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Abstract. Let f : X → Y be a map between two spaces for which Y is stratified

such that f is a fibration over each open stratum. We find some spectral sequences to

compute the homology of X in terms of the homology of Y and that of the fibers. We

apply this to give a Lefschetz theorem for the degeneracy loci of a morphism between

holomorphic bundles on a complex manifold.

1 Homotopy and Homology

To understand the topology of a space X, one of the primary issues is the computation of

the homotopy groups πn(X). Even in the simplest examples of spaces, homotopy groups

turn out to be very difficult to compute. On the other hand, simplicial homology Hn(X) is

a good alternative being easy to compute due to the existence of a Mayer-Vietoris principle.

This allows to divide the space X and “glue” the homology of the pieces. The good news
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is that Hurewicz theorem relates both up to some extent, which may help us to compute

homotopy groups.

Let us first review the classical notions about homotopy from [Sp]. Consider a topo-

logical space X with a fixed base point ∗ ∈ X. Then πn(X) consists of equivalence classes

of maps α : S
n → X from the n-sphere sending a base point x0 ∈ S

n to ∗, modulo the

equivalence relation ' given by α0 ' α1 if there is a homotopy H : S
n × [0, 1] → X with

H(x, 0) = α0(x), H(x, 1) = α1(x), for all x ∈ S
n and H(x0, t) = ∗, for all t ∈ [0, 1]. A space

X is said to be n-connected if πi(X) = 0 for i ≤ n. For the special case n = 0, we have that

π0(X) = 0 if X is arc-wise connected. Also π1(X) is the fundamental group of X, so that

X is 1-connected means that it is simply-connected.

There is a relative version of the homotopy groups: if A ⊂ X is a subspace containing the

base point, then πn(X,A) consists of equivalence classes of maps α : (Dn, ∂Dn) → (X,A),

this meaning that α is a map from the disk Dn to X sending the boundary to A. The

equivalence relation is through homotopies that send the boundaries into A.

For notions in relation with homology one can look at [Ma]. Let X be a topological

space. Let I = [0, 1] be the unit interval. A n-cube is a continuous map T : In → X, and it

is degenerate if it is independent of one of its variables. The complex of singular chains in X

is defined as the free abelian group Cn(X) generated by the n-cubes, modulo the degenerate

ones. The boundary operator ∂ associates to every n-cube the (n − 1)-chain which consists

in the sum of its faces with an appropriate sign given by its orientation. The homology

H∗(X) of X is given by the homology of (C∗(X), ∂).

For the relative version, let A ⊂ X. Then the complex C∗(X,A) is the quotient complex

C∗(X)/C∗(A) with the induced boundary operator. The homology of this complex is the

relative homology H∗(X,A).

There is a morphism, the Hurewicz homomorphism,

πn(X,A) −→ Hn(X,A),

which sends the class of the map α : (Dn, ∂Dn) → (X,A) to the cycle α ∈ C∗(X,A) using

the homeomorphism In ∼= Dn and since ∂α ∈ C∗(A). For the following theorem see [Sp, §7].

Hurewicz theorem. Let (X,A) be a pair of 1-connected spaces. Then πi(X,A) = 0 for

i ≤ n−1 implies that πn(X,A) ∼= Hn(X,A). In plain terms, all the homotopy and homology

groups are zero up to the first non-zero ones, which are isomorphic.
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This means that (X,A) is n-connected, i.e., πi(A)
'→ πi(X), for i < n, and πn(A) ³

πn(X). If the spaces A and X are CW-complexes then, up to homotopy equivalence, X is

constructed out of A by attaching cells of dimension n + 1 and over.

2 Spectral Sequence for a Filtration

Suppose that X is a space and A ⊂ X, then we have the long exact sequence of the pair

· · · → Hn(A) → Hn(X) → Hn(X,A)
∂∗−→ Hn−1(A) → · · ·

This comes from the exact sequence of chain complexes C∗(A) → C∗(X) → C∗(X,A). The

connecting homomorphism ∂∗ is defined as follows. Let [z] ∈ H∗(X,A) with a representative

z ∈ C∗(X,A). Lift z to z̃ ∈ C∗(X), then ∂z̃ ∈ C∗(A) and set ∂∗[z] = [∂z̃].

We may think of this case as a two terms filtration X0 = A ⊂ X1 = X. What happens

when we have a longer filtration X0 ⊂ X1 ⊂ · · ·Xd = X? Then C∗(X) is a filtered complex

with filtration given by C∗(Xq) ⊂ C∗(X). This gives rise to a spectral sequence. A spectral

sequence is a sequence of double complexes (Er
pq, d

r) with differentials dr : Er
pq → Er

p+r−1,q−r

such that the homology of the r-th term is the following one H(Er, dr) = Er+1. We say

that it converges if for each fixed (p, q) the terms Er
pq stabilizes for r large enough. The

limiting one is denoted as E∞
pq . For specific material on spectral sequences, the reader is

recommended the nice book [Mc] or [BT, §14].

In our case we generate a spectral sequence with

E0
pq = Cp+q(Xq)/Cp+q(Xq−1) = Cp+q(Xq,Xq−1).

This has an induced differential d0 which is the standard boundary in chains. The homology

is

E1
pq = Hp+q(Xq,Xq−1).

The general machinery on spectral sequences tells us that the differential

d1 : Hp+q(Xq,Xq−1) → Hp+q−1(Xq−1,Xq−2)

is as follows: let [z] ∈ Hp+q(Xq,Xq−1). Select a representative z ∈ Cp+q(Xq,Xq−1) and lift

it to z̃ ∈ Cp+q(Xq). Then consider the image of ∂z̃ ∈ Cp+q−1(Xq−1) in Cp+q−1(Xq−1,Xq−2),

and set d1[z] = [∂z̃] ∈ Hp+q−1(Xq−1,Xq−2). In particular, it follows that d1[z] = 0 means

that there exists z̃1 ∈ Cp+q(Xq−1) such that ∂z̃ + ∂z̃1 ∈ C∗(Xq−2).

In general, a class [z] survives to Er, i.e., d1[z] = 0, . . . , dr−1[z] = 0 if there are z̃i ∈
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Cp+q(Xq−i) such that ∂(z̃ + z̃1 + · · · + z̃r−1) belongs to Cp+q−1(Xq−r). The latter element

defines dr[z] ∈ Er. Moreover, the class [z] is zero in Er if there are w̃i ∈ Cp+q+1(Xq+i) with

∂(w̃1 + w̃2 + · · · + w̃r) − z̃ ∈ C∗(Xq−1).

q z̃
↓
• ← z̃1

↓
• ← z̃2

↓
d3[z]

p

The E∞-term is the homology H∗(X) in the following sense. There is a filtration of

the homology H∗(X) given by the subspaces FqH∗(X) = im (H∗(Xq) → H∗(X)). Then

E∞
pq =

FqHp+q(X)

Fq−1Hp+q(X)
.

If we work with homology over a field, e.g. the reals, we have
⊕

p+q=n

E∞
pq ⊗ R ∼= Hn(X) ⊗ R

as vector spaces.

Now we are going to look to the case of a pair (X,B). For any A ⊂ X, we have an

exact sequence

· · · → Hn(A,A ∩ B) → Hn(X,B) → Hn(X,A ∪ B) → Hn−1(A,A ∩ B) → · · ·

This comes from the exact sequence of complexes

C∗(A)

C∗(A ∩ B)
↪→ C∗(X)

C∗(B)
³

C∗(X)

C∗(A) + C∗(B)

For proving this we need that C∗(A) + C∗(B) ⊂ C∗(A ∪ B) induces isomorphism in homol-

ogy [Ma, page 151]. This is termed as {A,B} is an excisive couple, i.e., that the Mayer-

Vietoris holds for A∪B, A and B. This is true when the interiors of A and B cover A∪B in

the relative topology of A ∪ B. The proof consists on a process of subdivision of the cycles

in A ∪ B. But also it is true when A and B are CW-subcomplexes of a CW-complex X,

since then there are open sets U ⊃ A, V ⊃ B in A∩B such that U retracts to A, V retracts

to B and U ∩ V retracts to A ∩ B.
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Theorem (spectral sequence for a filtration). Let (X,B) be a pair of CW-complexes,

X0 ⊂ X1 ⊂ · · ·Xd = X a filtration by CW-subcomplexes. Then there is a spectral sequence

with E1
pq = Hp+q(Xq,Xq−1 ∪ (B ∩ Xq)) converging to Hn(X,B).

We look at the filtration given by

C∗(Xq)

C∗(B ∩ Xq)
⊂ C∗(X)

C∗(B)
.

The E0 term is the cokernel in

C∗(Xq−1)

C∗(B ∩ Xq−1)
↪→ C∗(Xq)

C∗(B ∩ Xq)
³

C∗(Xq)

C∗(Xq−1) + C∗(B ∩ Xq)
.

Under the assumptions, the various couples are excisive, so we get a spectral sequence as

before.

3 Spectral Sequences for Quasi-Fibrations

Let us now turn our attention to a different issue. Very typically spectral sequences are

used for a fibration f : E → B with fiber F . Suppose that B is 1-connected. Then

the homology of the different fibers are identified in a canonical way. Therefore H∗(F )

is a system of (constant!) coefficients over the base B. We have the following standard

relationship between the homology of the base B and fiber F and that of the total space E

(see [Mc] and [BT]).

Leray-Serre spectral sequence. Suppose that B is 1-connected. There is a spectral

sequence whose second term is E2
pq = Hq(B;Hp(F )) and converging to Hn(E).

We prove this result for CW-complexes. Take a CW-decomposition for B and consider

the skeleta Bn = B(n). This is a filtration of the space B. (It may be an infinite filtration

B = ∪b≥1Bn, but the theory works because B has the weak topology with respect to

skeleta). Now for any group G of coefficients, the homology H∗(B;G) can be computed

as the homology of the Hn(Bn, Bn−1) ⊗ G. This is true since the spectral sequence E1
pq =

Hp+q(Bq, Bq−1;G) is only non-zero for n = p + q = q, i.e., for p = 0. Therefore the only

non-trivial differential is d1 : E1
pq → E1

p,q−1. All the other ones have to vanish and hence

H∗(B;G) = H∗(E
1, d1).

Consider now the following filtration En = f−1(Bn) of the total space E and the corre-

sponding spectral sequence for the filtration. The fibration over each n-cell in (En, En−1) is
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trivial. This means that the complexes C∗(En, En−1) and C∗(Bn, Bn−1)⊗C∗(F ) are almost

the same, in the sense that their homologies coincide, H∗(En, En−1) = H∗(Bn, Bn−1) ⊗
H∗(F ), which is the E1-term of the spectral sequence of the filtration. The E2-term

is the homology H∗(B;H∗(F )). Note that the first non-zero differential will be a map

dr : Hq(B;Hp(F )) → Hq−r(B;Hp+r−1(F )).

Instead it is more common to have a map f : X → Y which is not a fibration but can

be decomposed into pieces where it actually is. We want to extend the Leray-Serre spectral

sequence to this case, relating the homology of X with that of Y .

Definition. A map f : X → Y between two spaces is called a quasi-fibration if there is a

filtration Yq of Y by closed subspaces such that denoting by Xq = f−1(Yq) the corresponding

filtration for X,

1. the restriction of f to Xq −Xq−1, fq : Xq −Xq−1 → Yq −Yq−1 is a fibration with fiber

Fq, for every q.

2. For each q, there is an open neighborhood U of Yq−1 in Yq that retracts to Yq−1, such

that f−1(U) is a neighborhood of Xq−1 in Xq that retracts to Xq−1.

Before going on further, let us say some words on the hypothesis on f . The condition

of U being a neighborhood of Yq−1 in Yq retracting to Yq−1 is technically referred to as

NDR=Neighbourhood Deformation Retract. It occurs very often, for instance when Yq−1 is

a CW-subcomplex of a CW-complex Yq (e.g. a submanifold, even singular, in a differentiable

manifold).

If we are dealing with CW-complexes (the filtration given by CW-subcomplexes) and

f is cellular, then condition (ii) above is satisfied assuming f is proper: Take a retracting

neighborhood U of Yq−1 in Yq. We consider the neighborhood f−1(U) of Xq−1 and take a

retracting neighborhood V ⊂ f−1(U) of Xq−1 in Xq. Then since f is proper, f is closed, so

there exists U ′ (in fact, U ′ ⊂ Y − f(X − V )) with U ′ ⊂ U and f−1(U ′) ⊂ V . Moreover we

may assume (since Xq is a CW-complex) that U also retracts to U ′. Let H : U × [0, 1] → U

be the map with H(y, 0) = y, H(y′, t) = y′ for y′ ∈ U ′ and H(y, 1) ∈ U ′ for y ∈ U . Easily

we may also assume that H(y, t) ∈ U − Yq−1 for any y ∈ U − Yq−1, t ∈ [0, 1].

By the fibration property, we lift the retraction to H̃ : (f−1(U) − Xq−1) × [0, 1] →
f−1(U) − Xq−1 with H̃(x, 0) = x, and H̃(x, 1) ∈ f−1(U ′). Now take a continuous function

u : U → [0, 1] which is 0 in a neighborhood W ⊂ U ′ of Xq−1 and 1 in f−1(U − U ′). Then

K(x, t) = H̃(x, u(x)t) is a retraction of f−1(U) − Xq−1 to f−1(U ′) − Xq−1 which is the
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identity in f−1(W ) − Xq−1. Therefore it may be extended with K(x, t) = x for x ∈ Xq−1.

Follow this retraction with the retraction form V to Xq−1 to get a retraction from f−1(U)

to Xq−1 as required.

Theorem. Let f : X → Y be a quasi-fibration with all of the Yq being 1-connected. Then

for a fixed integer q, there is a spectral sequence whose E2 term is H∗(Yq, Yq−1;H∗(Fq)) and

converging to H∗(Xq,Xq−1).

Under the assumptions we have

H∗(Xq,Xq−1) = H∗(Xq, f
−1(U)) = H∗(Xq − Xq−1, f

−1(U − Yq−1)).

the last equality by excision. Also H∗(Yq, Yq−1) = H∗(Yq, U) = H∗(Yq − Yq−1, U − Yq−1).

Since

(Xq − Xq−1, f
−1(U − Yq−1)) → (Yq − Yq−1, U − Yq−1)

is a fibration with fiber Fq we have the result from the Leray-Serre spectral sequence.

For pairs we have a similar result which we state in the context of CW-complexes.

Theorem. Let f : X → Y be a proper map between CW-complexes and let (X,B) be a pair

of CW-complexes. Let Yq be a filtration of Y by CW-subcomplexes and let Xq = f−1(Yq),

Bq = f−1(Yq)∩B be the corresponding filtrations of X and B. Suppose that (Xq−Xq−1, Bq−
Bq−1) → Yq − Yq−1 is a fibration (of a pair of spaces) with fiber (Fq, Gq). Then for fixed

q, there is a spectral sequence with E2 = H∗(Yq, Yq−1;H∗(Fq, Gq)) and converging to E∞ =

H∗(Xq,Xq−1 ∪ Bq).

4 The Fundamental Group on a Quasi-Fibration

The Leray-Serre spectral sequence (at least in the simplified version we have stated it in

section 3) leaves aside an important issue of the behaviour of the topology of spaces under

a quasi-fibration, namely the question relative to the fundamental group. Let us deal with

this by hand.

Theorem. Let f : X → Y be a quasi-fibration between 0-connected spaces, such that the

fibers Fq are connected. Then

f∗ : π1(X) → π1(Y )
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is surjective.

To see this, take a loop γ : [0, 1] → Y . Consider a sub-interval [0, t1] such that γ([0, t1))

is included in Yq −Yq−1 and γ(t1) ∈ Yq−1. This allows to write γ = γ1 ∗γ2 as a juxtaposition

of γ1 = γ|[0,t1] and γ2 = γ|[t1,1].

Now consider a neighborhood U of Yq−1 in Yq that retracts to Yq−1 such that f−1(U)

retracts to Xq−1. Choose some ε > 0 with γ1([t1 − ε, t1]) ⊂ U . Then we use the fibration

property for Xq −Xq−1 → Yq − Yq−1 to lift γ1|[0,t1−ε] to a path γ̃1. With the retraction, we

may join γ̃1(t1−ε) with a point in Xq−1 by a path δ̃ in f−1(U). Let δ = f ◦ δ̃ be the induced

path. The path δ−1 ∗ γ1|[t1−ε,t1] is in U with end-points in Yq−1 so it is homotopic (via the

retraction) to a path α in Yq−1. This means that δ ∗ α ' γ1|[t1−ε,t1]. So we decompose

γ =
(
(γ1|[0,t1−ε]) ∗ δ

)
∗ (α ∗ γ2) .

The first loop is lifted to a path γ̃1 ∗ δ̃ with end-point in Xq−1.

We perform the above construction simultaneously in every portion of γ in Yq. Specif-

ically, suppose γ([0, 1]) ⊂ Yq. Write γ = γ1 ∗ · · · ∗ γr with γi = γ|[ti−1,ti] satisfying that

either γi([ti−1, ti]) ⊂ Yq−1 or γi((ti−1, ti)) ⊂ Yq − Yq−1 and γi({ti−1, ti}) ⊂ Yq−1 (except for

possibly γ1(0) and γr(1)). Let I ⊂ {1, . . . , r} be the set of indices of those γi satisfying the

second condition.

The method above allows to change γ by γ ' γ′
1 ∗ · · · ∗ γ′

r such that γ′
i is liftable to γ̃′

i

for i ∈ I, and γ′
i is in Yq−1 for i /∈ I. Since γ′

i is included in Yq−1, for i /∈ I, by induction

on q we may suppose that they are liftable to γ̃′
i. If the end points of consecutive γ̃′

i do not

match then we use that the fibers are arc-wise connected to join them.

Therefore there is a loop γ̃ = γ̃′
1 ∗ · · · ∗ γ̃′

r such that f ◦ γ̃ ' γ, as required to have

surjectivity of f∗.

Obviously the condition on the fibers Fq being 0-connected is necessary. Just think of

the projection

f : S
1 = {(x, y)|x2 + y2 = 1} → [−1, 1]

(x, y) 7→ x

which is a quasi-fibration, but not surjective in the fundamental groups.
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5 Degeneracy Loci

An important point of a mathematical theory is to have applications which prove its use-

fulness. Our application touches the world of algebraic geometry. Start with a complex

manifold M of (complex) dimension n. This means that M is covered by charts which are

open sets of C
n and the change of charts are bi-holomorphisms. A holomorphic vector bun-

dle E → M of rank e is a complex vector bundle which admits local trivializations where

the transition functions are holomorphic [We].

For two holomorphic vector bundles E and F over M , of ranks e and f respectively, let

φ : E → F be a holomorphic morphism. This means that φ is holomorphic as a section of

Hom(E,F ). The r-degeneracy locus of φ is the subset

Dr(φ) = {x ∈ M
∣∣ rkφ(x) ≤ r}.

This is a complex submanifold of M but it is not smooth in general. It is usually said

that Dr(φ) has a determinantal structure [ACGH], which forces Dr(φ) to be singular along

Dr−1(φ).

The way to understand the degeneracy loci is the following. Construct the grassmannian

bundle G = Gr(e − r, E) over M . This consists of putting the grassmannian Gr(e − r, Ex)

of (e − r)-subspaces of the fiber Ex over every x ∈ M in a differentiable varying way. The

canonical projection of this fibration to M will be denoted by π. There is a universal bundle

U over G. Every point V ∈ G is actually an (e − r)-dimensional subspace V ⊂ Ex for

x = π(V ). So the bundle U has fiber over V ∈ G the space V itself. Since V ⊂ Eπ(V ), we

get U ⊂ π∗E. Composing this inclusion with the map π∗(φ) : π∗E → π∗F we get a map

φr : V → π∗F . Now φr is zero at a point V ∈ G if and only if φ(V ) = 0. This means that at

x = π(V ) there is an (e− r)-dimensional subspace of Ex in the kernel of φ(x) and therefore

rk(φ(x)) ≤ r. So denoting by Z(φr) ⊂ G the zero set of φr, we have

π(Z(φr)) = Dr(φ).

Moreover this map is one to one over Dr(φ) − Dr−1(φ). We have an obvious filtration of

Dr(φ) given by those Dr−i(φ) with i ≥ 0. Over Dr−i(φ) − Dr−i−1(φ) the fiber of the map

π : Z(φr) → Dr(φ) is Gr(e − r, e − r + i). So

π : Z(φr) → Dr(φ)

is a quasi-fibration.

When the section φr of Hom(U , π∗F ) is transversal, Z(φr) are smooth subvarieties of
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G, so that they can be considered as a desingularization of Dr(φ). Moreover dimG =

dimM + 2r(e − r) and rankC(U∗ ⊗ π∗F ) = f(e − r), so that the dimension of Z(φr) is

2n − 2(e − r)(f − r). If this is negative then Dr(φ) is empty. Finally let

ρ(r) = n − (e − r)(f − r).

Note that it must be r ≤ e and r ≤ f since otherwise we have Dr(φ) = M .

We pose ourselves a question: what can be said about the topology of the degeneracy

loci Dr(φ)?

6 A Lefschetz Theorem

Let M be a complex manifold and let E → M be a rank e holomorphic vector bundle. For

a holomorphic section s of E, let W = Z(s) be the zero set of s. The topology of W can be

controlled under an extra assumption on E.

We say that E is a positive vector bundle [We, page 223][Gr, Chapter 0] if there exists an

hermitian metric hE in the fibers of E such that the curvature Θ associated to the hermitian

connection induced by the holomorphic structure satisfies that
√
−1Θ is a positive 2-form:

〈s,
√
−1Θ(u, Ju)s〉 > 0 for any non-zero u ∈ TpM and non-zero s ∈ Ep, where Ju is the

vector obtained by multiplying u by i in the complex space TpM ∼= C
n. To go into details

of the definition of curvature and consequences of positivity see [We]. When E is of rank 1

this produces a Kähler form for M .

Lefschetz theorem on hyperplane sections. Let E be a rank e positive vector bundle

over a compact complex manifold M and let s be a holomorphic section of E. Let W = Z(s)

be the zero set of s and ρ = n − e. If the section s is transverse then W has dimension 2ρ.

In any case, the pair (M,W ) is ρ-connected.

The result is originally given in [AF][Bo]. We also have a Lefschetz theorem for degen-

eracy loci given in [MP] (see [De] for the homology version built up on considerations of

connectedness of degeneracy loci in [FL]).

Lefschetz theorem for degeneracy loci. Let φ be a morphism between the holomorphic

vector bundles E and F , of ranks e and f respectively, over a compact complex manifold

M , such that Hom(E,F ) is positive. Let W = Z(φr) ⊂ G = Gr(e − r, E) and ρ = n − (e −
r)(f − r). Then (G,W ) is ρ-connected.
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The theorem does not follows from the previous Lefschetz theorem, since the positivity

of Hom(E,F ) does not imply that Hom(U , π∗F ) is positive. Actually the proof of the

theorem in [MP] goes through the way of proving that Hom(U , π∗F ) keeps “part of” the

positivity of Hom(E,F ), namely the positivity along the section φr.

Our application is the following information on the topology of Dr(φ), using the map

π : G → M .

Theorem. Let φ be a morphism between the holomorphic vector bundles E and F over a

compact complex manifold M , such that Hom(E,F ) is positive. Suppose that ρ(r + k) ≥ 0,

for some k ≥ 0. Let ε = 0 if ρ(r + k) > 0 and ε = 1 if ρ(r + k) = 0. Then the pair

(M,Dr(φ)) is (2k + 1 − ε)-connected.

Proof. We prove this by induction on k. For k = 0 it is very easy: if ρ(r) = 0

then (G,Z(φr)) is 0-connected, i.e., every connected component of G has at least a point of

Z(φr). Since the connected components of G are in 1-1 correspondence with those of M and

Z(φr) surjects onto Dr(φ), the same happens to (M,Dr(φ)). If ρ(r) > 0 then (G,Z(φr)) is

1-connected. The commutative diagram

π1(Z(φr)) ³ π1(G)
↓ ‖

π1(Dr(φ)) → π1(M)
(1)

implies that the arrow in the bottom row is a surjection. Therefore (M,Dr(φ)) is also

1-connected.

Now let us turn to the case k > 0. We may suppose that M is connected from now

on, working on every connected component of M if necessary. If ρ(r − 1) ≥ 0 then ρ(r) ≥
(e − r) + (f − r) + 1 ≥ 2, unless e = f = r in which case Dr(φ) = M and there is nothing

to prove. If ρ(r) ≥ 2 then (G,Z(φr)) is 2-connected. Then the top row in diagram (1)

is an isomorphism. By the result in section 4, π1(Z(φr)) ³ π1(Dr(φ)) is a surjection.

This implies that the bottom row in (1) must be an isomorphism. So the fundamental

groups of Z = Z(φr), G, M and Dr = Dr(φ) all coincide. Let now p : M̃ → M be the

universal covering space. Also p̃ : p∗G → G is a universal covering space, and Z̃ = p̃−1(Z),

D̃r = p−1(Dr) are the universal covering spaces of Z and D respectively. Pulling back all

our construction by p we see that to prove that (M,Dr(φ)) is n-connected is equivalent to

prove that (M̃, D̃r(φ)) is n-connected.

The above considerations imply that we can work on M̃ . To simplify notation, we

denote M̃ by M , i.e., we assume to start with that M is simply-connected and keep the
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notations without tildes. Under this condition, Hurewicz theorem in section 1 says that

(M,Dr) is (2k + 1 − ε)-connected if we manage to prove that

Hi(M,Dr) = 0, i ≤ 2k + 1 − ε.

By Lefschetz theorem (G,Z) is ρ(r)-connected. Now ρ(r − k) ≥ 0 implies that ρ(r) =

(e− r)k + (f − r)k + k2 ≥ 2k + 1 (again if either e = r or f = r then Dr(φ) = M and there

is nothing to prove). So Hn(G,Z) = 0 for n ≤ 2k + 1.

Let us stratify M with M ⊃ Dr ⊃ Dr−1 ⊃ · · · ⊃ Dr−k and let G be stratified with

Gr−i = π−1(Dr−i) and Zr−i = Z ∩ Gr−i. With this notations in place, we have that

(Gr−i − Gr−i−1, Zr−i − Zr−i−1) → Dr−i − Dr−i−1

is a fibration with fiber (Gr(e − r, e),Gr(e − r, e − r + i)). Let i > 0. The last theorem in

section 3 implies that there is a spectral sequence with E2 = H∗(Dr−i,Dr−i−1)⊗H∗(Gr(e−
r, e),Gr(e − r, e − r + i)) converging to E∞ = H∗(Gr−i, Gr−i−1 ∪ Zr−i). (We can take the

homology of the grassmannian out of the ‘coefficient group’ since it is free.) Now the pair

(Gr(e − r, e),Gr(e − r, e − r + i)) is (2i + 1)-connected. By induction hypothesis, the pair

(M,Dr−i) is (2(k − i) + 1− ε)-connected. Therefore by the long exact sequence of the pair,

Hn(Dr−i,Dr−i−1) = 0 for n ≤ (2(k−i)−ε). Hence E2
pq = 0 for p+q ≤ 2(k−i)−ε+(2i+1)+1.

This implies that Hn(Gr−i, Gr−i−1 ∪ Zr−i) = 0 for n ≤ 2k + 2 − ε.

The spectral sequence for the filtration G ⊃ Gr ⊃ Gr−1 ⊃ · · · ⊃ Gr−k has

E2
p,r+1 = Hp+r+1(G,Gr),

E2
p,r−i = Hp+q(Gr−i, Gr−i−1 ∪ Z), i ≥ 0,

and converges to E∞ = Hn(G,Z). By the above considerations E2
pq = 0 for q < r and

p+ q ≤ 2k +2− ε. Looking at the limit, Hn(G,Z) = 0 for n ≤ 2k +1. We have that it must

be d1 = ∂∗ : Hn(G,Gr) → Hn−1(Gr, Gr−1 ∪ Z) an isomorphism, for n ≤ 2k + 2.

q

r+1 • • •
↓ ↓ · · ·

r • • •

p
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Now there are two spectral sequences: E2
ij = Hj(M,Dr) ⊗ Hi(Gr(e − r, e)) converg-

ing to the Hn(G,Gr), and Ē2
ij = Hj−1(Dr,Dr−1) ⊗ Hi(Gr(e − r, e), pt) converging to

Hn−1(Gr, Gr−1 ∪ Z), where pt is the base point. Here we have ‘moved’ the second spectral

sequence one unit to the top so that f = ∂∗ induces a map of bidegree (0, 0) between the

two spectral sequences, i.e., a map fr : Er → Ēr for every step, such that fr+1 = H(fr).

In the limit, f∞ : E∞ → Ē∞ must be an isomorphism.

Look at f2
ij : E2

ij → Ē2
ij . For i + j ≤ 2k + 2 − ε it is surjective, since Hj(M,Dr) →

Hj−1(Dr,Dr−1) is surjective for j ≤ 2k − ε. Also f2
ij is injective for i > 0, j ≤ 2k − 1 − ε,

since Hj(M,Dr) → Hj−1(Dr,Dr−1) is injective for j ≤ 2k − 1 − ε. Now let us prove that

fr : Er
ij → Ēr

ij is isomorphism for i + j ≤ 2k + 1 − ε, i > 0 and an epimorphism for

i + j ≤ 2k + 2 − ε, by induction on r. We consider the diagram

Er
i−r+1,j+r

dr−→ Er
ij

dr−→ Ei+r−1,j−r

fr
i−r+1,j+r ↓ fr

ij ↓ fr
i+r−1,j−r ↓

Ēr
i−r+1,j+r

dr−→ Ēr
ij

dr−→ Ēi+r−1,j−r

For i = 0 we have Ēr
0j = 0, so it must be dr : Er

0j → Er
r−1,j−r the zero map for

j ≤ 2k + 2 − ε. Hence Er+1
0j

∼= Er
0j .

For i + j < 2k + 1 − ε and i > 0, i 6= r − 1, the vertical arrows are isomorphisms, so

fr+1
ij is an isomorphism. For i = r − 1 the result also holds using that dr : Er

0j → Er
r−1,j−r

is the zero map. For i+ j = 2k +1− ε, i > 0, the first vertical arrow is an epimorphism, the

second and third are isomorphisms, so fr+1
ij is an isomorphism. Finally for i+j = 2k+2−ε,

fr
ij is an epimorphism and fr

i+r−1,j−r is an isomorphism, hence fr+1
ij is an epimorphism.

Looking at the E∞ stage, f∞
0j : E∞

0j → Ē∞
0j = 0 is an isomorphism for j ≤ 2k + 1 − ε.

This means that E∞
0j = E2

0j = Hj(M,Dr) = 0 for j ≤ 2k + 1 − ε as desired. 2
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