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Kähler manifolds and almost Kähler manifolds

Let M be a (compact) smooth manifold of dimension 2n.
An almost complex structure is a tensor J : TM → TM, J2 = −id.
Nijenhuis tensor: NJ(X ,Y ) = [X ,Y ] + J[JX ,Y ] + J[X , JY ]− [JX , JY ].

Theorem (Newlander-Niremberg)
M is a complex manifold ⇐⇒ NJ(X ,Y ) = 0 for all vector fields X ,Y.

Hermitian metric: h =
∑

hjkdzj ⊗ dz̄k
Riemannian metric: g(u, v) = Re h(u, v)
Kähler form: ω(u, v) = g(Ju, v)
ω = i

2
∑

hjkdzj ∧ dz̄k

Definition
M is Kähler if M is complex and dω = 0 (⇐⇒ ∇J = 0).

Definition
M is almost Kähler if dω = 0 (but we do not require NJ = 0).
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Topology properties of Kähler manifolds

Theorem
There are (compact) almost Kähler manifolds which do not admit a
Kähler structure.

Topological reasons:
Fundamental groups. The fundamental groups of Kähler
manifolds are very special (Kähler groups).
The betti numbers b1,b3,b5, . . . are even. This is a consequence
of Hodge theory Hk (M,C) = ⊕p+q=kHp,q(M).
Hard Lefschetz property. [ω]k : Hn−k (M)→ Hn+k (M) is an
isomorphism for 0 ≤ k ≤ n.
Rational homotopy groups. Formality means that the groups
πk (M)⊗Q are determined by Hk (M,Q). Kähler manifolds are
formal (Deligne-Griffiths-Morgan-Sullivan, 1975).
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Topology properties of almost Kähler manifolds

Any finitely presented group can be the fundamental group of an
almost Kähler manifold (Gompf, 1994).
The Betti numbers b1,b3,b5, . . . of symplectic manifolds can be
arbitrary. The first non-Kähler symplectic manifold is a nilmanifold
(Thurston, 1976) with b1 = 3. Simply-connected examples with
b3 = 3 constructed via symplectic blow-up (McDuff, 1984).
Symplectic manifolds may not satisfy the hard Lefschetz property:
nilmanifolds, Gompf examples, McDuff examples.
There are non-formal symplectic manifolds: nilmanifolds, simply
connected examples via symplectic blow-up (Babenko-Taimanov,
2000) of dimension ≥ 10, simply connected examples of
dimension 8 via symplectic resolutions (Fernández-Muñoz, 2008),
hard-Lefschetz examples (Cavalcanti, 2007), hard-Lefschetz
simply-connected examples (Cavalcanti-Fernández-Muñoz,
2008).
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Almost contact manifolds

Let M be a (2n + 1)-dimensional manifold.
An almost contact metric structure is given by(η, ξ, φ, g), where:

η is a 1-form, D = ker η codimension one distribution
ξ is a nowhere vanishing vector field with η(ξ) = 1. So
TM = D ⊕ 〈ξ〉.
φ : TM → TM, φ2 = −id + ξ ⊗ η. So φ(ξ) = 0 and φ|D is an
almost-complex structure.
g is a Riemannian metric with g(φX , φY ) = g(X ,Y )− η(X )η(Y ).
Thus TM = D ⊕ 〈ξ〉 is orthogonal, and φ is isometric on D.

The fundamental 2-form is F (X ,Y ) = g(φX ,Y ).
So F (φX , φY ) = F (X ,Y ) and η ∧ F n 6= 0.

Equivalently, M is almost contact if and only if TM has a reduction of
structure group to U(n)× {1} ⊂ SO(2n + 1).
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K-contact and Sasakian manifolds

The almost contact structure (η, ξ, φ, g) is contact metric if F = dη (so
η is a contact form, i.e., η ∧ (dη)n 6= 0).

1 K-contact if it is contact and ξ is a Killing vector field, i.e., Lξg = 0.
2 Sasakian if it is contact and the Nijenhuis tensor Nφ satisfies

Nφ = −dη ⊗ ξ, where
Nφ(X ,Y ) := φ2[X ,Y ] + [φX , φY ]− φ[φX ,Y ]− φ[X , φY ].

Remark
Let X = M × R.
Let J : TX → TX , J|D = φ, J(ξ) = ∂

∂t .
J is integrable ⇐⇒ Nφ = −dη ⊗ ξ.
(M,g) is Sasakian ⇐⇒ (M × R+,h = t2g + dt2) is Kähler.
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Minimal models

Rational homotopy deals with spaces up rational homotopy
equivalence, in particular, with

Rational homotopy groups: πn(X )⊗Q.
Rational (co)homology: Hn(X ,Q), Hn(X ,Q).

(Here, Q may be replaced by R or C)

If X is a smooth manifold, we consider the differential forms (ΩX ,d).
This is a graded-commutative differential algebra (GCDA for short).
We extract an “invariant” from it.
Consider the equivalence relation ∼ between GCDAs generated by
quasi-isomorphisms, ψ : (A1,d1) −→ (A2,d2), i.e. morphisms inducing
isomorphisms

ψ : H(A1,d1)
∼=−→ H(A2,d2).

Then associate to (ΩX ,d) its class in (GCDAs/ ∼).
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Minimal models

Minimal model
There is a canonical representative, called the minimal model, for any
(A,d). The minimal model (M,d) of (A,d) satisfies:

M =
∧

(x1, x2, . . .) is free.∧
means the “graded-commutative algebra freely generated by”

dxi ∈
∧

(x1, . . . , xi−1).
dxi contains no linear term.
(M,d) −→ (A,d) is a quasi-isomorphism.

A minimal model (MX ,d) for X is a minimal model for (ΩX ,d).

A model for (A,d) is any GCDA (A′,d ′) ∼ (A,d).
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Minimal models

Theorem (Sullivan, 1977)
If either X is simply-connected or X is a nilpotent space, then the
minimal model (MX ,d) −→ (ΩX ,d) codifies the rational homotopy of
X . More specifically,MX =

∧
V, V =

⊕
n≥1 V n, where V n is the

vector space given by the degree n generators. Then

V n ∼= (πn(X )⊗ R)∗ ,

and
Hn(

∧
V ,d) = Hn(Ω(X ),d) = Hn(X ).
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Formality

Definition
A CDGA (A,d) is formal if (A,d) ∼ (H,0).

Clearly, it is H = H(A,d). So there are quasi-isomorphisms

(M,d)
↙ ↘

(A,d) (H,0)

So the minimal model can be deduced formally from H = H(A,d).
All the information is in the cohomology algebra.

A space X is formal if (ΩX ,d) is formal.
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Massey products

There is a quick way to check non-formality.
Let a1,a2,a3 ∈ H∗(X ) be cohomology classes such that a1 ∪ a2 = 0
and a2 ∪ a3 = 0. Take forms αi in X with ai = [αi ] and write

α1 ∧ α2 = dξ, α2 ∧ α3 = dζ .

Then

d(α1 ∧ ζ − (−1)|a1|ξ ∧ α3) = (−1)|a1|(α1 ∧ α2 ∧ α3 − α1 ∧ α2 ∧ α3) = 0 .

The Massey product of the classes ai is defined as

〈a1,a2,a3〉 = {[α1 ∧ ζ − (−1)|a1|ξ ∧ α3]} ⊂ H∗(X )

If 0 6∈ 〈a1,a2,a3〉 then X is non-formal.
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Higher Massey products

The Massey product 〈a1,a2, . . . ,at〉, ai ∈ H |ai |(X ), 1 ≤ i ≤ t , t ≥ 3, is
defined as follows.
Choose αij ∈ A inductively, for i ≤ j , (i , j) 6= (1, t), with

a1 = [α11],a2 = [α22], . . .

dα12 = (−1)|α11|α11 ∧ α22,dα23 = (−1)|α22|α22 ∧ α33, . . .

dα13 = (−1)|α11|α11 ∧ α23 + (−1)|α12|α12 ∧ α33, . . .

dα14 = (−1)|α11|α11∧α24+(−1)|α12|α12∧α34+(−1)|α13|α13∧α44, . . .

The Massey product is

〈a1,a2, . . . ,at〉 =

{[
t−1∑
k=1

(−1)|α1k |α1k ∧ αk+1,t

]}
⊂ H |a1|+···+|at |−(t−2)(X ) .

We say that the Massey product is trivial if 0 ∈ 〈a1,a2, . . . ,at〉.

Theorem
If X is formal then all (higher) Massey products of (ΛVX ,d) are zero.
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Orbifolds

Definition

An orbifold X is a topological space with charts (U, Ũ, Γ, ϕ) where
Γ ⊂ GL(n,R) is a finite group, Ũ ⊂ Rn is invariant under Γ, U ⊂ X ,
ϕ : Ũ −→ U is a Γ-invariant map with Ũ/Γ

∼=−→ U an homeomorphism.

Ωp
orb(X ) denote the orbifold p-forms on X .

Fix a Riemannian (orbifold) metric. The complex

Ω0
orb(X )

d−→ Ω1
orb(X )

d−→ Ω2
orb(X )

d−→ . . .
d−→ Ωn

orb(X )

is elliptic. There is a Hodge isomorphism

Hk (X ) ∼= Hk (X ) = ker(∆ : Ωk
orb(X ) −→ Ωk

orb(X )) ,

where ∆ = dd∗ + d∗d .
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Complex orbifolds

Definition
A complex orbifold is an orbifold X whose charts are of the form
(U, Ũ, Γ, ϕ), where Ũ ⊂ Cn and Γ ⊂ GL(n,C).

Ωp,q
orb(X ) are the orbifold (p,q)-forms, d = ∂ + ∂, where

∂ : Ωp,q
orb(X ) −→ Ωp+1,q

orb (X ), ∂ : Ωp,q
orb(X ) −→ Ωp,q+1

orb (X ).
The (orbifold) Dolbeault cohomology of X is
Hp,q(X ) = ker(∂ : Ωp,q

orb(X ) −→ Ωp,q+1
orb (X ))/∂(Ωp,q−1

orb (X )).

Definition

A hermitian metric h has associated fundamental form ω ∈ Ω1,1
orb(X ).

We say that (X , J,h) is a Kähler orbifold if dω = 0.

Theorem
For a (compact) Kähler orbifold, ∆ = 2∆∂ . Therefore
Hk (X ) =

⊕
p+q=k Hp,q(X ).
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Lemma (∂∂-lemma)
1 Take α ∈ Ωp,q

orb(X ) with ∂α = 0. If α = ∂β for some β, then there
exists ψ such that α = ∂∂ψ.

2 Take α ∈ Ωp,q
orb(X ) with ∂α = 0. If α = ∂β for some β, then there

exists ψ such that α = ∂∂ψ.

Proof.
Let G = G∂ be the Green operator, let H : Ωorb(X )→ H(X ) projection
onto the harmonic forms.
α = Hα + ∆∂Gα = Hα + ∂ ∂

∗Gα + ∂
∗
∂Gα

α = ∂β =⇒ Hα = 0 and ∂Gα = G∂α = 0.
Hence α = ∂ ∂

∗Gα = ∂G(∂
∗
α).

∂
∗

=
√
−1[Λ, ∂], where Λ = L∗ω and Lω(β) = ω ∧ β

∂α = 0 =⇒ ∂
∗
α = −

√
−1∂Λα

=⇒ α = ∂G(−
√
−1∂Λα) = ∂∂(

√
−1 GΛα).
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Theorem
Let M be a (compact) Kähler orbifold. Then M is formal.

Proof.
1 ı : (ker ∂, ∂) ↪→ (Ω∗orb(X ), d) is a quasi-isomorphism.

Surjectivity: take α ∈ Ωp,q
orb(X ) with dα = 0.Then ∂α = 0 and

∂α = 0. So α ∈ ker ∂ and ı∗[α] = [α].
Injectivity: take α ∈ ker ∂ with ı∗[α] = 0. Then ∂α = 0 and
α = dβ, for some β =⇒ α = ∂β + ∂β =⇒ ∂(∂β) = 0.
By the ∂∂̄-lemma, ∂β = ∂∂ψ for some ψ. Hence
α = ∂β + ∂∂ψ = ∂(β − ∂ψ − ∂ψ), with β − ∂ψ − ∂ψ ∈ ker ∂.

2 H : (ker ∂, ∂) −→ (H∗
∂

(X ),0) is a quasi-isomorphism.
Injectivity: Let α ∈ ker ∂ ∩ ker ∂. Then
∂
∗
α =

√
−1[Λ, ∂]α = −

√
−1∂(Λα).

So α = Hα + G(∂ ∂
∗
α + ∂

∗
∂α) = Hα−

√
−1G∂∂(Λα).

If Hα = 0, then α = ∂(∂ψ), with ∂ψ ∈ ker ∂.
Surjectivity: Take α harmonic. Since ∆ = 2∆∂ , dα = 0. So
∂α = 0, ∂α = 0 and H([α]) = α.
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Quasi-regularity

A Sasakian structure on M is quasi-regular if the orbits of the flow of ξ
are circles.
This means that the flow of ξ is given as S1 ×M → M.
So S1 ↪→ M −→ N , where N is a (compact) Kähler orbifold.
The bundle has Euler class [ω] ∈ H2

orb(M,Z), with contact form η such
that dη = π∗(ω), where ω is an orbifold Kähler form.

Proposition
If M is a (compact) Sasakian manifold, then it admits also a
quasi-regular Sasakian structure.

K-contact manifolds
If M is a K-contact manifold, then S1 ↪→ M −→ N , where N is a
compact symplectic orbifold.
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Theorem
Let M be a simply connected compact Sasakian manifold. Then the
higher order (r ≥ 4) Massey products for M are zero.

Proof.
M admits a Sasakian structure =⇒ M admits a quasiregular Sasakian
structure =⇒ M is a S1-bundle over a Kähler orbifold S1 → M → N.
N is formal, i.e., a model for N is (H = H∗(N),0).
A model for M is H ⊗

∧
(x), with |x | = 1, dx = ω.

Let ai = [αi ], with αi ∈ H ⊗
∧

(x), 1 ≤ i ≤ r . Take ξi,i = αi .

1 αi · αi+1 = dξi,i+1. As d(H) = 0, we can take ξi,i+1 ∈ H · x .
2 (−1)|ξi,i |ξi,i · ξi+1,i+2 + (−1)|ξi,i+1|ξi,i+1 · ξi+2,i+2 is a multiple of x . As

it is exact then it must be zero, because d(H ⊗
∧

(x)) ⊂ H. Hence
ξi,i+2 = 0 for all i . Inductively, ξi,j = 0 for j − i ≥ 2.

For r ≥ 5,
∑r−1

k=1(−1)|ξ1,k |ξ1,k · ξk+1,r = 0.

For r = 4,
∑r−1

k=1(−1)|ξ1,k |ξ1,k · ξk+1,r = (−1)|ξ1,2|ξ1,2 · ξ3,4 = 0.
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K-contact non-Sasakian manifolds

Theorem
Let M be a simply connected compact symplectic manifold of
dimension 2k with an integral symplectic form ω. Suppose that there is
a non-trivial quadruple Massey product in H∗(M). There exists a
sphere bundle S2m+1 → E → M, for m + 1 > k, such that E is
K -contact, but E does not admit any Sasakian structure.

Proof.
Let S1 → P → M be the principal S1-bundle corresponding to
[ω] ∈ H2(M,Z). Consider the associated S2m+1-bundle
S2m+1 → E = P ×S1 S2m+1 → M. Using the K -contact structure of
S2m+1, one can construct a K -contact structure on E .
The model for E is (

∧
VM ⊗

∧
(z), D), where z has degree 2m + 1.

Since 2m + 2 > 2k = dim M, D(z) = 0.
Then a non-zero quadruple Massey product for M gives a non-zero
quadruple Massey product for E . Therefore E is not Sasakian.
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K-contact non-Sasakian manifolds

Remark
Using an 8-dimensional simply connected compact symplectic
manifold M with a non-zero quadruple Massey product
(Fernández-Muñoz, 2008), one gets a 17-dimensional K -contact
non-Sasakian simply connected compact manifold.
It would be desirable to construct lower dimensional examples.
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Examples of Sasakian manifolds

1 Not simply connected and not formal. Consider M the circle
bundle over T 2. Then the minimal model is

∧
(x1, x2, x3), with

|xi | = 1, dx1 = dx2 = 0, dx3 = x1x2. Then the Massey product
〈[x1], [x1], [x2]〉 = {[x1x3]} is non-zero.

2 Simply connected and formal. S2n+1 is the total space of the
Hopf fibration S2n+1 −→ CPn. The minimal model is

∧
(z) with

|z| = 2n + 1, dz = 0. So S2n+1 is formal.
3 Not simply connected and formal. Consider M the circle bundle

over T 2 ×S2. This is also a bundle S3 → M → T 2. So the minimal
model is

∧
(x1, x2, y), with |xi | = 1, |y | = 3, dxi = 0, dy = 0 by

degree reasons. So M is formal.
4 Simply connected and not formal. Let M be the circle bundle

over S2 × S2 × S2. This is also a bundle S3 → M → S2 × S2. Its
Euler class is non-zero. S2 × S2 is formal, so a model is
H = 〈1, y1, y2, y1y2〉, where |yi | = 2, d = 0. A model for M is
H ⊗

∧
(z), |z| = 3, dz = y1y2. There is a non-zero Massey product

〈y1, y2, y2〉 = {[zy2]}, so M is not formal.
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Examples of Sasakian manifolds

Remark
The last example is not formal, but it has the same cohomology
algebra as M ′ = (S2 × S5)#(S2 × S5), which is formal, being the
connected sum of two formal manifolds.
However M ′ cannot admit a Sasakian structure. This can be
proved via minimal models.
(S2 × S3)#(S2 × S3) has a Sasakian structure, whereas
(S2 × S5)#(S2 × S5) does not.
There are examples of Sasakian manifolds with the same
cohomology algebra as 3 copies of (S2 × S5).
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