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1. Introduction

1.1. Classical Mechanics. Let U ⊂ Rn be an open subset of the n-dimensional space,
where a particle of mass m moves subject to a force F (x). By Newton’s equation, the
trajectory x(t) of the particle satisfies the differential equation

mẍ(t) = F (x(t)) .

Using coordinates (x, y) ∈ U ×Rn, where (x, y) = (x, ẋ), we have the equivalent equations:

(1)
{
ẋ(t) = y(t),
ẏ(t) = 1

mF (x(t)) .

Note that the space U × Rn is the tangent bundle TU .

We say that the force is conservative if F = −∇V , for some function V (x) on U , called
the potential function of the mechanical system. In this case, a particle x(t) has kinetic
energy K = 1

2m |ẋ(t)|2 and potential energy V = V (x(t)). The total energy is

E(x, y) = K + V =
1
2
m |y(t)|2 + V (x(t)) .

It is easy to see that E is constant along time, by computing

dE

dt
= m〈y(t), ẏ(t)〉+ 〈∇V, ẋ〉 = 〈y, F 〉 − 〈F, y〉 = 0.

The metric v 7→ m|v|2 gives an isomorphism between the tangent and cotangent bundles,
TU → T ∗U , v 7→ p = mv. We may consider the particle as a trajectory on T ∗U , (x(t), p(t)),
satisfying the equations {

ẋ(t) = 1
mp(t) ,

ṗ(t) = F (x(t)) .

The function H = K + V = 1
2m |p|

2 + V (x) defined on the cotangent bundle, is known as
the Hamiltonian of the mechanical system. The equations of the movement get rewritten
as {

ẋi(t) = ∂H
∂pi
,

ṗi(t) = − ∂H
∂xi

.
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Therefore a particle follows the flow of the vector field

(2) XH =
∑
i

(
∂H

∂pi

∂

∂xi
− ∂H

∂xi

∂

∂pi

)
on the cotangent bundle.

This vector field can be computed intrinsically: T ∗U has a canonical 1-form λ (called
the Liouville form), given by λ(x,α) = π∗α, for (x, α) ∈ T ∗U (i.e. x ∈ U , α ∈ T ∗xU),
π : T ∗U → U . Locally, in coordinates (x, p), it is λ =

∑
pj dxj . The 2-form ω = −dλ on

T ∗U is well-defined and has local expression

ω =
∑
j

dxj(t) ∧ dpj(t) .

Then XH is the unique vector field satisfying ω(XH , ·) = dH.

If we want to develop mechanics intrinsically, we have to use a smooth manifold M in
place of U . We have used a metric at several points: to compute the gradient of V , for the
kinetic energy, etc. However, the formulation with the hamiltonian does not use this extra
information. If we have the hamiltonian H, then XH in (2) can be extracted in an intrinsic
way. Just note that T ∗M comes equipped with a 1-form λ and a 2-form ω = −dλ, and XH

satisfies ω(XH , ·) = dH.

Now, even we may forget about T ∗M and take any 2n-dimensional manifold Q with a
2-form like ω. This is enough for theoretical purposes. Such pair (Q,ω) is known as a
symplectic manifold. Thus, geometric mechanics take place in a symplectic manifold. It
uses a function H whose symplectic flow (that is, the flow of XH) leaves ω invariant (that
is, LXH

ω = 0). So the particles follow a flow which is by symplectomorphisms.

Now our interest is to understand what type of manifolds can be symplectic.

1.2. Complex manifolds. A complex manifold M of dimension n is a Hausdorff topo-
logical space endowed with an atlas A = {(Uα, φα)} consisting of charts φα : Uα →
φα(Uα) ⊂ Cn, which are homeomorphisms onto open sets of Cn, and whose changes of
charts φα ◦ φ−1

β : φβ(Uα ∩ Uβ) → φα(Uα ∩ Uβ) are biholomorphisms (holomorphic maps
whose inverses are also holomorphic).

The primary examples of complex manifolds are the smooth algebraic projective varieties:
take the complex projective space CPN , with projective coordinates [z0 : . . . : zN ]. Let
f1(z0, . . . , zN ), . . . , fr(z0, . . . , zN ) be a collection of homogeneous polynomials and consider
the zero set

Z(f1, . . . , fr) = {[z0 : . . . : zN ] ∈ CPN | f1(z0, . . . , zN ) = · · · = fr(z0, . . . , zN ) = 0} ⊂ CPN .

This is a complex manifold of dimension N − r when it is smooth. Smoothness happens if
the Jacobian ∂(f1,...,fr)

∂(z0,...,zN ) has (maximal) rank r at every non-zero (z0, . . . , zN ).
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There are other ways to construct complex manifolds: for instance, if M is a complex
manifold, and Γ is a group acting discretely and freely on M by biholomorphisms, then the
quotient M/Γ is again a complex manifold. For instance, take M = C2−{0}, and the group
Z generated by ϕ : M → M , ϕ(z, w) = (2z, 2w). The quotient M/Z is a smooth manifold
which is known as the Hopf surface. It is compact and diffeomorphic to S1 × S3.

There is a way to understand a complex manifold from the point of view of differential
geometry. Let M be a complex manifold of complex dimension n. Then M is a smooth
manifold of dimension 2n. At each point p ∈M , the tangent space TpM is a 2n-dimensional
real vector space which is actually a complex vector space. From linear algebra, this is
equivalent to having a complex structure Jp : TpM → TpM (a linear map satisfying J2

p =
−Id). This gives a tensor J ∈ End (TM) such that J2 = −Id.

In general, a pair (M,J), where J ∈ End (TM), J2 = −Id, is called an almost complex
manifold. To recover a complex atlas from (M,J) (and hence, for M to be a complex man-
ifold), it is necessary that J satisfies an extra condition, called the integrability condition.
The Nijenhuis tensor is defined as

NJ(X,Y ) = [X,Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ] ,

for vector fields X,Y . The famous theorem of Newlander-Niremberg says that (M,J) is a
complex manifold if and only if NJ = 0.

One of the most prominent questions in complex geometry is the following: given a
smooth manifold M , does there exist J such that (M,J) is a complex manifold?

(1) The existence of J giving an almost-complex structure is a topological question.
(2) Assuming the existence of an almost-complex structure, to find an integrable one is

an analytical problem.

1.3. Kähler manifolds. Let M be a complex manifold. A hermitian metric h is a tensor
h : TM × TM → C, which is complex-linear in the first variable, satisfies h(v, u) = h(u, v),
and h(u, u) > 0 for all non-zero u. Any complex manifold admits hermitian structures.

It is worth to note that the hermitian metric and the complex structure give rise to other
two interesting tensors on M :

• a Riemannian metric: g(u, v) = Reh(u, v). Note that g(Ju, Jv) = g(u, v).
• a 2-form ω(u, v) = g(u, Jv). Equivalently, ω(u, v) = Imh(u, v). Note that ω is

maximally non-degenerate, that is, ω(u, v) = 0,∀v =⇒ u = 0. This is equivalent
to ωn 6= 0.

Locally, in coordinates (z1, . . . , zn), if the metric is written as h =
∑
hi̄ dzi · dzj , then the

fundamental 2-form is ω = i
2

∑
hi̄ dzi ∧ dzj . The non-degeneracy is obtained from

ωn

n!
= det(hi̄)

(
i
2

)n
dz1 ∧ dz1 ∧ . . . ∧ dzn ∧ dzn = volg.
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We say that a (1, 1)-form α is positive if α = i
2

∑
ai̄ dzi ∧ dzj , where (ai̄) is a positive

definite hermitian matrix. Equivalently (and more intrinsically), if α(Ju, u) > 0, for all
non-zero u.

Note that with ω and J we can recover g by g(u, v) = ω(Ju, v) and h by h(u, v) =
g(u, v) + iω(u, v).

The projective space CPn has a very natural hermitian metric, which is obtained as
follows. Fix a basis on Cn+1, and take a hermitian metric h0 on Tp0CPn for a base-point
p0 = [1 : 0 : . . . , 0]. Then consider the (unique) metric h on CPn which is U(n + 1)-
invariant (obtained by moving h0 with the matrices in this group). This can be obtained
more intrinsically as follows: as TpCPn = Hom (lp,Cn+1/lp) (where lp ⊂ Cn+1 is the line
defined by p), we can give it the metric induced by that of Cn+1, for any p ∈ CPn. Take
affine coordinates, that is, consider the open set U = {[z0 : z1 : . . . : zn] | z0 6= 0} ⊂ CPn.
Then U ∼= Cn where the point [1 : z1 : . . . : zn] has coordinates z = (z1, . . . , zn). Then the
metric is written as

h(z) =
(1 + |z|2)

∑
dzi · dzi −

∑
i,j zjzidzi · dzj

(1 + |z|2)2
.

So the fundamental 2-form is

ω =
i
2

(1 + |z|2)
∑
dzi ∧ dzi −

∑
i,j zjzidzi ∧ dzj

(1 + |z|2)2
.

It is easy to calculate that

ω =
i
2
∂∂ log(1 + |z|2) .

So we have dω = 0.

To sum up, ω is a positive closed (1, 1)-form. This means that [ω] is a 2-cohomology
class. Moreover, [ω]n ∈ H2n(CPn) is non-zero, since it is a multiple of the volume form. In
particular, [ω] 6= 0.

Definition 1. A Kähler manifold (M,J, ω) is a complex manifold (M,J) together with a
closed positive (1, 1)-form ω.

For a Kähler manifold, J is parallel, i.e. ∇J = 0.

Note that if S ⊂ CPn is a smooth algebraic complex manifold, then S is Kähler. This is
easy to see: just take as hermitian metric hS the restriction of the Fubini-Study metric of
CPn to S. Then the fundamental 2-form is ωS = ω|S . Therefore, it is a positive (1, 1)-form
and dωS = 0.

Moreover, [ωS ] ∈ H̄2(S,Z) (where we denote by H̄2(S,Z) the image of H2(S,Z) →
H2(S,R), which is a lattice). Moreover, the converse is true:

Theorem 2 (Kodaira, see [We]). If (M,J, ω) is a compact Kähler manifold and [ω] ∈
H̄2(M,Z), then there is a holomorphic embedding M ↪→ CPN , for some large N .
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1.4. Topological properties. Let (M,J, ω) be a compact Kähler manifold of complex
dimension n. Then M satisfies very striking topological properties:

(1) There is a Hodge decomposition of the cohomology of M ,

Hk(M,C) =
⊕
p+q=k

Hp,q(M)

and Hp,q(M) = Hq,p(M). Therefore, the Hodge numbers hp,q = dimHp,q(M)
satisfy that hq,p = hp,q. So for k odd, the Betti numbers

bk(M) =
∑
p+q=k

hp,q =
(k−1)/2∑
p=0

(
hp,k−p + hk−p,p

)
= 2

(k−1)/2∑
p=0

hp,k−p

are even.
The Hopf surface has b1 = 1, hence it is not Kähler.

(2) Hard-Lefschetz theorem. The map

[ω]k : Hn−k(M)→ Hn+k(M)

is an isomorphism for each k = 1, . . . , n. This implies in particular that the map
[ω]i on Hn−k(M) is injective for 1 ≤ i ≤ k, and so that bi+2 ≥ bi for 0 ≤ i ≤ n− 2.

(3) Fundamental group. When M is not simply-connected, there are striking results
restricting the nature of the fundamental group of M . These type of results can
be found in the nice book [ABCKT]. For instance a free product like Z ∗ Z cannot
be the fundamental group of a compact Kähler manifold. A group that can be the
fundamental group of a compact Kähler manifold is called a Kähler group.

(4) Complex surfaces. If n = dimCM = 2, then the classification of complex surfaces
[BPV] gives you exactly the diffeomorphism types of 4-manifolds M admitting a
complex (or Kähler) structure. This is a very short list (except for the surfaces of
general type which are not fully understood). For instance, a consequence of the
classification is the following result: if M is complex and has even Betti number b1,
then it admits a Kähler structure (maybe changing the complex structure).

(5) If M ⊂ CPN is a smooth projective manifold, then there exist complex submanifolds
in any dimension. By Bertini’s theorem, we may intersect with a generic linear
subspace Hr of codimension r so that Z = M∩Hr is a smooth complex submanifold
of complex dimension n−r. Moreover, the Lefschetz theorem on hyperplane sections
says that

H i(M)→ H i(Z)

is an isomorphism for i = 0, 1, . . . , n− r − 1, and an epimorphism for i = n− r.
(6) Homotopy groups. Suppose M is compact Kähler and simply-connected. Then

there are extra properties on the rational homotopy groups Vk = πk(M)⊗Q of M .
The most relevant property is that of formality. To explain it, we have to explain
some notions of rational homotopy theory. We dedicate the next section to this.
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1.5. Rational homotopy of simply-connected manifolds. A differential graded algebra
(dga, for short) (A, d) is a positively graded commutative algebra A over the rational (or
real) numbers, with a differential d such that d(a · b) = (da) · b+ (−1)deg(a)a · (db). We shall
assume that A0 = Q, A1 = 0. A dga (A, d) is said to be minimal if:

(1) A is free as an algebra, that is, A is the free algebra
∧
V over a graded vector space

V = ⊕V i, and
(2) there exists a collection of generators {xτ} such that dxτ is expressed in terms of

preceding xµ, µ < τ . This implies that dxτ does not have a linear part, i.e., it lives
in
∧
V >0 ·

∧
V >0 ⊂

∧
V .

A minimal model of a dga (A, d) is a minimal dga (M, d) with a dga morphism ρ :
(M, d)→ (A, d) which is a quasi-isomorphism (quism), that is, ρ∗ : H∗(M)→ H∗(A) is an
isomorphism on cohomology.

In the category of dga’s, there is an equivalence relation ∼ generated by quisms (that is,
∼ is the minimal equivalence relation such that if ρ : (A1, d1) → (A2, d2) is a quism, then
(A1, d1) ∼ (A2, d2)). Then the minimal model of a dga (A, d) is the canonical representative
of the quism equivalence class of (A, d).

A minimal model of a simply-connected differentiable manifold M is a minimal model
(
∧
V, d) of the de Rham complex (ΩM,d) of differential forms on M (to be precise here,

we have to work over the field of real numbers). By the work of Sullivan, this contains the
information of the rational homotopy of M :

V k ∼= (πk(M)⊗ R)∗, for all k ≥ 2 .

Now we are ready to introduce the notion of formality. A minimal model (M, d) is formal
if there is a quism ψ : (M, d) → (H∗(M), 0). A dga (A, d) is formal if its minimal model
is so, that is, if (A, d) ∼ (H∗(A), 0). And a simply-connected manifold M is formal if its
minimal model is formal.

Theorem 3 ([DGMS]). Let M be a simply-connected compact Kähler manifold. Then M

is formal.

The proof of this uses essentially the fact that the dga of differential forms (Ω(M), d) of
a Kähler manifold has a bigrading given by the (p, q)-forms, together with some analytical
properties of the Laplacian.

1.6. Symplectic manifolds. (See [MS] for general results on symplectic geometry.)

A symplectic manifold (M,ω) consists of a smooth manifold together with a 2-form
ω ∈ Ω2(M) satisfying:

• dω = 0,
• ω is non-degenerate at every point.
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The second condition implies that M is of even dimension 2n. Then volM = 1
n!ω

n

defines a volume form (in particular, M is naturally oriented). Note that ω works as an
antisymmetric metric, as it gives an isomorphism TM → T ∗M , X 7→ iXω = ω(X, ·).

Let (M,ω) be a symplectic manifold of dimension 2n. A symplectic submanifold N ⊂M
is a submanifold such that ω|N is non-degenerate (hence a symplectic form on N). A
Lagrangian submanifold L ⊂ M is a submanifold of dimension n such that ω|L = 0 (n is
the maximum possible dimension for such situation to occur).

A symplectomorphism f : (M1, ω1) → (M2, ω2) is a smooth map such that f∗ω2 = ω1.
For surfaces dimM = 2, a symplectic form on M is an area form, and a symplectomorphism
is an area preserving map.

Note that a small perturbation of a symplectic ω, that is, a closed 2-form ω′ such that
|ω − ω′|C1 < ε (for some small ε > 0), is still symplectic. If the cohomology class does not
change, we have the following result.

Lemma 4 (Moser’s stability). If {ωt, t ∈ [0, 1]} is a family of symplectic forms on M with
ω0 = ω, and [ωt] = [ω], then there exists a family ψt : (M,ω) → (M,ωt) of sympletomor-
phisms. (Moreover, if ωt = ω over some subset A, then ψt = Id over A.)

Proof. As [ωt] = cte, d[ωt]
dt = 0. So there are 1-forms αt such that dωt

dt = dαt. Using the
non-degeneracy of the symplectic forms, there are vector fields Xt such that iXtωt = −αt.
Take the flow ψt produced by {Xt}. Let us check that ψ∗t ωt = ω, that is, that ψ∗t ωt = cte.
We compute

d

dt
(ψ∗t ωt) = ψ∗tLXtωt + ψ∗t

dωt
dt

= ψ∗t (diXtωt + iXtdωt) + ψ∗t (dαt)

= ψ∗t (−dαt) + ψ∗t (dαt) = 0 ,

as required. �

Locally, a symplectic manifold (M,ω) has a standard form, which is given by the well-
known Darboux theorem.

Theorem 5 (Darboux). Let p ∈ M . Then there is a chart around p, (x1, y1, . . . , xn, yn),
on which ω is written ω = dx1 ∧ dy1 + . . .+ dxn ∧ dyn.

Proof. To get Darboux theorem, we apply Moser’s stability lemma in a ball B centered at
0 to the given 2-form ω and to the family ωt = f∗t ω, where ft : B → B, ft(x) = (1 − t)x,
t ∈ [0, 1]. Note that for t = 1, ω1 is a constant symplectic form over B, as ω1(x) = ω(0),
∀x ∈ B. In a suitable basis, it can be written ω(0) =

∑n
i=1 dxi ∧ dyi (this is the canonical

form for a constant coefficient symplectic form). �
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This result says that there are no local invariants for a symplectic form. Therefore there
are only global invariants.

Let B ⊂M be a Darboux ball. This means that ω = dx1∧dy1 + . . .+dxn∧dyn. We can
use complex coordinates for the ball B, given as zj = xj + i yj , j = 1, . . . , n. In this way,
we understand that B ⊂ Cn and the symplectic form gets rewritten as

ω =
i
2

(dz1 ∧ dz̄1 + . . .+ dzn ∧ dz̄n).

In particular, we see that we can arrange an almost complex structure J in the ball such
that (B, J, ω) is a standard ball of Cn.

2. Hard methods: Analysis

In this section we are going to describe results which extend properties known in the
Kähler setting to the symplectic world. These methods usually require techniques of PDEs
on manifolds.

Let (M,ω) be a compact symplectic manifold. We say that an almost-complex structure
J on M is compatible with ω if g(u, v) = ω(Ju, v) defines a metric on M .

The relevant topological result is that there exists ω-compatible J ’s and that the space
Jω = {J | J is ω-compatible} is contractible. This means that the choice of J is in some
sense unique.

This is proved as follows: ω produces a reduction of the structure group of TM from
GL(2n,R) to Sp(2n,R). But U(n) ⊂ Sp(2n,R) is the maximal compact subgroup. There-
fore there are reductions to U(n) and they are given by the sections of the associated
bundle with fiber Sp(2n,R)/U(n), which is contractible. Note that giving a reduction of
the structure group to U(n) is equivalent to giving an ω-compatible J . Finally, note that
U(n) = Sp(2n,R) ∩ SO(2n), so we have a reduction to SO(2n), i.e. a metric.

Now we have an almost-Kähler manifold (M,J, ω). This means that (M,J) is an almost-
complex manifold with a symplectic form ω compatible with J .

2.1. Gromov-Witten invariants. Let (M,ω) be a symplectic manifold and J ∈ Jω. Fix
a compact Riemann surface Σ of some genus g ≥ 0. This has a complex structure which
we denote by j. A map u : Σ → M is pseudo-holomorphic if du : TΣ → TM is complex
linear. This means that du ◦ j = J ◦ du. We can write du ∈ Ω1(Σ, u∗TM), where u∗TM is
a complex bundle. Decompose du into (1, 0) and (0, 1) components, du = ∂Ju+ ∂̄Ju, where

∂Ju =
1
2

(du− J ◦ du ◦ j) , ∂̄Ju =
1
2

(du+ J ◦ du ◦ j) .

Let A ∈ H2(M,Z) be a 2-homology class. The moduli space of pseudo-holomorphic
curves in the class A is

Mg
A = {u : Σ→M |u∗[Σ] = A, du ◦ j = J ◦ du} = {u ∈ Map(Σ,M) |u∗[Σ] = A, ∂̄Ju = 0} .
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This has a nice structure:

• ∂̄Ju = 0 is an elliptic PDE on Map(Σ,M). ∂̄J is a section of the vector bundle
E → M = Map(Σ,M), Eu = Ω0,1(u∗TM), u ∈ M. Note that M is of infinite
dimension, and E is of infinite rank. The ellipticity amounts to say that the difference
of these two infinities, the dimension of M = Z(∂J) ⊂M, is finite.
• After a suitable perturbation, ∂̄J is transverse to zero. SoM is a smooth manifold.
• One has to quotient out by the automorphisms of u (which creates singularities).

To avoid this, one takes pointed curves (Σ, x1, . . . , xr). So the automorphism group
is just the identity. This gives rise to moduli spaces Mg,r

A .
• If j is allowed to vary, we have moduli spaces M̃g,r

A parametrizing (u, j, x1, . . . , xr).
• The theory of Gromov allows to compactify Mg,r

A by adding trees of curves with
bubbles and different reducible components. This gives rise to a compact space
Mg,r

A . The boundary is of high codimension is good cases.

There are well-defined evaluation maps

evxi :Mg,r
A −→ M

u 7→ u(xi) .

Fix genus g = 0 and r = 3, so we deal with Σ = CP1 with three marked points, say
0, 1,∞ ∈ CP1. We define the Gromov-Witten invariants of (M,ω) as

GWA(α, β, γ) = 〈ev∗0α ∪ ev∗1β ∪ ev∗∞γ, [M
0,3
A ]〉 , for α, β, γ ∈ H∗(M) .

Fix a basis {αi} of H∗(M). Then define the operation ∗ on H∗(M) by nA,ijk =
GWA(αi, αj , αk), and

〈αi ∗ αj , αk〉 =
∑
A,k

nA,ijk q
A ,

where we have to enlarge the coefficients to add extra variables qA, for each A ∈ H2(M,Z).

In good situations, the boundary Mg,r
A −M

g,r
A has high codimension. For instance, this

happens if M is positive, i.e. if c1(M) = λω, λ > 0. In such cases, we have the following:

Theorem 6 ([RT]). The operation ∗ is a ring structure on H∗(M), called the quantum
multiplication. The quantum cohomology QH∗(M) = (H∗(M), ∗) is an invariant of the
symplectomorphism type of (M,ω).

This ring serves to distinguish symplectic structures. In this way, one can construct
symplectic 6-manifolds which are diffeomorphic, but not symplectomorphic nor deformation
symplectically equivalent.

By work of Taubes, a version of the Gromov-Witten invariants for 4-manifolds is equiv-
alent to the Seiberg-Witten invariants (which are invariants of the diffeomorphism type of
a 4-manifold, constructed using gauge-theoretic techniques). This has allowed to construct
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two homeomorphic 4-manifolds M1, M2, such that M1 is Kähler and M2 is symplectic but
non-Kähler: M2 is taken as a symplectic fiber connected sum (see Section 3.3) of a suitable
Kähler surface M1 along a symplectically knotted surface Σ ⊂ M1. Then M2 has Seiberg-
Witten invariants different from those of all Kähler surfaces (here it is used the Kodaira
classification of complex surfaces).

2.2. Asymptotically holomorphic theory. Let (M,ω) be a symplectic 2n-manifold such
that [ω] ∈ H̄2(M,Z) and fix an ω-compatible almost-complex structure J .

By the integrality of [ω], there is a complex line bundle L → M whose first Chern class
is c1(L) = [ω]. This allows to construct a connection A on L whose curvature is FA = i

2πω.
By construction, this connection has positive curvature.

We expand the metric by considering gk = kg for integers k ≥ 1. gk is associated to
ωk = kω, which is the curvature of the connection kA on L⊗k. Donaldson [Do1] developed
the asymptotically holomorphic theory in the search for substitutes of holomorphic sections
of L⊗k. Let sk ∈ Γ(L⊗k), then ∂̄sk ∈ Ω0,1(L⊗k). If J is not integrable, then we cannot
expect to get holomorphic sections sk, but we may try to find sequences of sections (sk)
such that |∂̄sk| → 0. More concretely, we call a sequence of sections (sk) asymptotically
holomorphic (A.H.) if |∂̄sk|Cr ≤ Ck−1/2.

It is not very difficult to construct plenty of such sections. Actually, there are A.H.
sections concentrated around any given point p ∈M (these play the role of approximations
of the Dirac delta). Here is where the positivity of the curvature plays a fundamental role.

Let B be a Darboux ball around p with coordinates (z1, . . . , zn), and ω = i
2(dz1 ∧ dz̄1 +

. . .+ dzn ∧ dz̄n). We can take A = d+ π
2

∑
(zjdz̄j − z̄jdzj). So the section s = e−πk|z|

2/2 is
holomorphic with respect to the standard (integrable) complex structure J0 on B and the
connection kA. From |NJ |g ≤ C, we have |NJ |gk

≤ Ck−1/2, so |∂̄Js| ≤ Ck−1/2. As s has
Gaussian decay, it can be multiplied by a suitable bump function so that it can be extended
to the whole of M and still satisfies |∂̄Jsk| ≤ Ck−1/2.

The next step in Donaldson’s programme is to construct a section sk such that its zero-
set gives a smooth (symplectic) submanifold Wk = Z(sk). Typically, for this one needs
transversality of the section to the zero section, that is:

(3) ∇sk : TpM → L⊗kp

is surjective for each p ∈Wk. In this case, Wk is smooth and TpWk = ker(∇psk) at p ∈Wk.

As we have only approximate holomorphicity, we need to require a stronger statement (or
expressed in a different way, some amount of transversality). We say that sk is η-transverse
if (3) does multiply the norm of vectors at least by η > 0. Therefore, as

∇sk = ∂sk + ∂̄sk ,

when ∂̄sk is very small (for k large), ∂sk is the main contribution, and it is non-zero.
Moreover, ∂sk : TpM → L⊗kp

∼= C is complex linear, its zero set is a complex subspace and
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ker(∇sk) is very close to ker(∂sk). Therefore Wk = Z(sk) is smooth and close to being
complex. More accurately,

∠(TpWk, J(TpWk)) ≤ Ck−1/2 .

In particular, Wk is a symplectic submanifold, and PD[Wk] = c1(L⊗k).

Donaldson constructs η-transverse sections in a very clever way: first, he proves that in
a ball Bgk

(x, r0), r0 > 0 fixed, one can perturb an A.H. sequence of sections by adding
concentrated sections around x, in such a way to obtain σ-transversality on the ball, by
perturbing an amount δ, with σ and δ related by

σ = δ(log δ−1)−p

(p is a large integer, but fixed and independent of δ and k).

Then the process has to be iterated, but there is one complication. Due to the expansion
of the metric, gk = kg, the balls Bgk

(x, 1) = Bg(x, k−1/2) get smaller, so we need C kn

balls to cover M . At each step we get transversality of lower amount, and after going
over all the balls, we get some transversality εk, with εk → 0, as k → ∞. To avoid this,
the balls are sorted out in finitely many groups. In each group the balls are separated by
a large gk-distance D > 0, and all the perturbations in the same group can be realized
simultaneously, since the Gaussian decay implies that the perturbation in one ball does not
reduce significatively the amount of transversality in the rest. Thus the number of times
the perturbation process is carried out is independent of k. This reduces the amount of
transversality but keeps it over some ε > 0, independently of k.

Let us see another application of A.H. theory, which appears in [MPS]. This is the
extension of the Kodaira embedding theorem to the symplectic setting. Let (M,ω) be a
symplectic manifold with [ω] ∈ H̄2(M,Z), and J ∈ Jω. We look for A.H. sequences of
sections

s0
k, . . . , s

N
k ∈ Γ(L⊗k) ,

(N is large, say N ≥ 2n+ 1) such that:

• sk = (s0
k, . . . , s

N
k ) is a section of CN+1 ⊗ L⊗k which is η-transverse to zero. As

n = dimCM < N + 1, we cannot have that ∇sk is surjective, so it must be |sk| > η

over all of M . Thus there is a well-defined map

ψk : M → CPN , ψk(x) = [s0
k : . . . : sNk ] .

• The complex linear map ∂ψk : TM → TCPN is η-transverse. This means that ∂ψk
multiplies the length of vectors at least by η. In particular, ψk is an immersion, and
Mk = ψk(M) ⊂ CPN satisfies that it is close to being complex.
• ψk is injective (this is a generic position argument).

In particular, ψk : M → CPN are symplectic embeddings (after an extra small deforma-
tion).
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2.3. Lefschetz pencils. Let (M,ω) be a symplectic 2n-manifold such that [ω] ∈ H̄2(M,Z)
is an integral class. Fix an ω-compatible almost-complex structure J . Donaldson [Do2]
constructs a symplectic Lefschetz fibration for M which extends the Lefschetz fibrations for
algebraic projective varieties. Using A.H. theory, he looks for A.H. sequences of sections

s0
k, s

1
k ∈ Γ(L⊗k)

which satisfy the following transversality properties:

• (s0
k, s

1
k) is an η-transverse sequence of sections. In particular, the zero set Bk =

Z(s0
k, s

1
k) is a symplectic submanifold of codimension 4. There is a well-defined map

φk = [s0
k, s

1
k] : M −Bk → CP1 .

• s0
k is η-transverse to zero, so that the fiber of φk over ∞ is smooth, and removing

it we have a map φk(x) = s1k
s0k

: M − F∞ → C. Note that the fibers Fλ = φ−1
k (λ),

λ ∈ C, can be compactified to Fλ = Fλ ∪Bk, which is smooth along Bk. These are
codimension 2 symplectic submanifolds (off the singular locus of φk).
• The singular locus of φk (where φk is not submersive) consists of finitely many points

∆k ⊂ M − Bk. At each p ∈ ∆k, a transversality requirement for the holomorphic
Hessian ∂∂φk of φk allows to achieve (after an extra perturbation) a local model as
follows: there are Darboux coordinates (z1, . . . , zn) ∈ B ⊂ Cn around p such that

φk = λ+ z2
1 + . . .+ z2

n.

This gives a double point singularity at p for the fiber Fλ, λ = φk(p).

These sequences of A.H. Lefschetz pencils have a very nice behaviour (stability, asymp-
totic uniqueness, some type of homogeneity, etc.). What is more relevant is that the manifold
M can be recovered from the Lefschetz pencil as follows: blow up the base locus Bk to get
a symplectic manifold M̃ = BlBk

M (see Section 3.4 for symplectic blow-ups). Then there
is a well defined map (called Lefschetz fibration)

φ̃k : M̃ −→ CP1 .
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Consider a base point ∗ ∈ CP1 whose corresponding fiber F is smooth. We have a
true fibration with fiber F (symplectic of dimension 2n − 2) over CP1 − Crit(φk), where
Crit(φk) = φk(∆k) are the critical values (we assume that the images in CP1 of the critical
points are different; this is easily achieved with a small perturbation). When we approach a
critical value λ→ λ0 ∈ Crit(φk), the fiber Fλ0 is obtained by contracting some Lagrangian
sphere Sn−1 ⊂ Fλ = F (called the vanishing cycle). Moreover, the monodromy of a small
loop around λ0 is a symplectomorphism of F called a Dehn twist around Sn−1 (it consists
of cutting along Sn−1 and regluing it with a twist).

This allows to recover M out of some algebraic information extracted from the Lefschetz
pencil. Theoretically this would allow to classify symplectic structures (at least on low
dimension, 2n = 4). In practice the problem gets intractable since we have to allow k � 0
for A.H. Lefschetz pencils.

3. Soft methods: Topology

The topological methods address the following question:

Can we construct symplectic manifolds and detect that they do not admit Kähler metrics?

One of the ways to achieve this is to see that there are very few topological restrictions for
a symplectic manifold to exist, whereas there are very strong restrictions on the topological
properties of Kähler manifolds. This produces symplectic manifolds M such that there is
no Kähler manifold M ′ which is homotopy equivalent to M .

We would like to remind here that in the case of 4-manifolds there are also gauge-theoretic
results which allow to produce pairs of manifolds M1, M2 which are homeomorphic but not
diffeomorphic, M1 being Kähler, M2 being symplectic but without Kähler structure.

3.1. Nilmanifolds. A nilpotent group is a simply-connected Lie group G satisfying the
following nilpotency condition: if we define the nested sequence of subgroups Gi by G1 = G,
Gi = [Gi−1, G] for i ≥ 2, then there is some N > 0 such that GN = 0. Any nilpotent group
of dimension n is diffeomorphic to Rn, as a differentiable manifold.

A nilmanifold is a compact n-dimensional manifold of the form M = G/Γ, where Γ is a
discrete (cocompact) subgroup of a nilpotent group G. The Lie algebra g of G is a nilpotent
Lie algebra: if we define the nested sequence of Lie subalgebras gi by g1 = g, gi = [gi−1, g]
for i ≥ 2, then there is some N > 0 such that gN = 0 (note that gi is the Lie algebra of Gi).

The right invariant forms of M , Ω∗inv(M) ⊂ Ω∗(M), are in bijective correspondence with
the forms at the neutral element of G, that is, Ω∗inv(M) ∼=

∧∗(g∗). By a theorem of Nomizu
[No], the inclusion (Ω∗inv(M), d) ↪→ (Ω∗(M), d) is a quism. Therefore, (M, d) = (

∧∗(g∗), d)
is the minimal model of M . Write g = 〈e1, . . . , en〉 and g∗ = 〈x1, . . . , xn〉. Then if [ei, ej ] =
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k>i,j a

k
ijek, we have that

(
∧∗

(x1, . . . , xn), d), dxk = −
∑
i,j<k

akij xi ∧ xj ,

is the minimal model of M .

A symplectic form can be obtained by a 2-form ω =
∑
aij xi ∧ xj satisfying dω = 0 and

ωn/2 = c x1 ∧ x2 ∧ · · · ∧ xn, c 6= 0. Note that the volume form is vol = x1 ∧ · · · ∧ xn.

A nilmanifold M can’t be formal unless it is a torus. If there is a quism

ψ : (
∧∗

(g∗), d) −→ H∗(
∧∗

(g∗), d) ,

then arrange x1, . . . , xn in increasing order so that the closed elements are x1, . . . , xr, and
ψ(xr+1) = . . . = ψ(xn) = 0. This would imply that ψ(vol) = 0 (which is impossible), unless
r = n. This means that M is a torus.

The Kodaira–Thurston manifold . Let H be the Heisenberg group, that is, the connected
nilpotent Lie group of dimension 3 consisting of matrices of the form

a =

 1 x z

0 1 y

0 0 1

 ,

where x, y, z ∈ R. Let Γ be the discrete subgroup of H consisting of matrices whose entries
are integer numbers. So the quotient space M = Γ\G is compact.

A basis of right invariant vector fields is { ∂∂z ,
∂
∂y + x ∂

∂z ,
∂
∂x}. Therefore the generators of

g∗ are α = dx, β = dy, γ = dz − x dy. Note that

dγ = −dx ∧ dy = −α ∧ β .

The Kodaira–Thurston manifold KT is the product KT = M × S1. Then, there are
1–forms α, β, γ, η on KT such that dα = dβ = dη = 0, dγ = −α ∧ β. Note that

ω = α ∧ γ + β ∧ η

defines a symplectic form since dω = 0 and ω2 = 2α ∧ γ ∧ β ∧ η 6= 0.

KT is therefore a non-formal symplectic 4-manifold, hence it cannot admit a Kähler
structure. This was the first example of a symplectic manifold not admitting a Kähler
structure, as shown by Thurston [Th]. But he showed this by checking that b1 = 3 (this
comes from Nomizu’s theorem, which gives H1(KT ) = 〈[α], [β], [η]〉). KT was also a mani-
fold introduced by Kodaira as a manifold admitting a complex structure but not a Kähler
one.

Massey products. There is an easier way to prove the non-formality of a manifold, which
avoids the use (and computation) of minimal models.
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Let M be a smooth manifold and let ai ∈ Hpi(M), 1 ≤ i ≤ 3, be three cohomology
classes such that a1 ∪ a2 = 0 and a2 ∪ a3 = 0. Take forms αi on M with ai = [αi] and write
α1 ∧ α2 = dξ, α2 ∧ α3 = dη. The Massey product of the classes ai is defined as

〈a1, a2, a3〉 = [α1 ∧ η + (−1)p1+1ξ ∧ α3] ∈ Hp1+p2+p3−1(M)
a1 ∪Hp2+p3−1(M) +Hp1+p2−1(M) ∪ a3

.

(The denominator in the quotient group is due to the indeterminacy in the choice of ξ and
η.)

The relevant result is that if M has a non-trivial Massey product then M is non-formal.
This is due to the following: Massey products can easily be defined on any dga, and then
they can be seen to be transferred through quisms. Therefore if M is formal, one can
transfer the Massey product through (Ω∗(M), d) ∼ (H∗(M), 0). But in the latter dga, all
Massey products are zero, as the differential is zero.

Finally, to prove this way that KT is non-formal, it is enough to compute the Massey
product:

〈[α], [α], [β]〉 = [0 · β + α ∧ (−γ)] = −[α ∧ γ] 6= 0 in H2(KT ) .

Another example. In a similar way, we can also obtain a symplectic nilmanifold X of
dimension 4 which is non-formal but which does not admit any complex structure. Such
X has minimal model (

∧∗(g∗), d), with g∗ = 〈α, β, γ, η〉, dγ = α ∧ β, dη = α ∧ γ. The
2-form ω = α ∧ η + β ∧ γ is symplectic. The first Betti number of X is even, b1 = 2, as
H1(X) = 〈[α], [β]〉. This implies that if X admits a complex structure then it also has a
Kähler structure, by a result of Kodaira (or by the classification of complex surfaces [BPV]).
But this is not possible, since X is non-formal as it is a nilmanifold which is not a torus.
So X cannot admit a complex structure at all.

3.2. Symplectic fibrations. One can construct symplectic structures on fibrations in some
situations in which both the fiber and the base have symplectic structures.

Suppose that (F, σ) is a symplectic manifold. A symplectic fibration over B with fiber
(F, σ) consists of a fibration F → M

π−→ B such that there is a cover {Uα} of B for
which there are trivializations ψα : π−1(Uα)

∼=→ F × Uα, and the changes of trivializations
ψα ◦ ψ−1

β : F × (Uα ∩ Uβ) → F × (Uα ∩ Uβ) are of the form (f, x) 7→ (ϕx(f), x), where
ϕx : (F, σ)→ (F, σ) is a symplectomorphism.

It is not automatic that there is a global closed 2-form on M restricting to σ at each fiber
Fx = π−1(x). At least we need a cohomological condition: that there exists a ∈ H2(M)
with a|Fx = [σ]. This justifies condition (1) in the theorem below.

Theorem 7 (Thurston). Let (F, σ)→M → B be a symplectic fibration, and assume that:

(1) there exists a ∈ H2(M) with a|Fx = [σ],
(2) (B,ωB) is a symplectic manifold.
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Then there is a symplectic structure on M .

Proof. First, fix a representative η of a. We want to find another representative restricting to
a symplectic form on each fiber. Consider a covering B =

⋃
Uα such that π−1(Uα) ∼= F×Uα.

Let σα be the 2-form on π−1(Uα) defined as the pull-back of σ from F . Then σα = η+dψα,
ψα ∈ Ω1(F ×Uα). Take a partition of unity {ρα} on B subordinated to {Uα}, and consider
the closed 2-form

σ̂ = η +
∑

d(ραψα) .

For b ∈ B, σ̂|Fb
= η|Fb

+
∑
ρα(b)dψα|Fb

=
∑
ρα(b)(η + dψα)|Fb

=
∑
ρα(b)σα|Fb

. But
σα|Fb

= σ for any b ∈ Uα. This implies that σ̂|Fb
= σ, for all b ∈ B.

Finally, consider ω = π∗ωB + ε σ̂, for small ε > 0. It is easy to see that this is symplectic
on M . �

This can be used in many situations. For instance, it can be used to prove that KT is a
symplectic manifold. Note that KT has (local) coordinates (x, y, z, w), where (x, y, z) are
the coordinates for the Heisenberg group and w is the coordinate for the extra S1 factor.
The action of Γ is as follows:

(x, y, z, w) 7→ (x+ 1, y, z + y, w),

(x, y, z, w) 7→ (x, y + 1, z, w),

(x, y, z, w) 7→ (x, y, z + 1, w),

(x, y, z, w) 7→ (x, y, z, w + 1).

The projection (x, y, z, w) 7→ (x,w) gives a mapKT → T 2 and the fiber is T 2. Note that this
is a symplectic fibration, since there is no monodromy when going around the w-direction
and the monodromy around the x-direction is the symplectic map (y, z) 7→ (y, z + y).

Using Theorem 7, with a = [dy ∧ dz], we have a symplectic structure on KT .

3.3. Fiber connected sum. Let (M1, ω1), (M2, ω2) be two symplectic manifolds and sup-
pose that (N,ω) is a symplectic manifold of dimension 2n− 2, with two symplectic embed-
dings:

ıj : (N,ω) −→ (Mj , ωj) , j = 1, 2.

Let νj → N be the normal bundle to ıj . Then if ν1
∼= ν∗2 are isomorphic bundles (where ν∗2

is the dual bundle to ν2), we can glue M1 and M2 along N with the following construction
of Gompf [Go].

Consider a neighborhood Uj ⊂Mj of Nj = ıj(N), which can be identified with the ε-disc
bundle in νj . So there is a fibration D2

ε → Uj → Nj , j = 1, 2. Now remove the closed δ-disc
bundle Vj ⊂ Uj in νj , with δ < ε, to get a fibration by annuli Aε,δ = {z ∈ C | δ < |z| < ε},

Aε,δ → Uj − Vj → N .
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Since a symplectic form for Aε,δ is just an area form, and a symplectic map is an area-
preserving map, there is an orientation-reversing self-symplectomorphism

f : Aε,δ → Aε,δ ,

sending the inner boundary onto the outer one and viceversa. This can be done paramet-
rically to produce a diffeomorphism F : U1 − V1 → U2 − V2. The fiber connected sum is
defined as

M = M1#NM2 := (M1 − V1) ∪F (M2 − V2) .

By Moser’s stability lemma, one can arrange that the symplectic forms of U1 − V1 and
U2 − V2 coincide. In this way, M is endowed with a symplectic structure.

This was used by Gompf to produce many examples of symplectic non-Kähler manifolds.

Theorem 8. Let Γ be any finitely presented group, and let 2n ≥ 4. Then there is a
symplectic manifold M of dimension 2n with fundamental group π1(M) ∼= Γ.

Proof. Let us give the main ideas of the proof (for details, see [Go]). For simplicity, focus
on the 4-dimensional case. Take a presentation of the group Γ = 〈x1, . . . , xr|r1, . . . , rs〉 with
generators and relations. Consider a 4-manifold M whose fundamental group contains a
free group of r-elements, e.g. a surface of genus r times a two-torus, M = Σr×T 2. Therefore
Γ is a quotient of π1(M). Then construct tori Tj inside M which are Lagrangian and for
which the image of π1(Tj)→ π1(M) generate exactly the kernel of π1(M)� Γ. These are
easily arranged to be disjoint: a loop in Σr times a loop in the T 2 factor suffice.

Now note that if Tj ⊂ M is a Lagrangian 2-torus, then the normal bundle to Tj is
trivial (an ω-compatible almost-complex J produces an isomorphism between the tangent
and normal bundles to Tj). This allows to perturb the symplectic form on D2 × Tj to
make Tj symplectic. Once that Tj is symplectic, we do a fiber connected sum of M and
some other manifold X along Tj . The chosen symplectic 4-manifold X should contain
a symplectic 2-torus T ⊂ X such that X − T is simply connected (there are plenty of
examples with these properties, using e.g. Kähler surfaces). In this way, the resulting 4-
manifold M ′ = M#Tj=TX has π1(M ′) = π1(M)/π1(Tj). Repeating the construction over
all Tj we eventually get a 4-manifold whose fundamental group is Γ. �

As a consequence, if Γ is a non-Kähler group, then any compact symplectic manifold
(M,ω) with π1(M) ∼= Γ cannot be Kähler.

3.4. Symplectic blow-up. Let (M,ω) be a symplectic manifold. Fix a point p ∈M . We
can define the blow-up at p as follows: consider a Darboux chart B around p, with complex
coordinates (z1, . . . , zn) such that ω = i

2(dz1 ∧ dz1 + . . . dzn ∧ dzn). Consider the blow-up
of B at the origin. This is the manifold

B̃ = {((z1, . . . , zn), [w1, . . . , wn]) ∈ B × CPn−1|(z1, . . . , zn) = λ(w1, . . . , wn), λ ∈ C}.
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Note that there is a projection π : B̃ → B. The preimage of any q 6= 0 is a point (q, [q]).
The preimage of 0 is E = π−1(0) = {0} × CPn−1 ∼= CPn−1 ⊂ B̃. This is a codimension 2
submanifold.

Now let us give B̃ a symplectic form. For B ×CPn−1 we take the symplectic form given
as β = ω+ εΩ, where ω is the symplectic form on B, Ω is the Fubini-Study form on CPn−1,
and ε > 0. This is actually a Kähler form for B ×CPn−1. As B̃ ⊂ B ×CPn−1 is a complex
submanifold, β is a Kähler form (hence symplectic) over B̃.

Finally, define the blow-up M̃ by gluing M − {p} with B̃ along the difeomorphism B −
{p}

π∼= B̃ − E. To give a symplectic structure to M̃ , we have to glue the symplectic forms
as follows. Consider Ω and note that when restricted to B−{p}, it is exact, hence Ω = dψ.
Take a bump function of B which is one in a neigbourhood of E, and zero off B, and
consider d(ρψ). This can be extended as zero off B̃ and as Ω near E. Now consider

ω
M̃

= ω + ε d(ρψ).

Near E, this equals the form β = ω + εΩ, which is symplectic. Off B̃, it coincides with ω,
also symplectic. And in the intermediate region, it is a small perturbation of ω, which is
still symplectic (for ε > 0 small).

The blow-up construction can be extended to blow-up a symplectic manifold along an
embedded symplectic submanifold, as proved by McDuff [Mc].

Theorem 9. Let (M,ω) be a symplectic manifold, and let N ⊂M be a symplectic subman-
ifold of codimension 2r ≥ 4. Then there is a well-defined symplectic blow-up of M along
N , which is a symplectic manifold (M̃ = BlNM, ω̃), together with a map π : M̃ →M such
that:

• E = π−1(N) → N is the fibration which is the (complex) projectivization of the
normal bundle of N in M .
• π : M̃ − E → M − N is a diffeomorphism. Moreover, ω̃ and π∗ω coincide off a

neighbourhood of E.

Proof. To prove this, we have to introduce an ω-compatible almost-complex structure J as
follows: first take some J on TN . Then on the symplectic normal bundle νN → N , defined
as νN (p) = (TpN)o = {u ∈ TpM |ω(u, TpN) = 0}, p ∈ N , we put a complex structure J , so
that νN becomes a complex vector bundle. Then this J can be extended to a neighborhood
of N and later to the whole of M .

Now we consider a neighborhood U ⊂ M of N which is symplectomorphic to the disc
bundle νε ⊂ νN , whose fibers are ε-balls Dε ⊂ νN (p). We may blow-up νε → N along the
zero section, by doing a fiberwise blow-up. The result is a fiber bundle

D̃ε → BlN νε → N .
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This has a map π : BlN νε → νε. Finally, we glue BlN νε andM−N along BlN νε−π−1(N) ∼=
U−N . The symplectic forms would be glued in a similar fashion as for the case of blowing-up
at a point. �

The symplectic blow-up was used to produce the first examples of compact symplectic
manifolds which are simply-connected and non-Kähler.

Take a symplectic embedding of the Kodaira-Thurston manifold into a projective space,
KT ⊂ CPn. Note that it should be n ≥ 5. Consider the symplectic blow-up

M = BlKTCPn .

It is simply-connected since CPn is so, but it cannot be Kähler because it is non-formal.
This is seen easily with a Massey product. Note that the exceptional divisor E ⊂ M is a
codimension 2 submanifold and there is a fibration CPn−3 → E

π→ KT . The dual form
associated to E, ν ∈ Ω2(M), is a closed 2-form compactly supported in a neighborhood of
E. Note that this gives sense to expressions like π∗a ∧ ν, for any form a ∈ Ω(KT ). The
following Massey product

〈[π∗α ∧ ν], [π∗α ∧ ν], [π∗β ∧ ν]〉 = −[π∗(α ∧ γ) ∧ ν3]

is non-zero (we need n − 2 ≥ 3 for this non-vanishing). Therefore M is not formal. This
produces simply-connected symplectic non-formal manifolds on any dimension 2n ≥ 10.

3.5. Symplectic resolution of singularities. An orbifold (of dimension n) is a topologi-
cal space M with an atlas with charts modeled on U/Gp, where U is an open set of Rn and
Gp is a finite group acting linearly on U with only one fixed point p ∈ U . An orbifold M

contains a discrete set ∆ of points p ∈M for which Gp 6= Id. The complement M −∆ has
the structure of a smooth manifold. The points of ∆ are called singular points of M . For
any singular point p ∈ ∆, a small neighbourhood of p is of the form B/Gp, where B is a
ball in Rn.

An orbifold form α ∈ Ω∗orb(M) consists ofGp-equivariant forms on U , for each chart U/Gp,
with the obvious compatibility condition. A symplectic orbifold (M,ω) is a 2n-dimensional
orbifold M together with a 2-form ω ∈ Ω2

orb(M) such that dω = 0 and ωn 6= 0 at every
point.

Definition 10. A symplectic resolution of a symplectic orbifold (M,ω) is a smooth sym-
plectic manifold (M̃, ω̃) and a map π : M̃ →M such that:

(a) π is a diffeomorphism M̃ − E → M − ∆, where ∆ ⊂ M is the singular set and
E = π−1(∆) is the exceptional set.

(b) The exceptional set E is a union of (possibly intersecting) smooth symplectic sub-
manifolds of M̃ of codimension at least 2.

(c) ω̃ and π∗ω agree on the complement of a small neighbourhood of E.

The following result is in [FM].
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Theorem 11. Any symplectic orbifold has a symplectic resolution.

Proof. Consider a ball B/Gp around a singular point p ∈ ∆. Take Darboux coordinates on
B, and a complex structure on B. So B/Gp is an (open) complex singular variety. We take
a resolution of singularities in the complex setting (say, using Hironaka desingularisation
process, which ensures that a suitable sequence of blow-ups yield eventually a smooth
complex variety), B̃/Gp → B/Gp. This complex variety has a Kähler form. Finally we glue

M − {p} to B̃/Gp along B/Gp − {p}, and glue the symplectic forms as in the case of the
blow-up of a symplectic manifold at a point. �

This result was used in [FM] to produce the first example of a simply-connected sym-
plectic non-formal manifold of dimension 8. This goes as follows.

Consider the complex Heisenberg group HC, that is, the complex nilpotent Lie group of
complex matrices of the form

a =

 1 u2 u3

0 1 u1

0 0 1

 ,

and let G = HC × C, where C is the additive group of complex numbers. We denote
by u4 the coordinate function corresponding to this extra factor. In terms of the natural
(complex) coordinate functions (u1, u2, u3, u4) on G, we have that the complex 1-forms
µ = du1, ν = du2, θ = du3 − u2 du1, η = du4 are right invariant and

dµ = dν = dη = 0, dθ = µ ∧ ν.

Let Λ ⊂ C be the lattice generated by 1 and ζ = e2πi/3, and consider the discrete
subgroup Γ ⊂ G formed by the matrices in which u1, u2, u3, u4 ∈ Λ. We define the compact
(parallelizable) nilmanifold

M = Γ\G.
We can describe M as a principal torus bundle

T 2 = C/Λ ↪→M → T 6 = (C/Λ)3,

by the projection (u1, u2, u3, u4) 7→ (u1, u2, u4).

Now introduce the following action of the finite group Z3

ρ : G → G

(u1, u2, u3, u4) 7→ (ζ u1, ζ u2, ζ
2 u3, ζ u4).

The complex 2-form
ω = i µ ∧ µ̄+ ν ∧ θ + ν̄ ∧ θ̄ + i η ∧ η̄

is actually a real form, it is closed and satisfies ω4 6= 0. Hence ω is a symplectic form on
M . Moreover, ω is Z3-invariant. Hence the space

(M̂ = M/Z3, ω)
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is a symplectic orbifold. By Theorem 11, this can be desingularized to a smooth symplectic
manifold M̃ of dimension 8.

It remains to see that M̃ is simply connected and non-formal. This follows from the
same assertions for the orbifold M̂ . It is not difficult to see that M̂ is simply connected, but
we shall content ourselves to see here that b1(M̂) = 0. By Nomizu’s theorem, H1(M) =
〈Re(µ), Im(µ),Re(ν), Im(ν),Re(η), Im(η)〉 ∼= C⊕C⊕C, and the action of Z3 is by rotations.
So

H1(M̂) = H1(M)Z3 = 0 .

The non-formality of M̂ is more difficult to check. Clearly M is non-formal since it is
a nilmanifold which is not a torus. To quotient by Z3 kills ‘part of’ the minimal model
(for instance, it kills the cohomology of degree 1, where one usually writes down Massey
products). One has to check that enough non-formality remains after the Z3-quotient is
performed. Details can be found in [FM].
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