
MODULI SPACES OF CONNECTIONS ON A RIEMANN SURFACE

INDRANIL BISWAS AND VICENTE MUÑOZ

Abstract. Let E be a holomorphic vector bundle over a compact connected Riemann
surface X. The vector bundle E admits a holomorphic projective connection if and
only if for every holomorphic direct summand F of E of positive rank, the equality
degree(E)/rank(E) = degree(F )/rank(F ) holds. Fix a point x0 in X. There is a
logarithmic connection on E, singular over x0 with residue − d

n IdEx0
if and only if the

equality degree(E)/rank(E) = degree(F )/rank(F ) holds. Fix an integer n ≥ 2, and
also fix an integer d coprime to n. Let M(n, d) denote the moduli space of logarithmic
SL(n,C)–connections on X singular of x0 with residue − d

n Id. The isomorphism class of
the variety M(n, d) determines the isomorphism class of the Riemann surface X.

1. Introduction

Let X be a compact connected Riemann surface. Let E be a holomorphic vector bundle

over X of rank n. A holomorphic connection on E is given by locally defined holomorphic

trivializations of E such that all the transition functions are locally constant maps to

GL(n,C). We recall that if {Ui}i∈I is a covering of X by open subsets and

ϕi : EUi
−→ Ui × Cn

are holomorphic isomorphisms, then for an ordered pair (i, j) ∈ I × I, the transition

function

gi,j : Ui ∩ Uj −→ GL(n,C)

is the unique function satisfying the identity

gi,j ◦ ϕi = ϕj .

Therefore, if E is equipped with a holomorphic connection, then it makes sense to talk of

locally constant holomorphic sections of E.

A holomorphic projective connection on E is given by locally defined holomorphic

trivializations of E such that all the transition functions gi,j project to locally constant

maps under the projection GL(n,C) −→ PGL(n,C). Therefore, if E is equipped with a

holomorphic projective connection, then the projective bundle P(E) has locally defined

holomorphic trivializations such that all the transition functions are locally constant maps

to PGL(n,C).

Fix a point x0 ∈ X. Set X ′ := X \ {x0} to be the complement. A logarithmic

connection on E singular at x0 is a holomorphic connection on E|X′ which, locally around

x0, has a holomorphic connection matrix with a single pole at x0. Given a logarithmic

2000 Mathematics Subject Classification. 14H60, 14C30.
1



2 I. BISWAS AND V. MUÑOZ

connection on E singular at x0, the behavior of the flat sections near x0 are captured by

what is called the residue of the connection. The residue is a linear endomorphism of

the fiber Ex0 . If the residue of a logarithmic connection on E singular at x0 is a scalar

multiple of the identity automorphism of Ex0 , then the logarithmic connection gives a

holomorphic projective connection on E. Here we shall consider logarithmic connections

whose residue is a scalar multiple of the identity automorphism.

We investigate some properties of holomorphic projective connections and logarithmic

connections. Especially we address the question of existence of such connections on a

given holomorphic vector bundle.

In the last section we explain a recent result of the authors on the moduli spaces of

logarithmic connections.

2. Connections and projective connections

Let X be a compact connected Riemann surface; alternatively, X is an irreducible

smooth projective curve defined over the field of complex numbers. The complexified

tangent bundle TRX
⊗

RC decomposes as

TRX ⊗R C = T 1,0X ⊕ T 0,1X

into (1 , 0) and (0 , 1) components. The dual line bundle (T 1,0X)∗ will also be denoted by

Ω1,0
X or KX , and the complex line bundle (T 0,1X)∗ will also be denoted by Ω0,1

X .

A holomorphic vector bundle over X is a C∞ vector bundle of rank n whose transition

functions are given by holomorphic maps to GL(n,C). The usual Dolbeault operator

∂-operator on locally defined smooth functions over X give a Dolbeault operator ∂E on a

holomorphic vector bundle E. This operator ∂E is a first order differential operator that

sends smooth sections of E to those of E
⊗

Ω0,1
X .

We note that the line bundles T 1,0X and KX have natural holomorphic structures. The

trivial holomorphic line bundle X × C will also be denoted by OX .

Definition 2.1. Let E be a holomorphic vector bundle over X of rank n. A holomorphic

connection on E is a first order holomorphic differential operator

D : E −→ E ⊗KX

satisfying the Leibniz identity, which says that D(fs) = fD(s) + df
⊗

s, where f (re-

spectively, s) is a locally defined holomorphic function (respectively, holomorphic section

of E).

Associated to a holomorphic connection D there is a C∞ connection

∇ : C∞(E) −→ C∞(E ⊗ T ∗X) ,
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where C∞(E) denotes the sheaf of smooth sections of the vector bundle E. Using the

isomorphism

Γ(E) = O(E)⊗O C∞,

where O(E) is the sheaf of holomorphic sections of E, we have

∇(fs) = fD(s) + df ⊗ s ,

for s a holomorphic section of E and f ∈ C∞(X). In other terms, we define ∇ = D+ ∂E

on holomorphic sections, and then we extend to C∞ sections.

Let D be a holomorphic connection on E. The curvature D ◦ D of D is a holomorphic

section of the vector bundle End(E)
⊗

Ω2,0
X . Since dimCX = 1, we have Ω2,0

X = 0. Hence

a holomorphic connection on a Riemann surface is automatically flat.

If E has a holomorphic connection, then degree(E) = 0 [At]. Actually, the connection

∇ is also flat, since its curvature is F∇ = D∂E + ∂ED, which is zero on holomorphic

sections, hence F∇ = 0. Considering a local flat trivialization, the constant sections (in the

local trivialization) are automatically holomorphic, hence there are local flat holomorphic

trivializations of E.

Note also that any flat connection ∇ on a C∞ vector bundle E gives rise to a holomor-

phic structure on E together with a holomorphic connection. For this, we only need to

take flat trivializations and declare them to be holomorphic.

Let E be a holomorphic vector bundle over X and F a direct summand of E. This

means that F is a holomorphic subbundle of E, and there exists a holomorphic subbundle

F ′ of E such that the natural homomorphism F
⊕

F ′ −→ E is an isomorphism. Let

ι : F ↪→ E be the inclusion map. Fix a complement F ′ of F as above. Using the natural

isomorphism F
⊕

F ′ −→ E we get a projection

q : E −→ F .

If D is a holomorphic connection on E, then it is easy to see that the composition

F
ι

↪→ E
D−→ E ⊗KX

q⊗Id−→ F ⊗KX

is a holomorphic connection on F . Hence if E admits a holomorphic connection, then

each direct summand of E also admits a holomorphic connection. So, if E admits a

holomorphic connection, then the degree of each direct summand of E is zero. A theorem

due to Atiyah and Weil says that the converse is also true.

Theorem 2.2 ([At], [We]). A holomorphic vector bundle E over X admits a holomorphic

connection if and only if the degree of each direct summand of E is zero. ¤

In particular, any indecomposable bundle E admits a holomorphic connection.

A holomorphic vector bundle E of rank n over X admits a holomorphic connection

if and only if we can choose (holomorphic) local trivializations of E over a covering of
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X (by open sets) such that all the transition functions are locally constant functions to

GL(n,C). This follows from the flatness of ∇.

Recall that the Atiyah bundle At(E) associated to a holomorphic vector bundle E is the

holomorphic vector bundle associated to the sheaf of first order holomorphic differential

operators on E. The Atiyah exact sequence for E is

(2.1) 0 −→ End(E) −→ At(E) −→ T 1,0X −→ 0

where the last arrow is the symbol map. Note that End(E) is identified with the zeroth

order differential operators. Therefore, a holomorphic connection on E corresponds to a

holomorphic splitting of the Atiyah exact sequence in (2.1).

Now let PE be the holomorphic principal GL(n,C)–bundle over X defined by E. So

PE is the space of all bases in the fibers of E. Let OX ⊂ End(E) be the line subbundle

given by the sheaf of endomorphisms of E of the type s 7−→ f · s. Therefore, from (2.1)

we have the exact sequence of vector bundles

(2.2) 0 −→ End(E)/OX −→ At(E)/OX −→ T 1,0X −→ 0

over X. This exact sequence is the Atiyah bundle for the principal PGL(n,C)–bundle over

X corresponding to E. We note that this principal PGL(n,C) is the quotient space PE/C∗,
where C∗ is considered as a subgroup of GL(n,C) through scalar multiplications of Cn.

Also, note that the quotient vector bundle End(E)/OX is identified with the subbundle

of ad(E) ⊂ End(E) defined by trace zero endomorphisms. Indeed, the natural projection

of the subbundle ad(E) to the quotient bundle End(E)/OX is an isomorphism.

Definition 2.3. A holomorphic projective connection on E is a holomorphic splitting of

the exact sequence in (2.2). By a projective connection we will always mean a holomorphic

projective connection.

It follows that a holomorphic vector bundle E admits a projective connection if we

can choose holomorphic local trivializations of E over a covering of X (by open sets)

such that images of all the transition functions are locally constant under the projection

GL(n,C) −→ PGL(n,C). This means that they are of the form f · Idn×n times a locally

constant function, with f being some nonzero holomorphic function.

To see this, consider the splitting of the exact sequence (2.2) given by the projective

connection, and take a covering by open sets Uα. Over each Uα, take an arbitrary splitting

of At(E) −→ At(E)/OX . This produces a holomorphic connection Dα on Uα, and hence

a flat trivialization of E|Uα . Since Dα − Dβ = fαβ · Idn×n on Uα

⋂
Uβ, we have that

the transition functions of E (with respect to the chosen trivializations) are of the form

f · Idn×n times a locally constant function.

Assume that the vector bundle E admits a projective connection. Let EPGL be the

principal PGL(n,C)–bundle given by E. We noted earlier that EPGL = PE/C∗, where

PE is the principal GL(n,C)–bundle given by E. Giving a projective connection on E is
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equivalent to giving a holomorphic connection on the principal PGL(n,C)–bundle EPGL,

that is, a family of flat trivializations of EPGL such that the transition functions are

locally constant functions with values in PGL(n,C). Note that this also can be expressed

in terms of giving trivializations of the projective bundle P(E) whose transition functions

are locally constant functions in PGL(n,C).

Using the commutative diagram of vector bundles

0 −→ End(E) −→ At(E) −→ T 1,0X −→ 0y
y

y
0 −→ End(E)/OX −→ At(E)/OX −→ T 1,0X −→ 0

over X, a holomorphic connection on E induces a projective connection on E. However,

the converse is not true in the sense that a vector bundle admitting a projective connection

need not admit a holomorphic connection.

If E admits a projective connection and degree(E) = 0 then the projective connection

is induced by a holomorphic connection. To see this, take a covering by open sets Uα

with a holomorphic connection Dα on each Uα, as before. Since Dα − Dβ = fαβ · Idn×n

on Uα

⋂
Uβ, we have that fαβ ∈ Ω1

X(Uα

⋂
Uβ) form a cocycle, and hence define a class

in H1(X, KX) = C. Therefore there exists gα ∈ Ω1
X(Uα) such that if we modify Dα to

D̃α = Dα+gα ·Idn×n, then the corresponding D̃α−D̃β is a constant multiple of the identity.

This gives transition functions for E which are locally constant functions in GL(n,C).

The following theorem classifies all holomorphic vector bundles over X that admit a

projective connection.

Theorem 2.4. Let E be a holomorphic vector bundle over X of rank n and degree d.

Then the following two statements are equivalent:

(1) The vector bundle E admits a projective connection.

(2) For any direct summand F ⊂ E, the equality

degree(F )

rank(F )
=

d

n

holds.

Proof. Assume that the vector bundle E admits a projective connection. Let EPGL be

the principal PGL(n,C)–bundle given by E. The projective connection on E gives a

holomorphic connection on EPGL. The adjoint vector bundle over X for the principal

PGL(n,C)–bundle EPGL is ad(E). Therefore ad(E) admits a family of trivializations

with transitions functions locally constant functions on PGL(n,C). This means that

ad(E) admits a projective connection. Since the degree of ad(E) is zero, the vector

bundle ad(E) admits a holomorphic connection.

Let D be a holomorphic connection on ad(E). Assume that

E = F1 ⊕ F2 .
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We will show that D induces a holomorphic connection on the vector bundle Hom(F1 , F2).

For this, first note that Hom(F1 , F2) is a direct summand of ad(E). Indeed, we have a

holomorphic decomposition

(2.3) ad(E) = Hom(F1 , F2)⊕ Hom(F2 , F1)⊕ (End(F1)⊕ End(F2))/OX

of ad(E) into a direct sum of vector bundles; here OX is considered as a subbundle of

End(F1)
⊕

End(F2) by sending any locally defined holomorphic function f to f(IdF1 +

IdF2). Hom(F1 , F2) is a direct summand of the bundle ad(E), which admits a holomorphic

connection. Hence Theorem 2.2 implies that

(2.4) degree(Hom(F1 , F2)) = n1d2 − d1n2 = 0 ,

where ni (respectively, di) is the rank (respectively, degree) of Fi, i = 1, 2. Since

degree(E) = d1 + d2 = d ,

from (2.4), it follows immediately that

degree(Fi)

rank(Fi)
=

d

n
.

Therefore, the first statement in the theorem implies the second statement.

To prove the converse, we begin with a lemma.

Lemma 2.5. Let E1 and E2 are two holomorphic vector bundles over X, both admitting

projective connections. If
degree(E1)

rank(E1)
=

degree(E2)

rank(E2)
,

then E1

⊕
E2 also admits a projective connection.

Proof. Since both E1 and E2 admit projective connections, the vector bundle E∗
1

⊗
E2

also admits a projective connection. On the other hand, the condition that

degree(E1)

rank(E1)
=

degree(E2)

rank(E2)

implies that degree(E∗
1

⊗
E2) = 0. This condition together with the condition that

E∗
1

⊗
E2 admits a projective connection imply that E∗

1

⊗
E2 admits a holomorphic con-

nection. Similarly, E∗
2

⊗
E1 admits a holomorphic connection. Now using the natural

decomposition

End(E1 ⊕ E2) = End(E1)⊕ End(E2)⊕ (E∗
1 ⊗ E2)⊕ (E∗

2 ⊗ E1)

it follows that E1

⊕
E2 also admits a projective connection, and the proof of the lemma

is complete. ¤

Continuing with the proof of the theorem, assume that

degree(F )

rank(F )
=

d

n

for each direct summand F of E.
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We will prove that E admits a projective connection. This will be done by imitating

the Atiyah’s proof in [At] of the criterion for the existence of a holomorphic connection.

As before, let EPGL denote the holomorphic principal PGL(n,C)–bundle over X defined

by E. Let

(2.5) 0 −→ ad(E) −→ At(EPGL) −→ T 1,0X −→ 0

be the Atiyah exact sequence for the principal PGL(n,C)–bundle EPGL (see [At, page

187, Theorem 1]), where At(EPGL) is the Atiyah bundle for EPGL. The exact sequence of

vector bundles in (2.5) coincides with the exact sequence in (2.2). A projective connection

on E is equivalent to a holomorphic connection on the principal PGL(n,C)–bundle EPGL.

Let

(2.6) a(E) ∈ H1(X, KX ⊗ ad(E))

be the obstruction class for holomorphic splitting of (2.5). We note that the vector bundle

ad(E) is self-dual, that is, ad(E)∗ = ad(E). Indeed, the trace map

ad(E)⊗ ad(E) −→ OX

that sends s⊗ t to trace(s ◦ t) identifies ad(E)∗ with ad(E). Therefore, the Serre duality

says that

H1(X, KX ⊗ ad(E)) = H0(X, ad(E))∗ .

Let

(2.7) b(E) ∈ H0(X, ad(E))∗

be the linear form corresponding to the cohomology class a(E), constructed in (2.6), by

the Serre duality.

In view of Lemma 2.5, it suffices to prove the theorem under the assumption that the

vector bundle E is indecomposable.

Assume that E is indecomposable. Then any section

s ∈ H0(X, ad(E))

is actually nilpotent [At, page 201, Proposition 16]. In other words, the endomorphism s

gives a holomorphic filtration of subbundles

0 = E0 ⊂ E1 ⊂ E2 · · · ⊂ Ek = E

such that s(Ei) = Ei−1 for all 1 ≤ i ≤ k. More precisely, Ei is the subbundle of E

generated by the kernel of the i-fold composition si = s ◦ · · · ◦ s.

Now, for a nilpotent endomorphism s of E we know that

b(E)(s) = 0 ,

where b(E) is constructed in (2.7) [At, page 202, Proposition 18(ii)]. Since the functional

b(E) vanishes on H0(X, ad(E)), we have b(E) = 0. Therefore, the obstruction class a(E)
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in (2.6) vanishes, and hence EPGL admits a holomorphic connection. This completes the

proof of the theorem. ¤

3. Logarithmic connections

As before, X will denote a compact connected Riemann surface of genus g, where

g ≥ 2. Fix a point x0 ∈ X. The holomorphic line bundle over X defined by the divisor

x0 will be denoted by OX(x0).

Definition 3.1. Let E be a holomorphic vector bundle over X. A logarithmic connection

on E singular over x0 is a holomorphic differential operator

D : E −→ E ⊗OX(x0)⊗KX

satisfying the Leibniz identity

(3.1) D(fs) = fD(s) + df ⊗ s ,

where f (respectively, s) is a locally defined holomorphic function (respectively, holomor-

phic section of E).

Note that a logarithmic connection on E singular over x0 produces a holomorphic

connection on E over X \ {x0}. Let U be a chart around x0 with local holomorphic

coordinate z. Then

(3.2) D(s) = ds + A(z)s
dz

z
,

for any local holomorphic section s of End(E) and a holomorphic connection matrix A(z).

The curvature of a holomorphic connection on E is a holomorphic two–form with values

in End(E)
⊗OX(x0). Since a Riemann surface does not have nonzero holomorphic two

forms, any logarithmic connection on a Riemann surface is flat.

A differential operator that satisfies the Leibniz identity (3.1) is clearly of order one. The

above condition that a logarithmic connection D satisfies the Leibniz identity is evidently

equivalent to the condition that the symbol of the first order differential operator D
coincides with the section

IdE ∈ H0(X, OX(x0)⊗ End(E)) ,

where IdE denotes the identity automorphism of E.

The Poincaré adjunction formula says the following: Let D be a smooth hypersurface

on a smooth variety Z, and let L denote the line bundle over Z defined by the divisor D.

Then the restriction of the line bundle L to D is canonically identified with the normal

bundle of D. See [GH] for a proof.

Therefore, the Poincaré adjunction formula says that the fiber over x0 of the line bundle

OX(x0) is identified with the holomorphic tangent space Tx0X. Using this isomorphism

between OX(x0)|x0 and Tx0X, the fiber (KX

⊗OX(x0))x0 is identified with C.
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We will now recall the definition of the important notion of residue of a logarithmic

connection.

Let D be a logarithmic connection on a vector bundle E over X, which is singular over

x0. Let v ∈ Ex0 be any vector in the fiber of E over the point x0. Let v̂ be a holomorphic

section of E defined around x0 such that v̂(x0) = v. Consider

D(v̂)(x0) ∈ (KX ⊗OX(x0))x0 ⊗C Ex0 = C⊗C Ex0 = Ex0 .

Note that if v = 0, then D(v̂) is a (locally defined) section of the subsheaf

E ⊗KX ⊂ E ⊗OX(x0)⊗KX .

So, in that case the above evaluation D(v̂)(x0) ∈ Ex0 vanishes. Consequently, we have a

well–defined endomorphism

Res(D, x0) ∈ End(Ex0)

that sends any v ∈ Ex0 to D(v̂)(x0) ∈ Ex0 . This endomorphism Res(D, x0) is called the

residue of the logarithmic connection D at the point x0. See [De1] for more details.

If D is a logarithmic connection on E singular over x0 and θ ∈ H0(X, End(E)⊗KX),

then the differential operator D + θ is also a logarithmic connection on E singular over

x0. Furthermore, we have

Res(D, x0) = Res(D + θ, x0) .

Conversely, if D and D′ are two logarithmic connections on E regular on X \ {x0} with

(3.3) Res(D, x0) = Res(D′, x0) ,

then D′ = D + θ, where θ ∈ H0(X, End(E)
⊗

KX). In this way the space of all

logarithmic connectionsD′ on the given vector bundle E, regular on X\{x0} and satisfying

(3.3), with D fixed, is an affine space for the vector space H0(X, KX

⊗
End(E)).

Let E be a holomorphic vector bundle over X of rank n, and let D be a logarithmic

connection on E, regular on X \ {x0}, satisfying the residue condition

(3.4) Res(D, x0) = −d

n
IdEx0

,

where d ∈ C. Consider the nonsingular flat connection on the complement X \ {x0}
defined by D. The above condition on the residue implies that the monodromy around x0

of this flat connection is the n× n diagonal matrix with exp(2π
√−1d/n) as the diagonal

entries [De1, page 79, Proposition 3.11]. From the expression of the degree of E in terms of

the residue of D it follows immediately that degree(E) = d; the last sentence of Corollary

B.3 in [EV, page 186] gives the expression of the first Chern class in terms of the trace of

the residue. In particular, d in (3.4) must be an integer.

We will now relate logarithmic connections with projective connections discussed in

Section 2.

Let E be a holomorphic vector bundle over X of rank n and degree d. Let D be a

logarithmic connection on E, regular on X \ {x0}, satisfying the residue condition in
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(3.4). The logarithmic connection D gives a holomorphic connection on the vector bundle

E|X\{x0} over the open subset X \ {x0} ⊂ X. This connection on E|X\{x0} induces a

projective connection on the PGL(n,C)–principal bundle EPGL|X\{x0} over X\{x0} ⊂ X,

understood as a family of (holomorphic) trivializations with transition functions which

are locally constant in PGL(n,C). The residue of D is in the center of M(n,C) (the

Lie algebra of GL(n,C)); its projection to sl(n,C) vanishes. Therefore, the projective

connection of EPGL|X\{x0} extends across x0 as a regular projective connection.

Hence we have proved the following lemma:

Lemma 3.2. Let E be a holomorphic vector bundle over X such that E admits a loga-

rithmic connection D regular on X \ {x0} such that

Res(D, x0) = −d

n
IdEx0

.

Then the vector bundle E admits a projective connection. ¤

The following theorem is the analog of Theorem 2.4 for logarithmic connections.

Theorem 3.3. Let E be a holomorphic vector bundle over X of rank n and degree d.

Then the following two statements are equivalent:

(1) The vector bundle E admits a logarithmic connection regular on X \ {x0} whose

residue at x0 is − d
n
IdEx0

.

(2) For any direct summand F ⊂ E, the equality

degree(F )

rank(F )
=

d

n

holds.

Proof. LetD be a logarithmic connection on the vector bundle E, regular on X\{x0}, with

residue Res(D, x0) = − d
n

IdEx0
. From Lemma 3.2 we know that E admits a projective

connection. Therefore, from Theorem 2.4 it follows that

degree(F )

rank(F )
=

d

n

for every direct summand F of E.

To prove the converse, assume that

(3.5)
degree(F )

rank(F )
=

d

n

for every direct summand F of E. Therefore, E admits a projective connection (see

Theorem 2.4). Fix a projective connection DP on E.

Let

(3.6) γ : X̃ −→ X
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be a ramified Galois covering of degree n with the property that that the map γ is totally

ramified over the point x0 ∈ X. (The map γ is allowed to have ramifications over points

in X \{x0}.) The condition that γ is totally ramified over x0 means that there is a unique

point y0 ∈ X̃ such that γ(y0) = x0.

Consider the vector bundle

(3.7) V := O eX(−dy0)⊗O eX γ∗E

over X̃, where γ is the map in (3.6), and y0 is the unique point with γ(y0) = x0. The

projective bundle P(V ) over X̃ is canonically identified with the projective bundle γ∗P(E).

Therefore, the projective connection DP on E gives a projective connection γ∗DP on V .

Note that degree(V ) = 0. Therefore, the condition that V admits a projective connec-

tion implies that V admits a holomorphic connection. Fix a holomorphic connection D′

on V .

Let Γ denote the Galois group for the Galois covering γ in (3.6). Note that the Galois

action of Γ on X̃ has a canonical lift to the vector bundle V . Consider

D′′ =
1

#Γ

∑

h∈Γ

h∗D′

which is a holomorphic connection on V (as the space of holomorphic connections on

V is an affine space, the average of D′ over the action of the elements of Γ is again a

holomorphic connection on V ).

It is now straight–forward to check that the Galois invariant connection D′′ on V

descends to a logarithmic connection on E. This descended logarithmic connection is

regular outside x0, and its residue at x0 is − d
n

IdEx0
. This completes the proof of the

theorem. ¤

Theorem 2.4 and Theorem 3.3 together have the following corollary:

Corollary 3.4. Let E be a holomorphic vector bundle over X of rank n and degree d.

Then the following three statements are equivalent:

(1) The vector bundle E admits a logarithmic connection regular on X \ {x0} whose

residue at x0 is − d
n
IdEx0

.

(2) The vector bundle E admits a projective connection.

(3) For any direct summand F ⊂ E, the equality

degree(F )

rank(F )
=

d

n

holds.

¤
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4. Moduli space of logarithmic connections

Henceforth, we will assume the rank n and the degree d are mutually coprime.

Let MD(n) denote the moduli space of all logarithmic connections (E ,D) over X,

where E is any holomorphic vector bundle of rank n and degree d and D is a logarithmic

connection on E, regular on X \ {x0}, satisfying the residue condition

Res(D, x0) = −d

n
IdEx0

.

(See [Si1], [Si2], [Ni] for the construction of this moduli space.)

So MD(n) parametrizes isomorphism classes of pairs of the form (E ,D), where E is

any rank n holomorphic vector bundle of degree d and D is a logarithmic connection on

E regular on X \ {x0} with Res(D, x0) = − d
n

IdEx0
. We note that every logarithmic

connection over X occurring in the moduli space MD(n) is irreducible. Indeed, for

(E ,D) ∈ MD(n), if F ⊂ E is a holomorphic subbundle invariant by the connection D,

i.e. D(F ) ⊂ F
⊗O(x0)

⊗
KX , then D induces a logarithmic connection DF on F which

is regular on X \ {x0} and

Res(DF , x0) = −d

n
IdFx0

.

Therefore,
degree(F )

rank(F )
=

d

n
.

This contradicts the assumption that d and n are mutually coprime if F is a proper

subbundle of E.

Since every logarithmic connection over X occurring in the moduli space MD(n) is

irreducible, the varietyMD(n) is smooth; singular points of a moduli space of connections

correspond to reducible connections. The variety MD(n) is known to be irreducible. The

dimension of MD(n) is 2(n2(g − 1) + 1).

Consider the holomorphic line bundle L := OX(d x0) over X. The de Rham differential

f 7−→ df , defines a logarithmic connection DL on L which is regular on X \ {x0}, and

(4.1) Res(DL, x0) = −d IdLx0
.

Let

(4.2) MD(L) ⊂ MD(n)

be the subvariety parametrizing isomorphism classes of logarithmic connections (E ,D) ∈
MD(n) such that

• ∧n E ∼= L, and

• the logarithmic connection on L induced by D using an isomorphism
∧n E −→ L

coincides with the logarithmic connection DL in (4.1).

Note that a logarithmic connection D on E induces a logarithmic connection on
∧n E.

Since any two holomorphic isomorphisms between
∧n E and L differ by a constant scalar,
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the connection of L given by the induced connection on
∧n E using an isomorphism∧n E −→ L is independent of the choice of the isomorphism.

The subset MD(L) in (4.2) is an irreducible smooth closed subvariety of dimension

2(n2 − 1)(g − 1).

We will show that the biholomorphism class of both MD(L) and MD(n) are indepen-

dent of the complex structure of X.

Let X ′ := X \ {x0} be the complement. Fix a point x′ ∈ X ′. The point x0 gives a

conjugacy class in the fundamental group π1(X
′, x′) as follows. Let

f : D −→ X

be an orientation preserving embedding of the closed unit disk D := {z ∈ C | ||z||2 ≤ 1}
into the Riemann surface X such that f(0) = x0. The free homotopy class of the map

∂D = S1 −→ X ′ obtained by restricting f to the boundary of D is independent of the

choice of f . The orientation of ∂D coincides with the anti–clockwise rotation around x0.

Any free homotopy class of oriented loops in X ′ gives a conjugacy class in π1(X
′, x′). Let

γ denote the orbit in π1(X
′, x′), for the conjugation action of π1(X

′, x′) on itself, defined

by the above free homotopy class of oriented loops associated to x0.

Let

(4.3) Hom0(π1(X
′, x′) , GL(n,C)) ⊂ Hom(π1(X

′, x′) , GL(n,C))

be the space of all homomorphisms from the fundamental group π1(X
′, x′) to GL(n,C)

satisfying the condition that the image of γ (the free homotopy class defined above) is

exp(2π
√−1d/n) · In×n. It may be noted that since exp(2π

√−1d/n) · In×n is in the center

of SL(n,C), a homomorphism sends the orbit γ in π1(X
′, x′) (for the adjoint action of

π1(X
′, x′) on itself) to exp(2π

√−1d/n) ·In×n if and only if there is an element in the orbit

which is mapped to exp(2π
√−1d/n) · In×n.

Take any homomorphism ρ ∈ Hom0(π1(X
′, x′) , GL(n,C)). Let (V ,∇) be the flat

vector bundle or rank n over X ′ given by ρ. Therefore V is a holomorphic vector bundle

on X ′. The monodromy of∇ along the oriented loop γ is exp(2π
√−1d/n)·In×n. Using the

logarithm 2π
√−1d/n · In×n of the monodromy, the vector bundle V over X ′ extends to a

holomorphic vector bundle V over X, and furthermore, the connection ∇ on V extends to

a logarithmic connection ∇ on the vector bundle V over X such that (V ,∇) ∈ MD(n),

where MD(n) is the moduli space of logarithmic connections defined earlier (see [Ma, p.

159, Theorem 4.4]).

Since GL(n,C) is an algebraic group defined over the field of complex numbers, and

π1(X
′, x′) is a finitely presented group, the representation space Hom(π1(X

′, x′) , SL(n,C))

is a complex algebraic variety in a natural way. The conjugation action of GL(n,C)

on itself induces an action of GL(n,C) on Hom0(π1(X
′, x′) , GL(n,C)). The action of

any T ∈ GL(n,C) on Hom0(π1(X
′, x′) , GL(n,C)) sends any homomorphism ρ to the
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homomorphism π1(X
′, x′) −→ GL(n,C) defined by β 7−→ T−1ρ(β)T . Let

(4.4) Rg := Hom0(π1(X
′, x′) , GL(n,C))/GL(n,C)

be the quotient space for this action.

The algebraic structure of Hom0(π1(X
′, x′) , GL(n,C)) induces an algebraic structure

on the quotient Rg. The scheme Rg is an irreducible smooth quasiprojective variety of

dimension 2(n2 − 1)(g − 1) + 2 defined over C.

The isomorphism class of this variety Rg is independent of the complex structure of

the topological surface X. The isomorphism class depends only on the integers g, n and

d. On the other hand, the moduli space MD(n) is canonically biholomorphic to Rg.

Therefore, the biholomorphism class of the moduli space MD(n) is independent of the

complex structure of X; the biholomorphism class depends only on the integers g, n and

d.

Replacing GL(n,C) by the algebraic subgroup SL(n,C) above, we have an algebraic

irreducible smooth quasiprojective variety

Sg := Hom0(π1(X
′, x′) , SL(n,C))/SL(n,C),

which is biholomorphic to MD(L). We conclude that the biholomorphism class of the

moduli space MD(L) defined in (4.2) is also independent of the complex structure of X.

5. The second intermediate Jacobian of the moduli space

In this section we recall some results of [BM].

A holomorphic vector bundle E over X is called stable if for every nonzero proper

subbundle F ⊂ E, the inequality

degree(F )

rank(F )
<

degree(E)

rank(E)

holds.

Let NX denote the moduli space parametrizing all stable vector bundles E over X with

rank(E) = n and
∧n E ∼= L = OX(d x0). The moduli space NX is an irreducible smooth

projective variety of dimension (n2 − 1)(g − 1) defined over C.

Let MD(L) be the moduli space defined in (4.2). Let

(5.1) U ⊂ MD(L)

be the Zariski open subset parametrizing all (E ,D) such that the underlying vector bundle

E is stable. The openness of this subset follows from [Ma]. Let

(5.2) Φ : U −→ NX

denote the forgetful map that sends any (E ,D) to E.

By Theorem 3.3, any E ∈ NX admits a logarithmic connection D such that (E ,D) ∈
MD(L), since any E ∈ NX is indecomposable. Therefore, the projection Φ in (5.2) is
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surjective. Furthermore, Φ makes U an affine bundle over NX . More precisely, U is a

torsor over NX for the holomorphic cotangent bundle T ∗NX . This means that the fibers

of the vector bundle T ∗NX act freely transitively on the fibers of Φ [BR, p. 786]. Since

MD(L) is irreducible, and U is nonempty, the subset U ⊂ MD(L) is Zariski dense.

The following lemma is proved in [BM]:

Lemma 5.1. Let Z := MD(L) \ U be the complement of the Zariski open dense subset.

The codimension of the Zariski closed subset Z in MX is at least (n− 1)(g − 2) + 1. ¤

For any i ≥ 0, the i–th cohomology of a complex variety with coefficients in Z is

equipped with a mixed Hodge structure [De2], [De3].

The following proposition is proved in [BM].

Proposition 5.2. The mixed Hodge structure H3(MD(L), Z) is pure of weight three.

More precisely, the mixed Hodge structure H3(MD(L), Z) is isomorphic to the Hodge

structure H3(NX , Z), where NX is the moduli space of stable vector bundles introduced at

the beginning of this section. ¤

Let

(5.3) J2(MD(L)) := H3(MD(L), C)/(F 2H3(MD(L), C) + H3(MD(L), Z))

be the intermediate Jacobian of the mixed Hodge structure H3(MD(L)) (see [Ca, p. 110]).

The intermediate Jacobian of any mixed Hodge structure is a generalized torus [Ca, p.

111]. Let

J2(NX) := H3(NX , C)/(F 2H3(NX , C) + H3(NX , Z))

be the intermediate Jacobian for H3(NX , Z), which is a complex torus.

The following proposition is proved in [BM].

Proposition 5.3. The intermediate Jacobian J2(MD(L)) is isomorphic to J2(NX), which

is isomorphic to the Jacobian Pic0(X) of the Riemann surface X. ¤

The homology H1(J
2(MD(L)), Z) has a natural skew–symmetric pairing which we will

describe below.

We first note that from Proposition 5.3, and the fact that H3(NX , Z) is torsionfree, it

follows that

(5.4) H1(J
2(MD(L)), Z) = H3(MD(L), Z) = H3(NX , Z) .

Also, we have

H2(MD(L), Z) = H2(NX , Z) = Z .

Fix a generator

α ∈ H2(MD(L), Z) .

For any

(5.5) θ ∈ H2(n2−1)(g−1)(MD(L), Z) ,
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we have a skew–symmetric pairing

(5.6) Bθ :
∧2

H3(MD(L), Z) −→ Z

defined by

Bθ(ω1 , ω2) = (ω1 ∪ ω2 ∪ α(n2−1)(g−1)−3) ∩ θ ∈ Z .

The following theorem is proved in [BM].

Theorem 5.4. There exists a homology class θ as in (5.5) such that the pairing Bθ in

(5.6) is nonzero.

Take any θ such that Bθ is nonzero. Using the isomorphism in (5.4), Bθ defines a

nonzero pairing

B̃θ :
∧2

H1(J
2(MD(L)), Z) −→ Z .

The pair (J2(MD(L)) , B̃θ) is isomorphic to Pic0(X) equipped with a multiple of the canon-

ical principal polarization on Pic0(X) given by the class of a theta line bundle. ¤

Given a multiple of a principal polarization on an abelian variety, there is a unique

way to recover the principal polarization from it. Therefore, from Theorem 5.4 it fol-

lows immediately that the isomorphism class of (Pic0(X) , Θ), where Θ is the canonical

polarization on Pic0(X), is determined by the isomorphism class of the variety MD(L).

The Torelli theorem says that the isomorphism class of the principally polarized abelian

variety (Pic0(X) , Θ) determines the curve X up to an isomorphism. Thus Theorem 5.4

give the following corollary:

Corollary 5.5. The isomorphism class of the variety MD(L) uniquely determines the

isomorphism class of the curve X. ¤

This is in contrast with the fact that the biholomorphism class of the complex manifold

MD(L) is independent of the complex structure of the Riemann surface X (see the end

of Section 4).
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