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Focus on “geometrical” or “physical” spaces.
Smooth manifold: topological space such that every point has a
neighbourhood (chart).
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Focus on “geometrical” or “physical” spaces.
Smooth manifold: topological space such that every point has a
neighbourhood (chart).

Xn)

~» smooth functions on M, (tangent) vectors, etc.
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Geometrical structures

A geometrical structure is an extra structure on a smooth manifold.
It serves to pose (and solve) analytical problems on manifolds.
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A geometrical structure is an extra structure on a smooth manifold.

It serves to pose (and solve) analytical problems on manifolds.
Relevant examples are:

@ Riemannian metrics.
g: ToM x ToM — R, scalar product at each point.
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Geometrical structures

A geometrical structure is an extra structure on a smooth manifold.

It serves to pose (and solve) analytical problems on manifolds.
Relevant examples are:

@ Riemannian metrics.
g: ToM x ToM — R, scalar product at each point.

@ Complex structure. The charts are on the complex space C¢
~ notion of holomorphic functions.
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Geometrical structures

A geometrical structure is an extra structure on a smooth manifold.

It serves to pose (and solve) analytical problems on manifolds.
Relevant examples are:

@ Riemannian metrics.
g: ToM x ToM — R, scalar product at each point.

@ Complex structure. The charts are on the complex space C¢
~ notion of holomorphic functions.

@ Symplectic structures. Allow to compute areas:
w: TpM x ToM — R antisymmetric.
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Geometrical structures

A geometrical structure is an extra structure on a smooth manifold.

It serves to pose (and solve) analytical problems on manifolds.
Relevant examples are:

@ Riemannian metrics.
g: ToM x ToM — R, scalar product at each point.

@ Complex structure. The charts are on the complex space C¢
~ notion of holomorphic functions.

@ Symplectic structures. Allow to compute areas:
w: TpM x ToM — R antisymmetric.
w e PB(M), dw=0,w? #0,dimM = 2d.
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Geometrical structures

A geometrical structure is an extra structure on a smooth manifold.

It serves to pose (and solve) analytical problems on manifolds.
Relevant examples are:

@ Riemannian metrics.
g: ToM x ToM — R, scalar product at each point.

@ Complex structure. The charts are on the complex space C¢
~ notion of holomorphic functions.

@ Symplectic structures. Allow to compute areas:
w: TpM x ToM — R antisymmetric.
w e PB(M), dw=0,w? #0,dimM = 2d.

Classify smooth (compact) manifolds with a given structure.
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Topological obstructions

Given a smooth (compact) manifold M, does it admit a complex or a
symplectic structure?
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Topological obstructions

Given a smooth (compact) manifold M, does it admit a complex or a
symplectic structure?

If (M,w) is symplectic, w € Q?(M), dw = 0, w9 # 0, dim M = 2d.
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Topological obstructions

Given a smooth (compact) manifold M, does it admit a complex or a
symplectic structure?

If (M,w) is symplectic, w € Q?(M), dw = 0, w9 # 0, dim M = 2d.
— Q = w9 is a volume form that can be integrated.
Then f,,w? > 0.
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Topological obstructions

Given a smooth (compact) manifold M, does it admit a complex or a
symplectic structure?

If (M,w) is symplectic, w € Q?(M), dw = 0, w9 # 0, dim M = 2d.
— Q = w9 is a volume form that can be integrated.
Then f,,w? > 0.

So [w]? # 0 € H29(M),
hence [w] # 0 € H2(M) and ba(M) = dim H2X(M) > 0, k = 1,..., d.
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Topological obstructions

Given a smooth (compact) manifold M, does it admit a complex or a
symplectic structure?

If (M,w) is symplectic, w € Q?(M), dw = 0, w9 # 0, dim M = 2d.
— Q = w9 is a volume form that can be integrated.
Then f,,w? > 0.

So [w]? # 0 € H29(M),
hence [w] # 0 € H2(M) and ba(M) = dim H2X(M) > 0, k = 1,..., d.

This is an example of a number of topological obstructions for
admitting a geometrical structure.
Topology ~~ Geometry.
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Algebraic Geometry

Consider the ambient space C".
Take Fq,...,Fn € Clzy,. .., zy).
S=V(F,....,Fn)={zeC"|F(z)=...= Fu(2z) =0} C C".
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Algebraic Geometry

Consider the ambient space C".

Take Fq,...,Fn € Clzy,. .., zy).
S=V(F,....,Fn)={zeC"|F(z)=...= Fu(2z) =0} C C".
Suppose rk (g—g{) = n— d = constant.

Then S is a smooth complex manifold of dim¢ S = d.
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Algebraic Geometry

Consider the ambient space C".

Take Fq,...,Fn € Clzy,. .., zy).
S=V(F,....,Fn)={zeC"|F(z)=...= Fu(2z) =0} C C".
Suppose rk (%2) = n— d = constant.

Then S is a smooth complex manifold of dim¢ S = d.

For compact examples, take the ambient space
CP"={[zp:21 :...:2z5]} = (C"' —{0})/C*
[Zo:z1:...:2p) =[ 20 : Azy ... 0 Azp], A #O.
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Algebraic Geometry

Consider the ambient space C".

Take Fq,...,Fn € Clzy,. .., zy).
S=V(F,....,Fn)={zeC"|F(z)=...= Fu(2z) =0} C C".
Suppose rk (%2) = n— d = constant.

Then S is a smooth complex manifold of dim¢ S = d.

For compact examples, take the ambient space
CP"={[zp:21 :...:2z5]} = (C"' —{0})/C*
[Zo:z1:...:2p) =[ 20 : Azy ... 0 Azp], A #O.
CP" = §2"*1/8S" is compact.

S=V(F,...,Fm), Fi(zo, ..., zn) homogeneous polynomials, is a
compact complex manifold.
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Algebraic varieties

U(n+ 1) acts on §2"+1 "1 — {0}.

Vicente Mufioz (UCM) Complex, symplectic and Kahler geometry 29 September 2015 6/18



Algebraic varieties

U(n+ 1) acts on §2"+1 "1 — {0}.
There is an invariant hermitian metric h: T,CP" x T,CP" — C,
h(v, u) = h(u, v) (Fubini-Study metric).
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Write h= g+ iw. Then
@ g Riemannian metric.
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Algebraic varieties

U(n+ 1) acts on §2"+1 "1 — {0}.
There is an invariant hermitian metric h: T,CP" x T,CP" — C,

h(v, u) = h(u, v) (Fubini-Study metric).
Write h= g+ iw. Then

@ g Riemannian metric.

@ wis a 2-form.

@ w is symplectic, w" = det(g) # 0, dw = 0 by homogeneity.
@ w(u,v) = g(u,iv) (compatibility of w and /).

Let S ¢ CP" be a smooth algebraic variety. Take gs = g|S, ws = w|S.
Then S is complex and symplectic manifold.
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Algebraic varieties

U(n+ 1) acts on §2"+1 "1 — {0}.
There is an invariant hermitian metric h: T,CP" x T,CP" — C,

h(v, u) = h(u, v) (Fubini-Study metric).
Write h= g+ iw. Then

@ g Riemannian metric.

@ wis a 2-form.

@ w is symplectic, w" = det(g) # 0, dw = 0 by homogeneity.

@ w(u,v)=g(u,iv) (compatibility of w and /).
Let S ¢ CP" be a smooth algebraic variety. Take gs = g|S, ws = w|S.
Then S is complex and symplectic manifold.

Algebra ~~ Geometry.
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Kahler manifolds

Definition

A manifold S is Ké&hler if it is complex and it has a hermitian metric
h= g+ iw, with dw = 0.
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@ Kodaira (1954). Smooth algebraic variety S ¢ CP" <= Sis
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@ Kodaira (1954). Smooth algebraic variety S ¢ CP" <= Sis
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@ Sis Kéhler «< S is a Riemannian manifold with holonomy
contained in U(n).
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Kahler manifolds

Definition

A manifold S is Ké&hler if it is complex and it has a hermitian metric
h= g+ iw, with dw = 0.

@ Kodaira (1954). Smooth algebraic variety S ¢ CP" <= Sis
Kahler and [w] € H3(S,Z) C H?(S).

@ Sis Kéhler «< S is a Riemannian manifold with holonomy
contained in U(n).

@ If M is a complex manifold, does it admit a K&hler structure?
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Kahler manifolds

Definition

A manifold S is Ké&hler if it is complex and it has a hermitian metric
h= g+ iw, with dw = 0.

@ Kodaira (1954). Smooth algebraic variety S ¢ CP" <= Sis
Kahler and [w] € H3(S,Z) C H?(S).

@ Sis Kéhler «< S is a Riemannian manifold with holonomy
contained in U(n).

@ If M is a complex manifold, does it admit a K&hler structure?
@ If M is a symplectic manifold, does it admit a K&hler structure?
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Hodge theory

Analysis (PDEs) on manifolds ~~ Topology.
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Hodge theory

Analysis (PDEs) on manifolds ~~ Topology.

De Rham’s theorem. d : QX(M) — Q**+'(M) exterior differential.
De Rham cohomology:

K(pg) — _{e€QX(M)|da=0}
Hi(M) = {a=dB|BeQ (M)}
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Take d* : QK*1(M) — Q¥(M) adjoint operator to d.
A = dd* + d*d Laplacian.
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Hodge theory

Analysis (PDEs) on manifolds ~~ Topology.

De Rham’s theorem. d : QX(M) — Q**+'(M) exterior differential.
De Rham cohomology:

K(pg) — _{e€QX(M)|da=0}
Hi(M) = {a=dB|BeQ (M)}

(M, g) Riemannian manifold.

Take d* : QK*1(M) — Q¥(M) adjoint operator to d.

A = dd* + d*d Laplacian.

(Ao, ) = (dd* o, ) + (d*da, o) = (d*«a, d*a) + (da, da) =
= |ld*al? +[|da][?.
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Hodge theory

Analysis (PDEs) on manifolds ~~ Topology.

De Rham’s theorem. d : QX(M) — Q**+'(M) exterior differential.
De Rham cohomology:

K(pg) — _{e€QX(M)|da=0}
Hi(M) = {a=dB|BeQ (M)}

(M, g) Riemannian manifold.

Take d* : QK*1(M) — Q¥(M) adjoint operator to d.

A = dd* + d*d Laplacian.

(Aa, o) = (dd*a, a) + (d*da, o) = (d*«, d*a) + (da, da) =
= |ld*al? +[|da][?.

Hence Aa =0 <= da=0,d*a =0.
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Hodge theory

Analysis (PDEs) on manifolds ~~ Topology.

De Rham’s theorem. d : QX(M) — Q**+'(M) exterior differential.
De Rham cohomology:

K(pg) — _{e€QX(M)|da=0}
Hi(M) = {a=dB|BeQ (M)}

(M, g) Riemannian manifold.

Take d* : QK*1(M) — Q¥(M) adjoint operator to d.

A = dd* + d*d Laplacian.

(Aa, o) = (dd*a, a) + (d*da, o) = (d*«, d*a) + (da, da) =
= |ld*al? +[|da][?.

Hence Aa =0 <= da=0,d*a =0.

Harmonic forms:
HK(M) = {a € QX(M)|Aa = 0} = {a|da = 0,d*a = 0} =

~ {a|da=0
= 25 = Hm).
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Hodge theory for complex manifolds

(M, i) complex manifold.
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Hodge theory for complex manifolds

(M, i) complex manifold.

k-forms: o =) fi(x1,..., Xoq)adX;, A ...dXj
Complex coordinates: z; = xpj_1 +ixp, j=1,...,d.
de = ngj_1 + fng, de = ngj_1 — i_ng B
(p, q)—forms: o= Z fiy dZ,‘1 VAN dZ,'p VAN dZ,'1 N dZ,'q
QM) = Dy gk PI(M).
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Hodge theory for complex manifolds

(M, i) complex manifold.

k-forms: o =) fi(x1,..., Xoq)adX;, A ...dXj
Complex coordinates: zj = xpj_1 +iXxpj, j=1,...,d.
de = ngj_1 + fng, de = ngj_1 — ngj

(p, q)—forms: o= Z fiy dZ,‘1 VAN dZ,'p VAN dZ,-1 N dZ,-q

(M) = B, gk LI(M).

da=> 8f"’dZ,' A CJ'Z,'1 VAN dZ,'p A d2/1 VARRIN dZ,-q+
+Z‘9f“dzj/\dz,-1 A...dzy, AdZ A...dZ,

da = 0o + 804
a9 QPIM) — Qp+1,q(M),
D : QPI(M) — vaq“(M).

{2€QP9(M) | Ba=0}

Dolbeault cohomology: HP9(M) = =555 cra 1
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Hodge theory for Kahler manifolds

(M, i,g) Kéhler.
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Then A : QP9(M) — QPI(M).
HA (M) = By g HPI(M).
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Hodge theory for Kahler manifolds

(M, i,g) Kéhler.
Then A : QP9(M) — QPI(M).
HA (M) = By g HPI(M).

Hodge decomposition: HX(M) = Dy qi HPIM).

HP-a(M) = HIP(M).
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Then A : QP9(M) — QPI(M).
HA (M) = By g HPI(M).

Hodge decomposition: HX(M) = Dy qi HPIM).

HP-a(M) = HIP(M).

In particular, the Betti numbers satisfy:
by = dim HK(M) = 3" hP9, and hP9 = haP.
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If M is a Kahler manifold then by 1 is even. \
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Hodge theory for Kahler manifolds

(M, i,g) Kéhler.
Then A : QP9(M) — QPI(M).
HA (M) = By g HPI(M).

Hodge decomposition: HX(M) = Dy qi HPIM).

HP-a(M) = HIP(M).

In particular, the Betti numbers satisfy:
by = dim HK(M) = 3" hP9, and hP9 = haP.

If M is a Kahler manifold then by 1 is even. \

Analysis on manifolds ~~ Topology.
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Kodaira-Thurston manifold

Kodaira, 1964

Complex manifold with by = 3. It is given as

1 z w
M{(O 1 2)|z,we(C/(Z+Zi)}
0 0 1
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Kodaira-Thurston manifold

Kodaira, 1964

Complex manifold with by = 3. It is given as

1 z w
M = (0 1 2)|z,we(C/(Z+Zi)}
0 0 1

For complex surfaces, bi(X) even <= X admits a Kahler structure
(Enriques-Kodaira classification)
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Kodaira-Thurston manifold

Kodaira, 1964

Complex manifold with by = 3. It is given as

1 z w
M{(O 1 2)|Z,W€(C/(Z+Zi)}
0 0 1

For complex surfaces, bi(X) even <= X admits a Kahler structure
(Enriques-Kodaira classification)

Thurston, 1976
Symplectic manifold with b; = 3. Take the Heisenberg manifold

1 a c
H{(O 1 b)a,b,ceR/Z}.ThenS‘aHaTz,
0 0 1

o =da, B = db e Q'(T?). Connection 1-form = dc — bda € Q' (H),
dn=aAp.
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For complex surfaces, bi(X) even <= X admits a Kahler structure
(Enriques-Kodaira classification)

Thurston, 1976
Symplectic manifold with b; = 3. Take the Heisenberg manifold

1 a c
H{(O 1 b)a,b,ceR/Z}.ThenS‘aHaTz,
0 0 1

o =da, B = db e Q'(T?). Connection 1-form = dc — bda € Q' (H),
dn=aAp.
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Kodaira, 1964

Complex manifold with by = 3. It is given as

1 z w
M{(O 1 2)|Z,W€(C/(Z+Zi)}
0 0 1

For complex surfaces, bi(X) even <= X admits a Kahler structure
(Enriques-Kodaira classification)

Thurston, 1976
Symplectic manifold with b; = 3. Take the Heisenberg manifold

1 a c
H{(O 1 b)a,b,ceR/Z}.ThenS‘aHaTz,
0 0 1

o =da, B = db e Q'(T?). Connection 1-form = dc — bda € Q' (H),
dn=aAp.Let N=Hx S', ~=db.
The symplectic formis w = a Ay + 8 A .
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Kahler vs. complex/symplectic geometry

Topological properties of Kahler manifolds
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Kahler vs. complex/symplectic geometry

Topological properties of Kahler manifolds

@ by 1 are even.

==

o Awd K HK(M) = H?9=K(M) (hard-Lefschetz)
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Topological properties of Kahler manifolds

@ by 1 are even.
o Awd=K: HK(M) =5 H29-K(M) (hard-Lefschetz)

@ Rational homotopy type mx(M) ® Q is determined by H(M)
(formality)
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@ by 1 are even.
o Awd=K: HK(M) =5 H29-K(M) (hard-Lefschetz)

@ Rational homotopy type mx(M) ® Q is determined by H(M)
(formality)

@ Kahler (fundamental) groups.

Topological consequences of Hodge theory and harmonic analysis.
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Kahler vs. complex/symplectic geometry

Topological properties of Kahler manifolds

@ by 1 are even.
o Awd=K: HK(M) =5 H29-K(M) (hard-Lefschetz)

@ Rational homotopy type mx(M) ® Q is determined by H(M)
(formality)

@ Kahler (fundamental) groups.

Topological consequences of Hodge theory and harmonic analysis.

Does it exist a (compact) manifold M satisfying some topological
property (e.g. bok 1 even) admitting complex/symplectic structure but
not admitting a Kahler structure?
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Constructions of (compact) symplectic manifolds

@ (Gompf, 1995) Connected sums along codimension 2 symplectic
submanifolds.
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Constructions of (compact) symplectic manifolds

@ (Gompf, 1995) Connected sums along codimension 2 symplectic
submanifolds.

@ (McDuff, 1984) Symplectic blow-ups.
@ (Fernandez-Munoz, 2008) Symplectic resolution of singularities.
Some remarkable results:

@ Non simply-connected. Gompf (1995): any fundamental group
can happen for a symplectic manifold.
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Constructions of (compact) symplectic manifolds

@ (Gompf, 1995) Connected sums along codimension 2 symplectic
submanifolds.

@ (McDuff, 1984) Symplectic blow-ups.

@ (Fernandez-Munoz, 2008) Symplectic resolution of singularities.

Some remarkable results:

@ Non simply-connected. Gompf (1995): any fundamental group
can happen for a symplectic manifold.

@ Simply-connected. McDuff (1984): There are symplectic
simply-connected manifolds with bs odd.

@ Hard-Lefschetz. Cavalcanti (2007): There are non-formal
hard-Lefschetz symplectic manifolds.

@ Non-formal. Babenko-Taimanov (2000): non-formal
simply-connected symplectic manifolds for dimension > 10.
Ferndndez-Mufoz (2008): non-formal simply-connected
symplectic manifolds for dimension 8.
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Main results

Theorem [Fernandez-Mufoz, Annals 2008]

There is a simply-connected 8-dimensional symplectic manifold which
is not formal. Hence it does not admit Kahler structures.
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Main results

Theorem [Ferndndez-Mufioz, Annals 2008]

There is a simply-connected 8-dimensional symplectic manifold which
is not formal. Hence it does not admit Kahler structures.

Theorem [Bazzoni-Mufioz, 2014]
The previous manifold admits a complex structure.

What happens in dimension 6?

Theorem [Bazzoni-Fernandez-Muinoz, arxiv:1410.6045]

There is a simply-connected 6-dimensional manifold complex and
symplectic which is not hard-Lefschetz. Hence it does not admit Kéhler
structures.
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Proof of theorem

Take the complex Heisenberg group

1 a c
H= 01 b |labceC/Ay,
0 0 1

where A = Z(1,¢), € = e?™/8,
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Proof of theorem

Take the complex Heisenberg group

1 a c
H= 01 b |labceC/Ay,
0 0 1

where A = Z(1,¢), € = e?™/8,

Then C/A — H— (C/A) x (C/N), (a,b,c) — (a,b).
a =1+ ias, da =0,

B =B+ iB2, d3 =0,

n=m+inz, dn=anp.
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Take the complex Heisenberg group

1 a c
H= 01 b |labceC/Ay,
0 0 1

where A = Z(1,¢), € = e?™/8,

Then C/A — H— (C/A) x (C/N), (a,b,c) — (a,b).
a =1+ ias, da =0,

B =B+ iB2, d3 =0,

n=m+in,dp=aAp.
Letw=—iaNa+BAn+ B AT,

dw =0 and w® # 0. So w is symplectic.

Vicente Mufioz (UCM) Complex, symplectic and Kahler geometry 29 September 2015



Proof of theorem

Take the complex Heisenberg group

1 a c
H= 01 b |labceC/Ay,
0 0 1

where A = Z(1,¢), € = e?™/8,

Then C/A — H— (C/A) x (C/N), (a,b,c) — (a,b).
a =1+ ias, da =0,

B =B+ iB2, d3 =0,

n=m+in,dp=aAp.
Letw=—iaNa+BAn+ B AT,

dw =0 and w® # 0. So w is symplectic.

Zg acts on H as (a, b, ¢) — (£*a, &b, £5¢),

w is Zg-invariant.
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Proof of theorem

Take the complex Heisenberg group

1 a c
H= 01 b |labceC/Ay,
0 0 1

where A = Z(1,¢), € = e?™/8,

Then C/A — H— (C/A) x (C/N), (a,b,c) — (a,b).
a =1+ ias, da =0,

B =B+ iB2, d3 =0,

n=m+in,dp=aAp.
Letw=—iaNa+BAn+ B AT,

dw =0 and w® # 0. So w is symplectic.

Zg acts on H as (a, b, ¢) — (£*a, &b, £5¢),

w is Zg-invariant.

— M = M/Zg is an orbifold admitting complex and symplectic
structures.
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Proof of theorem

Take the complex Heisenberg group

1 a c
H= 01 b |labceC/Ay,
0 0 1

where A = Z(1,¢), € = e?™/8,

Then C/A — H— (C/A) x (C/N), (a,b,c) — (a,b).
a =1+ ias, da =0,

B =B+ iB2, d3 =0,

n=m+in,dp=aAp.
Letw=—iaNa+BAn+ B AT,

dw =0 and w® # 0. So w is symplectic.

Zg acts on H as (a, b, ¢) — (£*a, &b, £5¢),

w is Zg-invariant.

— M = M/Zg is an orbifold admitting complex and symplectic
structures.

But Aw : H3(M) — H*(i) is not an isomorphism.
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Proof of theorem

M is an orbifold.
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@ T I\N/lC M complex resolution of singularities.
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Proof of theorem

M is an orbifold. We take:
@ T MC M complex resolution of singularities.
® m: Ms— M symplectic resolution of singularities.

Claim: I\7/c and I\7Is are diffeomorphic manifolds.
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Proof of theorem

M is an orbifold. We take:
@ T MC M complex resolution of singularities.
® m: Ms— M symplectic resolution of singularities.

Claim: I\7/c and I\7Is are diffeomorphic manifolds.

Hence M, = Ms admits complex and symplectic structures (but not
Kahler ones!)
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Proof of theorem

Let us see this in the simple case of an isolated orbifold point.
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Proof of theorem

Let us see this in the simple case of an isolated orbifold point.
A chart around the orbifold point is of the form B/I', where
B = B(0,1) c C® and T is a finite group acting on B.

@ The complex resolution consists of substituting B/l by some B

given by some (complex) blow-ups. Here I' C U(3) acts by
complex isometries.
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Proof of theorem

Let us see this in the simple case of an isolated orbifold point.
A chart around the orbifold point is of the form B/I', where
B = B(0,1) c C® and T is a finite group acting on B.

@ The complex resolution consists of substituting B/l by some B

given by some (complex) blow-ups. Here I' C U(3) acts by
complex isometries.

@ The symplectic resolution is done as follows:
w=—idanda+dbAdc+ dbAdc
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Proof of theorem

Let us see this in the simple case of an isolated orbifold point.
A chart around the orbifold point is of the form B/I', where
B = B(0,1) c C® and T is a finite group acting on B.

@ The complex resolution consists of substituting B/l by some B
given by some (complex) blow-ups. Here I' C U(3) acts by
complex isometries.

@ The symplectic resolution is done as follows:
w=—idanda+dbAdc+dbAde
Change of coordinates: & =a, b/ =b—i¢,c/ =b—ic (*)
w=—idad Nd@ —idb' Andb —idc AdT
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Proof of theorem

Let us see this in the simple case of an isolated orbifold point.
A chart around the orbifold point is of the form B/I', where
B = B(0,1) c C® and T is a finite group acting on B.

@ The complex resolution consists of substituting B/l by some B
given by some (complex) blow-ups. Here I' C U(3) acts by
complex isometries.

@ The symplectic resolution is done as follows:
w=—idaAda+dbAdc+dbAde
Change of coordinates: & =a, b/ =b—i¢,c/ =b—ic (*)
w=—idad Nd@ —idb' Andb —idc AdT
Now B/I' = B'/T" with ' C U(3) acting as
(@.b.¢) — (*a,¢b, £50). (*")
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Proof of theorem

Let us see this in the simple case of an isolated orbifold point.
A chart around the orbifold point is of the form B/I', where
B = B(0,1) c C® and T is a finite group acting on B.

@ The complex resolution consists of substituting B/l by some B
given by some (complex) blow-ups. Here I' C U(3) acts by
complex isometries.

@ The symplectic resolution is done as follows:
w=—idanda+dbAdc+dbAde
Change of coordinates: & =a, b/ =b—i¢,c/ =b—ic (*)
w=—idad Nd@ —idb' Andb —idc AdT
Now B/I' = B'/T" with ' C U(3) acting as
(d.b,c) (£, ¢b, €5¢). ()
Do a complex resolution with coordinates (&', b/, ¢’) obtaining a
Kéahler form &’ which has to be glued to w outside B/T via cut-off
functions. This substitutes B’ /I’ by some B with a symplectic
form.
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Proof of theorem

To prove that M, and M; are diffeomorphic,
we need a diffeomorphism B — B'.
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To prove that M, and M; are diffeomorphic,
we need a diffeomorphism B — B'.

This requires:

@ That c U(3) is conjugated to I'" ¢ U(3). In our case, by (**),
they are equal.
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we need a diffeomorphism B — B'.
This requires:
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@ Need to isotop the identity to the change of coordinates (*).
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This requires:

@ That c U(3) is conjugated to I'" ¢ U(3). In our case, by (**),
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which is '-equivariant.
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To prove that M, and M are diffeomorphic,
we need a diffeomorphism B — B'.

This requires:

@ That c U(3) is conjugated to I'" ¢ U(3). In our case, by (**),
they are equal.

@ Need to isotop the identity to the change of coordinates (*).

@ Use the isotopy to radially construct a diffeomorphism B — B’
which is '-equivariant.

@ Need to control the distortion on the radial direction to prevent that
the Jacobian becomes non-invertible.
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Proof of theorem

To prove that M, and M are diffeomorphic,
we need a diffeomorphism B — B'.

This requires:

@ That c U(3) is conjugated to I'" ¢ U(3). In our case, by (**),
they are equal.

@ Need to isotop the identity to the change of coordinates (*).

@ Use the isotopy to radially construct a diffeomorphism B — B’
which is '-equivariant.

@ Need to control the distortion on the radial direction to prevent that
the Jacobian becomes non-invertible.

Finally, have to deal with non-isolated orbifold points.
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Proof of theorem

To prove that M, and M are diffeomorphic,
we need a diffeomorphism B — B'.

This requires:

@ That c U(3) is conjugated to I'" ¢ U(3). In our case, by (**),
they are equal.

@ Need to isotop the identity to the change of coordinates (*).

@ Use the isotopy to radially construct a diffeomorphism B — B’
which is '-equivariant.

@ Need to control the distortion on the radial direction to prevent that
the Jacobian becomes non-invertible.

Finally, have to deal with non-isolated orbifold points. QED
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