to appropriate design of the network [41].
The interneuronal couplings are updated during the learning
according to

W (k + 1) = W (k)
(
I − εξ(k − 1)ξT (k − 1)

)
+εξ(k)ξT (k − 1)

(2)

where ε > 0 is the learning rate.
Under proper learning rate ε < ε∗, W converges to a

theoretical matrix W∞ (see for details [43]). The distance

d(k) = 100%

(
1− ‖W (k)−W∞‖

‖W∞‖

)
(3)

is used to quantify the learning performance (Fig. 2B). Indeed,
under training the interneuronal couplings quickly converged
(in less than 50 cycles) to the theoretically predicted values.
For further analysis we selected the coupling matrices W95,
W99.5, and W99.9 corresponding to different learning quality
d = 95%, 99.5%, and 99.9%, respectively.

Once the training process is deemed finished, the TMNN
can be used to predict novel trajectories. The camera captures
the first three instants (frames) of the object’s movement and
the obtained information is introduced in the TMNN as an
external input consisting of the initial position, velocity, and
acceleration of the object ξ(0) = (x0, v0, a0), ξ(k) = 0 for
k = 1, 2, . . . Then the TMNN generates the following object’s
trajectory by iterating Eq. (1). Figure 2C shows top-view of a
robot in the arena following the black curve and the robot’s
trajectories predicted by the TMNN for the three different
values of the learning quality.

In order to quantify the TMNN prediction performance
we used the Fréchet distance dF (γ, γ̃) [44] measuring the
similarity between the original robot trajectory γ and trajectory
predicted by the TMNN γ̃. Then the prediction performance
is

P (γ, γ̃) = 100%

(
1− dF (γ, γ̃)

l(γ)

)
(4)

where l(γ) denotes the length of the curve γ. Figure 2D shows
the statistics of the prediction performance for different values
of the learning quality obtained for a set of random parabolic
trajectories {γi}100i=1. The learning quality achieved in about 50
training cycles is enough to obtain practically 100% fidelity
in the prediction of trajectories by the TMNN.

IV. CONCEPT OF COMPACT INTERNAL REPRESENTATION

Let us briefly recall how a CIR of a dynamic situation can
be created and then used for navigation [41], [42]. CIR is
generated by a reaction-diffusion process taken place in Causal
Neural Network (CNN), a 60× 60 square lattice of modified
FitzHugh-Nagumo neurons described by:

ṙij = qij (H(rth − rij) [f(rij)− zij ] + d∆rij − rijpij)
żij = (rij − 7zij − 2)/25

(5)
where rij and zij are the potential and recovering variable
of the ij-th neuron, respectively. Dots in Eq. (5) represent
derivatives in respect to the mental time τ , ∆ is the discrete
Laplacian, d is the diffusion constant, H is the Heaviside
function, rth = 3 is the phase threshold, and f(r) is a cubic-
like FitzHugh-Nagumo nonlinearity, which we set to f(r) =
(−r3+4r2−2r−2)/7 in all experiments. The size of the lattice
scales to the size of the arena (i.e. the interneuron distance is
assumed to be equal to 2.5 cm). Functions qij(τ) and pij(τ)
(equal to one and zero, respectively, at the beginning of the
simulation) describe the movement of obstacles and targets,
respectively, and will be described in detail below. The time
evolution of the variables {rij}60i,j=1 creates a 2-D potential
field that forms CIR. Further on we shall denote the resulting
CIR by

c = {rij}60i,j=1 ∈M60×60(R) (6)

Let us now consider a dynamic situation similar to that
shown in Fig. 1D. The agent (Fig. 3A, blue circle) should
move with a constant velocity and reach the mobile target (red
area) avoiding the moving obstacles (black areas). The initial
conditions, i.e. objects’ positions, velocities, and accelerations,
are supplied to the TMNN that simulates the obstacles and
target’s trajectories (see Sect. III).

A B C D

E F G H

B C D

t6t4

50 cm 20 neur
t3t2t1

t5

Ob.

Ob.

Tg.

Ag.

Eff. Obs.

Eff. Tg.

Fig. 3. Generation of Compact Internal Representation of a dynamic
situation. A) Initial configuration of the arena. The agent (Ag), target
(Tg), and obstacles (Ob) are shown as blue circle, red elongated
area, and black oval-like areas, respectively. Arrows mark their
velocities. B)-G) Sequential snapshots of the CNN state (the pattern
{rij(τ)}60i,j=1 is plotted). Interaction of the wave front (expanding
blue curve) with the objects generates an effective target and obstacles
(red [Eff Tg] and black [Eff Obs] filled areas, respectively). Virtual
positions of the target and obstacles are shown by contour shapes.
H) The potential field c represented by isolines provides CIR of
the considered dynamical situation. Blue arrowed curve shows the
shortest trajectory to the effective target and thus ensures interception
of the target moving in the arena avoiding collisions with obstacles.
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Simultaneously with the TMNN in the CNN a circular
wavefront is initiated at the agent’s location (Fig. 3B). Prop-
agation of the wavefront in the lattice mentally simulates all
possible positions of the agent at each moment in the virtual
future. Figures 3B-3G show sequential snapshots of the CNN
state. For τ = τ1 the first contact of the wavefront and one of
the (moving) obstacles occurs (Fig. 3B). This contact marks
the place where the agent would collide with the obstacle
if the corresponding trajectory were performed in the arena.
The cells of the CNN corresponding to those locations are
frozen, i.e. in the network (5) qi,j(τ) = 0 for τ ≥ τ1,
(i, j) ∈ ΩB , where ΩB is the set of wavefront-obstacles
collisions. ΩB constitutes an effective obstacle, i.e. a static
structure containing the critical spatiotemporal information
concerning potential collisions between the agent and the
obstacle (Fig. 3D, area filled in black). We note that in general
an effective obstacle has a shape different from the shape
of the corresponding real obstacle. Therefore the problem of
avoidance of moving obstacles in the arena is reduced to the
avoidance of static effective obstacles created in the mental
map.

In the same fashion interaction between the wavefront
and the (mobile and immobile) targets will produce effective
targets. Figures 3E-3G show how cells, where the wavefront
and the virtual target collide, are frozen by setting pi,j(τ) = 1
for τ ≥ τ4, (i, j) ∈ ΩT in the network (5), where ΩT is the
set of wavefront-targets collisions. Thus ΩT forms an effective
target (Fig. 3G, area filled in red). We note that in general
one target can create several effective targets (disjoin set ΩT ),
which enables different strategies for target catching.

In the region behind the wavefront passive diffusion (con-
trolled by the Heaviside term in (5)) creates a static potential
field c, which includes the agent position and the effective
obstacles and targets. This potential field, i.e. a 2D pattern
{rij}, is the CIR for the considered dynamic situation (Fig.
3H). This field can be used to draw possible trajectories from
the initial agent’s position to the effective targets by a gradient
descend method (in the simplest form: γj+1 = γj − ∇r).
Following such trajectories in the arena ensures avoiding
obstacles and catching the target.

Finally we note that the performance of CIR generation does
not depend on the complexity of the environment. It takes
about the same time to generate CIR of an empty arena and
CIR of a complex dynamic situation with numerous static and
moving objects (for more example see [41], [45]).

V. NETWORK ARCHITECTURE FOR COGNITIVE
NAVIGATION BASED ON CIR

Above we discussed how the CIR collapses the time dimen-
sion of a dynamic situation by mapping only critical events
(virtual collisions and effective targets) into a static cognitive
map. Therefore CIR of a dynamic situation is a static pattern
(i.e. an (n×n)-matrix (6), n = 60 in our experiments), which
can be learned, stored in memory, retrieved, compared, etc.
Thus we can easily manage different realistic experiences in
a fast and reliable manner. Earlier we discussed how such
cognitive abilities can be implemented in a neural network

[42]. Here we propose a closed-loop self-consistent neural
network architecture, which enables autonomous living.
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Fig. 4. Block-scheme architecture of a CIR-based cognitive robot.

Figure 4 shows the agent’s architecture. Cognition begins
with perception of a situation in which the agent is involved.
For this purpose in our experimental setup we use visual infor-
mation captured from a zenithal perspective of the arena. The
perceived situation after preprocessing (see Sect. II) is coded
in a vector s ∈ R6m consisting of positions, velocities, and
accelerations of all objects (m is the number of objects; s may
also include information on the shape of objects). The sensory
information s is then stored in a short term memory that
replicates it to the “conscious” and “subconscious” pathways.

The output of both pathways is a CIR, c. In general the
conscious pathway is reliable but slow, whereas the subcon-
scious one produces c much faster but its fitness depends
on the previous learning. By default the agent relies on the
subconscious pathway. The CIR c retrieved from the Long
Term Memory (LTM) is used for navigation (Fig. 4). The
standard gradient descent method (see Sect. IV) provides a
trajectory that, transformed in motor orders, permits the agent
to reach the target (Fig. 4, red curve in the arena). We note
that the execution may be also mental, i.e. no action is taken
in real world.

Next action is determined by the standard “trial and error”
approach in learning (see e.g. [46]). If the motor execution was
successful then we assume that the task was accomplished and
no further action is required. If the agent fails to safely reach
the target, then the process of learning is activated. Failure
may occur if the observed situation is significantly novel for
the agent and it has no adequate CIR stored in the LTM, or
due to the sensory uncertainty. As we shall show below the
LTM is robust again small uncertainties. Thus if the situation is
similar enough to one of the previously experienced scenarios,
then the LTM is capable of generating effective CIR and the
agent succeeds in catching the target.

The process of learning occurs offline, similarly to the
memory consolidation during sleep. The conscious pathway
produces reliable CIR, c, for a given sensory vector s (see
Sects. III and IV). This CIR is fed back into the subconscious
pathway, where a recurrent neural network (implementing
LTM) establishes associations between the sensory vector s
and the CIR c. This dynamical process takes place several
times until the experience will be learned. Then if the agent
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faces one of the learned situations (or one similar enough),
the subconscious pathway retrieves the corresponding CIR
in a fast and reliable way. We note that the LTM can be
preprogrammed for stereotypic experiences. Then the agent
could successfully deal with stereotypic situations from the
beginning.

A. Conscious pathway

The perception of a significantly novel (not learned) situa-
tion forces the agent to understand it by creating “consciously”
the corresponding CIR (Fig. 4, conscious pathway). This CIR
must be adequate, otherwise the agent will never learn how
to cope with the given situation. Thus we tested the quality
of CIRs created by the conscious pathway for real robot
navigation.

D E F

A B C

Fig. 5. Experimental navigation based on CIR provided by conscious
pathway for three different time-evolving situations S1, S2, and
S3. A)-C) Initial configurations for each dynamic situation. Arrows
indicate the initial velocities and directions of the objects in the arena.
D)-F) The corresponding CIRs created by the “conscious” pathway.
Blue curves show trajectories to the effective target without collisions
with the obstacles.

In order to illustrate the capability of CIR to represent
dynamic situations three different time-evolving environments
were considered (Figs. 5A-5C). The target is immobile in situ-
ation S1, whereas in situations S2 and S3 it moves in different
directions. In all three situations two obstacles cross the agent’s
path to the target. Zenithal camera captured 0.5s initial interval
of the evolution of the robots representing the obstacles and the
target. The initial conditions (sensory vector s) have been used
to mentally simulate the target’s and obstacles’ trajectories
(Sect. III). Finally this information served for generating CIR
as described in Sect. IV and illustrated in Fig. 3 for S2.

Figures 5D-5F show the CIRs for S1, S2, and S3, respec-
tively. Note the different shapes and locations of effective tar-
gets and obstacles reflecting distinct dynamical circumstances.
Blue pathways in Figs. 5D and 5F represent the shortest
trajectories solving the corresponding navigation problems
for situations S1 and S3, respectively. The CIR in Fig. 5E
(S2) admits two trajectories of about the same length. The
difference between them is the distinct collision risk to reach
the moving target. Nevertheless all trajectories in cognitive
maps shown in Figs. 5D-5F lead the agent to the target with no

collision against obstacles (experimental videos are available
at [45]). Thus the conscious pathway indeed provides correct
CIRs for dynamic situations.

B. Subconscious pathway

When the agent faces a familiar situation, the sensory in-
formation, s, passes through the subconscious pathway, which
retrieves the corresponding CIR, c, from the associative long
term memory (Fig. 4).

The general RNN introduced in Sect. III (Fig. 2A) can also
learn static patterns [43], [47], [48]. Since CIRs after all are
static matrices linked to specific initial sensory information the
same RNN but with higher number of neurons can implement
a suitable associative memory.

We shall call an experience the union of the initial sensory
information for a dynamic situation s ∈ R6m and the respec-
tive CIR c ∈Mn×n(R). We order each CIR into a 1D vector
c ∈ Rn2

. Then each experience is a composite vector

u = (c, s)T ∈ Rn2+6m (7)

simultaneously describing the situation and the corresponding
CIR. Finally the associative memory is a recurrent neural
network shown in Fig. 2A with (n2 + 6m) neurons. This
network first goes through the learning and then can be used
for retrieval of CIRs.

1) Learning phase: Learning phase (offline in general) is
implemented through sequential presentations to the RNN of
a set of M experiences {ui}Mi=1. At each learning step k the
network is exposed to one of the composite vectors ui and the
coupling matrix is updated according to

W (k + 1) = W (k)
(
I − εξ(k)ξT (k)

)
+ εξ(k)ξT (k) (8)

where ε is the learning rate and ξ(k) ∈ {ui}Mi=1 is an element
from the set of experiences. Earlier we have shown that there
exists ε∗ > 0 such that for 0 < ε < ε∗ the learning process
converges [43]:

W (u1, . . . , uM ) = lim
k→∞

W (k) (9)

The limit coupling matrix (9) is given in Ref. [42].
Theoretically the associative memory can store up to n2 +

6m experiences. We also note that the order of presentation
of experiences is not essential [43]. Thus different experiences
can be learned sequentially or in parallel.

2) Retrieval phase: Once the learning phase has been
finished the RNN can be used to associate new sensory
information sl with a CIR cl. The corresponding CIR appears
on the output of the RNN.

For convenience we split the coupling matrix (9) in four
blocks:

W =

(
Wc Wa

Wb Ws

)
(10)

where Wc ∈Mn2×n2 , Wa ∈Mn2×6m, Wb ∈M6m×n2 , and
Ws ∈M6m×n2 . We also represent the output of the RNN as
ζ(k) = (ζc(k), ζs)

T , where ζc ∈ Rn2

and ζs ∈ R6m are parts
corresponding to CIR and sensory information, respectively.
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During retrieval we present to the RNN (and maintain at
the input) the sensory part of one of the learned experiences.
Then the network activation is given by

ξ(k) = (0, 0, . . . , 0︸ ︷︷ ︸
n2

, sl)
T k ≥ 0

Consequently the last 6m neurons in the RNN have no
dynamics: ζs(k) = sl, k ≥ 0, while the others follow the
linear map:

ζc(k + 1) = Wcζc(k) +Wasl (11)

It has been proven that following this scheme the LTM
completes the missing part of ul [42] and hence retrieves the
CIR

cl = Asl (12)

where A = (I − Wc)
−1Wa. We note, that according to

(12) the subconscious pathway provides a CIR for any (even
completely novel) sensory information. However, if the agent
(matrices Wc and Wa) did not learned previously an adequate
experience, then the retrieved CIR may be useless.

VI. PERFORMANCE OF SUBCONSCIOUS PATHWAY

Success of navigation in dynamic situations depends on
the velocity and quality of CIR’s retrieval, and hence on the
performance of the associative long term memory.

A. Offline learning of experiences

To simulate the process of learning and retrieval we used the
three dynamic situations S1, S2, and S3 shown in Figs. 5A-
5C and the corresponding CIRs (Figs. 5D-5F) generated by
the conscious pathway. Then we composed three experience
vectors ui = (ci, si), i = 1, 2, 3 and presented them several
times to the subconscious pathway for offline learning (Fig.
4). After learning we examined how the agent solves the nav-
igation problem by presenting each one of the three dynamic
situations ξ(k) = (0, si) and checking the retrieved CIRs, ĉi.

Figure 6 illustrates the retrieval results for each dynamic
situation (columns) after 2, 6, 70, and 220 training cycles
(rows). Two learning cycles is insufficient for navigation, no
trajectory to the target can be traced. CIRs retrieved after 6
training cycles reveal mixtures of the conscious CIRs and
also cannot be used for tracing correct trajectories to the
target. Thus at the beginning of the training the agent tends to
confuse different experiences and as a consequence it cannot
successfully solve the navigation problem. Keeping training,
the quality of CIRs is refined (Fig. 6, Ntr = 70 cycles) and
after 220 training cycles the CIRs retrieved from the memory,
ĉi, are practically identical to the conscious CIRs, ci, (compare
Fig. 6, bottom row vs Figs. 5D-5F).

We notice that CIRs ĉ1 and ĉ3 were practically indis-
tinguishable for up to 70 training cycles. On the contrary
ĉ2 was clearly different starting from early stages of the
learning. This illustrates the main impact of the similarity
among experiences: at the beginning the agent tends to fuse
(and sometimes confuse) similar experiences and separate
different ones. Fine separation of similar situations requires
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retriev. Sretriev. S
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Fig. 6. Learning of experiences and retrieval of CIRs from the
subconscious pathway. Each experience, i.e. the sensory information
s1,2,3 and the CIRs c1,2,3 corresponding to the dynamic situations
S1,2,3 (Fig. 5), has been learned and then retrieved from the memory.
Rows correspond to retrieval after Ntr = 2, 6, 70 and 220 learning
cycles. At the beginning the quality of retrieved CIRs is insufficient
for navigation. The quality improves with training cycles and for
Ntr = 220 the CIRs retrieved from the memory are identical to
conscious CIRs (Fig. 5).

longer learning. However, it may not always be necessary, i.e.
single solution for similar problems may perfectly work.

Thus the learning of different experiences converges and
the subconscious pathway can finally provide real benefit.
Indeed, the “conscious” processing of a dynamic situation on a
standard PC implemented in Matlab R2011a lasts around 27 s,
while the subconscious pathway provides the same CIR in less
than 0.4 s, which is of order of the human reaction. We note
that these numbers can be significantly reduced (by several
orders of magnitude) by using parallel multicore calculations
(e.g. using CUDA with GPUs) or dedicated hardware imple-
mentation. In fact, the 60 × 60 lattice used in the conscious
pathway for creating CIRs has 3600 neurons. Evaluating their
dynamics in parallel enables up to 3600 folds acceleration. For
example, our FPGA implementation of the conscious pathway
provides CIRs in less than 0.25 s (i.e. about 100 folds faster
than on a PC) [49].

B. Dynamics of CIR retrieval

Let us now illustrate how the learned experiences are
retrieved from the associative memory. Each CIR can be
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considered as a point in a multidimensional space (c ∈ Rn2

).
Then the curse of dimensionality is the major obstacle for
establishing quantitative relations among different experiences.
For dimension reduction we used the standard Principal Com-
ponent Analysis (PCA) [50] applied to CIRs.

The first two principal components (PCs) captures the most
significant information in the set of three CIRs. Figure 7
illustrates the evolution of three CIRs c1,2,3(k) in the PC-space
during retrieval (see also Sect. V-B2). The retrieval always
starts from a blank CIR (Fig. 7, black point in the origin).
Then in one iteration CIRs jump into different corners of the
PC-space. The CIR c2(k) corresponding to S2 always stays far
a way from the other two along PC1 and converges rapidly
to c2. CIRs corresponding to the similar situations S1 and S3

approach each other at the beginning (dark blue points). Thus
at intermediate stage of the retrieval process (iteration k = 15)
the associative memory tends to return practically the same
CIRs for S1 and S3. A longer retrieval is required to separate
these experiences and to distinguish c1(k) and c3(k) properly
(red points, k ∈ [50, 60]). This insight together with the results
of the previous subsection show that both learning and retrieval
of CIRs for similar situations demand longer processing.
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Fig. 7. Dynamics of the CIR retrieval on the plane of first two
principal components (PCs). CIRs corresponding to experimental
situations S1,2,3 (Figs. 5A-5C) are retrieved from the associative
memory. Each retrieval iteration, k, is color coded. The retrieval
process starts at the blank CIR (k = 0) and converges (in k ≈ 60
iterations) to c1,2,3 (see also Figs. 5D-5F).

C. Robustness of associative long term memory
One of the major challenges in outdoor applications is the

inherent noise and uncertainty in the sensory information.
Then previously learned situation may not match exactly with
the perceived one, which may lead to drastic reduction of the
agent’s performance. Our architecture automatically accounts
for this problem and provides robust retrieval of CIRs.

We model the sensory uncertainty by adding white noise to
the i-th sensory vector (i = 1, 2, 3):

s̃i = si +Dχ (13)

where χ = (χ1, . . . , χ6m)T is a vector of random Gaussian
variables χj ∼ N (0, 1) and D is the noise intensity.
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Fig. 8. Robustness of the CIR retrieval under sensory noise. A)
Retrieval process as a mapping from the sensory-space into CIR-
space. B) Representative example of CIR-retrieval under sensory
noise. To reduce dimensions we applied PCA separately over sensory
and CIR vectors. Left. Sensory-space. Contour curves correspond
to confidence regions (most probable areas for sensory stimuli) for
different values of the noise intensity. Colors from red to blue code
the noise levels from low to high. For zero noise we have three points
corresponding to the noise-free sensory vectors s1,2,3 (Figs. 5A-5C).
Right. The same as left panel but in the CIR-space. CIRs are retrieved
by supplying noisy stimuli to the associative memory. c1,2,3 are CIRs
corresponding to the noise-free sensory vectors s1,2,3 (Figs. 5D-5F).

When a noisy sensory vector s̃i is perceived, the subcon-
scious pathway provides a CIR c̃i (Fig. 4), which does not
match exactly the learned noise-free CIR, ci. The associative
long term memory during the retrieval phase performs map-
ping of sensory stimuli into CIRs:

F : R6m → Rn2

s̃ 7→ c̃
(14)

where the application F is given by (12). In other words, the
RNN takes a vector from the sensory-space R6m and maps it
into the CIR-space Rn2

(Fig. 8A).
We note that the map F is Lipschitz continuous:

‖ĉ1 − ĉ2‖ ≤ ‖A‖‖ŝ1 − ŝ2‖

and hence it is uniformly continuous. Thus it is guaranteed that
ĉ1,2 can be as close to each other as we want by requiring only
that ŝ1,2 are sufficiently close to each other. We also note that
the CIRs retrieved under noise have no bias:

E[c̃i] = ci, i = 1, 2, 3

where ci are CIRs corresponding to the noise-free sensory
vectors si and E[·] is the expectation operator. The covariance
in the CIR-space is given by:

V = E[(c̃− ci)(c̃− ci)T ] = D2AAT
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Thus the standard deviation grows linearly with the intensity
of the sensory noise. This ensures robust retrieval of CIRs in
realistic conditions, i.e. situations similar enough to the learned
one will evoke CIRs similar to the learned one.

The eigenvalues and eigenvectors of the matrix AAT define
the clustering process of different experiences in the CIR-
space. To illustrate this we simulated sensory stimuli cor-
responding to the situations S1,2,3 perturbed by the noise
of different intensity (13). Figure 8B shows the sensory
information and retrieved CIRs on the planes of two principal
components.

Since the sensory noise is uncorrelated and normally dis-
tributed, in the PC representation of the sensory space (Fig.
8B, left) the confidence regions are superposition of covariance
circles. We notice that stimuli corresponding to s2 are well
separated from those corresponding to s1 and s3 along PC1
(see also Fig. 7). Besides, the distances ‖s2−s1‖ and ‖s2−s3‖
are the same. For strong enough noise (yellow to blue curves)
the sensory information corresponding to s2 and s3 (similar
situations) can be confused (contour curves overlap). In this
case we cannot distinguish either we observe S2 or S3, no
matter the level of learning we reached.

Similar situation is observed in the CIR-space (Fig. 8B,
right). At low enough sensory noise levels (red curves) CIRs
retrieved from the memory can be reliably related to the CIRs
c1-c3, corresponding to the noise-free sensory stimuli s1-s3.
Thus if the sensory system is capable of distinguishing sensory
stimuli then the memory provides correct CIRs. If the noise
level growth (yellow to green curves) the sensory system
starts confusing the situations S1 and S3 and consequently
the memory cannot provide correct CIRs. However, under
extremely strong noise (black curve) the stimulus s2 differs
from s1, s3 (Fig. 8B, left), while CIRs are mixed up (Fig.
8B, right). Nevertheless, this is expected given the complex
processing of the sensory information, which leads to certain
decrease in the signal to noise ratio.

There is another important difference between the sensory
and CIR spaces. We note that the pairwise distances ‖c2−c3‖
and ‖c2− c1‖ are different, i.e. the CIR c2 is closer to c3 than
to c1, although in the sensory space the corresponding stimuli
are equidistant (Fig. 8B, left vs right). Mathematically this is
due to nonorthogonal mapping of sensory stimuli to the CIR
space. From the behavioral view-point it is explained by the
fact that paths to the target for situations S2 and S3 can be
quite similar and differ significantly from the path in S1 (see
Figs. 5D-F). Thus our internal representation is not a simple
copy of the external world.

D. Experimental verification of cognitive navigation

Let us now present experimental results for the situations
shown in Figs. 5A-5C. Once the sensory information of a
specific situation has been processed and the corresponding
CIR and trajectories have been obtained, all robots simulating
the agent, target, and obstacles (Fig. 1B) are simultaneously
activated. For each situation zenithal camera captures the
trajectory executed by the agent to compare it with the pathway
obtained from the CIR (Figs. 5D-5F).

1) Conscious pathway: Figures 9A-9C show navigation in
the dynamic situations S1, S2, and S3, respectively. In all
situations the agent successfully caught the target and avoided
obstacles (see [45] for videos with robot experiments and
additional simulations). The reliability of this experimental
procedure is quantified by comparing theoretical and exper-
imental trajectories using the measure (4). We obtained the
mean deviation of trajectories 2.6% with the standard deviation
0.18% (n = 4).

Figures 9D shows statistical data for twelve experiments.
We quantified the minimal experimental distance from the
agent to the obstacles related to the agent’s size. This measure
describes the safeness of the agent’s movements. In average
the agent passes no closer than 1.5 agent’s size to the obstacles,
which is sufficient for most applications. The achievement of
the goal is quantified by the minimal distance between the
agent and the target. Note that the theoretical distance in this
case is equal to zero by construction. The most important
source of experimental variability in this measure is the error
in robots’ initial positions, orientations, and velocities in each
navigation experiment (see also Fig. 8). Nevertheless we
observe high level of success of cognitive navigation. The
average agent proximity to the target is below 30% of the
robot’s size, which is again acceptable for most of applications.
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Fig. 9. Robot navigation in dynamic situations. A)-C) Superimposed
sequence of snapshots (later frames are darker) for situations shown
in Fig. 5. Blue curves show theoretical trajectories and red curves
mark the robot pathways. D) Statistical measures of the navigation
performance. Two left bars represent means and standard deviations
for the minimal distance between the agent and the obstacles (trajec-
tory safeness). Two right bars correspond to the final distance to the
target (goal achievement). The distance is given in units relative to
the agent’s size.

2) Subconscious pathway: The subconscious processing
requires a proper learning of the experiences. Figure 10A
shows the CIR for the situation S1 retrieved from the memory
after 6 training cycles. Above we showed (Fig. 6) that the
CIR obtained at earlier stages of the learning provides fake
effective obstacles and targets. Indeed two trajectories obtained
from this CIR (Fig. 10A, blue lines) lead the agent to such a
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fictitious target, i.e. the agent fails to catch the target. Figure
10B shows experimental trajectories performed by the robot in
these conditions. In both cases the robot avoids the obstacles,
however, it does not reach the target staying in the right
bottom corner. In accordance with our numerical results, at
advanced learning stages (i.e. after 200 training cycles) the
robot retrieves from the memory high quality CIR and hence
follows correct trajectory leading to the target (Fig. 10C).

A B C

Fig. 10. Robot navigation using CIRs provided by the subconscious
pathway at different learning stages. A) CIR corresponding to the
situation S1 (Fig. 5) retrieved from the long term memory after 6
training cycles. The obtained trajectories (blue curves) lead to a fake
target. Red dashed curve shows correct trajectory corresponding to
a CIR retrieved after 200 learning cycles. B) Two trajectories (red
curves) performed by the robot to the fake target (6 learning cycles),
i.e. the robot failed to catch the target. C) The robot successfully
catches the target (200 learning cycles).

VII. DISCUSSION

Navigation in time-evolving environments requires anticipa-
tion of possible changes in the external world and appropriate
adaptation of the agent’s behavior. In general all agent’s strate-
gies can be separated in two classes: local and global. Local
strategies can be extremely useful when dealing with events
unpredictable in time and immediate in space. In turn, global
strategies offer significant benefits in predictable environments
and also can detect situation when no solution exists. This is
why, for example, an efficient capturing of a prey by a predator
requires global strategy combined with local rules.

In this work we studied the feasibility of cognitive naviga-
tion in realistic environments, based on our recently introduced
theoretical framework called Compact Internal Representa-
tion. CIR is a specific cognitive map, which provides global
solutions to dynamic situations. We have extended the concept
on situations with mobile targets. Then using CIR as a core
we have proposed a closed-loop neural network architecture
consisting of “conscious” and “subconscious” pathways for
efficient decision-making. Employing experiments with roving
robots and numerical simulations we have shown that the pro-
posed architecture provides the agent with cognitive abilities
and allows reliable and flexible navigation in realistic time-
evolving environments. We also have proven analytically that
the subconscious pathway is robust against uncertainty in the
sensory information.

The cognitive skills exhibited by our robot mimic navigation
abilities observed in animals and humans. On the one hand the
robot is able to understand consciously novel (either dynamic
or static) environments and decide on the best way to reach a
target or even to conclude whether the situation has a solution
or not. On the other hand the robot learns and memorizes

successful (in terms of safe target reaching) experiences. Then
if it faces a familiar situation (need not to be exactly the same),
the subconscious pathway quickly retrieves the previously
found successful solution. This functional flexibility provides
the robot with versatility critical for efficient navigation in
realistic complex environments. Our results also show that
internal representation of the external world is subjective. The
subconscious pathway transforms the sensory information in a
non-orthogonal way. Then according to our experience we may
perceive different situations as similar while similar situations
as different. Such “confusions” are widely known in many
psychological experiments.

A. CIR as a core for cognitive navigation. Global vs local
strategies

Traditional cognitive maps implicitly rely on the knowledge
of spatial structure of the environment. If the environment
changes, the agent must adjust the map. Therefore the adap-
tation of spatial relationships is local in time [28]. Such
flexibility is far from the global anticipating behavior observed
in animals and humans [35]. The CIR theory revisits the
concept of cognitive maps and offers global perspective for
description of dynamic situations.

The most challenging issue is how to code time-evolving
situations and agent’s reactions in a neural structure. CIR
offers an elegant solution to this problem [41]. On the one hand
CIR generalizes spatial relationships by constructing static
objects from spatiotemporal elements in the environment. On
the other hand traditional cognitive maps are goal-independent
[16]. However, different goals (targets) can coexist and CIR
provides the agent with the required goal-flexible information.

Thus the CIR theory implicitly introduces an operational
definition for global cognitive navigation in dynamic environ-
ments based on generalized cognitive maps. Such maps permit
the agent to understand the situation in terms of identification
of dangerous and desirable spatiotemporal regions.

B. Architecture of the cognitive neural network

The proposed neural network architecture has been inspired
by the functional structure of evolved mammalian brain. Ex-
perimental insights show that processing of novel and familiar
tasks involves different brain areas [51], [52]. When a task
is successfully performed the obtained skill is refined and
memorized by the subject.

In a similar way our neural network includes two different
pathways linked in a closed loop through a block testing the
solution success. If the robot is involved in a novel situation
and the subconscious pathway cannot provide an effective
solution, then the conscious pathway, made of Trajectory
Modeling and Causal Neural Networks, generates new CIR.
This process involves relatively long-lasting computations as
it also happens with subjects solving novel tasks. Then suc-
cessful solutions pass to the subconscious pathway, where an
associative long term memory learns them. This is facilitated
by the fact that CIRs are static cognitive maps, i.e. constant
matrices or vectors.
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C. Experimental assessment
Our experimental setup reproduces the essence of prototypic

situations observed in Nature: a cognitive agent pursues a
moving target and avoids moving obstacles. Nevertheless we
made several assumptions.

1. The robot moves in the arena with constant velocity.
This restriction, however, is not a strong pitfall of the concept.
Indeed, living beings usually run with constant velocity (slow,
moderate or fast) optimal from e.g. the energy consumption
viewpoint. Strong alteration may happen when the agent
accidentally realizes that the selected strategy must be cor-
rected. Such changes are local in time and space and can be
implemented through one of the local navigation rules already
existing in the literature.

2. The CIR concept provides global solutions, i.e. the robot
can detect situations with no path to the target (for examples
see [41], [45]) or solution may be too dangerous. Then the
robot could wait until the situation changes. This, however,
adds unnecessary complexity to the setup. Thus we designed
experiments in such a way that an acceptable solution always
exists and the robot immediately starts moving to the target.

3. The experiments here presented concern indoor naviga-
tion, i.e. light conditions, perspective of the visual acquisition,
and camera vibrations are controlled. Outdoor navigation
introduces uncertainty into the visual information. Then per-
ceived situation may not match with the previously learned.
To account for this possibility we have shown theoretically
that the approach is robust against sensory noise.

D. Performance of the approach
In this work we have tested several critical parts of the

robot’s architecture. We have shown that:
1. The neural network responsible for predicting trajectories

reaches high fidelity (about 99.9%) in less than 50 training
cycles. We note that this network is universal, i.e. once it has
been trained there is no need for further adjustment.

2. CIRs provided by the conscious pathway faithfully de-
scribe dynamic situations and the robot always catches a
target and avoids obstacles. On its path to the target the robot
may deviate from the given trajectory by 2.6% (std= 0.18%,
n = 4). The mean shortest distance to the obstacles and to the
target is about 150% and 30% of the agent’s size, respectively,
which is acceptable for most applications.

3. The subconscious pathway requires about 200 offline
training cycles to learn completely three similar but different
dynamic situations.

4. On a standard PC (Matlab R2011a) the conscious and
subconscious pathways provide CIR in about 27 s and 0.4
s, respectively. The latter time is of the order of human
reaction. These numbers can be reduced by several orders
of magnitude using hardware implementation. For example,
FPGA implementation of the conscious pathway provides
CIRs in less than 0.25 s, i.e. about 100 folds faster than PC
[49]. We also note that the performance is independent on the
number of obstacles and targets in the arena.

5. The subconscious pathway is robust against sensory
noise. The noise impact grows no more than linearly with
the noise level.

E. Strengths of the novel architecture

The proposed approach for cognitive navigation by design
possesses several inherit strength points:

1. Generation of CIRs is universal. It takes the same time to
generate CIR of an empty arena and CIR of a crowd dynamic
situation.

2. Fast and efficient navigation. The proposed architecture
simulates decision-making in living beings. Navigation in
familiar environments is “subconscious”, i.e. no heavy com-
putation is required.

3. Offline learning of typical experiences. Similar to the
memory consolidation during sleep, our agent learns success-
fully solved situations offline (no motor execution is required).
It is possible since the learning is independent on the sequence
of items to be learned. Moreover, robots have a potential
advantage over living beings. They can be preprogramed, i.e.
the memory matrix W [Eq. (8)] can be initialized either with
zeros (tabula rasa) or with certain values (experiences learned
by other robots). Then such a preprogramed robot during its
life will learn only novel scenarios.

4. Robustness against sensory noise. The architecture allows
only linear impact of noise on the quality of CIRs. For
moderate noise level the robot correctly retrieves CIRs from
the memory and solves familiar situations.
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