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Abstract

We show some examples of compact symplectic solvmanifolds, of dimension greather
than four, which are cohomologically Kähler and do not admit Kähler metric since their
fundamental groups cannot be the fundamental group of any compact Kähler manifold [8].
Some of the examples that we study were considered by Benson and Gordon in [7]. However
whether such manifolds have Kähler metrics was an open question. The formality and the
hard Lefschetz property are studied for the symplectic submanifolds constructed by Auroux
in [4] and some consequences are discussed.

1 Introduction

A symplectic manifold (M,ω) is a pair consisting of a 2n–dimensional differentiable manifold M
together with a closed 2–form ω which is non-degenerate (that is, ωn never vanishes). The form
ω is called symplectic. By the Darboux theorem, in canonical coordinates, ω can be expressed

as ω =
n∑
i=1

dxi ∧ dxn+i.

Any symplectic manifold (M,ω) carries an almost complex structure J compatible with the
symplectic form ω, which means that ω(X,Y ) = ω(JX, JY ) for any X, Y vector fields on
M (see [21, 23]). If (M,ω) has an integrable almost complex structure J compatible with the
symplectic form ω, such that the Riemannian metric g given by g(X,Y ) = −ω(JX, Y ) is positive
definite, then (M,ω, J) is said to be a Kähler manifold with Kähler metric g.

The problem of how compact symplectic manifolds differ topologically from Kähler manifolds
led during the last years to the introduction of several geometric methods for constructing
symplectic manifolds (see [6, 9, 15, 20, 22]). The symplectic manifolds there presented do not
admit a Kähler metric since either they are not formal or do not satisfy hard Lefschetz theorem,
or they fail both properties of compact Kähler manifolds.

The purpose of this note is to show that the formality and the hard Lefschetz property of any
compact symplectic manifold M are not sufficient conditions to imply the existence of a Kähler
metric on M . We describe three families of compact symplectic solvmanifolds M6(c), P 6(c) and
N6(c) of dimension 6, and a family of compact symplectic solvmanifolds N8(c) of dimension 8,
each of which is formal and satisfies the hard Lefschetz property. Thus, they are cohomologically
Kähler, their odd Betti numbers are even (see [19]) and their even Betti numbers are nonzero.

In [12] there are given examples of 4–dimensional compact symplectic manifolds which are
cohomologically Kähler but which do not possess complex structures, so admit no Kähler metrics.
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This is done by appealing to classification theorems of Kodaira and Yau that are specific to
complex dimension 2.

In our case we resort, in Section 3, to the properties of the fundamental group of a compact
Kähler manifold given by Campana in [8] to show that none of the manifolds M6(c), N6(c),
P 6(c) and N8(c) admit Kähler metrics (see Theorem 3.2 and Theorem 3.3). A similar technique
was used in [14] to prove the existence of 4–dimensional Donaldson symplectic submanifolds with
no complex structures. The manifolds N6(c) as well as the manifolds P 6(c) were considered in
[7]. There, Benson and Gordon show that they are cohomologically Kähler. However, whether
or not they have a Kähler metric was an open question.

On the other hand, in Section 4, we study the formality and the hard Lefschetz property for
the symplectic submanifolds obtained by Auroux in [4] as an extension to higher rank bundles
of the symplectic submanifolds constructed by Donaldson in [11]. Let (M,ω) be a compact
symplectic manifold of dimension 2n with [ω] ∈ H2(M) having a lift to an integral cohomology
class, and let E be any hermitian vector bundle over M of rank r. In [4] Auroux proves the
existence of some integer number k0 such that for any k ≥ k0 there is a symplectic submanifold
Zr ↪→ M of dimension 2(n − r) whose homology class realizes the Poincaré dual of kr[ω]r +
kr−1c1(E)[ω]r−1 + . . .+ cr(E), where ci(E) denotes the ith Chern class of the vector bundle E.
For such manifolds the inclusion j:Zr ↪→M induces on cohomology:

• an isomorphism j∗:H i(M)→ H i(Zr) for i < n− r;

• a monomorphism j∗:H i(M) ↪→ H i(Zr) for i = n− r.

As a consequence of this study, we get some examples of Auroux symplectic submanifolds (in
particular, non-parallelizable manifolds) of dimension 6 which are formal and hard Lefschetz,
but which do not carry Kähler metrics.

2 Formal manifolds

First, we need some definitions and results about minimal models. Let (A, d) be a differential
algebra, that is, A is a graded commutative algebra over the real numbers, with a differential d
which is a derivation, i.e. d(a · b) = (da) · b+ (−1)deg(a)a · (db), where deg(a) is the degree of a.

A differential algebra (A, d) is said to be minimal if:

(i) A is free as an algebra, that is, A is the free algebra
∧
V over a graded vector space

V = ⊕V i, and

(ii) there exists a collection of generators {aτ , τ ∈ I}, for some well ordered index set I, such
that deg(aµ) ≤ deg(aτ ) if µ < τ and each daτ is expressed in terms of preceding aµ (µ < τ).
This implies that daτ does not have a linear part, i.e., it lives in

∧
V >0 ·

∧
V >0 ⊂

∧
V .

Morphisms between differential algebras are required to be degree preserving algebra maps
which commute with the differentials. Given a differential algebra (A, d), we denote by H∗(A) its
cohomology. A is connected if H0(A) = R, and A is one–connected if, in addition, H1(A) = 0.

We shall say that (M, d) is a minimal model of the differential algebra (A, d) if (M, d)
is minimal and there exists a morphism of differential graded algebras ρ: (M, d) −→ (A, d)
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inducing an isomorphism ρ∗:H∗(M) −→ H∗(A) on cohomology. Halperin in [17] proved that
any connected differential algebra (A, d) has a minimal model unique up to isomorphism.

A minimal model (M, d) is said to be formal if there is a morphism of differential algebras
ψ: (M, d) −→ (H∗(M), d = 0) that induces the identity on cohomology. The formality of a
minimal model can be distinguished as follows.

Theorem 2.1 [10]. A minimal model (M, d) is formal if and only if we can write M =
∧
V

and the space V decomposes as a direct sum V = C ⊕N with d(C) = 0, d is injective on N and
such that every closed element in the ideal I(N) generated by N in

∧
V is exact.

A minimal model of a connected differentiable manifold M is a minimal model (
∧
V, d) for

the de Rham complex (ΩM,d) of differential forms on M . If M is a simply connected manifold,
the dual of the real homotopy vector space πi(M)⊗R is isomorphic to V i for any i. We shall say
that M is formal if its minimal model is formal or, equivalently, the differential algebras (ΩM,d)
and (H∗(M), d = 0) have the same minimal model. (For details see [10, 16] for example.)

In [14] the condition of formal manifold is weaken to s–formal manifold as follows.

Definition 2.2 Let (M, d) be a minimal model of a differentiable manifold M . We say that
(M, d) is s–formal, or M is a s–formal manifold (s ≥ 0) if we can write M =

∧
V such that

for each i ≤ s the space V i of generators of degree i decomposes as a direct sum V i = Ci ⊕N i,
where the spaces Ci and N i satisfy the three following conditions:

(i) d(Ci) = 0,

(ii) the differential map d:N i −→
∧
V is injective,

(iii) any closed element in the ideal Is = Is(
⊕
i≤s

N i), generated by
⊕
i≤s

N i in
∧

(
⊕
i≤s

V i), is exact

in
∧
V .

The relation between the formality and the s–formality for a manifold is given in the following
theorem.

Theorem 2.3 [14]. Let M be a connected and orientable compact differentiable manifold of
dimension 2n, or (2n− 1). Then M is formal if and only if is (n− 1)–formal.

3 Formal and hard Lefschetz symplectic manifolds with no Kähler

metric

In this section we show the existence of compact symplectic manifolds of dimension > 4, not
admitting Kähler metrics even when they are formal and hard Lefschetz.
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Example 1 The manifolds M6(c) [1] . Let G(c) be the connected completely solvable Lie
group of dimension 5 consisting of matrices of the form

a =



ecz 0 0 0 0 x1

0 e−cz 0 0 0 y1

0 0 ecz 0 0 x2

0 0 0 e−cz 0 y2

0 0 0 0 1 z

0 0 0 0 0 1


,

where xi, yi, z ∈ R (i = 1, 2) and c is a real number different from zero. Then a global system
of coordinates x1, y1, x2, y2, z for G(c) is given by xi(a) = xi, yi(a) = yi, z(a) = z. A standard
calculation shows that a basis for the right invariant 1–forms on G(c) consists of

{dx1 − cx1dz, dy1 + cy1dz, dx2 − cx2dz, dy2 + cy2dz, dz}.

Alternatively, the Lie group G(c) may be described as a semidirect product G(c) = R nψ R4,
where ψ(z) is the linear transformation of R4 given by the matrix

ecz 0 0 0
0 e−cz 0 0
0 0 ecz 0
0 0 0 e−cz

 ,

for any z ∈ R. Thus, G(c) has a discrete subgroup Γ(c) = Z nψ Z4 such that the quotient space
Γ(c)\G(c) is compact. Therefore the forms dxi − cxidz, dyi + cyidz, dz (i = 1, 2) descend to
1–forms αi, βi, γ (i = 1, 2) on Γ(c)\G(c).

Now let us consider the manifold M6(c) = Γ(c)\G(c) × S1. Hence there are 1–forms
α1, β1, α2, β2, γ, η on M6(c) such that

dαi = −cαi ∧ γ, dβi = cβi ∧ γ, dγ = dη = 0,

where i = 1, 2, and such that at each point of M6(c), {α1, β1, α2, β2, γ, η} is a basis for the
1–forms on M6(c). Using Hattori’s theorem [18] we compute the real cohomology of M6(c):

H0(M6(c)) = 〈1〉,
H1(M6(c)) = 〈[γ], [η]〉,
H2(M6(c)) = 〈[α1 ∧ β1], [α1 ∧ β2], [α2 ∧ β1], [α2 ∧ β2], [γ ∧ η]〉,
H3(M6(c)) = 〈[α1 ∧ β1 ∧ γ], [α1 ∧ β2 ∧ γ], [α2 ∧ β1 ∧ γ], [α2 ∧ β2 ∧ γ],

[α1 ∧ β1 ∧ η], [α1 ∧ β2 ∧ η], [α2 ∧ β1 ∧ η], [α2 ∧ β2 ∧ η]〉,
H4(M6(c)) = 〈[α1 ∧ β1 ∧ α2 ∧ β2], [α1 ∧ β1 ∧ γ ∧ η], [α1 ∧ β2 ∧ γ ∧ η],

[α2 ∧ β1 ∧ γ ∧ η], [α2 ∧ β2 ∧ γ ∧ η]〉,
H5(M6(c)) = 〈[α1 ∧ β1 ∧ α2 ∧ β2 ∧ γ], [α1 ∧ β1 ∧ α2 ∧ β2 ∧ η]〉,
H6(M6(c)) = 〈[α1 ∧ β1 ∧ α2 ∧ β2 ∧ γ ∧ η]〉.
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Therefore the Betti numbers of M6(c)) are

b0(M6(c)) = b6(M6(c)) = 1,

b1(M6(c)) = b5(M6(c)) = 2,

b2(M6(c)) = b4(M6(c)) = 5,

b3(M6(c)) = 8.

Proposition 3.1 The manifold M6(c) is 2–formal and so formal. Moreover, M6(c) has a
symplectic form ω such that (M6(c), ω) satisfies the hard Lefschetz property.

Proof : To prove that M6(c) is 2–formal, we see that its minimal model must be a differential
graded algebra (M, d), beingM the free algebra of the formM =

∧
(a1, a2)⊗

∧
(b1, b2, b3, b4)⊗∧

V ≥3 where the generators ai have degree 1, the generators bj have degree 2, and the differential
d is given by dai = dbj = 0 where i = 1, 2 and 1 ≤ j ≤ 4. The morphism ρ:M → Ω(M),
inducing an isomorphism on cohomology, is defined by ρ(a1) = γ, ρ(a2) = η, ρ(b1) = α1 ∧ β1,
ρ(b2) = α1 ∧ β2, ρ(b3) = α2 ∧ β1 and ρ(b4) = α2 ∧ β2.

According to Definition 2.2, we get C1 = 〈a1, a2〉 and N1 = 0, thus M6(c) is 1–formal.
Moreover M6(c) is 2–formal since C2 = 〈b1, b2, b3, b4〉 and N2 = 0. Now the formality of M6(c)
follows from Theorem 2.3.

Let us define the symplectic form ω on M6(c) by

ω = α1 ∧ β1 + α2 ∧ β2 + γ ∧ η.

Then, the maps [ω]:H2(M6(c)) −→ H4(M6(c)) and [ω]2:H1(M c(k)) −→ H5(M6(c)) are
isomorphisms. Thus (M6(c), ω) satisfies the hard Lefschetz property.

QED

The manifolds M6(c) were considered in [1]. There the formality of M6(c) is obtained
as consequence of the existence of a morphism (H∗(M6(c)), d = 0) −→ (Ω∗(M6(c)), d) that
induces the identity on cohomology. Such a morphism is defined by linearity choosing closed
forms representatives for each cohomology class. However, whether or not M6(c) has a Kähler
metric was an open question.

Theorem 3.2 M6(c) does not admit Kähler metrics.

Proof : In order to show that M6(c) does not admit Kähler metric, notice that Γ = π1(M6(c))
is a product Γ = Γ(c)×Z. Moreover, its abelianization is H1(M6(c); Z) and thus it has rank 2.
We shall see that Γ cannot be the fundamental group of any compact Kähler manifold.

The exact sequence
0 −→ Z4 −→ Γ −→ Z2 −→ 0,(1)

shows that Γ is solvable of class 2, i.e., D3Γ = 0. Moreover its rank is 6 by additivity (see [2]
for details).
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Assume now that Γ = π1(X), where X is a compact Kähler manifold. According to Arapura–
Nori’s theorem (see Theorem 3.3 of [3]), there exists a chain of normal subgroups

0 = D3Γ ⊂ Q ⊂ P ⊂ Γ,

such that Q is torsion, P/Q is nilpotent and Γ/P is finite. The exact sequence (1) implies that
Γ has no torsion, and so Q = 0. As Γ/P is torsion, thus finite, we have rankP = rank Γ = 6.
Now, the finite inclusion P ⊂ Γ defines a finite cover p : Y → X that is also compact Kähler
and it has fundamental group P .

We show that P cannot be the fundamental group of any compact Kähler manifold. For
this, we use Campana’s result (see Corollary 3.8, page 313, in [8]) that states that if G is the
fundamental group of a Kähler manifold such that G is nilpotent and non–abelian, then G has
rank ≥ 9.

Since P is the fundamental group of the Kähler manifold Y , P is nilpotent and has rank < 9,
it has to be abelian. This is impossible since any pair of non-zero elements e ∈ Z2 ⊂ Γ = Z2nZ4,
f ∈ Z4 ⊂ Γ do not commute (see for example [13, page 22]). QED

Example 2 The manifolds N6(c). Let us consider the connected completely solvable Lie
group G(c) of dimension 3 consisting of matrices of the form

a =


ecz 0 0 x

0 e−cz 0 y

0 0 1 z

0 0 0 1

 ,

where x, y, z ∈ R (i = 1, 2) and c is a nonzero real number. Then a global system of coordinates
x, y, z for G(c) is given by x(a) = x, y(a) = y, z = z. A standard calculation shows that a basis
for the right invariant 1–forms on G(c) consists of

{dx− cxdz, dy + cydz, dz}.

Let Γ(c) be a discrete subgroup of G(c) such that the quotient space Sol(3) = Γ(c)\G(c) is
compact (for the existence of such a subgroup Γ(c) see [5, page 20]). Hence, the forms dx −
cxdz, dy + cydz, dz all descend to 1–forms α, β, γ on Sol(3) such that

dα = −cα ∧ γ, dβ = cβ ∧ γ, dγ = 0.(2)

We use again Hattori’s theorem [18] to compute the real cohomology of Sol(3)

H0(Sol(3)) = 〈1〉,
H1(Sol(3)) = 〈[γ]〉,
H2(Sol(3)) = 〈[α ∧ γ]〉,
H3(Sol(3)) = 〈[α ∧ β ∧ γ]〉.

Denote by M4(c) the product M4(c) = Sol(3) × S1. In [12], it is proved that M4(c) is
cohomologically Kähler (in fact, it has the same minimal model as T 2 × S2) and it does not
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carry complex structures, and so it carries no Kähler metrics. This is done by appealing to
classification theorems of Kodaira and Yau that are specific to complex surfaces.

Next we consider other examples in dimensions 6 and 8 related also with Sol(3). Define the
manifolds N6(c) = Sol(3) × Sol(3), P 6(c) = Sol(3) × T 3 and N8(c) = Sol(3) × Sol(3) × T 2 =
N6(c)× T 2. Those manifolds are formal since they are product of formal manifolds.

From the definition of N6(c) and from equations (2), one can check that there are 1–forms
α1, β1, γ1, α2, β2, γ2, on N6(c) such that

dαi = −cαi ∧ γi, dβi = cβi ∧ γi, dγi = 0,

where i = 1, 2, and such that at each point of N6(c), {α1, β1, γ1, α2, β2, γ2} is a basis for the
1–forms on N6(c). Let us define the symplectic form ω1 on N6(c) by

ω1 = α1 ∧ β1 + α2 ∧ β2 + γ1 ∧ γ2.

We use again the equations (2) to show that there is a basis {α1, β1, γ1, η1, η2, η3} for the
1–forms on P 6(c) such that

dα1 = −cα1 ∧ γ1, dβ1 = cβ1 ∧ γi, dγ1 = dηj = 0,

for 1 ≤ j ≤ 3, since P 6(c) = Sol(3)× T 3. Thus, the 2–form ω2 defined by

ω2 = α1 ∧ β1 + γ1 ∧ η1 + η2 ∧ η3,

is a symplectic form on P 6(c).
It is clear that N8(c) is a symplectic manifold since it is the product of symplectic manifolds.

In fact, a symplectic form ω3 on N8(c) is given by

ω3 = ω1 + η,

where η is a symplectic form on the 2–torus T 2.
One can check that the manifolds N6(c), P 6(c) and N8(c) are cohomologically Kähler. Now

using a similar argument to the one given in Theorem 3.2 we get the following

Theorem 3.3 The manifolds N6(c), P 6(c) and N8(c) are formal and hard Lefschetz but they
admit no Kähler metrics.

We notice that the manifolds N6(c) and P 6(c) were considered as examples of cohomolog-
ically Kähler manifolds by Benson and Gordon in [7]. However, whether or not they have a
Kähler metric was an open question.

4 Formality and hard Lefschetz property for Auroux symplectic

submanifolds

In this section we study the conditions under which Auroux symplectic manifolds are formal
and/or satisfy the hard Lefschetz theorem.

7



Let (M,ω) be a compact symplectic manifold of dimension 2n with [ω] ∈ H2(M) admitting a
lift to an integral cohomology class, and let E be any hermitian vector bundle over M of rank r.
In [4] Auroux constructs symplectic submanifolds Zr ↪→M of dimension 2(n−r) whose Poincaré
dual is PD[Zr] = kr[ω]r + kr−1c1(E)[ω]r−1 + . . .+ cr(E) for any integer number k large enough,
where ci(E) denotes the ith Chern class of the vector bundle E. Moreover, these submanifolds
satisfy a Lefschetz theorem in hyperplane sections, meaning that the inclusion j:Zr ↪→ M is
(n− r)–connected, i.e., the map there j∗:H i(M)→ H i(Zr) is an isomorphism for i < n− r and
a monomorphism for i = n− r.

In general, let X and Y be compact manifolds. We say that a differentiable map f :X →
Y is a homotopy s–equivalence (s ≥ 0) if it induces isomorphisms f∗:H i(Y )

∼=−→ H i(X) on
cohomology for i < s, and a monomorphism f∗:Hs(Y ) ↪→ Hs(X) for i = s. Therefore, for any
Auroux symplectic submanifold, the inclusion j:Zr ↪→M is a homotopy (n− r)–equivalence.

Theorem 4.1 [14]. Let X and Y be compact manifolds, and let f :X → Y be a homotopy
s–equivalence. If Y is (s− 1)–formal then X is (s− 1)–formal.

As a consequence of Theorem 4.1 we get the following corollary.

Corollary 4.2 Let M be a compact symplectic manifold of dimension 2n and let Zr ↪→ M be
an Auroux submanifold of dimension 2(n− r). For each s ≤ (n− r − 1), if M is s–formal then
Zr is s–formal. In particular, Zr is formal if M is (n− r − 1)–formal.

In order to continue the analysis of the Auroux symplectic submanifolds we introduce the
following

Definition 4.3 Let (M,ω) be a compact symplectic manifold of dimension 2n. We say that M
is s–Lefschetz with s ≤ (n− 1) if

[ω]n−i : H i(M) −→ H2n−i(M)

is an isomorphism for all i ≤ s. By extension, if we say that M is s–Lefschetz with s ≥ n then
we just mean that M is hard Lefschetz.

Theorem 4.4 Let (M,ω) be a compact symplectic manifold of dimension 2n such that the
de Rham cohomology class [ω] ∈ H2(M) has a lift to an integral cohomology class, and let
Zr ↪→ M be an Auroux submanifold of dimension 2(n − r). Then, for large enough k and for
each s ≤ (n− r− 1), if M is s–Lefschetz then Zr is s–Lefschetz. Therefore, Zr is hard Lefschetz
if M is (n− r − 1)–Lefschetz.

Proof : From now on, we denote by L the complex line bundle over M whose first Chern
class is c1(L) = [ω]. Let p = 2(n − r) − i, where i ≤ (n− r − 1), and let us consider the
map j∗:Hp(M) → Hp(Zr) induced by the inclusion j on cohomology. First we claim that for
[z] ∈ Hp(M) it holds

j∗[z] = 0 ⇐⇒ [z] ∪ cr(E ⊗ L⊗k) = 0,(3)
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for large values of the parameter k. This can be shown via Poincaré duality. Clearly j∗[z] = 0 if
and only if j∗[z] · a = 0 for any a ∈ H i(Zr). Since there is an isomorphism H i(Zr) ∼= H i(M) for
i ≤ (n− r − 1), we can assume that there exists a closed i–form x on M with [x|Zr ] = [x̂] = a,
being x̂ the differential form on Zr given by x̂ = j∗(x). So

j∗[z] · [x̂] =
∫
Z
ẑ ∧ x̂ =

∫
M
z ∧ x ∧ c̃r(E ⊗ L⊗k),

since [Zr] = PD[cr(E ⊗ L⊗k)], where c̃r(E ⊗ L⊗k) is a differential form on M representing
cr(E ⊗ L⊗k). Hence j∗[z] = 0 if and only if ([z] ∪ cr(E ⊗ L⊗k)) ∪ [x] = 0 for all [x] ∈ H i(M),
from where the claim follows.

Now consider an arbitrary norm on H∗(M); for example, the L2–norm on harmonic forms.
Let S ⊂ H i(M) be the unitary sphere, and denote by K an upper bound of

||{a ∪ [ω]n−i−q ∪ cq(E) | a ∈ S, q = 1, . . . , r}||.

On the other hand, the s–Lefschetz property of M implies that S ∪ [ω]n−i ⊂ H2n−i(M) does
not contain zero. Therefore, there is a lower bound K ′ > 0 for the set

||{a ∪ [ω]n−i | a ∈ S}||.

Now, for any [z] ∈ S, we obtain

[z] ∪ [ω]n−r−i ∪ (kr[ω]r + kr−1[ω]r−1 ∪ c1(E) + · · ·+ cr(E)) 6= 0

taking k > (r − 1)K/K ′. Thus, ẑ ∪ [ω̂n−r−i] 6= 0 for any [ẑ] ∈ H i(Zr), which proves that Zr is
also s–Lefschetz.

QED

Let us now consider the compact symplectic solvmanifolds N8(c) defined in Example 2 of
Section 3. Since N8(c) has a symplectic form that defines an integral cohomology class, there
exist Auroux symplectic submanifolds Zr ↪→ N8(c) of dimension 2(4− r) for 1 ≤ r ≤ 3.

Proposition 4.5 Any Auroux symplectic submanifold Zr ↪→ N8(c) is formal and hard Lef-
schetz. Moreover, Zr does not admit Kähler metrics for r = 1, 2, and the submanifolds Z3 ↪→
N8(c) are Kähler.

Proof : From Theorem 3.3, Corollary 4.2 and Theorem 4.4 we get that any Auroux symplectic
submanifold Zr ↪→ N8(c) is formal and hard Lefschetz. Moreover, a similar argument to the one
given in Theorem 3.2 proves that the submanifolds Zr do not admit Kähler metrics for r = 1, 2.

QED
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