
ANOTHER PROOF FOR THE PRESENTATION OF THE QUANTUM
COHOMOLOGY OF THE MODULI OF BUNDLES OVER A RIEMANN

SURFACE

VICENTE MUÑOZ

Abstract. The presentation of the quantum cohomology of the moduli space of stable
vector bundles of rank two and odd degree with fixed determinant over a Riemann surface
of genus g > 2 is obtained. The argument avoids the use of gauge theory, providing an
alternative proof to the one given in [1].

Let Σ = Σg be a closed Riemann surface of genus g > 2 and let MΣ be the moduli
space of rank 2 holomorphic stable vector bundles E with detE = Λ, where Λ is a fixed
line bundle of odd degree over Σ. In [1] a presentation of the quantum cohomology ring
QH∗(MΣ) of MΣ was given by using the relationship of the Gromov-Witten invariants of
MΣ with some Donaldson invariants of the 4-manifold Σ× S2. In this way, the knowledge
of the instanton Floer homology of the 3-manifold Σ× S1 gathered in [2] allowed us to find
the presentation of QH∗(MΣ).

It is the purpose of this note to give a purely algebro-geometrical argument to get the
presentation of QH∗(MΣ), avoiding any reference to the material in [2]. This provides a
method which does not use gauge theory and does not require any knowledge of Donaldson
invariants. It originated in a question asked to the author by Bernd Siebert (see also [3,
section 3]). We shall follow those arguments in [1] which are algebro-geometrical and give
alternative proofs wherever any reference to [2] is given.

By [1] the quantum cohomology QH∗(MΣ) is generated by elements α, β and ψ1, . . . , ψ2g,
canonically associated to elements in the homology of Σ. Here degα = 2, deg β = 4 and
degψi = 3. There is an action of the symplectic group Sp (2g,Z) on QH∗(MΣ) acting on
{ψi}1≤i≤2g in the standard way (and trivially on α and β). The element γ = −2

∑g
i=1 ψiψg+i

is invariant under Sp (2g,Z). The starting point is the following result

Proposition 1. ([1, proposition 10]) The Sp (2g,Z)-decomposition of QH∗(MΣ) is

QH∗(MΣ) =
g−1⊕
k=0

Λk
0H

3 ⊗ Q[α, β, γ]
(Q1

g−k, Q
2
g−k, Q

3
g−k)
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where Qi
r are defined recursively by setting Q1

0 = 1, Q2
0 = 0, Q3

0 = 0 and, for 0 ≤ r ≤ g− 1,
by 

Q1
r+1 = αQ1

r + r2Q2
r

Q2
r+1 = (β + cr+1)Q1

r + 2r
r+1Q

3
r

Q3
r+1 = γQ1

r

for some numbers cr ∈ Q, 1 ≤ r ≤ g, dependent on g and r. 2

Here H3 =< ψ1, . . . , ψ2g > and Λk
0H

3 is the irreducible sub-Sp (2g,Z)-representation of
ΛkH3 with dominant vector ψ1 · · ·ψk. The recurrence in [1, proposition 18] is stated with
Q3

r+1 = γQ1
r +dr+1Q

2
r , for some dr+1 ∈ Q. But this number dr+1 = 0, since by [1, lemma 17]

we have γJr ⊂ Jr+1, where Jr = (Q1
r , Q

2
r , Q

3
r). So γQ1

r ∈ Jr+1 and this forces Q3
r+1 = γQ1

r .

The purpose of this paper is to give an alternative proof (avoiding the use of gauge
theory) of the following result

Theorem 2. ([1, proposition 19]) We have cr = (−1)g+r8, for 1 ≤ r ≤ g.

In order to get cr we need to use the Gromov-Witten invariants of degree 1 computed in
[1] by purely algebro-geometrical methods. More concretely, let A be the positive generator
of π2(MΣ) = Z and let A(Σ) = Q[α, β]⊗Λ∗(ψ1, · · · , ψ2g) be the free graded algebra on the
elements α, β and ψi, 1 ≤ i ≤ 2g. Then we have

Lemma 3. ([1, lemma 10]) Let αaβbψi1 · · ·ψir ∈ A(Σ) have degree 6g − 2 where g ≥ 3.
Then the Gromov-Witten invariant of MΣ of degree one is

ΨMΣ
A (α, (a). . ., α, β, (b). . ., β, ψi1 , . . . , ψir) = 〈(4ω +X)a(X2)bφi1 · · ·φirX

r, [J ]〉, (1)

evaluated on the Jacobian J of Σ, where X2g−1+i = (−8)i

i! ωi ∈ H∗(J). 2

Here {φi} is a standard symplectic basis of H1(J) canonically associated to {ψi} and
ω =

∑g
i=1 φi ∧ φg+i is the volume form for the Jacobian.

We write for any z = αaβbψi1 · · ·ψir ∈ A(Σ) of degree 6g − 6 + 4d, d ≥ 0,

〈αaβbψi1 · · ·ψir〉g,d = ΨMΣ
dA (α, (a). . ., α, β, (b). . ., β, ψi1 , . . . , ψir),

and extend the definition to any homogeneous element of A(Σ) by linearity. Note that 〈 〉g,0

is evaluation of an element in H∗(MΣ) of degree 6g − 6 against the fundamental class. As
a corollary of lemma 3 we get that 〈ψgψ2gz〉g,1 = 〈z〉g−1,1, for any z ∈ A(Σg−1) of degree
6g − 8, where A(Σg−1) = Q[α, β]⊗ Λ∗(ψ1, . . . ψg−1, ψg+1, . . . , ψ2g) ⊂ A(Σ). This is true for
any g ≥ 4. To have a similar statement for any genus, we define 〈αaβbψi1 · · ·ψir〉g,1 as the
right hand side of (1) for any g ≥ 1. Therefore 〈ψgψ2gz〉g,1 = 〈z〉g−1,1, for any g ≥ 2 and
any z of degree 6g−8. Note that 〈ψgψ2gz〉g,0 = −〈z〉g−1,0, for z ∈ A(Σg−1) of degree 6g−12
and any g ≥ 2 (see [5]).

From proposition 1, we may write an iterative formula for Qr = Q1
r as follows:

Qr+1 = αQr + r2(β + cr)Qr−1 + 2r(r − 1)γQr−2,
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for 0 ≤ r ≤ g− 1. Write Qr = qr +Cr + · · · , where qr is the leading term and Cr is the first
quantum correction. Therefore qr satisfies the recursive relation

qr+1 = αqr + r2βqr−1 + 2r(r − 1)γqr−2 (2)

with q0 = 1, and Cr satisfies the recursive relation

Cr+1 = αCr + r2βCr−1 + 2r(r − 1)γCr−2 + r2crqr−1 (3)

with C0 = 0. The fact thatQr is a relation for a suitable piece of the Sp (2g,Z)-decomposition
of QH∗(MΣ) given in proposition 1 implies that

ψg−k+1 · · ·ψgQg−k+1 = 0

as a quantum product in QH∗(MΣ). Multiplying by βg−k−1 and ψ2g−k+1 · · ·ψ2g we have
an element of degree 6g − 2,

ψg−k+1ψ2g−k+1 · · ·ψgψ2gQg−k+1β
g−k−1 = 0.

This implies

(−1)k〈Cg−k+1β
g−k−1〉g−k,0 + 〈qg−k+1β

g−k−1〉g−k,1 = 0, (4)

for any 0 ≤ k ≤ g − 1.

Recall that βg = 0 and βg−1γ = 0 in H∗(MΣ), by [5, page 148], so in (4) we only need
Cg−k+1 modulo β and γ. By the recursive relation (2), qr = αr (mod β, γ) and by (3),

Cg−k+1 =
g−k∑
r=1

r2crα
g−k−1 (mod β, γ), (5)

for g − k + 1 ≥ 2. Now recall that

〈αg−k−1βg−k−1〉g−k,0 = (−1)g−k−14g−k−1(g − k − 1)! (6)

again by [5]. Finally we need

Proposition 4. We have 〈qg+1β
g−1〉g,1 = (−1)g4g(g + 1)!, for any g ≥ 1.

Proof. By lemma 3 we need to evaluate qg+1(4ω+X,X2,−2ωX2)X2g−2, where X2g−1+i =
(−8ω)i

i! , on the Jacobian J (this holds for g ≥ 3, and for g = 1, 2 by the convention above).
Since this expression is homogeneous, it equals

ωg 1
X
qg+1(4 +X,X2,−2X2)

under the substitution Xi 7→ (−8)i

i! . Make the change of variable X = −8Y , so we want to
compute

g!
1
−8Y

qg+1(4− 8Y, 64Y 2,−128Y 2) =
(
g!

1
−8

4g+1

)
1
Y
qg+1(1− 2Y, 4Y 2,−2Y 2),

where Y i 7→ 1
i! . This is the residue

Resz=0

(
−22g−1g!

qg+1(1− 2z, 4z2,−2z2)
z2

e1/z

)
. (7)
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Define the generating function for qg as (see [4])

F (t) =
∞∑

g=0

qg
g!
tg.

The recursion relation (2) gives

F ′ = αF + βt2F ′ + βtF + 2γt2F,

which yields (see [4, proposition 2.5])

F ′

F
=
α+ βt+ 2γt2

1− βt2
.

Substituting α = 1− 2z, β = 4z2 and γ = −2z2 we get

F ′

F
=

1− 2z + 4z2t− 4z2t2

1− 4z2t2
= 1− 2z

1 + 2zt
,

from where we deduce (recalling that F (0) = 1)

F (t) =
et

1 + 2zt
.

Now we compute

Resz=0(
F (t)
z2

e1/z) = −Resz=−1/2t(
F (t)
z2

e1/z) = − 1
2t
· et

1/4t2
e−2t = −2te−t.

In this expression, the coefficient of tg+1 is −2(−1)g/g!, so (7) equates to

22g−1g!(−1)g2(g + 1) = (−1)g4g(g + 1)!

�

With this proposition together with (5) and (6), we get that (4) reduces to

(−1)k
g−k∑
r=1

r2cr(−1)g−k−14g−k−1(g − k − 1)! + (−1)g−k4g−k(g − k + 1)! = 0.

for g − k ≥ 1. This gives

g−k∑
r=1

r2cr = (−1)k4(g − k + 1)(g − k) = (−1)k8
(
g − k + 1

2

)
,

which solves to cr = (−1)g+r8, 1 ≤ r ≤ g.
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