ANOTHER PROOF FOR THE PRESENTATION OF THE QUANTUM
COHOMOLOGY OF THE MODULI OF BUNDLES OVER A RIEMANN
SURFACE

VICENTE MUNOZ

ABSTRACT. The presentation of the quantum cohomology of the moduli space of stable
vector bundles of rank two and odd degree with fixed determinant over a Riemann surface
of genus g > 2 is obtained. The argument avoids the use of gauge theory, providing an
alternative proof to the one given in [1].

Let ¥ = ¥, be a closed Riemann surface of genus g > 2 and let My be the moduli
space of rank 2 holomorphic stable vector bundles E with det £ = A, where A is a fixed
line bundle of odd degree over ¥. In [1] a presentation of the quantum cohomology ring
QH*(My) of My, was given by using the relationship of the Gromov-Witten invariants of
My with some Donaldson invariants of the 4-manifold ¥ x S2. In this way, the knowledge
of the instanton Floer homology of the 3-manifold ¥ x S! gathered in [2] allowed us to find
the presentation of QH™*(My).

It is the purpose of this note to give a purely algebro-geometrical argument to get the
presentation of QH*(Msy), avoiding any reference to the material in [2]. This provides a
method which does not use gauge theory and does not require any knowledge of Donaldson
invariants. It originated in a question asked to the author by Bernd Siebert (see also [3,
section 3]). We shall follow those arguments in [1] which are algebro-geometrical and give
alternative proofs wherever any reference to [2] is given.

By [1] the quantum cohomology QH*(My;) is generated by elements a, 5 and 11, ... , g,
canonically associated to elements in the homology of 3. Here dega = 2, deg 8 = 4 and
deg1; = 3. There is an action of the symplectic group Sp (2¢g,Z) on QH*(My) acting on
{ti }1<i<24 in the standard way (and trivially on « and 3). The element v = =239 | ¥it)g4;
is invariant under Sp (2¢,Z). The starting point is the following result

Proposition 1. ([1, proposition 10]) The Sp(2g,Z)-decomposition of QH*(My) is

Qla, 3,71
Q;_kv Qg_ka Qg_k)

g—1
QH*(My) = P AH? (
k=0
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where Q¢ are defined recursively by setting Q} =1, Q3 =0, Q3 =0 and, for0 <r < g-—1,
by
é-‘,—l = aQ; + 7“2Q72~1 )
r1= (8 "1" 1)@ + T_Trng
Q1§+1 = VQT

for some numbers ¢, € Q, 1 <r < g, dependent on g and r. O

Here H3 =< 11, . .. , 2y > and A§H3 is the irreducible sub-Sp (2g, Z)-representation of
A*H? with dominant vector 1 - - - ¢;. The recurrence in [1, proposition 18] is stated with

§+1 =vQL+d,11Q?, for some d, 1 € Q. But this number d,.;; = 0, since by [1, lemma 17]
we have v.J, C Jy11, where J, = (QL,Q?,Q3). So vQ! € J, 11 and this forces Q;?_H = Q!

The purpose of this paper is to give an alternative proof (avoiding the use of gauge
theory) of the following result

Theorem 2. ([1, proposition 19]) We have ¢, = (—1)97"8, for 1 <r < g.

In order to get ¢, we need to use the Gromov-Witten invariants of degree 1 computed in
[1] by purely algebro-geometrical methods. More concretely, let A be the positive generator
of mo(Msy) = Z and let A(X) = Q[a, 5] @ A* (41, - - ,124) be the free graded algebra on the
elements «, B and ¥;, 1 <1¢ < 2g. Then we have

Lemma 3. ([1, lemma 10]) Let a®B%;, -+, € A(X) have degree 6g — 2 where g > 3.
Then the Gromouv-Witten invariant of My, of degree one is

A= (o, D a, 8,0 8,0, i) = (dw + X)X i, - i X7, [T]), (1)

evaluated on the Jacobian J of ¥, where X971+ = (%;f)iw" € H*(J). O
Here {¢;} is a standard symplectic basis of H'(J) canonically associated to {1;} and
w =371 ¢i A pgyi is the volume form for the Jacobian.

We write for any z = a®3%;, - --1;, € A(X) of degree 6g — 6 + 4d, d > 0,

<aa/8bwi1 o ‘wi,-)_q,d = W%E(aa '((‘l)'aaaﬁu '(?)'767wi17 v 7¢i7»)7

and extend the definition to any homogeneous element of A(X) by linearity. Note that ()40
is evaluation of an element in H*(My) of degree 69 — 6 against the fundamental class. As
a corollary of lemma 3 we get that (Yg19g2)g1 = (2)g—1,1, for any z € A(X,_1) of degree
6g — 8, where A(X,_1) = Qloy, B] @ A* (W1, .. . Pg—1,Vg11, ... ,2g) C A(X). This is true for
any g > 4. To have a similar statement for any genus, we define (a®(%;, - --1); ) g,1 as the
right hand side of (1) for any g > 1. Therefore (gtb292)g1 = (2)g—1,1, for any g > 2 and
any z of degree 6g—8. Note that (1g1242)g.0 = —(2)g—1,0, for z € A(X,_1) of degree 6g—12
and any g > 2 (see [5]).

From proposition 1, we may write an iterative formula for @, = Q! as follows:

Qri1 = aQr + TQ(ﬂ + CT)QT—I + 2T(T - 1)7@7‘—%
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for 0 <r < g-—1. Write Q, = ¢ + Cy + - - -, where ¢, is the leading term and C, is the first
quantum correction. Therefore ¢, satisfies the recursive relation

Grs1 = gy + 12 Bgr—1 + 2r(r — 1)yg,—2 (2)
with gg = 1, and C). satisfies the recursive relation
Cry1=aCy + 7“2607'71 + 27”(7" - 1)')’07'72 + 7"2671%'71 (3)

with Cy = 0. The fact that @, is a relation for a suitable piece of the Sp (2g, Z)-decomposition
of QH*(Msy) given in proposition 1 implies that

Vgt YgQqis1 =0

as a quantum product in QH*(My). Multiplying by 397*~1 and Yog—k+1 -+ 2y We have
an element of degree 6g — 2,

Vg rr1¥2g— k1 Vgth2gQy— k4139 1 = 0.
This implies
(=1)"(Cort187 " g ko + (dg-r118" gp1 =0, (4)
forany 0 <k <g-—1.

Recall that 39 = 0 and 39!y = 0 in H*(Ms), by [5, page 148], so in (4) we only need
Cy—k+1 modulo 8 and 7. By the recursive relation (2), ¢, = o (mod 3,v) and by (3),

g—k
Cygra1 =Y _rca? 1 (mod B,7), (5)
r=1

for g — k+ 1 > 2. Now recall that

(0951 B9H g g = (~1) a9k (g - 1) (6)
again by [5]. Finally we need
Proposition 4. We have (q;1139 1) g1 = (—1)949(g + 1)!, for any g > 1.

Proof. By lemma 3 we need to evaluate gg+1(dw + X, X2, —2wX?) X292 where X291+ =
(73‘“)1, on the Jacobian J (this holds for g > 3, and for g = 1,2 by the convention above).

Since this expression is homogeneous, it equals

1
Wi ggi1(4+ X, X%, —2X7)

under the substitution X* — —(f)i. Make the change of variable X = —8Y, so we want to
compute
L 2 2 1 o) ! 2 2
9 gy do+1(4 = 8Y, 647, —128Y7) = { g —od9™ | 7qg41(1 — 2V, 4Y7, -2V,

where Y — 71, This is the residue

1—22,422 —222
Res.—g (—22919!qg+1( =2 TR )el/z> . (7)

22
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Define the generating function for ¢, as (see [4])
o~ 4
= 2949
P(t)=)Y p 9.
g=0
The recursion relation (2) gives
F' = aF + Bt*F' + BtF + 2+t*F,
which yields (see [4, proposition 2.5])

F' a4 B4 29
F  1-0t2

Substituting o = 1 — 22, 3 = 42% and v = —22? we get

F' 1 — 224422 — 42212 ) 2z

F 1— 42212 T 1422t

from where we deduce (recalling that F'(0) = 1)

t

e
F(t) = .
®) 14 22t
Now we compute
F(t) 4 F(t) 4 1 ey —t
Resz:0(7e /2y = —Res,—_1/x( o /2y = 5 1/4t2€ = —2te”".

In this expression, the coefficient of 971 is —2(—1)9/g!, so (7) equates to

220-1g1(~1)92(g + 1) = (~1)%47(g + 1!

With this proposition together with (5) and (6), we get that (4) reduces to

.
(—1)F 37 ey (~1)a R aa R (g = 1) (1) R g — e+ 1) =0,
=1

<

for g — k > 1. This gives

_ _ g—k+1
P = (DM - b+ 1l -0 = (0fs(Y T,

which solves to ¢, = (=1)9778, 1 <r < g.
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