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Geometry

Focus on “geometrical” or “physical” spaces.

Smooth manifold: topological space such that every point has a
neighbourhood (chart).

 smooth functions on M, (tangent) vectors, etc.
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Geometrical structures

A geometrical structure is an extra structure on a smooth manifold.
It serves to pose (and solve) analytical problems on manifolds.

Relevant examples are:

Riemannian metrics.
g : TpM × TpM → R, scalar product at each point.
Complex structure. The charts are on the complex space Cd

 notion of holomorphic functions.
Symplectic structures. Allow to compute areas:
ω : TpM × TpM → R antisymmetric.
ω ∈ Ω2(M), dω = 0, ωd 6= 0, dim M = 2d .

Main focus
Classify smooth (compact) manifolds with a given structure.
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Topological obstructions

Question
Given a smooth (compact) manifold M, does it admit a complex or a
symplectic structure?

If (M, ω) is symplectic, ω ∈ Ω2(M), dω = 0, ωd 6= 0, dim M = 2d .
=⇒ Ω = ωd is a volume form that can be integrated.
Then

∫
M ωd > 0.

So [ω]d 6= 0 ∈ H2d (M),
hence [ω] 6= 0 ∈ H2(M) and b2k (M) = dim H2k (M) > 0, k = 1, . . . ,d .

This is an example of a number of topological obstructions for
admitting a geometrical structure.
Topology Geometry.
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Algebraic Geometry

Consider the ambient space Cn.
Take F1, . . . ,Fm ∈ C[z1, . . . , zn].
S = V (F1, . . . ,Fm) = {z ∈ Cn |F1(z) = . . . = Fm(z) = 0} ⊂ Cn.

Suppose rk
(
∂Fi
∂zj

)
= n − d = constant.

Then S is a smooth complex manifold of dimC S = d .

For compact examples, take the ambient space
CPn = {[z0 : z1 : . . . : zn]} = (Cn+1 − {0})/C∗
[z0 : z1 : . . . : zn] = [λz0 : λz1 : . . . : λzn], λ 6= 0.
CPn = S2n+1/S1 is compact.

S = V (F1, . . . ,Fm), Fi(z0, . . . , zn) homogeneous polynomials, is a
compact complex manifold.
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Algebraic varieties

U(n + 1) acts on S2n+1 ⊂ Cn+1 − {0}.

There is an invariant hermitian metric h : TpCPn × TpCPn → C,
h(v ,u) = h(u, v) (Fubini-Study metric).

Write h = g + i ω. Then

g Riemannian metric.
ω is a 2-form.
ω is symplectic, ωn = det(g) 6= 0, dω = 0 by homogeneity.
ω(u, v) = g(u, i v) (compatibility of ω and i).

Let S ⊂ CPn be a smooth algebraic variety. Take gS = g|S, ωS = ω|S.
Then S is complex and symplectic manifold.

Algebra Geometry.
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Kähler manifolds

Definition
A manifold S is Kähler if it is complex and it has a hermitian metric
h = g + i ω, with dω = 0.

Kodaira (1954). Smooth algebraic variety S ⊂ CPn ⇐⇒ S is
Kähler and [ω] ∈ H2(S,Z) ⊂ H2(S).
S is Kähler ⇐⇒ S is a Riemannian manifold with holonomy
contained in U(n).

Question

If M is a complex manifold, does it admit a Kähler structure?
If M is a symplectic manifold, does it admit a Kähler structure?
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Hodge theory

Analysis (PDEs) on manifolds Topology.

De Rham’s theorem. d : Ωk (M)→ Ωk+1(M) exterior differential.
De Rham cohomology:
Hk (M) = {α∈Ωk (M)|dα=0}

{α=dβ|β∈Ωk−1(M)} .

(M,g) Riemannian manifold.
Take d∗ : Ωk+1(M)→ Ωk (M) adjoint operator to d .
4 = dd∗ + d∗d Laplacian.
〈4α, α〉 = 〈dd∗α, α〉+ 〈d∗dα, α〉 = 〈d∗α,d∗α〉+ 〈dα,dα〉 =
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Hodge theory for complex manifolds

(M, i) complex manifold.

k -forms: α =
∑

fI(x1, . . . , x2d )dxi1 ∧ . . . dxik
Complex coordinates: zj = x2j−1 + i x2j , j = 1, . . . ,d .
dzj = dx2j−1 + i x2j , dz̄j = dx2j−1 − i x2j
(p,q)-forms: α =

∑
fIJ dzi1 ∧ . . . dzip ∧ dz̄i1 ∧ . . . dz̄iq

Ωk (M) =
⊕

p+q=k Ωp,q(M).

dα =
∑ ∂fIJ

∂zi
dzi ∧ dzi1 ∧ . . . dzip ∧ dz̄i1 ∧ . . . dz̄iq +

+
∑ ∂fIJ

∂z̄j
dz̄j ∧ dzi1 ∧ . . . dzip ∧ dz̄i1 ∧ . . . dz̄iq

dα = ∂α + ∂̄α
∂ : Ωp,q(M)→ Ωp+1,q(M),
∂̄ : Ωp,q(M)→ Ωp,q+1(M).

Dolbeault cohomology: Hp,q(M) = {α∈Ωp,q(M) | ∂̄α=0}
{α=∂̄β|β∈Ωp,q−1(M)} .
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Hodge theory for Kähler manifolds

(M, i ,g) Kähler.

Then 4 : Ωp,q(M)→ Ωp,q(M).
Hk (M) =

⊕
p+q=k Hp,q(M).

Hodge decomposition: Hk (M) =
⊕

p+q=k Hp,q(M).
Hp,q(M) ∼= Hq,p(M).

In particular, the Betti numbers satisfy:
bk = dim Hk (M) =

∑
hp,q, and hp,q = hq,p.

Corollary
If M is a Kähler manifold then b2k+1 is even.

Analysis on manifolds Topology.
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Kodaira-Thurston manifold

Kodaira, 1964
Complex manifold with b1 = 3. It is given as

M =


 1 z w

0 1 z̄
0 0 1

 | z,w ∈ C/(Z + Z i)



For complex surfaces, b1(X ) even ⇐⇒ X admits a Kähler structure
(Enriques-Kodaira classification)

Thurston, 1976
Symplectic manifold with b1 = 3. Take the Heisenberg manifold

H =


 1 a c

0 1 b
0 0 1

 |a,b, c ∈ R/Z

. Then S1 → H → T 2,

α = da, β = db ∈ Ω1(T 2). Connection 1-form η = dc − b da ∈ Ω1(H),
dη = α ∧ β. Let N = H × S1, γ = dθ.
The symplectic form is ω = α ∧ γ + β ∧ η.
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Kähler vs. complex/symplectic geometry

Topological properties of Kähler manifolds

b2k+1 are even.

∧ωd−k : Hk (M)
∼=−→ H2d−k (M) (hard-Lefschetz)

Rational homotopy type πk (M)⊗Q is determined by Hk (M)
(formality)
Kähler (fundamental) groups.

Topological consequences of Hodge theory and harmonic analysis.

Question
Does it exist a (compact) manifold M satisfying some topological
property (e.g. b2k+1 even) admitting complex/symplectic structure but
not admitting a Kähler structure?
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Constructions of (compact) symplectic manifolds

(Gompf, 1995) Connected sums along codimension 2 symplectic
submanifolds.

(McDuff, 1984) Symplectic blow-ups.
(Fernández-Muñoz, 2008) Symplectic resolution of singularities.

Some remarkable results:

Non simply-connected. Gompf (1995): any fundamental group
can happen for a symplectic manifold.
Simply-connected. McDuff (1984): There are symplectic
simply-connected manifolds with b3 odd.
Hard-Lefschetz. Cavalcanti (2007): There are non-formal
hard-Lefschetz symplectic manifolds.
Non-formal. Babenko-Taimanov (2000): non-formal
simply-connected symplectic manifolds for dimension ≥ 10.
Fernández-Muñoz (2008): non-formal simply-connected
symplectic manifolds for dimension 8.
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Main results

Theorem [Fernández-Muñoz, Annals 2008]
There is a simply-connected 8-dimensional symplectic manifold which
is not formal. Hence it does not admit Kähler structures.

Theorem [Bazzoni-Muñoz, 2014]
The previous manifold admits a complex structure.

What happens in dimension 6?

Theorem [Bazzoni-Fernández-Muñoz, arxiv:1410.6045]
There is a simply-connected 6-dimensional manifold complex and
symplectic which is not hard-Lefschetz. Hence it does not admit Kähler
structures.
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Proof of theorem

Take the complex Heisenberg group

H =


 1 a c

0 1 b
0 0 1

 |a,b, c ∈ C/Λ

,

where Λ = Z〈1, ξ〉, ξ = e2πi/6.

Then C/Λ→ H → (C/Λ)× (C/Λ), (a,b, c) 7→ (a,b).
α = α1 + iα2, dα = 0,
β = β1 + iβ2, dβ = 0,
η = η1 + iη2, dη = α ∧ β.
Let ω = −iα ∧ ᾱ + β ∧ η + β̄ ∧ η̄,
dω = 0 and ω3 6= 0. So ω is symplectic.
Z6 acts on H as (a,b, c) 7→ (ξ4a, ξb, ξ5c),
ω is Z6-invariant.
=⇒ M̂ = M/Z6 is an orbifold admitting complex and symplectic
structures.
But ∧ω : H2(M̂)→ H4(M̂) is not an isomorphism.
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Proof of theorem

M̂ is an orbifold.

We take:

π1 : M̃c → M̂ complex resolution of singularities.
π2 : M̃s → M̂ symplectic resolution of singularities.

Claim: M̃c and M̃s are diffeomorphic manifolds.

Hence M̃c = M̃s admits complex and symplectic structures (but not
Kähler ones!)
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Proof of theorem

Let us see this in the simple case of an isolated orbifold point.

A chart around the orbifold point is of the form B/Γ, where
B = B(0,1) ⊂ C3 and Γ is a finite group acting on B.

The complex resolution consists of substituting B/Γ by some B̃
given by some (complex) blow-ups. Here Γ ⊂ U(3) acts by
complex isometries.
The symplectic resolution is done as follows:
ω = −i da ∧ dā + db ∧ dc + db̄ ∧ dc̄
Change of coordinates: a′ = a, b′ = b − i c̄, c′ = b̄ − i c (*)
ω = −i da′ ∧ dā′ − i db′ ∧ db̄′ − i dc′ ∧ dc̄′

Now B/Γ ∼= B′/Γ′ with Γ′ ⊂ U(3) acting as
(a′,b′, c′) 7→ (ξ4a′, ξb′, ξ5c′). (**)
Do a complex resolution with coordinates (a′,b′, c′) obtaining a
Kähler form ω̃′ which has to be glued to ω outside B/Γ via cut-off
functions. This substitutes B′/Γ′ by some B̃′ with a symplectic
form.
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functions. This substitutes B′/Γ′ by some B̃′ with a symplectic
form.
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Proof of theorem

To prove that M̃c and M̃s are diffeomorphic,
we need a diffeomorphism B̃ → B̃′.

This requires:

That Γ ⊂ U(3) is conjugated to Γ′ ⊂ U(3). In our case, by (**),
they are equal.
Need to isotop the identity to the change of coordinates (*).
Use the isotopy to radially construct a diffeomorphism B → B′

which is Γ-equivariant.
Need to control the distortion on the radial direction to prevent that
the Jacobian becomes non-invertible.

Finally, have to deal with non-isolated orbifold points. QED
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