Formality of Kähler orbifolds and Sasakian manifolds (joint work with I. Biswas, M. Fernández and A. Tralle) arXiv:1402.6861

Vicente Muñoz

Universidad Complutense de Madrid

First Joint International Meeting RSME-SCM-SEMA-SIMAI-UMI Bilbao, 30 June - 4 July, 2014

Formality of Kähler orbifolds and Sasakian manifolds

- Sasakian and K-contact manifolds
- Minimal models and formality
- Formality of Kähler orbifolds
- 5 K-contact non-Sasakian manifolds
- Examples of Sasakian manifolds

Let *M* be a (compact) smooth manifold of dimension 2*n*. An almost complex structure is a tensor $J: TM \rightarrow TM, J^2 = -id$. Nijenhuis tensor: $N_J(X, Y) = [X, Y] + J[JX, Y] + J[X, JY] - [JX, JY]$.

M is a complex manifold $\iff N_J(X, Y) = 0$ for all vector fields X, Y

Hermitian metric: $h = \sum h_{jk} dz_j \otimes d\overline{z}_k$ Riemannian metric: $g(u, v) = \operatorname{Re} h(u, v)$ Kähler form: $\omega(u, v) = g(Ju, v)$ $\omega = \frac{i}{2} \sum h_{jk} dz_j \wedge d\overline{z}_k$

Definition

M is Kähler if *M* is complex and $d\omega = 0$ ($\iff \nabla J = 0$).

Definition

M is almost Kähler if $d\omega=0$ (but we do not require $N_J=0$).

Vicente Muñoz (UCM)

Formality and Sasakian manifolds

Let *M* be a (compact) smooth manifold of dimension 2*n*. An almost complex structure is a tensor $J: TM \rightarrow TM, J^2 = -id$. Nijenhuis tensor: $N_J(X, Y) = [X, Y] + J[JX, Y] + J[X, JY] - [JX, JY]$.

Theorem (Newlander-Niremberg)

M is a complex manifold $\iff N_J(X, Y) = 0$ for all vector fields *X*, *Y*.

Hermitian metric: $h = \sum h_{jk} dz_j \otimes d\overline{z}_k$ Riemannian metric: $g(u, v) = \operatorname{Re} h(u, v)$ Kähler form: $\omega(u, v) = g(Ju, v)$ $\omega = \frac{i}{2} \sum h_{jk} dz_j \wedge d\overline{z}_k$

Definition

M is Kähler if *M* is complex and $d\omega = 0$ ($\iff \nabla J = 0$).

Definition

M is almost Kähler if $d\omega=0$ (but we do not require $N_J=0$).

Let *M* be a (compact) smooth manifold of dimension 2*n*. An almost complex structure is a tensor $J: TM \rightarrow TM, J^2 = -id$. Nijenhuis tensor: $N_J(X, Y) = [X, Y] + J[JX, Y] + J[X, JY] - [JX, JY]$.

Theorem (Newlander-Niremberg)

M is a complex manifold $\iff N_J(X, Y) = 0$ for all vector fields *X*, *Y*.

Hermitian metric: $h = \sum h_{jk} dz_j \otimes d\overline{z}_k$ Riemannian metric: $g(u, v) = \operatorname{Re} h(u, v)$ Kähler form: $\omega(u, v) = g(Ju, v)$ $\omega = \frac{i}{2} \sum h_{jk} dz_j \wedge d\overline{z}_k$

Definition

M is Kähler if *M* is complex and $d\omega = 0$ ($\iff \nabla J = 0$).

Definition

M is almost Kähler if $d\omega=0$ (but we do not require $N_J=0$).

Let *M* be a (compact) smooth manifold of dimension 2*n*. An almost complex structure is a tensor $J: TM \rightarrow TM, J^2 = -id$. Nijenhuis tensor: $N_J(X, Y) = [X, Y] + J[JX, Y] + J[X, JY] - [JX, JY]$.

Theorem (Newlander-Niremberg)

M is a complex manifold $\iff N_J(X, Y) = 0$ for all vector fields *X*, *Y*.

Hermitian metric: $h = \sum h_{jk} dz_j \otimes d\overline{z}_k$ Riemannian metric: $g(u, v) = \operatorname{Re} h(u, v)$ Kähler form: $\omega(u, v) = g(Ju, v)$ $\omega = \frac{i}{2} \sum h_{jk} dz_j \wedge d\overline{z}_k$

Definition

M is Kähler if *M* is complex and $d\omega = 0$ ($\iff \nabla J = 0$).

Definition

M is almost Kähler if $d\omega=0$ (but we do not require $N_J=0$).

Let *M* be a (compact) smooth manifold of dimension 2*n*. An almost complex structure is a tensor $J: TM \rightarrow TM, J^2 = -id$. Nijenhuis tensor: $N_J(X, Y) = [X, Y] + J[JX, Y] + J[X, JY] - [JX, JY]$.

Theorem (Newlander-Niremberg)

M is a complex manifold $\iff N_J(X, Y) = 0$ for all vector fields *X*, *Y*.

Hermitian metric: $h = \sum h_{jk} dz_j \otimes d\overline{z}_k$ Riemannian metric: $g(u, v) = \operatorname{Re} h(u, v)$ Kähler form: $\omega(u, v) = g(Ju, v)$ $\omega = \frac{i}{2} \sum h_{jk} dz_j \wedge d\overline{z}_k$

Definition

M is Kähler if *M* is complex and $d\omega = 0$ ($\iff \nabla J = 0$).

Definition

M is almost Kähler if $d\omega=0$ (but we do not require $N_J=0$).

Let *M* be a (compact) smooth manifold of dimension 2*n*. An almost complex structure is a tensor $J: TM \rightarrow TM, J^2 = -id$. Nijenhuis tensor: $N_J(X, Y) = [X, Y] + J[JX, Y] + J[X, JY] - [JX, JY]$.

Theorem (Newlander-Niremberg)

M is a complex manifold $\iff N_J(X, Y) = 0$ for all vector fields *X*, *Y*.

Hermitian metric: $h = \sum h_{jk} dz_j \otimes d\overline{z}_k$ Riemannian metric: $g(u, v) = \operatorname{Re} h(u, v)$ Kähler form: $\omega(u, v) = g(Ju, v)$ $\omega = \frac{i}{2} \sum h_{jk} dz_j \wedge d\overline{z}_k$

Definition

M is Kähler if *M* is complex and $d\omega = 0$ ($\iff \nabla J = 0$).

Definition

M is almost Kähler if $d\omega=0$ (but we do not require $N_J=0$).

Let *M* be a (compact) smooth manifold of dimension 2*n*. An almost complex structure is a tensor $J: TM \rightarrow TM, J^2 = -id$. Nijenhuis tensor: $N_J(X, Y) = [X, Y] + J[JX, Y] + J[X, JY] - [JX, JY]$.

Theorem (Newlander-Niremberg)

M is a complex manifold $\iff N_J(X, Y) = 0$ for all vector fields *X*, *Y*.

Hermitian metric: $h = \sum h_{jk} dz_j \otimes d\overline{z}_k$ Riemannian metric: $g(u, v) = \operatorname{Re} h(u, v)$ Kähler form: $\omega(u, v) = g(Ju, v)$ $\omega = \frac{i}{2} \sum h_{jk} dz_j \wedge d\overline{z}_k$

Definition

M is Kähler if *M* is complex and $d\omega = 0$ ($\iff \nabla J = 0$).

Definition

M is almost Kähler if $d\omega=$ 0 (but we do not require $N_J=$ 0).

Let *M* be a (compact) smooth manifold of dimension 2*n*. An almost complex structure is a tensor $J: TM \rightarrow TM, J^2 = -id$. Nijenhuis tensor: $N_J(X, Y) = [X, Y] + J[JX, Y] + J[X, JY] - [JX, JY]$.

Theorem (Newlander-Niremberg)

M is a complex manifold $\iff N_J(X, Y) = 0$ for all vector fields *X*, *Y*.

Hermitian metric: $h = \sum h_{jk} dz_j \otimes d\overline{z}_k$ Riemannian metric: $g(u, v) = \operatorname{Re} h(u, v)$ Kähler form: $\omega(u, v) = g(Ju, v)$ $\omega = \frac{i}{2} \sum h_{jk} dz_j \wedge d\overline{z}_k$

Definition

M is Kähler if *M* is complex and $d\omega = 0$ ($\iff \nabla J = 0$).

Definition

M is almost Kähler if $d\omega = 0$ (but we do not require $N_J = 0$).

There are (compact) almost Kähler manifolds which do not admit a Kähler structure.

Topological reasons:

- Fundamental groups. The fundamental groups of Kähler manifolds are very special (Kähler groups).
- The betti numbers b₁, b₃, b₅,... are even. This is a consequence of Hodge theory H^k(M, C) = ⊕_{p+g=k}H^{p,q}(M).
- Hard Lefschetz property. [ω]^k : H^{n-k}(M) → H^{n+k}(M) is an isomorphism for 0 ≤ k ≤ n.
- Rational homotopy groups. Formality means that the groups π_k(M) ⊗ Q are determined by H^k(M, Q). Kähler manifolds are formal (Deligne-Griffiths-Morgan-Sullivan, 1975).

There are (compact) almost Kähler manifolds which do not admit a Kähler structure.

Topological reasons:

- Fundamental groups. The fundamental groups of Kähler manifolds are very special (Kähler groups).
- The betti numbers b₁, b₃, b₅,... are even. This is a consequence of Hodge theory H^k(M, C) = ⊕_{p+g=k}H^{p,q}(M).
- Hard Lefschetz property. [ω]^k : H^{n-k}(M) → H^{n+k}(M) is an isomorphism for 0 ≤ k ≤ n.
- Rational homotopy groups. Formality means that the groups π_k(M) ⊗ Q are determined by H^k(M, Q). Kähler manifolds are formal (Deligne-Griffiths-Morgan-Sullivan, 1975).

There are (compact) almost Kähler manifolds which do not admit a Kähler structure.

Topological reasons:

- Fundamental groups. The fundamental groups of Kähler manifolds are very special (Kähler groups).
- The betti numbers b₁, b₃, b₅,... are even. This is a consequence of Hodge theory H^k(M, ℂ) = ⊕_{p+q=k}H^{p,q}(M).
- Hard Lefschetz property. [ω]^k : H^{n-k}(M) → H^{n+k}(M) is an isomorphism for 0 ≤ k ≤ n.
- Rational homotopy groups. Formality means that the groups π_k(M) ⊗ ℚ are determined by H^k(M, ℚ). Kähler manifolds are formal (Deligne-Griffiths-Morgan-Sullivan, 1975).

There are (compact) almost Kähler manifolds which do not admit a Kähler structure.

Topological reasons:

- Fundamental groups. The fundamental groups of Kähler manifolds are very special (Kähler groups).
- The betti numbers b₁, b₃, b₅, ... are even. This is a consequence of Hodge theory H^k(M, ℂ) = ⊕_{p+q=k}H^{p,q}(M).
- Hard Lefschetz property. [ω]^k : H^{n-k}(M) → H^{n+k}(M) is an isomorphism for 0 ≤ k ≤ n.
- Rational homotopy groups. Formality means that the groups π_k(M) ⊗ ℚ are determined by H^k(M, ℚ). Kähler manifolds are formal (Deligne-Griffiths-Morgan-Sullivan, 1975).

There are (compact) almost Kähler manifolds which do not admit a Kähler structure.

Topological reasons:

- Fundamental groups. The fundamental groups of Kähler manifolds are very special (Kähler groups).
- The betti numbers b₁, b₃, b₅, ... are even. This is a consequence of Hodge theory H^k(M, ℂ) = ⊕_{p+q=k}H^{p,q}(M).
- Hard Lefschetz property. [ω]^k : H^{n-k}(M) → H^{n+k}(M) is an isomorphism for 0 ≤ k ≤ n.
- Rational homotopy groups. Formality means that the groups π_k(M) ⊗ ℚ are determined by H^k(M, ℚ). Kähler manifolds are formal (Deligne-Griffiths-Morgan-Sullivan, 1975).

There are (compact) almost Kähler manifolds which do not admit a Kähler structure.

Topological reasons:

- Fundamental groups. The fundamental groups of Kähler manifolds are very special (Kähler groups).
- The betti numbers b₁, b₃, b₅, ... are even. This is a consequence of Hodge theory H^k(M, ℂ) = ⊕_{p+q=k}H^{p,q}(M).
- Hard Lefschetz property. [ω]^k : H^{n-k}(M) → H^{n+k}(M) is an isomorphism for 0 ≤ k ≤ n.
- Rational homotopy groups. Formality means that the groups π_k(M) ⊗ ℚ are determined by H^k(M, ℚ). Kähler manifolds are formal (Deligne-Griffiths-Morgan-Sullivan, 1975).

< ロ > < 同 > < 回 > < 回 >

- Any finitely presented group can be the fundamental group of an almost Kähler manifold (Gompf, 1994).
- The Betti numbers b₁, b₃, b₅,... of symplectic manifolds can be arbitrary. The first non-Kähler symplectic manifold is a nilmanifold (Thurston, 1976) with b₁ = 3. Simply-connected examples with b₃ = 3 constructed via symplectic blow-up (McDuff, 1984).
- Symplectic manifolds may not satisfy the hard Lefschetz property: nilmanifolds, Gompf examples, McDuff examples.
- There are non-formal symplectic manifolds: nilmanifolds, simply connected examples via symplectic blow-up (Babenko-Taimanov, 2000) of dimension ≥ 10, simply connected examples of dimension 8 via symplectic resolutions (Fernández-Muñoz, 2008), hard-Lefschetz examples (Cavalcanti, 2007), hard-Lefschetz simply-connected examples (Cavalcanti-Fernández-Muñoz, 2008).

- Any finitely presented group can be the fundamental group of an almost Kähler manifold (Gompf, 1994).
- The Betti numbers b₁, b₃, b₅,... of symplectic manifolds can be arbitrary. The first non-Kähler symplectic manifold is a nilmanifold (Thurston, 1976) with b₁ = 3. Simply-connected examples with b₃ = 3 constructed via symplectic blow-up (McDuff, 1984).
- Symplectic manifolds may not satisfy the hard Lefschetz property: nilmanifolds, Gompf examples, McDuff examples.
- There are non-formal symplectic manifolds: nilmanifolds, simply connected examples via symplectic blow-up (Babenko-Taimanov, 2000) of dimension ≥ 10, simply connected examples of dimension 8 via symplectic resolutions (Fernández-Muñoz, 2008), hard-Lefschetz examples (Cavalcanti, 2007), hard-Lefschetz simply-connected examples (Cavalcanti-Fernández-Muñoz, 2008).

- Any finitely presented group can be the fundamental group of an almost Kähler manifold (Gompf, 1994).
- The Betti numbers b₁, b₃, b₅,... of symplectic manifolds can be arbitrary. The first non-Kähler symplectic manifold is a nilmanifold (Thurston, 1976) with b₁ = 3. Simply-connected examples with b₃ = 3 constructed via symplectic blow-up (McDuff, 1984).
- Symplectic manifolds may not satisfy the hard Lefschetz property: nilmanifolds, Gompf examples, McDuff examples.
- There are non-formal symplectic manifolds: nilmanifolds, simply connected examples via symplectic blow-up (Babenko-Taimanov, 2000) of dimension ≥ 10, simply connected examples of dimension 8 via symplectic resolutions (Fernández-Muñoz, 2008), hard-Lefschetz examples (Cavalcanti, 2007), hard-Lefschetz simply-connected examples (Cavalcanti-Fernández-Muñoz, 2008).

- Any finitely presented group can be the fundamental group of an almost Kähler manifold (Gompf, 1994).
- The Betti numbers b₁, b₃, b₅,... of symplectic manifolds can be arbitrary. The first non-Kähler symplectic manifold is a nilmanifold (Thurston, 1976) with b₁ = 3. Simply-connected examples with b₃ = 3 constructed via symplectic blow-up (McDuff, 1984).
- Symplectic manifolds may not satisfy the hard Lefschetz property: nilmanifolds, Gompf examples, McDuff examples.
- There are non-formal symplectic manifolds: nilmanifolds, simply connected examples via symplectic blow-up (Babenko-Taimanov, 2000) of dimension ≥ 10, simply connected examples of dimension 8 via symplectic resolutions (Fernández-Muñoz, 2008), hard-Lefschetz examples (Cavalcanti, 2007), hard-Lefschetz simply-connected examples (Cavalcanti-Fernández-Muñoz, 2008).

- Any finitely presented group can be the fundamental group of an almost Kähler manifold (Gompf, 1994).
- The Betti numbers b₁, b₃, b₅,... of symplectic manifolds can be arbitrary. The first non-Kähler symplectic manifold is a nilmanifold (Thurston, 1976) with b₁ = 3. Simply-connected examples with b₃ = 3 constructed via symplectic blow-up (McDuff, 1984).
- Symplectic manifolds may not satisfy the hard Lefschetz property: nilmanifolds, Gompf examples, McDuff examples.
- There are non-formal symplectic manifolds: nilmanifolds, simply connected examples via symplectic blow-up (Babenko-Taimanov, 2000) of dimension ≥ 10, simply connected examples of dimension 8 via symplectic resolutions (Fernández-Muñoz, 2008), hard-Lefschetz examples (Cavalcanti, 2007), hard-Lefschetz simply-connected examples (Cavalcanti-Fernández-Muñoz, 2008).

- Any finitely presented group can be the fundamental group of an almost Kähler manifold (Gompf, 1994).
- The Betti numbers b₁, b₃, b₅,... of symplectic manifolds can be arbitrary. The first non-Kähler symplectic manifold is a nilmanifold (Thurston, 1976) with b₁ = 3. Simply-connected examples with b₃ = 3 constructed via symplectic blow-up (McDuff, 1984).
- Symplectic manifolds may not satisfy the hard Lefschetz property: nilmanifolds, Gompf examples, McDuff examples.
- There are non-formal symplectic manifolds: nilmanifolds, simply connected examples via symplectic blow-up (Babenko-Taimanov, 2000) of dimension ≥ 10, simply connected examples of dimension 8 via symplectic resolutions (Fernández-Muñoz, 2008), hard-Lefschetz examples (Cavalcanti, 2007), hard-Lefschetz simply-connected examples (Cavalcanti-Fernández-Muñoz, 2008).

< ロ > < 同 > < 回 > < 回 >

- Any finitely presented group can be the fundamental group of an almost Kähler manifold (Gompf, 1994).
- The Betti numbers b₁, b₃, b₅,... of symplectic manifolds can be arbitrary. The first non-Kähler symplectic manifold is a nilmanifold (Thurston, 1976) with b₁ = 3. Simply-connected examples with b₃ = 3 constructed via symplectic blow-up (McDuff, 1984).
- Symplectic manifolds may not satisfy the hard Lefschetz property: nilmanifolds, Gompf examples, McDuff examples.
- There are non-formal symplectic manifolds: nilmanifolds, simply connected examples via symplectic blow-up (Babenko-Taimanov, 2000) of dimension ≥ 10, simply connected examples of dimension 8 via symplectic resolutions (Fernández-Muñoz, 2008), hard-Lefschetz examples (Cavalcanti, 2007), hard-Lefschetz simply-connected examples (Cavalcanti-Fernández-Muñoz, 2008).

< ロ > < 同 > < 回 > < 回 >

- Any finitely presented group can be the fundamental group of an almost Kähler manifold (Gompf, 1994).
- The Betti numbers b₁, b₃, b₅,... of symplectic manifolds can be arbitrary. The first non-Kähler symplectic manifold is a nilmanifold (Thurston, 1976) with b₁ = 3. Simply-connected examples with b₃ = 3 constructed via symplectic blow-up (McDuff, 1984).
- Symplectic manifolds may not satisfy the hard Lefschetz property: nilmanifolds, Gompf examples, McDuff examples.
- There are non-formal symplectic manifolds: nilmanifolds, simply connected examples via symplectic blow-up (Babenko-Taimanov, 2000) of dimension ≥ 10, simply connected examples of dimension 8 via symplectic resolutions (Fernández-Muñoz, 2008), hard-Lefschetz examples (Cavalcanti, 2007), hard-Lefschetz simply-connected examples (Cavalcanti-Fernández-Muñoz, 2008).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Any finitely presented group can be the fundamental group of an almost Kähler manifold (Gompf, 1994).
- The Betti numbers b₁, b₃, b₅,... of symplectic manifolds can be arbitrary. The first non-Kähler symplectic manifold is a nilmanifold (Thurston, 1976) with b₁ = 3. Simply-connected examples with b₃ = 3 constructed via symplectic blow-up (McDuff, 1984).
- Symplectic manifolds may not satisfy the hard Lefschetz property: nilmanifolds, Gompf examples, McDuff examples.
- There are non-formal symplectic manifolds: nilmanifolds, simply connected examples via symplectic blow-up (Babenko-Taimanov, 2000) of dimension ≥ 10, simply connected examples of dimension 8 via symplectic resolutions (Fernández-Muñoz, 2008), hard-Lefschetz examples (Cavalcanti, 2007), hard-Lefschetz simply-connected examples (Cavalcanti-Fernández-Muñoz, 2008).

< ロ > < 同 > < 回 > < 回 >

An *almost contact metric structure* is given by (η, ξ, ϕ, g) , where:

- η is a 1-form, $\mathcal{D} = \ker \eta$ codimension one distribution
- ξ is a nowhere vanishing vector field with $\eta(\xi) = 1$. So $TM = \mathcal{D} \oplus \langle \xi \rangle$.
- $\phi : TM \to TM$, $\phi^2 = -id + \xi \otimes \eta$. So $\phi(\xi) = 0$ and $\phi|_{\mathcal{D}}$ is an almost-complex structure.
- *g* is a Riemannian metric with $g(\phi X, \phi Y) = g(X, Y) \eta(X)\eta(Y)$. Thus $TM = \mathcal{D} \oplus \langle \xi \rangle$ is orthogonal, and ϕ is isometric on \mathcal{D} .

The fundamental 2-form is $F(X, Y) = g(\phi X, Y)$. So $F(\phi X, \phi Y) = F(X, Y)$ and $\eta \wedge F^n \neq 0$.

Equivalently, *M* is almost contact if and only if *TM* has a reduction of structure group to $U(n) \times \{1\} \subset SO(2n+1)$.

3

イロト 不得 トイヨト イヨト

An *almost contact metric structure* is given by (η, ξ, ϕ, g) , where:

- η is a 1-form, $\mathcal{D} = \ker \eta$ codimension one distribution
- ξ is a nowhere vanishing vector field with $\eta(\xi) = 1$. So $TM = D \oplus \langle \xi \rangle$.
- $\phi : TM \to TM$, $\phi^2 = -id + \xi \otimes \eta$. So $\phi(\xi) = 0$ and $\phi|_{\mathcal{D}}$ is an almost-complex structure.
- *g* is a Riemannian metric with $g(\phi X, \phi Y) = g(X, Y) \eta(X)\eta(Y)$. Thus $TM = \mathcal{D} \oplus \langle \xi \rangle$ is orthogonal, and ϕ is isometric on \mathcal{D} .

The fundamental 2-form is $F(X, Y) = g(\phi X, Y)$. So $F(\phi X, \phi Y) = F(X, Y)$ and $\eta \wedge F^n \neq 0$.

Equivalently, *M* is almost contact if and only if *TM* has a reduction of structure group to $U(n) \times \{1\} \subset SO(2n+1)$.

3

イロト 不得 トイヨト イヨト

An *almost contact metric structure* is given by (η, ξ, ϕ, g) , where:

- η is a 1-form, $\mathcal{D} = \ker \eta$ codimension one distribution
- ξ is a nowhere vanishing vector field with $\eta(\xi) = 1$. So $TM = D \oplus \langle \xi \rangle$.
- $\phi : TM \to TM$, $\phi^2 = -id + \xi \otimes \eta$. So $\phi(\xi) = 0$ and $\phi|_{\mathcal{D}}$ is an almost-complex structure.
- *g* is a Riemannian metric with $g(\phi X, \phi Y) = g(X, Y) \eta(X)\eta(Y)$. Thus $TM = \mathcal{D} \oplus \langle \xi \rangle$ is orthogonal, and ϕ is isometric on \mathcal{D} .

The fundamental 2-form is $F(X, Y) = g(\phi X, Y)$. So $F(\phi X, \phi Y) = F(X, Y)$ and $\eta \wedge F^n \neq 0$.

Equivalently, *M* is almost contact if and only if *TM* has a reduction of structure group to $U(n) \times \{1\} \subset SO(2n+1)$.

3

イロト 不得 トイヨト イヨト

An *almost contact metric structure* is given by (η, ξ, ϕ, g) , where:

- η is a 1-form, $\mathcal{D} = \ker \eta$ codimension one distribution
- ξ is a nowhere vanishing vector field with $\eta(\xi) = 1$. So $TM = D \oplus \langle \xi \rangle$.
- $\phi : TM \to TM$, $\phi^2 = -id + \xi \otimes \eta$. So $\phi(\xi) = 0$ and $\phi|_{\mathcal{D}}$ is an almost-complex structure.
- *g* is a Riemannian metric with $g(\phi X, \phi Y) = g(X, Y) \eta(X)\eta(Y)$. Thus $TM = \mathcal{D} \oplus \langle \xi \rangle$ is orthogonal, and ϕ is isometric on \mathcal{D} .

The fundamental 2-form is $F(X, Y) = g(\phi X, Y)$. So $F(\phi X, \phi Y) = F(X, Y)$ and $\eta \wedge F^n \neq 0$.

Equivalently, *M* is almost contact if and only if *TM* has a reduction of structure group to $U(n) \times \{1\} \subset SO(2n+1)$.

An *almost contact metric structure* is given by (η, ξ, ϕ, g) , where:

- η is a 1-form, $\mathcal{D} = \ker \eta$ codimension one distribution
- ξ is a nowhere vanishing vector field with $\eta(\xi) = 1$. So $TM = D \oplus \langle \xi \rangle$.
- $\phi : TM \to TM$, $\phi^2 = -id + \xi \otimes \eta$. So $\phi(\xi) = 0$ and $\phi|_{\mathcal{D}}$ is an almost-complex structure.
- *g* is a Riemannian metric with $g(\phi X, \phi Y) = g(X, Y) \eta(X)\eta(Y)$. Thus $TM = \mathcal{D} \oplus \langle \xi \rangle$ is orthogonal, and ϕ is isometric on \mathcal{D} .

The fundamental 2-form is $F(X, Y) = g(\phi X, Y)$. So $F(\phi X, \phi Y) = F(X, Y)$ and $\eta \wedge F^n \neq 0$.

Equivalently, *M* is almost contact if and only if *TM* has a reduction of structure group to $U(n) \times \{1\} \subset SO(2n+1)$.

An *almost contact metric structure* is given by (η, ξ, ϕ, g) , where:

- η is a 1-form, $\mathcal{D} = \ker \eta$ codimension one distribution
- ξ is a nowhere vanishing vector field with $\eta(\xi) = 1$. So $TM = D \oplus \langle \xi \rangle$.
- $\phi : TM \to TM$, $\phi^2 = -id + \xi \otimes \eta$. So $\phi(\xi) = 0$ and $\phi|_{\mathcal{D}}$ is an almost-complex structure.
- *g* is a Riemannian metric with $g(\phi X, \phi Y) = g(X, Y) \eta(X)\eta(Y)$. Thus $TM = \mathcal{D} \oplus \langle \xi \rangle$ is orthogonal, and ϕ is isometric on \mathcal{D} .

The fundamental 2-form is $F(X, Y) = g(\phi X, Y)$. So $F(\phi X, \phi Y) = F(X, Y)$ and $\eta \wedge F^n \neq 0$.

Equivalently, *M* is almost contact if and only if *TM* has a reduction of structure group to $U(n) \times \{1\} \subset SO(2n + 1)$.

An *almost contact metric structure* is given by (η, ξ, ϕ, g) , where:

- η is a 1-form, $\mathcal{D} = \ker \eta$ codimension one distribution
- ξ is a nowhere vanishing vector field with $\eta(\xi) = 1$. So $TM = D \oplus \langle \xi \rangle$.
- $\phi : TM \to TM$, $\phi^2 = -id + \xi \otimes \eta$. So $\phi(\xi) = 0$ and $\phi|_{\mathcal{D}}$ is an almost-complex structure.
- *g* is a Riemannian metric with $g(\phi X, \phi Y) = g(X, Y) \eta(X)\eta(Y)$. Thus $TM = \mathcal{D} \oplus \langle \xi \rangle$ is orthogonal, and ϕ is isometric on \mathcal{D} .

The fundamental 2-form is $F(X, Y) = g(\phi X, Y)$. So $F(\phi X, \phi Y) = F(X, Y)$ and $\eta \wedge F^n \neq 0$.

Equivalently, *M* is almost contact if and only if *TM* has a reduction of structure group to $U(n) \times \{1\} \subset SO(2n+1)$.

K-contact if it is contact and ξ is a Killing vector field, i.e., L_ξg = 0.
Sasakian if it is contact and the Nijenhuis tensor N_φ satisfies N_φ = −dη ⊗ ξ, where N_φ(X, Y) := φ²[X, Y] + [φX, φY] − φ[φX, Y] − φ[X, φY].

Remark

Let $X = M \times \mathbb{R}$. Let $J : TX \to TX$, $J|_{\mathcal{D}} = \phi$, $J(\xi) = \frac{\partial}{\partial t}$. J is integrable $\iff N_{\phi} = -d\eta \otimes \xi$. (M,g) is Sasakian $\iff (M \times \mathbb{R}^+, h = t^2g + dt^2)$ is Kähler.

< ロ > < 同 > < 回 > < 回 >

- K-contact if it is contact and ξ is a Killing vector field, i.e., $\mathcal{L}_{\xi}g = 0$.
- Sasakian if it is contact and the Nijenhuis tensor N_{ϕ} satisfies $N_{\phi} = -d\eta \otimes \xi$, where $N_{\phi}(X, Y) := \phi^2[X, Y] + [\phi X, \phi Y] \phi[\phi X, Y] \phi[X, \phi Y].$

Remark

Let $X = M \times \mathbb{R}$. Let $J : TX \to TX$, $J|_{\mathcal{D}} = \phi$, $J(\xi) = \frac{\partial}{\partial t}$. J is integrable $\iff N_{\phi} = -d\eta \otimes \xi$. (M, g) is Sasakian $\iff (M \times \mathbb{R}^+, h = t^2g + dt^2)$ is Kähler.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- K-contact if it is contact and ξ is a Killing vector field, i.e., $\mathcal{L}_{\xi}g = 0$.
- Sasakian if it is contact and the Nijenhuis tensor N_{ϕ} satisfies $N_{\phi} = -d\eta \otimes \xi$, where $N_{\phi}(X, Y) := \phi^2[X, Y] + [\phi X, \phi Y] \phi[\phi X, Y] \phi[X, \phi Y].$

Remark

Let $X = M \times \mathbb{R}$. Let $J : TX \to TX$, $J|_{\mathcal{D}} = \phi$, $J(\xi) = \frac{\partial}{\partial t}$. J is integrable $\iff N_{\phi} = -d\eta \otimes \xi$. (M,g) is Sasakian $\iff (M \times \mathbb{R}^+, h = t^2g + dt^2)$ is Kähler.

- K-contact if it is contact and ξ is a Killing vector field, i.e., $\mathcal{L}_{\xi}g = 0$.
- Sasakian if it is contact and the Nijenhuis tensor N_{ϕ} satisfies $N_{\phi} = -d\eta \otimes \xi$, where $N_{\phi}(X, Y) := \phi^2[X, Y] + [\phi X, \phi Y] \phi[\phi X, Y] \phi[X, \phi Y].$

Remark

Let $X = M \times \mathbb{R}$. Let $J : TX \to TX$, $J|_{\mathcal{D}} = \phi$, $J(\xi) = \frac{\partial}{\partial t}$. J is integrable $\iff N_{\phi} = -d\eta \otimes \xi$. (M, g) is Sasakian $\iff (M \times \mathbb{R}^+, h = t^2g + dt^2)$ is Kähler.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
The almost contact structure (η, ξ, ϕ, g) is *contact metric* if $F = d\eta$ (so η is a contact form, i.e., $\eta \land (d\eta)^n \neq 0$).

- K-contact if it is contact and ξ is a Killing vector field, i.e., $\mathcal{L}_{\xi}g = 0$.
- Sasakian if it is contact and the Nijenhuis tensor N_{ϕ} satisfies $N_{\phi} = -d\eta \otimes \xi$, where $N_{\phi}(X, Y) := \phi^2[X, Y] + [\phi X, \phi Y] \phi[\phi X, Y] \phi[X, \phi Y].$

Remark

Let $X = M \times \mathbb{R}$. Let $J : TX \to TX$, $J|_{\mathcal{D}} = \phi$, $J(\xi) = \frac{\partial}{\partial t}$. J is integrable $\iff N_{\phi} = -d\eta \otimes \xi$. (M, g) is Sasakian $\iff (M \times \mathbb{R}^+, h = t^2g + dt^2)$ is Kähler.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The almost contact structure (η, ξ, ϕ, g) is *contact metric* if $F = d\eta$ (so η is a contact form, i.e., $\eta \land (d\eta)^n \neq 0$).

- K-contact if it is contact and ξ is a Killing vector field, i.e., $\mathcal{L}_{\xi}g = 0$.
- Sasakian if it is contact and the Nijenhuis tensor N_{ϕ} satisfies $N_{\phi} = -d\eta \otimes \xi$, where $N_{\phi}(X, Y) := \phi^2[X, Y] + [\phi X, \phi Y] \phi[\phi X, Y] \phi[X, \phi Y].$

Remark

Let $X = M \times \mathbb{R}$. Let $J : TX \to TX$, $J|_{\mathcal{D}} = \phi$, $J(\xi) = \frac{\partial}{\partial t}$. J is integrable $\iff N_{\phi} = -d\eta \otimes \xi$. (M,g) is Sasakian $\iff (M \times \mathbb{R}^+, h = t^2g + dt^2)$ is Kähler.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Rational homotopy groups: $\pi_n(X) \otimes \mathbb{Q}$.
- Rational (co)homology: $H_n(X, \mathbb{Q}), H^n(X, \mathbb{Q}).$

(Here, \mathbb{Q} may be replaced by \mathbb{R} or \mathbb{C})

If X is a smooth manifold, we consider the differential forms $(\Omega X, d)$. This is a graded-commutative differential algebra (GCDA for short). We extract an "invariant" from it.

Consider the equivalence relation \sim between GCDAs generated by quasi-isomorphisms, $\psi : (A_1, d_1) \longrightarrow (A_2, d_2)$, i.e. morphisms inducing isomorphisms

$$\psi: H(A_1, d_1) \stackrel{\cong}{\longrightarrow} H(A_2, d_2).$$

Then associate to $(\Omega X, d)$ its class in (GCDAs/ \sim).

< ロ > < 同 > < 回 > < 回 >

- Rational homotopy groups: $\pi_n(X) \otimes \mathbb{Q}$.
- Rational (co)homology: $H_n(X, \mathbb{Q}), H^n(X, \mathbb{Q})$.

(Here, \mathbb{Q} may be replaced by \mathbb{R} or \mathbb{C})

If X is a smooth manifold, we consider the differential forms $(\Omega X, d)$. This is a graded-commutative differential algebra (GCDA for short). We extract an "invariant" from it.

Consider the equivalence relation \sim between GCDAs generated by quasi-isomorphisms, $\psi : (A_1, d_1) \longrightarrow (A_2, d_2)$, i.e. morphisms inducing isomorphisms

$$\psi: H(A_1, d_1) \stackrel{\cong}{\longrightarrow} H(A_2, d_2).$$

Then associate to $(\Omega X, d)$ its class in (GCDAs/ \sim).

- Rational homotopy groups: $\pi_n(X) \otimes \mathbb{Q}$.
- Rational (co)homology: $H_n(X, \mathbb{Q}), H^n(X, \mathbb{Q})$.

(Here, \mathbb{Q} may be replaced by \mathbb{R} or \mathbb{C})

If X is a smooth manifold, we consider the differential forms $(\Omega X, d)$. This is a graded-commutative differential algebra (GCDA for short). We extract an "invariant" from it.

Consider the equivalence relation \sim between GCDAs generated by quasi-isomorphisms, $\psi : (A_1, d_1) \longrightarrow (A_2, d_2)$, i.e. morphisms inducing isomorphisms

$$\psi: H(A_1, d_1) \stackrel{\cong}{\longrightarrow} H(A_2, d_2).$$

Then associate to $(\Omega X, d)$ its class in (GCDAs/ \sim).

- Rational homotopy groups: $\pi_n(X) \otimes \mathbb{Q}$.
- Rational (co)homology: $H_n(X, \mathbb{Q}), H^n(X, \mathbb{Q})$.

(Here, ${\mathbb Q}$ may be replaced by ${\mathbb R}$ or ${\mathbb C})$

If X is a smooth manifold, we consider the differential forms $(\Omega X, d)$. This is a graded-commutative differential algebra (GCDA for short). We extract an "invariant" from it.

Consider the equivalence relation \sim between GCDAs generated by quasi-isomorphisms, $\psi : (A_1, d_1) \longrightarrow (A_2, d_2)$, i.e. morphisms inducing isomorphisms

$$\psi: H(A_1, d_1) \stackrel{\cong}{\longrightarrow} H(A_2, d_2).$$

Then associate to $(\Omega X, d)$ its class in (GCDAs/ \sim).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Rational homotopy groups: $\pi_n(X) \otimes \mathbb{Q}$.
- Rational (co)homology: $H_n(X, \mathbb{Q}), H^n(X, \mathbb{Q})$.

(Here, ${\mathbb Q}$ may be replaced by ${\mathbb R}$ or ${\mathbb C})$

If X is a smooth manifold, we consider the differential forms $(\Omega X, d)$. This is a graded-commutative differential algebra (GCDA for short). We extract an "invariant" from it.

Consider the equivalence relation \sim between GCDAs generated by quasi-isomorphisms, $\psi : (A_1, d_1) \longrightarrow (A_2, d_2)$, i.e. morphisms inducing isomorphisms

$$\psi: H(A_1, d_1) \stackrel{\cong}{\longrightarrow} H(A_2, d_2).$$

Then associate to $(\Omega X, d)$ its class in (GCDAs/ \sim).

3

< 日 > < 同 > < 回 > < 回 > < □ > <

- Rational homotopy groups: $\pi_n(X) \otimes \mathbb{Q}$.
- Rational (co)homology: $H_n(X, \mathbb{Q}), H^n(X, \mathbb{Q})$.

(Here, $\mathbb Q$ may be replaced by $\mathbb R$ or $\mathbb C)$

If X is a smooth manifold, we consider the differential forms $(\Omega X, d)$. This is a graded-commutative differential algebra (GCDA for short). We extract an "invariant" from it.

Consider the equivalence relation \sim between GCDAs generated by quasi-isomorphisms, $\psi : (A_1, d_1) \longrightarrow (A_2, d_2)$, i.e. morphisms inducing isomorphisms

$$\psi: H(A_1, d_1) \stackrel{\cong}{\longrightarrow} H(A_2, d_2).$$

Then associate to $(\Omega X, d)$ its class in (GCDAs/ \sim).

There is a canonical representative, called the *minimal model*, for any (A, d). The minimal model (\mathcal{M}, d) of (A, d) satisfies:

- M = ∧(x₁, x₂,...) is free.
 ∧ means the "graded-commutative algebra freely generated by"
- $dx_i \in \bigwedge (x_1, \ldots, x_{i-1}).$
- *dx_i* contains no linear term.
- $(\mathcal{M}, d) \longrightarrow (\mathcal{A}, d)$ is a quasi-isomorphism.

A minimal model (\mathcal{M}_X, d) for X is a minimal model for $(\Omega X, d)$.

A model for (A, d) is any GCDA $(A', d') \sim (A, d)$.

There is a canonical representative, called the *minimal model*, for any (A, d). The minimal model (\mathcal{M}, d) of (A, d) satisfies:

- M = ∧(x₁, x₂,...) is free.
 ∧ means the "graded-commutative algebra freely generated by"
- $dx_i \in \bigwedge (x_1, \ldots, x_{i-1}).$
- *dx_i* contains no linear term.
- $(\mathcal{M}, d) \longrightarrow (\mathcal{A}, d)$ is a quasi-isomorphism.

A minimal model (\mathcal{M}_X, d) for X is a minimal model for $(\Omega X, d)$.

A model for (A, d) is any GCDA $(A', d') \sim (A, d)$.

There is a canonical representative, called the *minimal model*, for any (A, d). The minimal model (\mathcal{M}, d) of (A, d) satisfies:

• $\mathcal{M} = \bigwedge (x_1, x_2, \ldots)$ is free.

 \bigwedge means the "graded-commutative algebra freely generated by"

•
$$dx_i \in \bigwedge (x_1, \ldots, x_{i-1}).$$

• *dx_i* contains no linear term.

• $(\mathcal{M}, d) \longrightarrow (\mathcal{A}, d)$ is a quasi-isomorphism.

A minimal model (\mathcal{M}_X, d) for X is a minimal model for $(\Omega X, d)$.

A model for (A, d) is any GCDA $(A', d') \sim (A, d)$.

There is a canonical representative, called the *minimal model*, for any (A, d). The minimal model (\mathcal{M}, d) of (A, d) satisfies:

• $\mathcal{M} = \bigwedge (x_1, x_2, ...)$ is free. \bigwedge means the "graded-commutative algebra freely generated by"

•
$$dx_i \in \bigwedge (x_1, \ldots, x_{i-1}).$$

- *dx_i* contains no linear term.
- $(\mathcal{M}, d) \longrightarrow (A, d)$ is a quasi-isomorphism.

A minimal model (\mathcal{M}_X, d) for X is a minimal model for $(\Omega X, d)$.

A model for (A, d) is any GCDA $(A', d') \sim (A, d)$.

There is a canonical representative, called the *minimal model*, for any (A, d). The minimal model (\mathcal{M}, d) of (A, d) satisfies:

• $\mathcal{M} = \bigwedge (x_1, x_2, \ldots)$ is free.

 \bigwedge means the "graded-commutative algebra freely generated by"

•
$$dx_i \in \bigwedge (x_1, \ldots, x_{i-1}).$$

- *dx_i* contains no linear term.
- $(\mathcal{M}, d) \longrightarrow (A, d)$ is a quasi-isomorphism.

A minimal model (\mathcal{M}_X, d) for X is a minimal model for $(\Omega X, d)$.

A model for (A, d) is any GCDA $(A', d') \sim (A, d)$.

There is a canonical representative, called the *minimal model*, for any (A, d). The minimal model (\mathcal{M}, d) of (A, d) satisfies:

• $\mathcal{M} = \bigwedge (x_1, x_2, \ldots)$ is free.

 \bigwedge means the "graded-commutative algebra freely generated by"

•
$$dx_i \in \bigwedge (x_1, \ldots, x_{i-1}).$$

- *dx_i* contains no linear term.
- $(\mathcal{M}, d) \longrightarrow (A, d)$ is a quasi-isomorphism.

A minimal model (\mathcal{M}_X, d) for X is a minimal model for $(\Omega X, d)$.

A model for (A, d) is any GCDA $(A', d') \sim (A, d)$.

There is a canonical representative, called the *minimal model*, for any (A, d). The minimal model (\mathcal{M}, d) of (A, d) satisfies:

• $\mathcal{M} = \bigwedge (x_1, x_2, \ldots)$ is free.

 \wedge means the "graded-commutative algebra freely generated by"

•
$$dx_i \in \bigwedge (x_1, \ldots, x_{i-1}).$$

- *dx_i* contains no linear term.
- $(\mathcal{M}, d) \longrightarrow (A, d)$ is a quasi-isomorphism.

A minimal model (\mathcal{M}_X, d) for X is a minimal model for $(\Omega X, d)$.

A model for (A, d) is any GCDA $(A', d') \sim (A, d)$.

There is a canonical representative, called the *minimal model*, for any (A, d). The minimal model (\mathcal{M}, d) of (A, d) satisfies:

• $\mathcal{M} = \bigwedge (x_1, x_2, \ldots)$ is free.

 \bigwedge means the "graded-commutative algebra freely generated by"

•
$$dx_i \in \bigwedge (x_1, \ldots, x_{i-1}).$$

- *dx_i* contains no linear term.
- $(\mathcal{M}, d) \longrightarrow (A, d)$ is a quasi-isomorphism.

A minimal model (\mathcal{M}_X, d) for X is a minimal model for $(\Omega X, d)$.

A model for (A, d) is any GCDA $(A', d') \sim (A, d)$.

Theorem (Sullivan, 1977)

If either X is simply-connected or X is a nilpotent space, then the minimal model $(\mathcal{M}_X, d) \longrightarrow (\Omega X, d)$ codifies the rational homotopy of X. More specifically, $\mathcal{M}_X = \bigwedge V$, $V = \bigoplus_{n \ge 1} V^n$, where V^n is the vector space given by the degree n generators. Then

$$V^n\cong (\pi_n(X)\otimes\mathbb{R})^*$$
,

and

$$H^n(\bigwedge V, d) = H^n(\Omega(X), d) = H^n(X).$$

프 > - (프 > -

A D b 4 A b

A CDGA (A, d) is formal if $(A, d) \sim (H, 0)$.

Clearly, it is H = H(A, d). So there are quasi-isomorphisms

So the minimal model can be deduced *formally* from H = H(A, d). All the information is in the cohomology algebra.

A space X is formal if $(\Omega X, d)$ is formal.

A CDGA (A, d) is formal if $(A, d) \sim (H, 0)$.

Clearly, it is H = H(A, d). So there are quasi-isomorphisms

So the minimal model can be deduced *formally* from H = H(A, d). All the information is in the cohomology algebra.

A space X is formal if $(\Omega X, d)$ is formal.

A CDGA (A, d) is formal if $(A, d) \sim (H, 0)$.

Clearly, it is H = H(A, d). So there are quasi-isomorphisms

So the minimal model can be deduced *formally* from H = H(A, d). All the information is in the cohomology algebra.

A space X is formal if $(\Omega X, d)$ is formal.

A (10) × A (10) × A (10)

A CDGA (A, d) is formal if $(A, d) \sim (H, 0)$.

Clearly, it is H = H(A, d). So there are quasi-isomorphisms

So the minimal model can be deduced *formally* from H = H(A, d). All the information is in the cohomology algebra.

A space X is formal if $(\Omega X, d)$ is formal.

< 🗇 🕨

A CDGA (A, d) is formal if $(A, d) \sim (H, 0)$.

Clearly, it is H = H(A, d). So there are quasi-isomorphisms

So the minimal model can be deduced *formally* from H = H(A, d). All the information is in the cohomology algebra.

A space X is formal if $(\Omega X, d)$ is formal.

A (10) A (10) A (10)

A CDGA (A, d) is formal if $(A, d) \sim (H, 0)$.

Clearly, it is H = H(A, d). So there are quasi-isomorphisms

So the minimal model can be deduced *formally* from H = H(A, d). All the information is in the cohomology algebra.

A space X is formal if $(\Omega X, d)$ is formal.

There is a quick way to check non-formality.

Let $a_1, a_2, a_3 \in H^*(X)$ be cohomology classes such that $a_1 \cup a_2 = 0$ and $a_2 \cup a_3 = 0$. Take forms α_i in X with $a_i = [\alpha_i]$ and write

$$\alpha_1 \wedge \alpha_2 = d\xi, \ \alpha_2 \wedge \alpha_3 = d\zeta.$$

Then

$$d(\alpha_1 \wedge \zeta - (-1)^{|a_1|} \xi \wedge \alpha_3) = (-1)^{|a_1|} (\alpha_1 \wedge \alpha_2 \wedge \alpha_3 - \alpha_1 \wedge \alpha_2 \wedge \alpha_3) = 0.$$

The Massey product of the classes *a_i* is defined as

$$\langle a_1, a_2, a_3 \rangle = \{ [\alpha_1 \wedge \zeta - (-1)^{|a_1|} \xi \wedge \alpha_3] \} \subset H^*(X)$$

If $0 \notin \langle a_1, a_2, a_3 \rangle$ then X is non-formal.

< 回 > < 三 > < 三 >

There is a quick way to check non-formality. Let $a_1, a_2, a_3 \in H^*(X)$ be cohomology classes such that $a_1 \cup a_2 = 0$ and $a_2 \cup a_3 = 0$. Take forms α_i in X with $a_i = [\alpha_i]$ and write

$$\alpha_1 \wedge \alpha_2 = d\xi, \ \alpha_2 \wedge \alpha_3 = d\zeta.$$

Then

$$d(\alpha_1 \wedge \zeta - (-1)^{|a_1|} \xi \wedge \alpha_3) = (-1)^{|a_1|} (\alpha_1 \wedge \alpha_2 \wedge \alpha_3 - \alpha_1 \wedge \alpha_2 \wedge \alpha_3) = 0.$$

The Massey product of the classes *a_i* is defined as

$$\langle a_1, a_2, a_3 \rangle = \{ [\alpha_1 \wedge \zeta - (-1)^{|a_1|} \xi \wedge \alpha_3] \} \subset H^*(X)$$

If $0 \notin \langle a_1, a_2, a_3 \rangle$ then X is non-formal.

< 回 > < 回 > < 回 >

There is a quick way to check non-formality. Let $a_1, a_2, a_3 \in H^*(X)$ be cohomology classes such that $a_1 \cup a_2 = 0$ and $a_2 \cup a_3 = 0$. Take forms α_i in X with $a_i = [\alpha_i]$ and write

$$\alpha_1 \wedge \alpha_2 = d\xi, \ \alpha_2 \wedge \alpha_3 = d\zeta.$$

Then

$$d(\alpha_1 \wedge \zeta - (-1)^{|a_1|} \xi \wedge \alpha_3) = (-1)^{|a_1|} (\alpha_1 \wedge \alpha_2 \wedge \alpha_3 - \alpha_1 \wedge \alpha_2 \wedge \alpha_3) = 0.$$

The Massey product of the classes *a*_i is defined as

$$\langle a_1, a_2, a_3 \rangle = \{ [\alpha_1 \wedge \zeta - (-1)^{|a_1|} \xi \wedge \alpha_3] \} \subset H^*(X)$$

If $0 \notin \langle a_1, a_2, a_3 \rangle$ then X is non-formal.

< 回 > < 回 > < 回 >

There is a quick way to check non-formality. Let $a_1, a_2, a_3 \in H^*(X)$ be cohomology classes such that $a_1 \cup a_2 = 0$ and $a_2 \cup a_3 = 0$. Take forms α_i in X with $a_i = [\alpha_i]$ and write

$$\alpha_1 \wedge \alpha_2 = d\xi, \ \alpha_2 \wedge \alpha_3 = d\zeta.$$

Then

$$d(\alpha_1 \wedge \zeta - (-1)^{|a_1|} \xi \wedge \alpha_3) = (-1)^{|a_1|} (\alpha_1 \wedge \alpha_2 \wedge \alpha_3 - \alpha_1 \wedge \alpha_2 \wedge \alpha_3) = \mathbf{0}.$$

The Massey product of the classes a_i is defined as

$$\langle a_1, a_2, a_3 \rangle = \{ [\alpha_1 \wedge \zeta - (-1)^{|a_1|} \xi \wedge \alpha_3] \} \subset H^*(X)$$

If $0 \notin \langle a_1, a_2, a_3 \rangle$ then X is non-formal.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

There is a quick way to check non-formality. Let $a_1, a_2, a_3 \in H^*(X)$ be cohomology classes such that $a_1 \cup a_2 = 0$ and $a_2 \cup a_3 = 0$. Take forms α_i in X with $a_i = [\alpha_i]$ and write

$$\alpha_1 \wedge \alpha_2 = d\xi, \ \alpha_2 \wedge \alpha_3 = d\zeta.$$

Then

$$d(\alpha_1 \wedge \zeta - (-1)^{|a_1|} \xi \wedge \alpha_3) = (-1)^{|a_1|} (\alpha_1 \wedge \alpha_2 \wedge \alpha_3 - \alpha_1 \wedge \alpha_2 \wedge \alpha_3) = 0.$$

The Massey product of the classes a_i is defined as

$$\langle a_1, a_2, a_3 \rangle = \{ [\alpha_1 \wedge \zeta - (-1)^{|a_1|} \xi \wedge \alpha_3] \} \subset H^*(X)$$

If $0 \notin \langle a_1, a_2, a_3 \rangle$ then X is non-formal.

The Massey product $\langle a_1, a_2, \dots, a_t \rangle$, $a_i \in H^{|a_i|}(X)$, $1 \le i \le t$, $t \ge 3$, is defined as follows.

Choose $\alpha_{ij} \in A$ inductively, for $i \leq j$, $(i, j) \neq (1, t)$, with

• $a_1 = [\alpha_{11}], a_2 = [\alpha_{22}], \dots$

- $d\alpha_{12} = (-1)^{|\alpha_{11}|} \alpha_{11} \wedge \alpha_{22}, d\alpha_{23} = (-1)^{|\alpha_{22}|} \alpha_{22} \wedge \alpha_{33}, \dots$
- $d\alpha_{13} = (-1)^{|\alpha_{11}|} \alpha_{11} \wedge \alpha_{23} + (-1)^{|\alpha_{12}|} \alpha_{12} \wedge \alpha_{33}, \dots$
- $d\alpha_{14} = (-1)^{|\alpha_{11}|} \alpha_{11} \wedge \alpha_{24} + (-1)^{|\alpha_{12}|} \alpha_{12} \wedge \alpha_{34} + (-1)^{|\alpha_{13}|} \alpha_{13} \wedge \alpha_{44}, \dots$

The Massey product is

$$\langle a_1, a_2, \ldots, a_t \rangle = \left\{ \left[\sum_{k=1}^{t-1} (-1)^{|\alpha_{1k}|} \alpha_{1k} \wedge \alpha_{k+1,t} \right] \right\} \subset H^{|a_1|+\cdots+|a_t|-(t-2)}(X).$$

We say that the Massey product is trivial if $0 \in \langle a_1, a_2, \ldots, a_t \rangle$.

Theorem

The Massey product $\langle a_1, a_2, \dots, a_t \rangle$, $a_i \in H^{|a_i|}(X)$, $1 \le i \le t$, $t \ge 3$, is defined as follows.

Choose $\alpha_{ij} \in \mathcal{A}$ inductively, for $i \leq j$, $(i, j) \neq (1, t)$, with

•
$$a_1 = [\alpha_{11}], a_2 = [\alpha_{22}], \dots$$

• $d\alpha_{12} = (-1)^{|\alpha_{11}|} \alpha_{11} \wedge \alpha_{22}, d\alpha_{23} = (-1)^{|\alpha_{22}|} \alpha_{22} \wedge \alpha_{33}, \dots$

- $d\alpha_{13} = (-1)^{|\alpha_{11}|} \alpha_{11} \wedge \alpha_{23} + (-1)^{|\alpha_{12}|} \alpha_{12} \wedge \alpha_{33}, \dots$
- $d\alpha_{14} = (-1)^{|\alpha_{11}|} \alpha_{11} \wedge \alpha_{24} + (-1)^{|\alpha_{12}|} \alpha_{12} \wedge \alpha_{34} + (-1)^{|\alpha_{13}|} \alpha_{13} \wedge \alpha_{44}, \dots$

The Massey product is

$$\langle a_1, a_2, \ldots, a_t \rangle = \left\{ \left[\sum_{k=1}^{t-1} (-1)^{|\alpha_{1k}|} \alpha_{1k} \wedge \alpha_{k+1,t} \right] \right\} \subset H^{|a_1|+\cdots+|a_t|-(t-2)}(X).$$

We say that the Massey product is trivial if $0 \in \langle a_1, a_2, \ldots, a_t \rangle$.

Theorem

The Massey product $\langle a_1, a_2, \dots, a_t \rangle$, $a_i \in H^{|a_i|}(X)$, $1 \le i \le t$, $t \ge 3$, is defined as follows.

Choose $\alpha_{ij} \in \mathcal{A}$ inductively, for $i \leq j$, $(i, j) \neq (1, t)$, with

•
$$a_1 = [\alpha_{11}], a_2 = [\alpha_{22}], \dots$$

- $d\alpha_{12} = (-1)^{|\alpha_{11}|} \alpha_{11} \wedge \alpha_{22}, d\alpha_{23} = (-1)^{|\alpha_{22}|} \alpha_{22} \wedge \alpha_{33}, \dots$
- $d\alpha_{13} = (-1)^{|\alpha_{11}|} \alpha_{11} \wedge \alpha_{23} + (-1)^{|\alpha_{12}|} \alpha_{12} \wedge \alpha_{33}, \dots$
- $d\alpha_{14} = (-1)^{|\alpha_{11}|} \alpha_{11} \wedge \alpha_{24} + (-1)^{|\alpha_{12}|} \alpha_{12} \wedge \alpha_{34} + (-1)^{|\alpha_{13}|} \alpha_{13} \wedge \alpha_{44}, \dots$

The Massey product is

$$\langle a_1, a_2, \ldots, a_l \rangle = \left\{ \left[\sum_{k=1}^{t-1} (-1)^{|\alpha_{1k}|} \alpha_{1k} \wedge \alpha_{k+1,t} \right] \right\} \subset H^{|a_1|+\cdots+|a_l|-(t-2)}(X).$$

We say that the Massey product is trivial if $0 \in \langle a_1, a_2, \ldots, a_t \rangle$.

Theorem

The Massey product $\langle a_1, a_2, \dots, a_t \rangle$, $a_i \in H^{|a_i|}(X)$, $1 \le i \le t$, $t \ge 3$, is defined as follows.

Choose $\alpha_{ij} \in A$ inductively, for $i \leq j$, $(i, j) \neq (1, t)$, with

•
$$a_1 = [\alpha_{11}], a_2 = [\alpha_{22}], \dots$$

• $d\alpha_{12} = (-1)^{|\alpha_{11}|} \alpha_{11} \wedge \alpha_{22}, d\alpha_{23} = (-1)^{|\alpha_{22}|} \alpha_{22} \wedge \alpha_{33}, \dots$

•
$$d\alpha_{13} = (-1)^{|\alpha_{11}|} \alpha_{11} \wedge \alpha_{23} + (-1)^{|\alpha_{12}|} \alpha_{12} \wedge \alpha_{33}, \dots$$

• $d\alpha_{14} = (-1)^{|\alpha_{11}|} \alpha_{11} \wedge \alpha_{24} + (-1)^{|\alpha_{12}|} \alpha_{12} \wedge \alpha_{34} + (-1)^{|\alpha_{13}|} \alpha_{13} \wedge \alpha_{44}, \dots$ he Massey product is

$$\langle a_1, a_2, \ldots, a_t \rangle = \left\{ \left[\sum_{k=1}^{t-1} (-1)^{|\alpha_{1k}|} \alpha_{1k} \wedge \alpha_{k+1,t} \right] \right\} \subset H^{|a_1|+\cdots+|a_t|-(t-2)}(X) \, .$$

We say that the Massey product is trivial if $0 \in \langle a_1, a_2, \ldots, a_t \rangle$.

Theorem

The Massey product $\langle a_1, a_2, \dots, a_t \rangle$, $a_i \in H^{|a_i|}(X)$, $1 \le i \le t$, $t \ge 3$, is defined as follows.

Choose $\alpha_{ij} \in A$ inductively, for $i \leq j$, $(i, j) \neq (1, t)$, with

•
$$a_1 = [\alpha_{11}], a_2 = [\alpha_{22}], \dots$$

• $d\alpha_{12} = (-1)^{|\alpha_{11}|} \alpha_{11} \wedge \alpha_{22}, d\alpha_{23} = (-1)^{|\alpha_{22}|} \alpha_{22} \wedge \alpha_{33}, \dots$
• $d\alpha_{13} = (-1)^{|\alpha_{11}|} \alpha_{11} \wedge \alpha_{23} + (-1)^{|\alpha_{12}|} \alpha_{12} \wedge \alpha_{33}, \dots$
• $d\alpha_{14} = (-1)^{|\alpha_{11}|} \alpha_{11} \wedge \alpha_{24} + (-1)^{|\alpha_{12}|} \alpha_{12} \wedge \alpha_{34} + (-1)^{|\alpha_{13}|} \alpha_{13} \wedge \alpha_{44}, \dots$
The Massey product is

$$\langle a_1, a_2, \ldots, a_t \rangle = \left\{ \left[\sum_{k=1}^{t-1} (-1)^{|\alpha_{1k}|} \alpha_{1k} \wedge \alpha_{k+1,t} \right] \right\} \subset H^{|a_1|+\cdots+|a_t|-(t-2)}(X).$$

We say that the Massey product is trivial if $0 \in \langle a_1, a_2, \ldots, a_t \rangle$.

Theorem

The Massey product $\langle a_1, a_2, \dots, a_t \rangle$, $a_i \in H^{|a_i|}(X)$, $1 \le i \le t$, $t \ge 3$, is defined as follows.

Choose $\alpha_{ij} \in A$ inductively, for $i \leq j$, $(i, j) \neq (1, t)$, with

•
$$a_1 = [\alpha_{11}], a_2 = [\alpha_{22}], \dots$$

• $d\alpha_{12} = (-1)^{|\alpha_{11}|} \alpha_{11} \wedge \alpha_{22}, d\alpha_{23} = (-1)^{|\alpha_{22}|} \alpha_{22} \wedge \alpha_{33}, \dots$
• $d\alpha_{13} = (-1)^{|\alpha_{11}|} \alpha_{11} \wedge \alpha_{23} + (-1)^{|\alpha_{12}|} \alpha_{12} \wedge \alpha_{33}, \dots$
• $d\alpha_{14} = (-1)^{|\alpha_{11}|} \alpha_{11} \wedge \alpha_{24} + (-1)^{|\alpha_{12}|} \alpha_{12} \wedge \alpha_{34} + (-1)^{|\alpha_{13}|} \alpha_{13} \wedge \alpha_{44}, \dots$
The Massey product is

$$\langle a_1, a_2, \ldots, a_t \rangle = \left\{ \left[\sum_{k=1}^{t-1} (-1)^{|\alpha_{1k}|} \alpha_{1k} \wedge \alpha_{k+1,t} \right] \right\} \subset H^{|a_1|+\cdots+|a_t|-(t-2)}(X).$$

We say that the Massey product is trivial if $0 \in \langle a_1, a_2, \ldots, a_t \rangle$.

Theorem

The Massey product $\langle a_1, a_2, \dots, a_t \rangle$, $a_i \in H^{|a_i|}(X)$, $1 \le i \le t$, $t \ge 3$, is defined as follows.

Choose $\alpha_{ij} \in A$ inductively, for $i \leq j$, $(i, j) \neq (1, t)$, with

•
$$a_1 = [\alpha_{11}], a_2 = [\alpha_{22}], \dots$$

• $d\alpha_{12} = (-1)^{|\alpha_{11}|} \alpha_{11} \wedge \alpha_{22}, d\alpha_{23} = (-1)^{|\alpha_{22}|} \alpha_{22} \wedge \alpha_{33}, \dots$
• $d\alpha_{13} = (-1)^{|\alpha_{11}|} \alpha_{11} \wedge \alpha_{23} + (-1)^{|\alpha_{12}|} \alpha_{12} \wedge \alpha_{33}, \dots$
• $d\alpha_{14} = (-1)^{|\alpha_{11}|} \alpha_{11} \wedge \alpha_{24} + (-1)^{|\alpha_{12}|} \alpha_{12} \wedge \alpha_{34} + (-1)^{|\alpha_{13}|} \alpha_{13} \wedge \alpha_{44}, \dots$
The Massey product is

$$\langle a_1, a_2, \ldots, a_t \rangle = \left\{ \left[\sum_{k=1}^{t-1} (-1)^{|\alpha_{1k}|} \alpha_{1k} \wedge \alpha_{k+1,t} \right] \right\} \subset \mathcal{H}^{|a_1|+\cdots+|a_t|-(t-2)}(X) \, .$$

We say that the Massey product is trivial if $0 \in \langle a_1, a_2, \ldots, a_t \rangle$.

The Massey product $\langle a_1, a_2, \dots, a_t \rangle$, $a_i \in H^{|a_i|}(X)$, $1 \le i \le t$, $t \ge 3$, is defined as follows.

Choose $\alpha_{ij} \in A$ inductively, for $i \leq j$, $(i, j) \neq (1, t)$, with

•
$$a_1 = [\alpha_{11}], a_2 = [\alpha_{22}], \dots$$

• $d\alpha_{12} = (-1)^{|\alpha_{11}|} \alpha_{11} \wedge \alpha_{22}, d\alpha_{23} = (-1)^{|\alpha_{22}|} \alpha_{22} \wedge \alpha_{33}, \dots$
• $d\alpha_{13} = (-1)^{|\alpha_{11}|} \alpha_{11} \wedge \alpha_{23} + (-1)^{|\alpha_{12}|} \alpha_{12} \wedge \alpha_{33}, \dots$
• $d\alpha_{14} = (-1)^{|\alpha_{11}|} \alpha_{11} \wedge \alpha_{24} + (-1)^{|\alpha_{12}|} \alpha_{12} \wedge \alpha_{34} + (-1)^{|\alpha_{13}|} \alpha_{13} \wedge \alpha_{44}, \dots$
The Massey product is

$$\langle \boldsymbol{a}_1, \boldsymbol{a}_2, \dots, \boldsymbol{a}_t \rangle = \left\{ \left[\sum_{k=1}^{t-1} (-1)^{|\alpha_{1k}|} \alpha_{1k} \wedge \alpha_{k+1,t} \right] \right\} \subset H^{|\boldsymbol{a}_1|+\dots+|\boldsymbol{a}_t|-(t-2)}(X) \, .$$

We say that the Massey product is trivial if $0 \in \langle a_1, a_2, \ldots, a_t \rangle$.

Theorem

If X is formal then all (higher) Massey products of $(\Lambda V_X, d)$ are zero.

Vicente Muñoz (UCM)
An orbifold X is a topological space with charts $(U, \widetilde{U}, \Gamma, \varphi)$ where $\Gamma \subset GL(n, \mathbb{R})$ is a finite group, $\widetilde{U} \subset \mathbb{R}^n$ is invariant under Γ , $U \subset X$, $\varphi : \widetilde{U} \longrightarrow U$ is a Γ -invariant map with $\widetilde{U}/\Gamma \stackrel{\cong}{\longrightarrow} U$ an homeomorphism.

 $\Omega_{orb}^{p}(X)$ denote the orbifold *p*-forms on *X*. Fix a Riemannian (orbifold) metric. The complex

$$\Omega^0_{orb}(X) \xrightarrow{d} \Omega^1_{orb}(X) \xrightarrow{d} \Omega^2_{orb}(X) \xrightarrow{d} \dots \xrightarrow{d} \Omega^n_{orb}(X)$$

is elliptic. There is a Hodge isomorphism

$$H^k(X) \cong \mathcal{H}^k(X) = \ker(\Delta : \Omega^k_{orb}(X) \longrightarrow \Omega^k_{orb}(X)),$$

where $\Delta = dd^* + d^*d$.

3 + 4 = +

An orbifold X is a topological space with charts $(U, \widetilde{U}, \Gamma, \varphi)$ where $\Gamma \subset GL(n, \mathbb{R})$ is a finite group, $\widetilde{U} \subset \mathbb{R}^n$ is invariant under Γ , $U \subset X$, $\varphi : \widetilde{U} \longrightarrow U$ is a Γ -invariant map with $\widetilde{U}/\Gamma \stackrel{\cong}{\longrightarrow} U$ an homeomorphism.

 $\Omega_{orb}^{p}(X)$ denote the orbifold *p*-forms on *X*. Fix a Riemannian (orbifold) metric. The complex

$$\Omega^0_{orb}(X) \xrightarrow{d} \Omega^1_{orb}(X) \xrightarrow{d} \Omega^2_{orb}(X) \xrightarrow{d} \dots \xrightarrow{d} \Omega^n_{orb}(X)$$

is elliptic. There is a Hodge isomorphism

$$H^k(X) \cong \mathcal{H}^k(X) = \ker(\Delta : \Omega^k_{orb}(X) \longrightarrow \Omega^k_{orb}(X)),$$

where $\Delta = dd^* + d^*d$.

3 + 4 = +

An orbifold X is a topological space with charts $(U, \widetilde{U}, \Gamma, \varphi)$ where $\Gamma \subset GL(n, \mathbb{R})$ is a finite group, $\widetilde{U} \subset \mathbb{R}^n$ is invariant under Γ , $U \subset X$, $\varphi : \widetilde{U} \longrightarrow U$ is a Γ -invariant map with $\widetilde{U}/\Gamma \stackrel{\cong}{\longrightarrow} U$ an homeomorphism.

 $\Omega^{p}_{orb}(X)$ denote the orbifold *p*-forms on *X*. Fix a Riemannian (orbifold) metric. The complex

$$\Omega^0_{orb}(X) \xrightarrow{d} \Omega^1_{orb}(X) \xrightarrow{d} \Omega^2_{orb}(X) \xrightarrow{d} \dots \xrightarrow{d} \Omega^n_{orb}(X)$$

is elliptic. There is a Hodge isomorphism

$$H^k(X) \cong \mathcal{H}^k(X) = \ker(\Delta : \Omega^k_{orb}(X) \longrightarrow \Omega^k_{orb}(X)),$$

where $\Delta = dd^* + d^*d$.

An orbifold X is a topological space with charts $(U, \widetilde{U}, \Gamma, \varphi)$ where $\Gamma \subset GL(n, \mathbb{R})$ is a finite group, $\widetilde{U} \subset \mathbb{R}^n$ is invariant under Γ , $U \subset X$, $\varphi : \widetilde{U} \longrightarrow U$ is a Γ -invariant map with $\widetilde{U}/\Gamma \stackrel{\cong}{\longrightarrow} U$ an homeomorphism.

 $\Omega^{p}_{orb}(X)$ denote the orbifold *p*-forms on *X*. Fix a Riemannian (orbifold) metric. The complex

$$\Omega^0_{orb}(X) \stackrel{d}{\longrightarrow} \Omega^1_{orb}(X) \stackrel{d}{\longrightarrow} \Omega^2_{orb}(X) \stackrel{d}{\longrightarrow} \dots \stackrel{d}{\longrightarrow} \Omega^n_{orb}(X)$$

is elliptic. There is a Hodge isomorphism

$$H^{k}(X) \cong \mathcal{H}^{k}(X) = \ker(\Delta : \Omega^{k}_{orb}(X) \longrightarrow \Omega^{k}_{orb}(X)),$$

where $\Delta = dd^* + d^*d$.

∃ ► < ∃ ►</p>

An orbifold X is a topological space with charts $(U, \widetilde{U}, \Gamma, \varphi)$ where $\Gamma \subset GL(n, \mathbb{R})$ is a finite group, $\widetilde{U} \subset \mathbb{R}^n$ is invariant under Γ , $U \subset X$, $\varphi : \widetilde{U} \longrightarrow U$ is a Γ -invariant map with $\widetilde{U}/\Gamma \stackrel{\cong}{\longrightarrow} U$ an homeomorphism.

 $\Omega^{p}_{orb}(X)$ denote the orbifold *p*-forms on *X*. Fix a Riemannian (orbifold) metric. The complex

$$\Omega^0_{orb}(X) \stackrel{d}{\longrightarrow} \Omega^1_{orb}(X) \stackrel{d}{\longrightarrow} \Omega^2_{orb}(X) \stackrel{d}{\longrightarrow} \dots \stackrel{d}{\longrightarrow} \Omega^n_{orb}(X)$$

is elliptic. There is a Hodge isomorphism

$$H^k(X)\,\cong\,\mathcal{H}^k(X)\,=\,\ker(\Delta:\Omega^k_{\mathit{orb}}(X)\longrightarrow\Omega^k_{\mathit{orb}}(X))\,,$$

where $\Delta = dd^* + d^*d$.

Definition

A complex orbifold is an orbifold X whose charts are of the form $(U, \tilde{U}, \Gamma, \varphi)$, where $\tilde{U} \subset \mathbb{C}^n$ and $\Gamma \subset GL(n, \mathbb{C})$.

$$\begin{split} \Omega^{p,q}_{orb}(X) & \text{are the orbifold } (p,q)\text{-forms, } d = \partial + \overline{\partial}, \text{ where} \\ \partial : \Omega^{p,q}_{orb}(X) & \longrightarrow \Omega^{p+1,q}_{orb}(X), \overline{\partial} : \Omega^{p,q}_{orb}(X) & \longrightarrow \Omega^{p,q+1}_{orb}(X). \\ \text{The (orbifold) Dolbeault cohomology of } X \text{ is} \\ H^{p,q}(X) &= \ker(\overline{\partial} : \Omega^{p,q}_{orb}(X) & \longrightarrow \Omega^{p,q+1}_{orb}(X))/\overline{\partial}(\Omega^{p,q-1}_{orb}(X)). \end{split}$$

Definition

A hermitian metric *h* has associated fundamental form $\omega \in \Omega^{1,1}_{orb}(X)$. We say that (X, J, h) is a Kähler orbifold if $d\omega = 0$.

Theorem

For a (compact) Kähler orbifold, $\Delta = 2\Delta_{\overline{\partial}}$. Therefore $\mathcal{H}^{k}(X) = \bigoplus_{n \in \mathbb{Z}^{k}} \mathcal{H}^{p,q}(X)$.

Definition

A complex orbifold is an orbifold X whose charts are of the form $(U, \tilde{U}, \Gamma, \varphi)$, where $\tilde{U} \subset \mathbb{C}^n$ and $\Gamma \subset GL(n, \mathbb{C})$.

$$\begin{split} \Omega^{p,q}_{orb}(X) & \text{are the orbifold } (p,q)\text{-forms, } d = \partial + \overline{\partial}, \text{ where} \\ \partial : \Omega^{p,q}_{orb}(X) & \longrightarrow \Omega^{p+1,q}_{orb}(X), \overline{\partial} : \Omega^{p,q}_{orb}(X) & \longrightarrow \Omega^{p,q+1}_{orb}(X). \\ \text{The (orbifold) Dolbeault cohomology of } X \text{ is} \\ H^{p,q}(X) &= \ker(\overline{\partial} : \Omega^{p,q}_{orb}(X) & \longrightarrow \Omega^{p,q+1}_{orb}(X))/\overline{\partial}(\Omega^{p,q-1}_{orb}(X)). \end{split}$$

Definition

A hermitian metric *h* has associated fundamental form $\omega \in \Omega^{1,1}_{orb}(X)$. We say that (X, J, h) is a Kähler orbifold if $d\omega = 0$.

Theorem

For a (compact) Kähler orbifold, $\Delta = 2\Delta_{\overline{\partial}}$. Therefore $\mathcal{H}^{k}(X) = \bigoplus_{n \in \mathbb{Z}^{k}} \mathcal{H}^{p,q}(X)$.

Definition

A complex orbifold is an orbifold X whose charts are of the form $(U, \widetilde{U}, \Gamma, \varphi)$, where $\widetilde{U} \subset \mathbb{C}^n$ and $\Gamma \subset GL(n, \mathbb{C})$.

$$\begin{split} \Omega^{p,q}_{orb}(X) \text{ are the orbifold } (p,q)\text{-forms, } d &= \partial + \overline{\partial}, \text{ where} \\ \partial : \Omega^{p,q}_{orb}(X) \longrightarrow \Omega^{p+1,q}_{orb}(X), \overline{\partial} : \Omega^{p,q}_{orb}(X) \longrightarrow \Omega^{p,q+1}_{orb}(X). \\ \text{The (orbifold) Dolbeault cohomology of } X \text{ is} \\ H^{p,q}(X) &= \ker(\overline{\partial} : \Omega^{p,q}_{orb}(X) \longrightarrow \Omega^{p,q+1}_{orb}(X))/\overline{\partial}(\Omega^{p,q-1}_{orb}(X)). \end{split}$$

Definition

A hermitian metric *h* has associated fundamental form $\omega \in \Omega^{1,1}_{orb}(X)$. We say that (X, J, h) is a Kähler orbifold if $d\omega = 0$.

Theorem

For a (compact) Kähler orbifold, $\Delta = 2\Delta_{\overline{\partial}}$. Therefore $\mathcal{H}^{k}(X) = \bigoplus_{n+n-k} \mathcal{H}^{p,q}(X)$.

Definition

A complex orbifold is an orbifold X whose charts are of the form $(U, \widetilde{U}, \Gamma, \varphi)$, where $\widetilde{U} \subset \mathbb{C}^n$ and $\Gamma \subset GL(n, \mathbb{C})$.

 $\begin{array}{l} \Omega^{p,q}_{orb}(X) \text{ are the orbifold } (p,q)\text{-forms, } d = \partial + \overline{\partial}, \text{ where} \\ \partial : \Omega^{p,q}_{orb}(X) \longrightarrow \Omega^{p+1,q}_{orb}(X), \overline{\partial} : \Omega^{p,q}_{orb}(X) \longrightarrow \Omega^{p,q+1}_{orb}(X). \\ \text{The (orbifold) Dolbeault cohomology of } X \text{ is} \\ H^{p,q}(X) = \ker(\overline{\partial} : \Omega^{p,q}_{orb}(X) \longrightarrow \Omega^{p,q+1}_{orb}(X))/\overline{\partial}(\Omega^{p,q-1}_{orb}(X)). \end{array}$

Definition

A hermitian metric *h* has associated fundamental form $\omega \in \Omega^{1,1}_{orb}(X)$. We say that (X, J, h) is a Kähler orbifold if $d\omega = 0$.

Theorem

For a (compact) Kähler orbifold, $\Delta = 2\Delta_{\overline{\partial}}$. Therefore $\mathcal{H}^k(X) = \bigoplus_{p+q=k} \mathcal{H}^{p,q}(X)$.

Definition

A complex orbifold is an orbifold X whose charts are of the form $(U, \tilde{U}, \Gamma, \varphi)$, where $\tilde{U} \subset \mathbb{C}^n$ and $\Gamma \subset GL(n, \mathbb{C})$.

 $\begin{array}{l} \Omega^{p,q}_{orb}(X) \text{ are the orbifold } (p,q)\text{-forms, } d = \partial + \overline{\partial}, \text{ where} \\ \partial : \Omega^{p,q}_{orb}(X) \longrightarrow \Omega^{p+1,q}_{orb}(X), \overline{\partial} : \Omega^{p,q}_{orb}(X) \longrightarrow \Omega^{p,q+1}_{orb}(X). \end{array}$ $\begin{array}{l} \text{The (orbifold) Dolbeault cohomology of } X \text{ is} \\ H^{p,q}(X) = \ker(\overline{\partial} : \Omega^{p,q}_{orb}(X) \longrightarrow \Omega^{p,q+1}_{orb}(X)) / \overline{\partial}(\Omega^{p,q-1}_{orb}(X)). \end{array}$

Definition

A hermitian metric *h* has associated fundamental form $\omega \in \Omega^{1,1}_{orb}(X)$. We say that (X, J, h) is a Kähler orbifold if $d\omega = 0$.

Theorem

For a (compact) Kähler orbifold, $\Delta = 2\Delta_{\overline{\partial}}$. Therefore $\mathcal{H}^k(X) = \bigoplus_{p+q=k} \mathcal{H}^{p,q}(X)$.

Definition

A complex orbifold is an orbifold X whose charts are of the form $(U, \tilde{U}, \Gamma, \varphi)$, where $\tilde{U} \subset \mathbb{C}^n$ and $\Gamma \subset GL(n, \mathbb{C})$.

 $\begin{array}{l} \Omega^{p,q}_{orb}(X) \text{ are the orbifold } (p,q)\text{-forms, } d = \partial + \overline{\partial}, \text{ where} \\ \partial : \Omega^{p,q}_{orb}(X) \longrightarrow \Omega^{p+1,q}_{orb}(X), \overline{\partial} : \Omega^{p,q}_{orb}(X) \longrightarrow \Omega^{p,q+1}_{orb}(X). \end{array}$ $\begin{array}{l} \text{The (orbifold) Dolbeault cohomology of } X \text{ is} \\ H^{p,q}(X) = \ker(\overline{\partial} : \Omega^{p,q}_{orb}(X) \longrightarrow \Omega^{p,q+1}_{orb}(X)) / \overline{\partial}(\Omega^{p,q-1}_{orb}(X)). \end{array}$

Definition

A hermitian metric *h* has associated fundamental form $\omega \in \Omega^{1,1}_{orb}(X)$. We say that (X, J, h) is a Kähler orbifold if $d\omega = 0$.

Theorem

For a (compact) Kähler orbifold, $\Delta = 2\Delta_{\overline{\partial}}$. Therefore $\mathcal{H}^k(X) = \bigoplus_{p+q=k} \mathcal{H}^{p,q}(X)$.

- Take $\alpha \in \Omega_{orb}^{p,q}(X)$ with $\partial \alpha = 0$. If $\alpha = \overline{\partial}\beta$ for some β , then there exists ψ such that $\alpha = \partial \overline{\partial} \psi$.
- **2** Take $\alpha \in \Omega_{orb}^{p,q}(X)$ with $\overline{\partial}\alpha = 0$. If $\alpha = \partial\beta$ for some β , then there exists ψ such that $\alpha = \partial\overline{\partial}\psi$.

Proof.

Let $G = G_{\overline{\partial}}$ be the Green operator, let $H : \Omega_{orb}(X) \to \mathcal{H}(X)$ projection onto the harmonic forms.

 $\begin{array}{l} \alpha \ = \ H\alpha + \Delta_{\overline{\partial}}G\alpha \ = \ H\alpha + \overline{\partial}\,\overline{\partial}^*G\alpha + \overline{\partial}^*\overline{\partial}G\alpha \\ \alpha \ = \ \overline{\partial}\beta \ \Longrightarrow \ H\alpha \ = \ 0 \ \ \text{and} \ \ \overline{\partial}G\alpha \ = \ G\overline{\partial}\alpha \ = \ 0. \end{array}$

Hence $\alpha = \overline{\partial} \overline{\partial}^* G \alpha = \overline{\partial} G (\overline{\partial}^* \alpha).$

 $\partial^* = \sqrt{-1}[\Lambda,\partial]$, where $\Lambda = L^*_\omega$ and $L_\omega(eta) = \omega \wedge eta$

 $\partial \alpha = 0 \implies \overline{\partial}^* \alpha = -\sqrt{-1}\partial \Lambda \alpha$

 $\implies \alpha = \overline{\partial} G(-\sqrt{-1}\partial\Lambda\alpha) = \partial\overline{\partial}(\sqrt{-1}G\Lambda\alpha).$

э

<ロ> <問> <問> < 回> < 回> 、

- Take $\alpha \in \Omega_{orb}^{p,q}(X)$ with $\partial \alpha = 0$. If $\alpha = \overline{\partial}\beta$ for some β , then there exists ψ such that $\alpha = \partial \overline{\partial} \psi$.
- 2 Take $\alpha \in \Omega_{orb}^{p,q}(X)$ with $\overline{\partial}\alpha = 0$. If $\alpha = \partial\beta$ for some β , then there exists ψ such that $\alpha = \partial\overline{\partial}\psi$.

Proof.

Let $G = G_{\overline{\partial}}$ be the Green operator, let $H : \Omega_{orb}(X) \to \mathcal{H}(X)$ projection onto the harmonic forms.

 $\alpha = H\alpha + \Delta_{\overline{\partial}}G\alpha = H\alpha + \overline{\partial}\overline{\partial}^*G\alpha + \overline{\partial}^*\overline{\partial}G\alpha$ $\alpha = \overline{\partial}\beta \implies H\alpha = 0 \text{ and } \overline{\partial}G\alpha = G\overline{\partial}\alpha = 0.$

Hence $\alpha = \partial \partial^{*} G \alpha = \partial G (\partial^{*} \alpha)$.

$$\overline{\partial}^* = \sqrt{-1}[\Lambda,\partial]$$
, where $\Lambda = L^*_\omega$ and $L_\omega(eta) = \omega \wedge eta$

 $\partial \alpha = 0 \implies \overline{\partial}^* \alpha = -\sqrt{-1}\partial \Lambda \alpha$

 $\implies \alpha = \overline{\partial} G(-\sqrt{-1}\partial\Lambda\alpha) = \partial\overline{\partial}(\sqrt{-1}G\Lambda\alpha).$

э

- Take $\alpha \in \Omega_{orb}^{p,q}(X)$ with $\partial \alpha = 0$. If $\alpha = \overline{\partial}\beta$ for some β , then there exists ψ such that $\alpha = \partial \overline{\partial} \psi$.
- **2** Take $\alpha \in \Omega_{orb}^{p,q}(X)$ with $\overline{\partial}\alpha = 0$. If $\alpha = \partial\beta$ for some β , then there exists ψ such that $\alpha = \partial\overline{\partial}\psi$.

Proof.

Let $G = G_{\overline{\partial}}$ be the Green operator, let $H : \Omega_{orb}(X) \to \mathcal{H}(X)$ projection onto the harmonic forms.

 $\alpha = H\alpha + \Delta_{\overline{\partial}}G\alpha = H\alpha + \overline{\partial}\,\overline{\partial}^*G\alpha + \overline{\partial}^*\overline{\partial}G\alpha$

 $\alpha = \partial \beta \implies H \alpha = 0$ and $\partial G \alpha = G \partial \alpha = 0$.

Hence $\alpha = \partial \partial^* G \alpha = \partial G (\partial^* \alpha)$.

 $\partial^* = \sqrt{-1}[\Lambda,\partial]$, where $\Lambda = L^*_\omega$ and $L_\omega(eta) = \omega \wedge eta$

 $\partial \alpha = \mathbf{0} \implies \overline{\partial}^* \alpha = -\sqrt{-1}\partial \Lambda \alpha$

 $\implies \alpha = \overline{\partial} G(-\sqrt{-1}\partial\Lambda\alpha) = \partial\overline{\partial}(\sqrt{-1}G\Lambda\alpha).$

э

- Take $\alpha \in \Omega_{orb}^{p,q}(X)$ with $\partial \alpha = 0$. If $\alpha = \overline{\partial}\beta$ for some β , then there exists ψ such that $\alpha = \partial \overline{\partial} \psi$.
- **2** Take $\alpha \in \Omega_{orb}^{p,q}(X)$ with $\overline{\partial}\alpha = 0$. If $\alpha = \partial\beta$ for some β , then there exists ψ such that $\alpha = \partial\overline{\partial}\psi$.

Proof.

Let $G = G_{\overline{\partial}}$ be the Green operator, let $H : \Omega_{orb}(X) \to \mathcal{H}(X)$ projection onto the harmonic forms.

$$\begin{array}{l} \alpha = H\alpha + \Delta_{\overline{\partial}}G\alpha = H\alpha + \partial \partial^{*}G\alpha + \partial^{*}\partial G\alpha \\ \alpha = \overline{\partial}\beta \Longrightarrow H\alpha = 0 \quad \text{and} \quad \overline{\partial}G\alpha = G\overline{\partial}\alpha = 0. \\ \text{Hence } \alpha = \overline{\partial}\overline{\partial}^{*}G\alpha = \overline{\partial}G(\overline{\partial}^{*}\alpha). \\ \overline{\partial}^{*} = \sqrt{-1}[\Lambda,\partial], \text{ where } \Lambda = L_{\omega}^{*} \text{ and } L_{\omega}(\beta) = \omega \wedge \beta \\ \partial\alpha = 0 \Longrightarrow \overline{\partial}^{*}\alpha = -\sqrt{-1}\partial\Lambda\alpha \\ \Longrightarrow \alpha = \overline{\partial}G(-\sqrt{-1}\partial\Lambda\alpha) = \partial\overline{\partial}(\sqrt{-1}G\Lambda\alpha). \end{array}$$

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Take $\alpha \in \Omega_{orb}^{p,q}(X)$ with $\partial \alpha = 0$. If $\alpha = \overline{\partial}\beta$ for some β , then there exists ψ such that $\alpha = \partial \overline{\partial} \psi$.
- **2** Take $\alpha \in \Omega_{orb}^{p,q}(X)$ with $\overline{\partial}\alpha = 0$. If $\alpha = \partial\beta$ for some β , then there exists ψ such that $\alpha = \partial\overline{\partial}\psi$.

Proof.

Let $G = G_{\overline{\partial}}$ be the Green operator, let $H : \Omega_{orb}(X) \to \mathcal{H}(X)$ projection onto the harmonic forms.

$$\begin{array}{l} \alpha = H\alpha + \Delta_{\overline{\partial}}G\alpha = H\alpha + \partial \partial^{*}G\alpha + \partial^{*}\partial G\alpha \\ \alpha = \overline{\partial}\beta \Longrightarrow H\alpha = 0 \quad \text{and} \quad \overline{\partial}G\alpha = G\overline{\partial}\alpha = 0. \\ \text{Hence } \alpha = \overline{\partial}\overline{\partial}^{*}G\alpha = \overline{\partial}G(\overline{\partial}^{*}\alpha). \\ \overline{\partial}^{*} = \sqrt{-1}[\Lambda,\partial], \text{ where } \Lambda = L_{\omega}^{*} \text{ and } L_{\omega}(\beta) = \omega \wedge \beta \\ \partial\alpha = 0 \Longrightarrow \overline{\partial}^{*}\alpha = -\sqrt{-1}\partial\Lambda\alpha \\ \Longrightarrow \alpha = \overline{\partial}G(-\sqrt{-1}\partial\Lambda\alpha) = \partial\overline{\partial}(\sqrt{-1}G\Lambda\alpha). \end{array}$$

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Take $\alpha \in \Omega_{orb}^{p,q}(X)$ with $\partial \alpha = 0$. If $\alpha = \overline{\partial}\beta$ for some β , then there exists ψ such that $\alpha = \partial \overline{\partial} \psi$.
- **2** Take $\alpha \in \Omega_{orb}^{p,q}(X)$ with $\overline{\partial}\alpha = 0$. If $\alpha = \partial\beta$ for some β , then there exists ψ such that $\alpha = \partial\overline{\partial}\psi$.

Proof.

Let $G = G_{\overline{\partial}}$ be the Green operator, let $H : \Omega_{orb}(X) \to \mathcal{H}(X)$ projection onto the harmonic forms.

$$\alpha = H\alpha + \Delta_{\overline{\partial}} G\alpha = H\alpha + \overline{\partial} \overline{\partial}^* G\alpha + \overline{\partial}^* \overline{\partial} G\alpha$$

Hence $\alpha = \overline{\partial} \,\overline{\partial}^* G \alpha = \overline{\partial} G(\overline{\partial}^* \alpha)$. $\overline{\partial}^* = \sqrt{-1}[\Lambda, \partial]$, where $\Lambda = L^*_{\omega}$ and $L_{\omega}(\beta) = \partial \alpha = 0 \implies \overline{\partial}^* \alpha = -\sqrt{-1}\partial \Lambda \alpha$

 $\implies \alpha = \overline{\partial} G(-\sqrt{-1}\partial\Lambda\alpha) = \partial\overline{\partial}(\sqrt{-1}G\Lambda\alpha).$

э

- Take $\alpha \in \Omega_{orb}^{p,q}(X)$ with $\partial \alpha = 0$. If $\alpha = \overline{\partial}\beta$ for some β , then there exists ψ such that $\alpha = \partial \overline{\partial} \psi$.
- **2** Take $\alpha \in \Omega_{orb}^{p,q}(X)$ with $\overline{\partial}\alpha = 0$. If $\alpha = \partial\beta$ for some β , then there exists ψ such that $\alpha = \partial\overline{\partial}\psi$.

Proof.

Let $G = G_{\overline{\partial}}$ be the Green operator, let $H : \Omega_{orb}(X) \to \mathcal{H}(X)$ projection onto the harmonic forms.

$$\begin{aligned} \alpha &= H\alpha + \Delta_{\overline{\partial}} G\alpha = H\alpha + \overline{\partial} \,\overline{\partial}^* G\alpha + \overline{\partial}^* \overline{\partial} G\alpha \\ \alpha &= \overline{\partial}\beta \implies H\alpha = 0 \text{ and } \overline{\partial} G\alpha = G\overline{\partial}\alpha = 0. \\ \text{Hence } \alpha &= \overline{\partial} \,\overline{\partial}^* G\alpha = \overline{\partial} G(\overline{\partial}^* \alpha). \\ \overline{\partial}^* &= \sqrt{-1} [\Lambda, \partial], \text{ where } \Lambda = L^*_{\omega} \text{ and } L_{\omega}(\beta) = \omega \wedge \beta \\ \partial \alpha &= 0 \implies \overline{\partial}^* \alpha = -\sqrt{-1} \partial \Lambda \alpha \\ \implies \alpha = \overline{\partial} G(-\sqrt{-1} \partial \Lambda \alpha) = \partial \overline{\partial} (\sqrt{-1} G \Lambda \alpha). \end{aligned}$$

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Take $\alpha \in \Omega_{orb}^{p,q}(X)$ with $\partial \alpha = 0$. If $\alpha = \overline{\partial}\beta$ for some β , then there exists ψ such that $\alpha = \partial \overline{\partial} \psi$.
- **2** Take $\alpha \in \Omega_{orb}^{p,q}(X)$ with $\overline{\partial}\alpha = 0$. If $\alpha = \partial\beta$ for some β , then there exists ψ such that $\alpha = \partial\overline{\partial}\psi$.

Proof.

Let $G = G_{\overline{\partial}}$ be the Green operator, let $H : \Omega_{orb}(X) \to \mathcal{H}(X)$ projection onto the harmonic forms.

$$\alpha = \underline{H}\alpha + \Delta_{\overline{\partial}}G\alpha = H\alpha + \overline{\partial}\,\overline{\partial}^*_{-}G\alpha + \overline{\partial}^*_{-}\overline{\partial}G\alpha$$

$$\alpha = \partial \beta \implies H \alpha = 0$$
 and $\partial G \alpha = G \partial \alpha = 0$.

Hence
$$\alpha = \partial \partial G \alpha = \partial G (\partial \alpha)$$
.

$$\sigma = \sqrt{-1}[\Lambda, \sigma]$$
, where $\Lambda = L_{\omega}$ and $L_{\omega}(\beta) = \omega \wedge \beta$
 $\partial \alpha = 0 \implies \overline{\partial}^* \alpha = -\sqrt{-1}\partial \Lambda \alpha$

 $\implies \alpha = \overline{\partial} G(-\sqrt{-1}\partial\Lambda\alpha) = \partial\overline{\partial}(\sqrt{-1}G\Lambda\alpha).$

э

・ロン ・四 ・ ・ ヨン ・ ヨン

- Take $\alpha \in \Omega_{orb}^{p,q}(X)$ with $\partial \alpha = 0$. If $\alpha = \overline{\partial}\beta$ for some β , then there exists ψ such that $\alpha = \partial \overline{\partial} \psi$.
- **2** Take $\alpha \in \Omega_{orb}^{p,q}(X)$ with $\overline{\partial}\alpha = 0$. If $\alpha = \partial\beta$ for some β , then there exists ψ such that $\alpha = \partial\overline{\partial}\psi$.

Proof.

Let $G = G_{\overline{\partial}}$ be the Green operator, let $H : \Omega_{orb}(X) \to \mathcal{H}(X)$ projection onto the harmonic forms.

$$\begin{array}{l} \alpha = H\alpha + \Delta_{\overline{\partial}} G\alpha = H\alpha + \overline{\partial} \,\overline{\partial}^* G\alpha + \overline{\partial}^* \overline{\partial} G\alpha \\ \alpha = \overline{\partial}\beta \implies H\alpha = 0 \quad \text{and} \quad \overline{\partial} G\alpha = G\overline{\partial}\alpha = 0. \\ \text{Hence } \alpha = \overline{\partial} \,\overline{\partial}^* G\alpha = \overline{\partial} G(\overline{\partial}^* \alpha). \\ \overline{\partial}^* = \sqrt{-1} [\Lambda, \partial], \text{ where } \Lambda = L^*_{\omega} \text{ and } L_{\omega}(\beta) = \omega \wedge \beta \\ \partial \alpha = 0 \implies \overline{\partial}^* \alpha = -\sqrt{-1} \partial \Lambda \alpha \\ \implies \alpha = \overline{\partial} G(-\sqrt{-1} \partial \Lambda \alpha) = \overline{\partial} \overline{\partial} (\sqrt{-1} G \Lambda \alpha). \end{array}$$

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Take $\alpha \in \Omega_{orb}^{p,q}(X)$ with $\partial \alpha = 0$. If $\alpha = \overline{\partial}\beta$ for some β , then there exists ψ such that $\alpha = \partial \overline{\partial} \psi$.
- **2** Take $\alpha \in \Omega_{orb}^{p,q}(X)$ with $\overline{\partial}\alpha = 0$. If $\alpha = \partial\beta$ for some β , then there exists ψ such that $\alpha = \partial\overline{\partial}\psi$.

Proof.

Let $G = G_{\overline{\partial}}$ be the Green operator, let $H : \Omega_{orb}(X) \to \mathcal{H}(X)$ projection onto the harmonic forms.

$$\begin{array}{l} \alpha = H\alpha + \Delta_{\overline{\partial}} G\alpha = H\alpha + \overline{\partial} \,\overline{\partial}^* G\alpha + \overline{\partial}^* \overline{\partial} G\alpha \\ \alpha = \overline{\partial}\beta \Longrightarrow H\alpha = 0 \quad \text{and} \quad \overline{\partial} G\alpha = G\overline{\partial}\alpha = 0. \\ \text{Hence } \alpha = \overline{\partial} \,\overline{\partial}^* G\alpha = \overline{\partial} G(\overline{\partial}^* \alpha). \\ \overline{\partial}^* = \sqrt{-1} [\Lambda, \partial], \text{ where } \Lambda = L^*_{\omega} \text{ and } L_{\omega}(\beta) = \omega \wedge \beta \\ \partial \alpha = 0 \Longrightarrow \overline{\partial}^* \alpha = -\sqrt{-1} \partial \Lambda \alpha \\ \Longrightarrow \alpha = \overline{\partial} G(-\sqrt{-1} \partial \Lambda \alpha) = \partial \overline{\partial} (\sqrt{-1} G\Lambda \alpha). \end{array}$$

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Let M be a (compact) Kähler orbifold. Then M is formal.

Proof.

Let M be a (compact) Kähler orbifold. Then M is formal.

Proof.

• $\iota : (\ker \partial, \partial) \hookrightarrow (\Omega^*_{orb}(X), d)$ is a quasi-isomorphism.

Let M be a (compact) Kähler orbifold. Then M is formal.

Proof.

1 ι : (ker $\partial, \overline{\partial}$) \hookrightarrow ($\Omega^*_{orb}(X), d$) is a quasi-isomorphism. **Surjectivity**: take $\alpha \in \Omega_{orb}^{p,q}(X)$ with $d\alpha = 0$. Then $\partial \alpha = 0$ and

Let M be a (compact) Kähler orbifold. Then M is formal.

Proof.

1 ι : (ker $\partial, \overline{\partial}$) \hookrightarrow ($\Omega^*_{orb}(X), d$) is a quasi-isomorphism. **Surjectivity**: take $\alpha \in \Omega_{orb}^{p,q}(X)$ with $d\alpha = 0$. Then $\partial \alpha = 0$ and

Let M be a (compact) Kähler orbifold. Then M is formal.

Proof.

• $\iota : (\ker \partial, \overline{\partial}) \hookrightarrow (\Omega^*_{orb}(X), d)$ is a quasi-isomorphism. **Surjectivity**: take $\alpha \in \Omega_{orb}^{p,q}(X)$ with $d\alpha = 0$. Then $\partial \alpha = 0$ and $\overline{\partial}\alpha = 0$. So $\alpha \in \ker \partial$ and $i^*[\alpha] = [\alpha]$.

Let M be a (compact) Kähler orbifold. Then M is formal.

Proof.

• $\iota : (\ker \partial, \overline{\partial}) \hookrightarrow (\Omega^*_{orb}(X), d)$ is a quasi-isomorphism. **Surjectivity**: take $\alpha \in \Omega_{orb}^{p,q}(X)$ with $d\alpha = 0$. Then $\partial \alpha = 0$ and $\overline{\partial}\alpha = 0$. So $\alpha \in \ker \partial$ and $i^*[\alpha] = [\alpha]$. **Injectivity**: take $\alpha \in \ker \partial$ with $i^*[\alpha] = 0$. Then $\overline{\partial} \alpha = 0$ and

Let M be a (compact) Kähler orbifold. Then M is formal.

Proof.

• $\iota : (\ker \partial, \overline{\partial}) \hookrightarrow (\Omega^*_{orb}(X), d)$ is a quasi-isomorphism. **Surjectivity**: take $\alpha \in \Omega_{arb}^{p,q}(X)$ with $d\alpha = 0$. Then $\partial \alpha = 0$ and $\overline{\partial}\alpha = 0$. So $\alpha \in \ker \partial$ and $i^*[\alpha] = [\alpha]$. **Injectivity**: take $\alpha \in \ker \partial$ with $i^*[\alpha] = 0$. Then $\overline{\partial} \alpha = 0$ and $\alpha = d\beta$, for some $\beta \implies \alpha = \partial\beta + \overline{\partial}\beta \implies \overline{\partial}(\partial\beta) = 0$.

Let M be a (compact) Kähler orbifold. Then M is formal.

Proof.

• $\iota : (\ker \partial, \overline{\partial}) \hookrightarrow (\Omega^*_{orb}(X), d)$ is a quasi-isomorphism. **Surjectivity**: take $\alpha \in \Omega_{arb}^{p,q}(X)$ with $d\alpha = 0$. Then $\partial \alpha = 0$ and $\overline{\partial}\alpha = 0$. So $\alpha \in \ker \partial$ and $i^*[\alpha] = [\alpha]$. **Injectivity**: take $\alpha \in \ker \partial$ with $i^*[\alpha] = 0$. Then $\overline{\partial} \alpha = 0$ and $\alpha = d\beta$, for some $\beta \implies \alpha = \partial\beta + \overline{\partial}\beta \implies \overline{\partial}(\partial\beta) = 0$.

Let M be a (compact) Kähler orbifold. Then M is formal.

Proof.

• $\iota : (\ker \partial, \overline{\partial}) \hookrightarrow (\Omega^*_{orb}(X), d)$ is a quasi-isomorphism. **Surjectivity**: take $\alpha \in \Omega_{arb}^{p,q}(X)$ with $d\alpha = 0$. Then $\partial \alpha = 0$ and $\overline{\partial}\alpha = 0$. So $\alpha \in \ker \partial$ and $i^*[\alpha] = [\alpha]$. **Injectivity**: take $\alpha \in \ker \partial$ with $i^*[\alpha] = 0$. Then $\overline{\partial} \alpha = 0$ and $\alpha = d\beta$, for some $\beta \implies \alpha = \partial\beta + \overline{\partial}\beta \implies \overline{\partial}(\partial\beta) = 0$. By the $\partial \overline{\partial}$ -lemma, $\partial \beta = \partial \overline{\partial} \psi$ for some ψ . Hence

Let M be a (compact) Kähler orbifold. Then M is formal.

Proof.

• $i: (\ker \partial, \overline{\partial}) \hookrightarrow (\Omega^*_{orb}(X), d)$ is a quasi-isomorphism. **Surjectivity**: take $\alpha \in \Omega^{p,q}_{orb}(X)$ with $d\alpha = 0$. Then $\partial \alpha = 0$ and $\overline{\partial}\alpha = 0$. So $\alpha \in \ker \partial$ and $i^*[\alpha] = [\alpha]$. **Injectivity**: take $\alpha \in \ker \partial$ with $i^*[\alpha] = 0$. Then $\overline{\partial}\alpha = 0$ and $\alpha = d\beta$, for some $\beta \implies \alpha = \partial\beta + \overline{\partial}\beta \implies \overline{\partial}(\partial\beta) = 0$. By the $\partial\overline{\partial}$ -lemma, $\partial\beta = \partial\overline{\partial}\psi$ for some ψ . Hence $\alpha = \overline{\partial}\beta + \partial\overline{\partial}\psi = \overline{\partial}(\beta - \partial\psi - \overline{\partial}\psi)$, with $\beta - \partial\psi - \overline{\partial}\psi \in \ker \partial$.

Injectivity: Let $\alpha \in \ker \partial \cap \ker \overline{\partial}$. Then $\overline{\partial}^* \alpha = \sqrt{-1} [\Lambda, \partial] \alpha = -\sqrt{-1} \partial (\Lambda \alpha)$. So $\alpha = H\alpha + G(\overline{\partial} \overline{\partial}^* \alpha + \overline{\partial}^* \overline{\partial} \alpha) = H\alpha - \sqrt{-1} G \overline{\partial} \partial (\Lambda \alpha)$. If $H\alpha = 0$, then $\alpha = \overline{\partial} (\partial \psi)$, with $\partial \psi \in \ker \partial$. **Surjectivity**: Take α harmonic. Since $\Delta = 2\Delta_{\overline{\partial}}$, $d\alpha = 0$. So

Let M be a (compact) Kähler orbifold. Then M is formal.

Proof.

• $\iota : (\ker \partial, \overline{\partial}) \hookrightarrow (\Omega^*_{orb}(X), d)$ is a quasi-isomorphism. **Surjectivity**: take $\alpha \in \Omega_{arb}^{p,q}(X)$ with $d\alpha = 0$. Then $\partial \alpha = 0$ and $\partial \alpha = 0$. So $\alpha \in \ker \partial$ and $\imath^*[\alpha] = [\alpha]$. **Injectivity**: take $\alpha \in \ker \partial$ with $i^*[\alpha] = 0$. Then $\overline{\partial} \alpha = 0$ and $\alpha = d\beta$, for some $\beta \implies \alpha = \partial\beta + \overline{\partial}\beta \implies \overline{\partial}(\partial\beta) = 0$. By the $\partial \overline{\partial}$ -lemma, $\partial \beta = \partial \overline{\partial} \psi$ for some ψ . Hence $\alpha = \overline{\partial}\beta + \partial\overline{\partial}\psi = \overline{\partial}(\beta - \partial\psi - \overline{\partial}\psi)$, with $\beta - \partial\psi - \overline{\partial}\psi \in \ker \partial$. 2 $H: (\ker \partial, \overline{\partial}) \longrightarrow (\mathcal{H}^*_{\overline{\partial}}(X), 0)$ is a quasi-isomorphism. **Injectivity**: Let $\alpha \in \ker \partial \cap \ker \overline{\partial}$. Then $\overline{\partial}^* \alpha = \sqrt{-1} [\Lambda, \partial] \alpha = -\sqrt{-1} \partial (\Lambda \alpha).$

Let M be a (compact) Kähler orbifold. Then M is formal.

Proof.

• $\iota : (\ker \partial, \overline{\partial}) \hookrightarrow (\Omega^*_{orb}(X), d)$ is a quasi-isomorphism. **Surjectivity**: take $\alpha \in \Omega_{arb}^{p,q}(X)$ with $d\alpha = 0$. Then $\partial \alpha = 0$ and $\partial \alpha = 0$. So $\alpha \in \ker \partial$ and $\imath^*[\alpha] = [\alpha]$. **Injectivity**: take $\alpha \in \ker \partial$ with $i^*[\alpha] = 0$. Then $\overline{\partial} \alpha = 0$ and $\alpha = d\beta$, for some $\beta \implies \alpha = \partial\beta + \overline{\partial}\beta \implies \overline{\partial}(\partial\beta) = 0$. By the $\partial \overline{\partial}$ -lemma, $\partial \beta = \partial \overline{\partial} \psi$ for some ψ . Hence $\alpha = \overline{\partial}\beta + \partial\overline{\partial}\psi = \overline{\partial}(\beta - \partial\psi - \overline{\partial}\psi)$, with $\beta - \partial\psi - \overline{\partial}\psi \in \ker \partial$. 2 $H: (\ker \partial, \overline{\partial}) \longrightarrow (\mathcal{H}^*_{\overline{\partial}}(X), 0)$ is a quasi-isomorphism. **Injectivity**: Let $\alpha \in \ker \partial \cap \ker \overline{\partial}$. Then $\overline{\partial}^* \alpha = \sqrt{-1} [\Lambda, \partial] \alpha = -\sqrt{-1} \partial (\Lambda \alpha).$

Let M be a (compact) Kähler orbifold. Then M is formal.

Proof.

• $\iota : (\ker \partial, \overline{\partial}) \hookrightarrow (\Omega^*_{orb}(X), d)$ is a quasi-isomorphism. **Surjectivity**: take $\alpha \in \Omega_{arb}^{p,q}(X)$ with $d\alpha = 0$. Then $\partial \alpha = 0$ and $\partial \alpha = 0$. So $\alpha \in \ker \partial$ and $\imath^*[\alpha] = [\alpha]$. **Injectivity**: take $\alpha \in \ker \partial$ with $i^*[\alpha] = 0$. Then $\overline{\partial} \alpha = 0$ and $\alpha = d\beta$, for some $\beta \implies \alpha = \partial\beta + \overline{\partial}\beta \implies \overline{\partial}(\partial\beta) = 0$. By the $\partial \overline{\partial}$ -lemma, $\partial \beta = \partial \overline{\partial} \psi$ for some ψ . Hence $\alpha = \overline{\partial}\beta + \partial\overline{\partial}\psi = \overline{\partial}(\beta - \partial\psi - \overline{\partial}\psi)$, with $\beta - \partial\psi - \overline{\partial}\psi \in \ker \partial$. 2 $H: (\ker \partial, \overline{\partial}) \longrightarrow (\mathcal{H}^*_{\overline{\partial}}(X), 0)$ is a quasi-isomorphism. **Injectivity**: Let $\alpha \in \ker \partial \cap \ker \overline{\partial}$. Then $\overline{\partial}^* \alpha = \sqrt{-1} [\Lambda, \partial] \alpha = -\sqrt{-1} \partial (\Lambda \alpha).$ So $\alpha = H\alpha + G(\overline{\partial} \overline{\partial}^* \alpha + \overline{\partial}^* \overline{\partial} \alpha) = H\alpha - \sqrt{-1}G\overline{\partial}\partial(\Lambda\alpha).$

Let M be a (compact) Kähler orbifold. Then M is formal.

Proof.

• $\iota : (\ker \partial, \overline{\partial}) \hookrightarrow (\Omega^*_{orb}(X), d)$ is a quasi-isomorphism. **Surjectivity**: take $\alpha \in \Omega_{arb}^{p,q}(X)$ with $d\alpha = 0$. Then $\partial \alpha = 0$ and $\partial \alpha = 0$. So $\alpha \in \ker \partial$ and $\imath^*[\alpha] = [\alpha]$. **Injectivity**: take $\alpha \in \ker \partial$ with $i^*[\alpha] = 0$. Then $\overline{\partial} \alpha = 0$ and $\alpha = d\beta$, for some $\beta \implies \alpha = \partial\beta + \overline{\partial}\beta \implies \overline{\partial}(\partial\beta) = 0$. By the $\partial \overline{\partial}$ -lemma, $\partial \beta = \partial \overline{\partial} \psi$ for some ψ . Hence $\alpha = \overline{\partial}\beta + \partial\overline{\partial}\psi = \overline{\partial}(\beta - \partial\psi - \overline{\partial}\psi)$, with $\beta - \partial\psi - \overline{\partial}\psi \in \ker \partial$. 2 $H: (\ker \partial, \overline{\partial}) \longrightarrow (\mathcal{H}^*_{\overline{\partial}}(X), 0)$ is a quasi-isomorphism. **Injectivity**: Let $\alpha \in \ker \partial \cap \ker \overline{\partial}$. Then $\overline{\partial}^* \alpha = \sqrt{-1} [\Lambda, \partial] \alpha = -\sqrt{-1} \partial (\Lambda \alpha).$ So $\alpha = H\alpha + G(\overline{\partial} \overline{\partial}^* \alpha + \overline{\partial}^* \overline{\partial} \alpha) = H\alpha - \sqrt{-1}G\overline{\partial}\partial(\Lambda\alpha).$ If $H\alpha = 0$, then $\alpha = \overline{\partial}(\partial \psi)$, with $\partial \psi \in \ker \partial$.

Let M be a (compact) Kähler orbifold. Then M is formal.

Proof.

• $\iota : (\ker \partial, \overline{\partial}) \hookrightarrow (\Omega^*_{orb}(X), d)$ is a quasi-isomorphism. **Surjectivity**: take $\alpha \in \Omega_{arb}^{p,q}(X)$ with $d\alpha = 0$. Then $\partial \alpha = 0$ and $\partial \alpha = 0$. So $\alpha \in \ker \partial$ and $\imath^*[\alpha] = [\alpha]$. **Injectivity**: take $\alpha \in \ker \partial$ with $i^*[\alpha] = 0$. Then $\overline{\partial} \alpha = 0$ and $\alpha = d\beta$, for some $\beta \implies \alpha = \partial\beta + \overline{\partial}\beta \implies \overline{\partial}(\partial\beta) = 0$. By the $\partial \overline{\partial}$ -lemma, $\partial \beta = \partial \overline{\partial} \psi$ for some ψ . Hence $\alpha = \overline{\partial}\beta + \partial\overline{\partial}\psi = \overline{\partial}(\beta - \partial\psi - \overline{\partial}\psi)$, with $\beta - \partial\psi - \overline{\partial}\psi \in \ker \partial$. 2 $H: (\ker \partial, \overline{\partial}) \longrightarrow (\mathcal{H}^*_{\overline{\partial}}(X), 0)$ is a quasi-isomorphism. **Injectivity**: Let $\alpha \in \ker \partial \cap \ker \overline{\partial}$. Then $\overline{\partial}^* \alpha = \sqrt{-1} [\Lambda, \partial] \alpha = -\sqrt{-1} \partial (\Lambda \alpha).$ So $\alpha = H\alpha + G(\overline{\partial} \overline{\partial}^* \alpha + \overline{\partial}^* \overline{\partial} \alpha) = H\alpha - \sqrt{-1}G\overline{\partial}\partial(\Lambda\alpha).$ If $H\alpha = 0$, then $\alpha = \overline{\partial}(\partial \psi)$, with $\partial \psi \in \ker \partial$. **Surjectivity**: Take α harmonic. Since $\Delta = 2\Delta_{\overline{\alpha}}$, $d\alpha = 0$. So
Let M be a (compact) Kähler orbifold. Then M is formal.

Proof.

• $\iota : (\ker \partial, \overline{\partial}) \hookrightarrow (\Omega^*_{orb}(X), d)$ is a quasi-isomorphism. **Surjectivity**: take $\alpha \in \Omega_{arb}^{p,q}(X)$ with $d\alpha = 0$. Then $\partial \alpha = 0$ and $\partial \alpha = 0$. So $\alpha \in \ker \partial$ and $\imath^*[\alpha] = [\alpha]$. **Injectivity**: take $\alpha \in \ker \partial$ with $i^*[\alpha] = 0$. Then $\overline{\partial} \alpha = 0$ and $\alpha = d\beta$, for some $\beta \implies \alpha = \partial\beta + \overline{\partial}\beta \implies \overline{\partial}(\partial\beta) = 0$. By the $\partial \overline{\partial}$ -lemma, $\partial \beta = \partial \overline{\partial} \psi$ for some ψ . Hence $\alpha = \overline{\partial}\beta + \partial\overline{\partial}\psi = \overline{\partial}(\beta - \partial\psi - \overline{\partial}\psi)$, with $\beta - \partial\psi - \overline{\partial}\psi \in \ker \partial$. 2 $H: (\ker \partial, \overline{\partial}) \longrightarrow (\mathcal{H}^*_{\overline{\partial}}(X), 0)$ is a quasi-isomorphism. **Injectivity**: Let $\alpha \in \ker \partial \cap \ker \overline{\partial}$. Then $\overline{\partial}^* \alpha = \sqrt{-1} [\Lambda, \partial] \alpha = -\sqrt{-1} \partial (\Lambda \alpha).$ So $\alpha = H\alpha + G(\overline{\partial} \overline{\partial}^* \alpha + \overline{\partial}^* \overline{\partial} \alpha) = H\alpha - \sqrt{-1}G\overline{\partial}\partial(\Lambda\alpha).$ If $H\alpha = 0$, then $\alpha = \overline{\partial}(\partial \psi)$, with $\partial \psi \in \ker \partial$. **Surjectivity**: Take α harmonic. Since $\Delta = 2\Delta_{\overline{\alpha}}$, $d\alpha = 0$. So $\partial \alpha = 0, \ \partial \alpha = 0 \text{ and } H([\alpha]) = \alpha.$

Vicente Muñoz (UCM)

This means that the flow of ξ is given as $S^1 \times M \to M$. So $S^1 \hookrightarrow M \longrightarrow N$, where N is a (compact) Kähler orbifold. The bundle has Euler class $[\omega] \in H^2_{orb}(M, \mathbb{Z})$, with contact form η such that $d\eta = \pi^*(\omega)$, where ω is an orbifold Kähler form.

Proposition

If *M* is a (compact) Sasakian manifold, then it admits also a quasi-regular Sasakian structure.

K-contact manifolds

If *M* is a K-contact manifold, then $S^1 \hookrightarrow M \longrightarrow N$, where *N* is a compact symplectic orbifold.

3

```
This means that the flow of \xi is given as S^1 \times M \to M.
```

So $S^1 \hookrightarrow M \longrightarrow N$, where N is a (compact) Kähler orbifold.

The bundle has Euler class $[\omega] \in H^2_{orb}(M, \mathbb{Z})$, with contact form η such that $d\eta = \pi^*(\omega)$, where ω is an orbifold Kähler form.

Proposition

If *M* is a (compact) Sasakian manifold, then it admits also a quasi-regular Sasakian structure.

K-contact manifolds

If *M* is a K-contact manifold, then $S^1 \hookrightarrow M \longrightarrow N$, where *N* is a compact symplectic orbifold.

This means that the flow of ξ is given as $S^1 \times M \to M$. So $S^1 \hookrightarrow M \longrightarrow N$, where N is a (compact) Kähler orbifold. The bundle has Euler class $[\omega] \in H^2_{orb}(M, \mathbb{Z})$, with contact form η such that $d\eta = \pi^*(\omega)$, where ω is an orbifold Kähler form.

Proposition .

If *M* is a (compact) Sasakian manifold, then it admits also a quasi-regular Sasakian structure.

K-contact manifolds

If *M* is a K-contact manifold, then $S^1 \hookrightarrow M \longrightarrow N$, where *N* is a compact symplectic orbifold.

イロン イ理 とく ヨン イヨン

This means that the flow of ξ is given as $S^1 \times M \to M$. So $S^1 \hookrightarrow M \longrightarrow N$, where *N* is a (compact) Kähler orbifold. The bundle has Euler class $[\omega] \in H^2_{orb}(M, \mathbb{Z})$, with contact form η such that $d\eta = \pi^*(\omega)$, where ω is an orbifold Kähler form.

Proposition

If M is a (compact) Sasakian manifold, then it admits also a quasi-regular Sasakian structure.

K-contact manifolds

If *M* is a K-contact manifold, then $S^1 \hookrightarrow M \longrightarrow N$, where *N* is a compact symplectic orbifold.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

This means that the flow of ξ is given as $S^1 \times M \to M$. So $S^1 \hookrightarrow M \longrightarrow N$, where *N* is a (compact) Kähler orbifold. The bundle has Euler class $[\omega] \in H^2_{orb}(M, \mathbb{Z})$, with contact form η such that $d\eta = \pi^*(\omega)$, where ω is an orbifold Kähler form.

Proposition

If M is a (compact) Sasakian manifold, then it admits also a quasi-regular Sasakian structure.

K-contact manifolds

If *M* is a K-contact manifold, then $S^1 \hookrightarrow M \longrightarrow N$, where *N* is a compact symplectic orbifold.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let M be a simply connected compact Sasakian manifold. Then the higher order ($r \ge 4$) Massey products for M are zero.

Proof.

M admits a Sasakian structure $\implies M$ admits a quasiregular Sasakian structure $\implies M$ is a S^1 -bundle over a Kähler orbifold $S^1 \rightarrow M \rightarrow N$. *N* is formal, i.e., a model for *N* is ($H = H^*(N)$, 0). A model for *M* is $H \otimes \bigwedge(x)$, with |x| = 1, $dx = \omega$. Let $a_i = [\alpha_i]$, with $\alpha_i \in H \otimes \bigwedge(x)$, $1 \le i \le r$. Take $\xi_{i,i} = \alpha_i$.

Let M be a simply connected compact Sasakian manifold. Then the higher order ($r \ge 4$) Massey products for M are zero.

Proof.

M admits a Sasakian structure \implies M admits a quasiregular Sasakian structure $\implies M$ is a S¹-bundle over a Kähler orbifold $S^1 \rightarrow M \rightarrow N$.

Let M be a simply connected compact Sasakian manifold. Then the higher order ($r \ge 4$) Massey products for M are zero.

Proof.

M admits a Sasakian structure \implies M admits a quasiregular Sasakian structure $\implies M$ is a S¹-bundle over a Kähler orbifold $S^1 \rightarrow M \rightarrow N$.

Let M be a simply connected compact Sasakian manifold. Then the higher order ($r \ge 4$) Massey products for M are zero.

Proof.

M admits a Sasakian structure \implies *M* admits a guasiregular Sasakian structure $\implies M$ is a S^1 -bundle over a Kähler orbifold $S^1 \rightarrow M \rightarrow N$.

Let M be a simply connected compact Sasakian manifold. Then the higher order ($r \ge 4$) Massey products for M are zero.

Proof.

M admits a Sasakian structure \implies M admits a quasiregular Sasakian structure $\implies M$ is a S¹-bundle over a Kähler orbifold S¹ $\rightarrow M \rightarrow N$. N is formal, i.e., a model for N is $(H = H^*(N), 0)$.

Let M be a simply connected compact Sasakian manifold. Then the higher order ($r \ge 4$) Massey products for M are zero.

Proof.

M admits a Sasakian structure \implies M admits a quasiregular Sasakian structure $\implies M$ is a S¹-bundle over a Kähler orbifold S¹ $\rightarrow M \rightarrow N$. N is formal, i.e., a model for N is $(H = H^*(N), 0)$. A model for *M* is $H \otimes \bigwedge(x)$, with |x| = 1, $dx = \omega$.

Let M be a simply connected compact Sasakian manifold. Then the higher order ($r \ge 4$) Massey products for M are zero.

Proof.

M admits a Sasakian structure $\implies M$ admits a quasiregular Sasakian structure $\implies M$ is a S^1 -bundle over a Kähler orbifold $S^1 \rightarrow M \rightarrow N$. *N* is formal, i.e., a model for *N* is $(H = H^*(N), 0)$. A model for *M* is $H \otimes \bigwedge(x)$, with |x| = 1, $dx = \omega$. Let $a_i = [\alpha_i]$, with $\alpha_i \in H \otimes \bigwedge(x)$, $1 \le i \le r$. Take $\xi_{i,i} = \alpha_i$.

 $\alpha_i \cdot \alpha_{i+1} = \alpha_{\xi_i,i+1}$. As d(H) = 0, we can take $\xi_{i,i+1} \in H \cdot X$. $(-1)^{|\xi_{i,i}|} \xi_{i,i} \cdot \xi_{i+1,i+2} + (-1)^{|\xi_{i,i+1}|} \xi_{i,i+1} \cdot \xi_{i+2,i+2}$ is a multiple of x. As it is exact then it must be zero, because $d(H \otimes \bigwedge(x)) \subset H$. Hence $\xi_{i,i+2} = 0$ for all i. Inductively, $\xi_{i,j} = 0$ for $j - i \ge 2$.

Let M be a simply connected compact Sasakian manifold. Then the higher order ($r \ge 4$) Massey products for M are zero.

Proof.

M admits a Sasakian structure \implies *M* admits a quasiregular Sasakian structure \implies *M* is a *S*¹-bundle over a Kähler orbifold *S*¹ \rightarrow *M* \rightarrow *N*. *N* is formal, i.e., a model for *N* is ($H = H^*(N), 0$). A model for *M* is $H \otimes \bigwedge(x)$, with |x| = 1, $dx = \omega$. Let $a_i = [\alpha_i]$, with $\alpha_i \in H \otimes \bigwedge(x)$, $1 \le i \le r$. Take $\xi_{i,i} = \alpha_i$. • $\alpha_i \cdot \alpha_{i+1} = d\xi_{i,i+1}$. As d(H) = 0, we can take $\xi_{i,i+1} \in H \cdot x$.

(a) $(-1)^{|\xi_{i,i}|} \xi_{i,i} \cdot \xi_{i+1,i+2} + (-1)^{|\xi_{i,i+1}|} \xi_{i,i+1} \cdot \xi_{i+2,i+2}$ is a multiple of *x*. As it is exact then it must be zero, because *d*(*H* ⊗ ∧(*x*)) ⊂ *H*. Hence $\xi_{i,i+2} = 0$ for all *i*. Inductively, $\xi_{i,j} = 0$ for $j - i \ge 2$.

Let M be a simply connected compact Sasakian manifold. Then the higher order ($r \ge 4$) Massey products for M are zero.

Proof.

M admits a Sasakian structure $\implies M$ admits a quasiregular Sasakian structure $\implies M$ is a S^1 -bundle over a Kähler orbifold $S^1 \rightarrow M \rightarrow N$. *N* is formal, i.e., a model for *N* is $(H = H^*(N), 0)$. A model for *M* is $H \otimes \bigwedge(x)$, with |x| = 1, $dx = \omega$. Let $a_i = [\alpha_i]$, with $\alpha_i \in H \otimes \bigwedge(x)$, $1 \le i \le r$. Take $\xi_{i,i} = \alpha_i$. $\alpha_i \cdot \alpha_{i+1} = d\xi_{i,i+1}$. As d(H) = 0, we can take $\xi_{i,i+1} \in H \cdot x$.

② $(-1)^{|\xi_{i,i}|}\xi_{i,i} \cdot \xi_{i+1,i+2} + (-1)^{|\xi_{i,i+1}|}\xi_{i,i+1} \cdot \xi_{i+2,i+2}$ is a multiple of *x*. As it is exact then it must be zero, because $d(H \otimes \bigwedge(x)) \subset H$. Hence $\xi_{i,i+2} = 0$ for all *i*. Inductively, $\xi_{i,j} = 0$ for $j - i \ge 2$.

Let M be a simply connected compact Sasakian manifold. Then the higher order ($r \ge 4$) Massey products for M are zero.

Proof.

M admits a Sasakian structure $\implies M$ admits a quasiregular Sasakian structure $\implies M$ is a S^1 -bundle over a Kähler orbifold $S^1 \rightarrow M \rightarrow N$. *N* is formal, i.e., a model for *N* is $(H = H^*(N), 0)$. A model for *M* is $H \otimes \bigwedge(x)$, with |x| = 1, $dx = \omega$. Let $a_i = [\alpha_i]$, with $\alpha_i \in H \otimes \bigwedge(x)$, $1 \le i \le r$. Take $\xi_{i,i} = \alpha_i$. $\alpha_i \cdot \alpha_{i+1} = d\xi_{i,i+1}$. As d(H) = 0, we can take $\xi_{i,i+1} \in H \cdot x$.

② $(-1)^{|\xi_{i,i}|}\xi_{i,i} \cdot \xi_{i+1,i+2} + (-1)^{|\xi_{i,i+1}|}\xi_{i,i+1} \cdot \xi_{i+2,i+2}$ is a multiple of *x*. As it is exact then it must be zero, because $d(H \otimes \bigwedge(x)) \subset H$. Hence $\xi_{i,i+2} = 0$ for all *i*. Inductively, $\xi_{i,j} = 0$ for $j - i \ge 2$.

Let M be a simply connected compact Sasakian manifold. Then the higher order ($r \ge 4$) Massey products for M are zero.

Proof.

M admits a Sasakian structure \implies *M* admits a quasiregular Sasakian structure \implies *M* is a *S*¹-bundle over a Kähler orbifold $S^1 \rightarrow M \rightarrow N$. *N* is formal, i.e., a model for *N* is $(H = H^*(N), 0)$. A model for *M* is $H \otimes \bigwedge(x)$, with |x| = 1, $dx = \omega$. Let $a_i = [\alpha_i]$, with $\alpha_i \in H \otimes \bigwedge(x)$, $1 \le i \le r$. Take $\xi_{i,i} = \alpha_i$. $\alpha_i \cdot \alpha_{i+1} = d\xi_{i,i+1}$. As d(H) = 0, we can take $\xi_{i,i+1} \in H \cdot x$. $(-1)^{|\xi_{i,i}|}\xi_{i,j} \cdot \xi_{j+1,j+2} + (-1)^{|\xi_{i,i+1}|}\xi_{j,j+1} \cdot \xi_{j+2,j+2}$ is a multiple of *x*. As

it is exact then it must be zero, because $d(H \otimes \bigwedge(x)) \subset H$. Hence $\xi_{i,i+2} = 0$ for all *i*. Inductively, $\xi_{i,j} = 0$ for $j - i \ge 2$.

Let M be a simply connected compact Sasakian manifold. Then the higher order ($r \ge 4$) Massey products for M are zero.

Proof.

M admits a Sasakian structure \implies *M* admits a quasiregular Sasakian structure \implies *M* is a *S*¹-bundle over a Kähler orbifold *S*¹ \rightarrow *M* \rightarrow *N*. *N* is formal, i.e., a model for *N* is ($H = H^*(N), 0$). A model for *M* is $H \otimes \bigwedge(x)$, with |x| = 1, $dx = \omega$. Let $a_i = [\alpha_i]$, with $\alpha_i \in H \otimes \bigwedge(x)$, $1 \le i \le r$. Take $\xi_{i,i} = \alpha_i$. $\alpha_i \cdot \alpha_{i+1} = d\xi_{i,i+1}$. As d(H) = 0, we can take $\xi_{i,i+1} \in H \cdot x$. $(-1)^{|\xi_{i,i}|}\xi_{i,i} \cdot \xi_{i+1,i+2} + (-1)^{|\xi_{i,i+1}|}\xi_{i,i+1} \cdot \xi_{i+2,i+2}$ is a multiple of *x*. As it is exact then it must be zero, because $d(H \otimes \bigwedge(x)) \subset H$. Hence

 $\xi_{i,i+2} = 0$ for all *i*. Inductively, $\xi_{i,j} = 0$ for $j - i \ge 2$.

• For
$$r \ge 5$$
, $\sum_{k=1}^{r-1} (-1)^{|\xi_{1,k}|} \xi_{1,k} \cdot \xi_{k+1,r} = 0$.

• For r = 4, $\sum_{k=1}^{r-1} (-1)^{|\xi_{1,k}|} \xi_{1,k} \cdot \xi_{k+1,r} = (-1)^{|\xi_{1,2}|} \xi_{1,2} \cdot \xi_{3,4} = 0$.

Let M be a simply connected compact Sasakian manifold. Then the higher order ($r \ge 4$) Massey products for M are zero.

Proof.

M admits a Sasakian structure \implies *M* admits a quasiregular Sasakian structure \implies *M* is a *S*¹-bundle over a Kähler orbifold *S*¹ \rightarrow *M* \rightarrow *N*. *N* is formal, i.e., a model for *N* is ($H = H^*(N), 0$). A model for *M* is $H \otimes \bigwedge(x)$, with |x| = 1, $dx = \omega$. Let $a_i = [\alpha_i]$, with $\alpha_i \in H \otimes \bigwedge(x)$, $1 \le i \le r$. Take $\xi_{i,i} = \alpha_i$. $\alpha_i \cdot \alpha_{i+1} = d\xi_{i,i+1}$. As d(H) = 0, we can take $\xi_{i,i+1} \in H \cdot x$. $(-1)^{|\xi_{i,i}|}\xi_{i,i} \cdot \xi_{i+1,i+2} + (-1)^{|\xi_{i,i+1}|}\xi_{i,i+1} \cdot \xi_{i+2,i+2}$ is a multiple of *x*. As

it is exact then it must be zero, because $d(H \otimes \bigwedge(x)) \subset H$. Hence $\xi_{i,i+2} = 0$ for all *i*. Inductively, $\xi_{i,j} = 0$ for $j - i \ge 2$.

• For
$$r \ge 5$$
, $\sum_{k=1}^{r-1} (-1)^{|\xi_{1,k}|} \xi_{1,k} \cdot \xi_{k+1,r} = 0$.
• For $r = 4$, $\sum_{k=1}^{r-1} (-1)^{|\xi_{1,k}|} \xi_{1,k} \cdot \xi_{k+1,r} = (-1)^{|\xi_{1,2}|} \xi_{1,2} \cdot \xi_{3,4} = 0$.

Let M be a simply connected compact symplectic manifold of dimension 2k with an integral symplectic form ω . Suppose that there is a non-trivial quadruple Massey product in $H^*(M)$. There exists a sphere bundle $S^{2m+1} \rightarrow E \rightarrow M$, for m + 1 > k, such that E is K-contact, but E does not admit any Sasakian structure.

Proof.

Let $S^1 \to P \to M$ be the principal S^1 -bundle corresponding to $[\omega] \in H^2(M, \mathbb{Z})$. Consider the associated S^{2m+1} -bundle $S^{2m+1} \to E = P \times_{S^1} S^{2m+1} \to M$. Using the *K*-contact structure of S^{2m+1} , one can construct a *K*-contact structure on *E*. The model for *E* is $(/ V_M \otimes / (z), D)$, where *z* has degree 2m + 1. Since $2m + 2 > 2k = \dim M$, D(z) = 0. Then a non-zero quadruple Massey product for *M* gives a non-zero quadruple Massey product for *E* is not Sasakian

Let M be a simply connected compact symplectic manifold of dimension 2k with an integral symplectic form ω . Suppose that there is a non-trivial quadruple Massey product in $H^*(M)$. There exists a sphere bundle $S^{2m+1} \rightarrow E \rightarrow M$, for m + 1 > k, such that E is K-contact, but E does not admit any Sasakian structure.

Proof.

Let $S^1 \to P \to M$ be the principal S^1 -bundle corresponding to $[\omega] \in H^2(M, \mathbb{Z})$. Consider the associated S^{2m+1} -bundle $S^{2m+1} \to E = P \times_{S^1} S^{2m+1} \to M$. Using the *K*-contact structure of S^{2m+1} , one can construct a *K*-contact structure on *E*. The model for *E* is $(\bigwedge V_M \otimes \bigwedge(z), D)$, where *z* has degree 2m + 1. Since $2m + 2 > 2k = \dim M$, D(z) = 0. Then a non-zero quadruple Massey product for *M* gives a non-zero quadruple Massey product for *E*. Therefore *E* is not Sasakian.

Let M be a simply connected compact symplectic manifold of dimension 2k with an integral symplectic form ω . Suppose that there is a non-trivial quadruple Massey product in $H^*(M)$. There exists a sphere bundle $S^{2m+1} \rightarrow E \rightarrow M$, for m + 1 > k, such that E is K-contact, but E does not admit any Sasakian structure.

Proof.

Let $S^1 \to P \to M$ be the principal S^1 -bundle corresponding to $[\omega] \in H^2(M, \mathbb{Z})$. Consider the associated S^{2m+1} -bundle $S^{2m+1} \to E = P \times_{S^1} S^{2m+1} \to M$. Using the *K*-contact structure of S^{2m+1} , one can construct a *K*-contact structure on *E*. The model for *E* is $(\bigwedge V_M \otimes \bigwedge(z), D)$, where *z* has degree 2m + 1. Since $2m + 2 > 2k = \dim M$, D(z) = 0. Then a non-zero quadruple Massey product for *M* gives a non-zero quadruple Massey product for *E*. Therefore *E* is not Sasakian.

Let M be a simply connected compact symplectic manifold of dimension 2k with an integral symplectic form ω . Suppose that there is a non-trivial quadruple Massey product in $H^*(M)$. There exists a sphere bundle $S^{2m+1} \rightarrow E \rightarrow M$, for m + 1 > k, such that E is K-contact, but E does not admit any Sasakian structure.

Proof.

Let $S^1 \to P \to M$ be the principal S^1 -bundle corresponding to $[\omega] \in H^2(M, \mathbb{Z})$. Consider the associated S^{2m+1} -bundle $S^{2m+1} \to E = P \times_{S^1} S^{2m+1} \to M$. Using the *K*-contact structure of S^{2m+1} , one can construct a *K*-contact structure on *E*. The model for *E* is $(\bigwedge V_M \otimes \bigwedge(z), D)$, where *z* has degree 2m + 1. Since $2m + 2 > 2k = \dim M$, D(z) = 0. Then a non-zero quadruple Massey product for *M* gives a non-zero quadruple Massey product for *E*. Therefore *E* is not Sasakian.

Let M be a simply connected compact symplectic manifold of dimension 2k with an integral symplectic form ω . Suppose that there is a non-trivial quadruple Massey product in $H^*(M)$. There exists a sphere bundle $S^{2m+1} \rightarrow E \rightarrow M$, for m + 1 > k, such that E is K-contact, but E does not admit any Sasakian structure.

Proof.

Let $S^1 \to P \to M$ be the principal S^1 -bundle corresponding to $[\omega] \in H^2(M, \mathbb{Z})$. Consider the associated S^{2m+1} -bundle $S^{2m+1} \to E = P \times_{S^1} S^{2m+1} \to M$. Using the *K*-contact structure of S^{2m+1} , one can construct a *K*-contact structure on *E*. The model for *E* is $(\bigwedge V_M \otimes \bigwedge(z), D)$, where *z* has degree 2m + 1. Since $2m + 2 > 2k = \dim M$, D(z) = 0. Then a non-zero quadruple Massey product for *M* gives a non-zero quadruple Massey product for *M* gives a non-zero

Let M be a simply connected compact symplectic manifold of dimension 2k with an integral symplectic form ω . Suppose that there is a non-trivial quadruple Massey product in $H^*(M)$. There exists a sphere bundle $S^{2m+1} \rightarrow E \rightarrow M$, for m + 1 > k, such that E is K-contact, but E does not admit any Sasakian structure.

Proof.

Let $S^1 \to P \to M$ be the principal S^1 -bundle corresponding to $[\omega] \in H^2(M, \mathbb{Z})$. Consider the associated S^{2m+1} -bundle $S^{2m+1} \to E = P \times_{S^1} S^{2m+1} \to M$. Using the *K*-contact structure of S^{2m+1} , one can construct a *K*-contact structure on *E*. The model for *E* is $(\bigwedge V_M \otimes \bigwedge(z), D)$, where *z* has degree 2m + 1. Since $2m + 2 > 2k = \dim M$, D(z) = 0. Then a non-zero quadruple Massey product for *M* gives a non-zero quadruple Massey product for *E*. Therefore *E* is not Sasakian.

Vicente Muñoz (UCM)

Using an 8-dimensional simply connected compact symplectic manifold *M* with a non-zero quadruple Massey product (Fernández-Muñoz, 2008), one gets a 17-dimensional *K*-contact non-Sasakian simply connected compact manifold. It would be desirable to construct lower dimensional examples.

∃ → < ∃ →</p>

- Not simply connected and not formal. Consider *M* the circle bundle over T^2 . Then the minimal model is $\bigwedge(x_1, x_2, x_3)$, with $|x_i| = 1$, $dx_1 = dx_2 = 0$, $dx_3 = x_1x_2$. Then the Massey product $\langle [x_1], [x_1], [x_2] \rangle = \{ [x_1x_3] \}$ is non-zero.
- **2** Simply connected and formal. S^{2n+1} is the total space of the Hopf fibration $S^{2n+1} \longrightarrow \mathbb{CP}^n$. The minimal model is $\bigwedge(z)$ with |z| = 2n + 1, dz = 0. So S^{2n+1} is formal.
- **3** Not simply connected and formal. Consider *M* the circle bundle over $T^2 \times S^2$. This is also a bundle $S^3 \to M \to T^2$. So the minimal model is $\bigwedge(x_1, x_2, y)$, with $|x_i| = 1$, |y| = 3, $dx_i = 0$, dy = 0 by degree reasons. So *M* is formal.

Simply connected and not formal. Let *M* be the circle bundle over S² × S² × S². This is also a bundle S³ → M → S² × S². Its Euler class is non-zero. S² × S² is formal, so a model is H = (1, y₁, y₂, y₁y₂), where |y₁| = 2, d = 0. A model for *M* is H ⊗ /(z), |z| = 3, dz = y₁y₂. There is a non-zero Massey production.

- Not simply connected and not formal. Consider *M* the circle bundle over T^2 . Then the minimal model is $\bigwedge(x_1, x_2, x_3)$, with $|x_i| = 1$, $dx_1 = dx_2 = 0$, $dx_3 = x_1x_2$. Then the Massey product $\langle [x_1], [x_1], [x_2] \rangle = \{ [x_1x_3] \}$ is non-zero.
- Simply connected and formal. S^{2n+1} is the total space of the Hopf fibration $S^{2n+1} \longrightarrow \mathbb{CP}^n$. The minimal model is $\bigwedge(z)$ with |z| = 2n + 1, dz = 0. So S^{2n+1} is formal.
- ③ Not simply connected and formal. Consider *M* the circle bundle over $T^2 \times S^2$. This is also a bundle $S^3 \to M \to T^2$. So the minimal model is $\land (x_1, x_2, y)$, with $|x_i| = 1$, |y| = 3, $dx_i = 0$, dy = 0 by degree reasons. So *M* is formal.

Simply connected and not formal. Let *M* be the circle bundle over S² × S² × S². This is also a bundle S³ → M → S² × S². Its Euler class is non-zero. S² × S² is formal, so a model is H = (1, y₁, y₂, y₁y₂), where |y_i| = 2, d = 0. A model for *M* is H ⊗ /\(z), |z| = 3, dz = y₁y₂. There is a non-zero Massey production.

- Not simply connected and not formal. Consider *M* the circle bundle over T^2 . Then the minimal model is $\bigwedge(x_1, x_2, x_3)$, with $|x_i| = 1$, $dx_1 = dx_2 = 0$, $dx_3 = x_1x_2$. Then the Massey product $\langle [x_1], [x_1], [x_2] \rangle = \{ [x_1x_3] \}$ is non-zero.
- Simply connected and formal. S^{2n+1} is the total space of the Hopf fibration $S^{2n+1} \longrightarrow \mathbb{CP}^n$. The minimal model is $\Lambda(z)$ with |z| = 2n + 1, dz = 0. So S^{2n+1} is formal.
- Not simply connected and formal. Consider *M* the circle bundle over $T^2 \times S^2$. This is also a bundle $S^3 \to M \to T^2$. So the minimal model is $\bigwedge (x_1, x_2, y)$, with $|x_i| = 1$, |y| = 3, $dx_i = 0$, dy = 0 by degree reasons. So *M* is formal.
- Simply connected and not formal. Let *M* be the circle bundle over S² × S² × S². This is also a bundle S³ → M → S² × S². Its Euler class is non-zero. S² × S² is formal, so a model is H = (1, y₁, y₂, y₁y₂), where |y₁| = 2, d = 0. A model for *M* is H ⊗ ∧(z), |z| = 3, dz = y₁y₂. There is a non-zero Massey production.

- Not simply connected and not formal. Consider *M* the circle bundle over T^2 . Then the minimal model is $\bigwedge(x_1, x_2, x_3)$, with $|x_i| = 1$, $dx_1 = dx_2 = 0$, $dx_3 = x_1x_2$. Then the Massey product $\langle [x_1], [x_1], [x_2] \rangle = \{ [x_1x_3] \}$ is non-zero.
- Simply connected and formal. S^{2n+1} is the total space of the Hopf fibration $S^{2n+1} \longrightarrow \mathbb{CP}^n$. The minimal model is $\Lambda(z)$ with |z| = 2n + 1, dz = 0. So S^{2n+1} is formal.
- Not simply connected and formal. Consider *M* the circle bundle over $T^2 \times S^2$. This is also a bundle $S^3 \to M \to T^2$. So the minimal model is $\bigwedge (x_1, x_2, y)$, with $|x_i| = 1$, |y| = 3, $dx_i = 0$, dy = 0 by degree reasons. So *M* is formal.

Simply connected and not formal. Let *M* be the circle bundle over S² × S² × S². This is also a bundle S³ → M → S² × S². Its Euler class is non-zero. S² × S² is formal, so a model is H = (1, y₁, y₂, y₁y₂), where |y_i| = 2, d = 0. A model for *M* is H ⊗ ∧(z), |z| = 3, dz = y₁y₂. There is a non-zero Massey product (y₁, y₂, y₂) = {[zy₂]}, so *M* is not formal.

Vicente Muñoz (UCM)

Formality and Sasakian manifolds

Bilbao, July 2014

22/23

- Not simply connected and not formal. Consider *M* the circle bundle over T^2 . Then the minimal model is $\bigwedge(x_1, x_2, x_3)$, with $|x_i| = 1$, $dx_1 = dx_2 = 0$, $dx_3 = x_1x_2$. Then the Massey product $\langle [x_1], [x_1], [x_2] \rangle = \{ [x_1x_3] \}$ is non-zero.
- Simply connected and formal. S^{2n+1} is the total space of the Hopf fibration $S^{2n+1} \longrightarrow \mathbb{CP}^n$. The minimal model is $\Lambda(z)$ with |z| = 2n + 1, dz = 0. So S^{2n+1} is formal.
- Not simply connected and formal. Consider *M* the circle bundle over $T^2 \times S^2$. This is also a bundle $S^3 \to M \to T^2$. So the minimal model is $\bigwedge (x_1, x_2, y)$, with $|x_i| = 1$, |y| = 3, $dx_i = 0$, dy = 0 by degree reasons. So *M* is formal.

Simply connected and not formal. Let *M* be the circle bundle over S² × S² × S². This is also a bundle S³ → M → S² × S². Its Euler class is non-zero. S² × S² is formal, so a model is H = (1, y₁, y₂, y₁y₂), where |y_i| = 2, d = 0. A model for *M* is H ⊗ ∧(z), |z| = 3, dz = y₁y₂. There is a non-zero Massey product (y₁, y₂, y₂) = {[zy₂]}, so *M* is not formal.

Vicente Muñoz (UCM)

Formality and Sasakian manifolds

Bilbao, July 2014

22/23

- Not simply connected and not formal. Consider *M* the circle bundle over T^2 . Then the minimal model is $\bigwedge(x_1, x_2, x_3)$, with $|x_i| = 1$, $dx_1 = dx_2 = 0$, $dx_3 = x_1x_2$. Then the Massey product $\langle [x_1], [x_1], [x_2] \rangle = \{ [x_1x_3] \}$ is non-zero.
- Simply connected and formal. S^{2n+1} is the total space of the Hopf fibration $S^{2n+1} \longrightarrow \mathbb{CP}^n$. The minimal model is $\Lambda(z)$ with |z| = 2n + 1, dz = 0. So S^{2n+1} is formal.
- Not simply connected and formal. Consider *M* the circle bundle over $T^2 \times S^2$. This is also a bundle $S^3 \to M \to T^2$. So the minimal model is $\bigwedge (x_1, x_2, y)$, with $|x_i| = 1$, |y| = 3, $dx_i = 0$, dy = 0 by degree reasons. So *M* is formal.

Simply connected and not formal. Let *M* be the circle bundle over $S^2 \times S^2 \times S^2$. This is also a bundle $S^3 \to M \to S^2 \times S^2$. Its Euler class is non-zero. $S^2 \times S^2$ is formal, so a model is $H = \langle 1, y_1, y_2, y_1 y_2 \rangle$, where $|y_i| = 2$, d = 0. A model for *M* is $H \otimes \Lambda(z)$, |z| = 3, $dz = y_1 y_2$. There is a non-zero Massey product $\langle y_1, y_2, y_2 \rangle = \{[zy_2]\}$, so *M* is not formal.

Vicente Muñoz (UCM)

- Not simply connected and not formal. Consider *M* the circle bundle over T^2 . Then the minimal model is $\bigwedge(x_1, x_2, x_3)$, with $|x_i| = 1$, $dx_1 = dx_2 = 0$, $dx_3 = x_1x_2$. Then the Massey product $\langle [x_1], [x_1], [x_2] \rangle = \{ [x_1x_3] \}$ is non-zero.
- Simply connected and formal. S^{2n+1} is the total space of the Hopf fibration $S^{2n+1} \longrightarrow \mathbb{CP}^n$. The minimal model is $\Lambda(z)$ with |z| = 2n + 1, dz = 0. So S^{2n+1} is formal.
- Not simply connected and formal. Consider *M* the circle bundle over $T^2 \times S^2$. This is also a bundle $S^3 \to M \to T^2$. So the minimal model is $\bigwedge (x_1, x_2, y)$, with $|x_i| = 1$, |y| = 3, $dx_i = 0$, dy = 0 by degree reasons. So *M* is formal.

Simply connected and not formal. Let *M* be the circle bundle over S² × S² × S². This is also a bundle S³ → M → S² × S². Its Euler class is non-zero. S² × S² is formal, so a model is H = ⟨1, y₁, y₂, y₁y₂⟩, where |y_i| = 2, d = 0. A model for *M* is H ⊗ ∧(z), |z| = 3, dz = y₁y₂. There is a non-zero Massey product ⟨y₁, y₂, y₂⟩ = {[zy₂]}, so *M* is not formal.

Vicente Muñoz (UCM)

Formality and Sasakian manifolds

Bilbao, July 2014 22 / 23

- The last example is not formal, but it has the same cohomology algebra as $M' = (S^2 \times S^5) # (S^2 \times S^5)$, which is formal, being the connected sum of two formal manifolds.
- However *M'* cannot admit a Sasakian structure. This can be proved via minimal models.
- (S² × S³)#(S² × S³) has a Sasakian structure, whereas (S² × S⁵)#(S² × S⁵) does not.
- There are examples of Sasakian manifolds with the same cohomology algebra as 3 copies of $(S^2 \times S^5)$.

< 回 > < 三 > < 三 >

- The last example is not formal, but it has the same cohomology algebra as $M' = (S^2 \times S^5) # (S^2 \times S^5)$, which is formal, being the connected sum of two formal manifolds.
- However *M'* cannot admit a Sasakian structure. This can be proved via minimal models.
- (S² × S³)#(S² × S³) has a Sasakian structure, whereas (S² × S⁵)#(S² × S⁵) does not.
- There are examples of Sasakian manifolds with the same cohomology algebra as 3 copies of $(S^2 \times S^5)$.

A (10) A (10)

- The last example is not formal, but it has the same cohomology algebra as $M' = (S^2 \times S^5) # (S^2 \times S^5)$, which is formal, being the connected sum of two formal manifolds.
- However *M'* cannot admit a Sasakian structure. This can be proved via minimal models.
- (S² × S³)#(S² × S³) has a Sasakian structure, whereas (S² × S⁵)#(S² × S⁵) does not.
- There are examples of Sasakian manifolds with the same cohomology algebra as 3 copies of $(S^2 \times S^5)$.

< 回 > < 回 > < 回 > -
Remark

- The last example is not formal, but it has the same cohomology algebra as $M' = (S^2 \times S^5) # (S^2 \times S^5)$, which is formal, being the connected sum of two formal manifolds.
- However *M'* cannot admit a Sasakian structure. This can be proved via minimal models.
- $(S^2 \times S^3) # (S^2 \times S^3)$ has a Sasakian structure, whereas $(S^2 \times S^5) # (S^2 \times S^5)$ does not.
- There are examples of Sasakian manifolds with the same cohomology algebra as 3 copies of $(S^2 \times S^5)$.

A (10) A (10)

Remark

- The last example is not formal, but it has the same cohomology algebra as $M' = (S^2 \times S^5) # (S^2 \times S^5)$, which is formal, being the connected sum of two formal manifolds.
- However *M*' cannot admit a Sasakian structure. This can be proved via minimal models.
- $(S^2 \times S^3) # (S^2 \times S^3)$ has a Sasakian structure, whereas $(S^2 \times S^5) # (S^2 \times S^5)$ does not.
- There are examples of Sasakian manifolds with the same cohomology algebra as 3 copies of $(S^2 \times S^5)$.

< 回 > < 回 > < 回 > -